Machine Perception of Music & Audio. Topic 9: Measuring Distance

Size: px
Start display at page:

Download "Machine Perception of Music & Audio. Topic 9: Measuring Distance"

Transcription

1 Machne Percepton of Musc & Audo Topc 9: Measurng Dstance Bran Pardo EECS 352 Wnter

2 Wh measure dstance? Clusterng requres dstance measures. Local methods requre a measure of localt Search engnes requre a measure of smlart Bran Pardo EECS 352 Wnter 2010

3 Dmenson 2 Eucldean Dstance What people ntutvel thnk of as dstance d Dmenson 1 Bran Pardo EECS 352 Wnter 2010

4 Generalzed Eucldean Dstance n = the number of dmensons d where n n n 1/ 2 } and Bran Pardo EECS 352 Wnter 2010

5 L p norms L p norms are all specal cases of ths: d n 1 p 1/ p p changes the norm 1 L 1 norm Manhattan Dstance: p 1 2 L 2 norm Eucldean Dstance: p 2 Hammng Dstance: p 1and 01 Bran Pardo EECS 352 Wnter 2010

6 Weghtng Dmensons Put pont n the cluster wth the closest center of gravt Whch cluster should the red pont go n? How do I measure dstance n a wa that gves the rght answer for both stuatons? Bran Pardo EECS 352 Wnter 2010

7 Weghted Norms You can compensate b weghtng our dmensons. d n 1/ w p 1 p Ths lets ou turn our crcle of equal-dstance nto an elpse wth aes parallel to the dmensons of the vectors. Bran Pardo EECS 352 Wnter 2010

8 What s a metrc? A metrc has these four qualtes. otherwse call t a measure nequalt trangle smmetr non - negatve 0 reflev t ff 0 z d z d d d d d d Bran Pardo EECS 352 Wnter 2010

9 Metrc or not? Drvng dstance wth 1-wa streets Categorcal Stuff : Is dstance Jazz to Blues to Rock no less than dstance Jazz to Rock? Bran Pardo EECS 352 Wnter 2010

10 Categorcal Varables Consder feature vectors for genre & vocals: Genre: {Blues Jazz Rock Zdeco} Vocals: {vocalsno vocals} s1 = {rock vocals} s2 = {azz no vocals} s3 = { rock no vocals} Whch two songs are more smlar? Bran Pardo EECS 352 Wnter 2010

11 One Soluton:Hammng dstance Blues Jazz Rock Zdeco Vocals s1 = {rock vocals} s2 = {azz no_vocals} s3 = { rock no_vocals} Hammng Dstance = number of bts dfferent between bnar vectors Bran Pardo EECS 352 Wnter 2010

12 Hammng Dstance Bran Pardo EECS 352 Wnter 2010 {01} and } where n n n d

13 Defnng our own dstance an eample How often does artst quote artst? Quote Frequenc Beethoven Beatles Lz Phar Beethoven Beatles Lz Phar? 1 2 Let s buld a dstance measure! Bran Pardo EECS 352 Wnter 2010

14 Defnng our own dstance an eample Beethoven Beatles Lz Phar Beethoven Beatles Lz Phar? 1 2 Quotefrequenc Q Dstance d 1 f value n table Q f Q zartsts f z Bran Pardo EECS 352 Wnter 2010

15 Mssng data What f for some categor on some eamples there s no value gven? Approaches: Dscard all eamples mssng the categor Fll n the blanks wth the mean value Onl use a categor n the dstance measure f both eamples gve a value Bran Pardo EECS 352 Wnter 2010

16 Dealng wth mssng data n n w n n d w 1 1 else 1 are defned and both f 0 Bran Pardo EECS 352 Wnter 2010

17 Edt Dstance Quer = strng from fnte alphabet Target = strng from fnte alphabet Cost of Edts = Dstance Target: C A G E D - - Quer: C E A E D

18 Tpcal Melodc Search Sstem Quer Database Themes Targets Sgt. Pepper s Smlart Ranker Yesterda Ranked Lst

19 Wh Monophonc Themes? Audo Document Theme 1 Theme 3 Theme 2 PROBLEM Smlart rankers tpcall requre monophonc nput

20 Smlart Rankng b Edt Dstance Quer = strng Target = strng Cost of Edts = Dstance Target: C A G E D - - Quer: C E A E D

21 Local Strng Algnment 0 ma q s M s M q M M M -1-1 M -1 M -1 M Insert Delete Match Restart

22 Local Strng Algnment S Q ma M SIMILARITY THEME QUERY G A B B G D A C B

23 Md Ptch Melod Transcrpton Sung quer Segmented quer Short Gltch Notes Seconds Ptch Quantzaton Errors musc.

24 Melod Encodng Transcrpton Encodng up 2 half-steps { } 2 nd s ½ length of 1 st note Ptch nterval and rhthm rato Tempo and transposton nvarant Smplfes error modelng musc.cs.northwestern.edu

25 Response Ptch Interval Modelng Snger Varaton se I nterval Respon Ascendng Maor 6 th 50 stmulus-response pars Stmulus Ptch Interval In ½ steps 12 to an octave Stmulus 1 Response 1 Stmulus 2 Response 2

26 Ma sngle-part smlart S Q ma P Q Song Smlart = MAXPart Smlart QUERY PS SCORE

27 Oops! QUERY Cheap Knock-off To God on Hgh Glor Be

28 Oops! QUERY Cheap Knock-off To God on Hgh Glor Be

29 Oops! QUERY Cheap Knock-off To God on Hgh Glor Be

30 Homophonc Smlart SCORE QUERY M -1-1 M -1 M -1 M

31 Homophonc Algnment 0 ma q s M s M q M M Insert Delete Match Restart ma n C n C H REPLACES

32 Skppng Between Parts Quer Score To God On Hgh All Glor Be

33 Polphonc Algnment Part k+1 L -1-1k+1 Part k L -1-1k L L -1lk+1-1k Part k-1 L -1-1k-1 L -1k L k L -1k-1

34 Polphonc Algnment 0 ma k l k l p q L k l k l p L p q L p L q L L k l k l k k k k k k Insert Delete Match Restart Shft Shft CHANGE-PART COST

35 Makng monophonc parts Part 1 notebt Part 2 note

36 Makng monophonc parts Part 1a Part 1b Part 2a Part 2b Part 2c

37 TARGET DATABASE Eperment 300 Bach 4-part vocal chorale harmonzatons QUERIES 5 to 25 notes n length Skp between parts wth a probablt of: Queres per condton COMPARE Mamal sngle-part smlart Polphonc smlart

38 Mean rank of correct target Results Mamum sngle-part smlart Polphonc algnment Per-note probablt of changng parts n quer

39 Number of queres Number of queres Ppart change = Polphonc algnment Mamum sngle-part smlart Rank of correct target rght rank

40 Conclusons Standard sequence algnment fals when queres skp from part to part We etend strng-matchng to handle ths case Ths mproves search performance

Machine Learning. Measuring Distance. several slides from Bryan Pardo

Machine Learning. Measuring Distance. several slides from Bryan Pardo Machne Learnng Measurng Dstance several sldes from Bran Pardo 1 Wh measure dstance? Nearest neghbor requres a dstance measure Also: Local search methods requre a measure of localt (Frda) Clusterng requres

More information

Machine Learning. Topic 4: Measuring Distance

Machine Learning. Topic 4: Measuring Distance Mache Learg Topc 4: Measurg Dstace Bra Pardo Mache Learg: EECS 349 Fall 2009 Wh measure dstace? Clusterg requres dstace measures. Local methods requre a measure of localt Search eges requre a measure of

More information

Machine Learning. Measuring Distance. several slides from Bryan Pardo

Machine Learning. Measuring Distance. several slides from Bryan Pardo Machine Learning Measuring Distance several slides from Bran Pardo 1 Wh measure distance? Nearest neighbor requires a distance measure Also: Local search methods require a measure of localit (Frida) Clustering

More information

Instance-Based Learning (a.k.a. memory-based learning) Part I: Nearest Neighbor Classification

Instance-Based Learning (a.k.a. memory-based learning) Part I: Nearest Neighbor Classification Instance-Based earnng (a.k.a. memory-based learnng) Part I: Nearest Neghbor Classfcaton Note to other teachers and users of these sldes. Andrew would be delghted f you found ths source materal useful n

More information

p 1 c 2 + p 2 c 2 + p 3 c p m c 2

p 1 c 2 + p 2 c 2 + p 3 c p m c 2 Where to put a faclty? Gven locatons p 1,..., p m n R n of m houses, want to choose a locaton c n R n for the fre staton. Want c to be as close as possble to all the house. We know how to measure dstance

More information

Spatial Statistics and Analysis Methods (for GEOG 104 class).

Spatial Statistics and Analysis Methods (for GEOG 104 class). Spatal Statstcs and Analyss Methods (for GEOG 104 class). Provded by Dr. An L, San Dego State Unversty. 1 Ponts Types of spatal data Pont pattern analyss (PPA; such as nearest neghbor dstance, quadrat

More information

), it produces a response (output function g (x)

), it produces a response (output function g (x) Lnear Systems Revew Notes adapted from notes by Mchael Braun Typcally n electrcal engneerng, one s concerned wth functons of tme, such as a voltage waveform System descrpton s therefore defned n the domans

More information

Chapter 7 Clustering Analysis (1)

Chapter 7 Clustering Analysis (1) Chater 7 Clusterng Analyss () Outlne Cluster Analyss Parttonng Clusterng Herarchcal Clusterng Large Sze Data Clusterng What s Cluster Analyss? Cluster: A collecton of ata obects smlar (or relate) to one

More information

Generative classification models

Generative classification models CS 675 Intro to Machne Learnng Lecture Generatve classfcaton models Mlos Hauskrecht mlos@cs.ptt.edu 539 Sennott Square Data: D { d, d,.., dn} d, Classfcaton represents a dscrete class value Goal: learn

More information

Spectral Clustering. Shannon Quinn

Spectral Clustering. Shannon Quinn Spectral Clusterng Shannon Qunn (wth thanks to Wllam Cohen of Carnege Mellon Unverst, and J. Leskovec, A. Raaraman, and J. Ullman of Stanford Unverst) Graph Parttonng Undrected graph B- parttonng task:

More information

CSE4210 Architecture and Hardware for DSP

CSE4210 Architecture and Hardware for DSP 4210 Archtecture and Hardware for DSP Lecture 1 Introducton & Number systems Admnstratve Stuff 4210 Archtecture and Hardware for DSP Text: VLSI Dgtal Sgnal Processng Systems: Desgn and Implementaton. K.

More information

TECHNICAL WORKING PARTY ON AUTOMATION AND COMPUTER PROGRAMS. Twenty-Sixth Session Jeju, Republic of Korea, September 2 to 5, 2008

TECHNICAL WORKING PARTY ON AUTOMATION AND COMPUTER PROGRAMS. Twenty-Sixth Session Jeju, Republic of Korea, September 2 to 5, 2008 ORIGINAL: Englsh DATE: September 24, 2008 INTERNATIONAL UNION FOR THE PROTECTION OF NEW VARIETIES OF PLANTS GENEVA E TECHNICAL WORKING PARTY ON AUTOMATION AND COMPUTER PROGRAMS Twent-Sth Sesson Jeju, Republc

More information

Week 9 Chapter 10 Section 1-5

Week 9 Chapter 10 Section 1-5 Week 9 Chapter 10 Secton 1-5 Rotaton Rgd Object A rgd object s one that s nondeformable The relatve locatons of all partcles makng up the object reman constant All real objects are deformable to some extent,

More information

Error Bars in both X and Y

Error Bars in both X and Y Error Bars n both X and Y Wrong ways to ft a lne : 1. y(x) a x +b (σ x 0). x(y) c y + d (σ y 0) 3. splt dfference between 1 and. Example: Prmordal He abundance: Extrapolate ft lne to [ O / H ] 0. [ He

More information

VQ widely used in coding speech, image, and video

VQ widely used in coding speech, image, and video at Scalar quantzers are specal cases of vector quantzers (VQ): they are constraned to look at one sample at a tme (memoryless) VQ does not have such constrant better RD perfomance expected Source codng

More information

EGR 544 Communication Theory

EGR 544 Communication Theory EGR 544 Communcaton Theory. Informaton Sources Z. Alyazcoglu Electrcal and Computer Engneerng Department Cal Poly Pomona Introducton Informaton Source x n Informaton sources Analog sources Dscrete sources

More information

The Gaussian classifier. Nuno Vasconcelos ECE Department, UCSD

The Gaussian classifier. Nuno Vasconcelos ECE Department, UCSD he Gaussan classfer Nuno Vasconcelos ECE Department, UCSD Bayesan decson theory recall that we have state of the world X observatons g decson functon L[g,y] loss of predctng y wth g Bayes decson rule s

More information

Norms, Condition Numbers, Eigenvalues and Eigenvectors

Norms, Condition Numbers, Eigenvalues and Eigenvectors Norms, Condton Numbers, Egenvalues and Egenvectors 1 Norms A norm s a measure of the sze of a matrx or a vector For vectors the common norms are: N a 2 = ( x 2 1/2 the Eucldean Norm (1a b 1 = =1 N x (1b

More information

Learning Theory: Lecture Notes

Learning Theory: Lecture Notes Learnng Theory: Lecture Notes Lecturer: Kamalka Chaudhur Scrbe: Qush Wang October 27, 2012 1 The Agnostc PAC Model Recall that one of the constrants of the PAC model s that the data dstrbuton has to be

More information

GMM Method (Single-equation) Pongsa Pornchaiwiseskul Faculty of Economics Chulalongkorn University

GMM Method (Single-equation) Pongsa Pornchaiwiseskul Faculty of Economics Chulalongkorn University GMM Method (Sngle-equaton Pongsa Pornchawsesul Faculty of Economcs Chulalongorn Unversty Stochastc ( Gven that, for some, s random COV(, ε E(( µ ε E( ε µ E( ε E( ε (c Pongsa Pornchawsesul, Faculty of Economcs,

More information

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity Week3, Chapter 4 Moton n Two Dmensons Lecture Quz A partcle confned to moton along the x axs moves wth constant acceleraton from x =.0 m to x = 8.0 m durng a 1-s tme nterval. The velocty of the partcle

More information

n α j x j = 0 j=1 has a nontrivial solution. Here A is the n k matrix whose jth column is the vector for all t j=0

n α j x j = 0 j=1 has a nontrivial solution. Here A is the n k matrix whose jth column is the vector for all t j=0 MODULE 2 Topcs: Lnear ndependence, bass and dmenson We have seen that f n a set of vectors one vector s a lnear combnaton of the remanng vectors n the set then the span of the set s unchanged f that vector

More information

MIMA Group. Chapter 2 Bayesian Decision Theory. School of Computer Science and Technology, Shandong University. Xin-Shun SDU

MIMA Group. Chapter 2 Bayesian Decision Theory. School of Computer Science and Technology, Shandong University. Xin-Shun SDU Group M D L M Chapter Bayesan Decson heory Xn-Shun Xu @ SDU School of Computer Scence and echnology, Shandong Unversty Bayesan Decson heory Bayesan decson theory s a statstcal approach to data mnng/pattern

More information

Chapter Twelve. Integration. We now turn our attention to the idea of an integral in dimensions higher than one. Consider a real-valued function f : D

Chapter Twelve. Integration. We now turn our attention to the idea of an integral in dimensions higher than one. Consider a real-valued function f : D Chapter Twelve Integraton 12.1 Introducton We now turn our attenton to the dea of an ntegral n dmensons hgher than one. Consder a real-valued functon f : R, where the doman s a nce closed subset of Eucldean

More information

Support Vector Machines

Support Vector Machines CS 2750: Machne Learnng Support Vector Machnes Prof. Adrana Kovashka Unversty of Pttsburgh February 17, 2016 Announcement Homework 2 deadlne s now 2/29 We ll have covered everythng you need today or at

More information

Modeling curves. Graphs: y = ax+b, y = sin(x) Implicit ax + by + c = 0, x 2 +y 2 =r 2 Parametric:

Modeling curves. Graphs: y = ax+b, y = sin(x) Implicit ax + by + c = 0, x 2 +y 2 =r 2 Parametric: Modelng curves Types of Curves Graphs: y = ax+b, y = sn(x) Implct ax + by + c = 0, x 2 +y 2 =r 2 Parametrc: x = ax + bxt x = cos t y = ay + byt y = snt Parametrc are the most common mplct are also used,

More information

Bayesian epistemology II: Arguments for Probabilism

Bayesian epistemology II: Arguments for Probabilism Bayesan epstemology II: Arguments for Probablsm Rchard Pettgrew May 9, 2012 1 The model Represent an agent s credal state at a gven tme t by a credence functon c t : F [0, 1]. where F s the algebra of

More information

9. Complex Numbers. 1. Numbers revisited. 2. Imaginary number i: General form of complex numbers. 3. Manipulation of complex numbers

9. Complex Numbers. 1. Numbers revisited. 2. Imaginary number i: General form of complex numbers. 3. Manipulation of complex numbers 9. Comple Numbers. Numbers revsted. Imagnar number : General form of comple numbers 3. Manpulaton of comple numbers 4. The Argand dagram 5. The polar form for comple numbers 9.. Numbers revsted We saw

More information

Pulse Coded Modulation

Pulse Coded Modulation Pulse Coded Modulaton PCM (Pulse Coded Modulaton) s a voce codng technque defned by the ITU-T G.711 standard and t s used n dgtal telephony to encode the voce sgnal. The frst step n the analog to dgtal

More information

Linear Classification, SVMs and Nearest Neighbors

Linear Classification, SVMs and Nearest Neighbors 1 CSE 473 Lecture 25 (Chapter 18) Lnear Classfcaton, SVMs and Nearest Neghbors CSE AI faculty + Chrs Bshop, Dan Klen, Stuart Russell, Andrew Moore Motvaton: Face Detecton How do we buld a classfer to dstngush

More information

Singular Value Decomposition: Theory and Applications

Singular Value Decomposition: Theory and Applications Sngular Value Decomposton: Theory and Applcatons Danel Khashab Sprng 2015 Last Update: March 2, 2015 1 Introducton A = UDV where columns of U and V are orthonormal and matrx D s dagonal wth postve real

More information

Statistical Mechanics and Combinatorics : Lecture III

Statistical Mechanics and Combinatorics : Lecture III Statstcal Mechancs and Combnatorcs : Lecture III Dmer Model Dmer defntons Defnton A dmer coverng (perfect matchng) of a fnte graph s a set of edges whch covers every vertex exactly once, e every vertex

More information

Correlation and Regression. Correlation 9.1. Correlation. Chapter 9

Correlation and Regression. Correlation 9.1. Correlation. Chapter 9 Chapter 9 Correlaton and Regresson 9. Correlaton Correlaton A correlaton s a relatonshp between two varables. The data can be represented b the ordered pars (, ) where s the ndependent (or eplanator) varable,

More information

Classification learning II

Classification learning II Lecture 8 Classfcaton learnng II Mlos Hauskrecht mlos@cs.ptt.edu 539 Sennott Square Logstc regresson model Defnes a lnear decson boundar Dscrmnant functons: g g g g here g z / e z f, g g - s a logstc functon

More information

Maximal Margin Classifier

Maximal Margin Classifier CS81B/Stat41B: Advanced Topcs n Learnng & Decson Makng Mamal Margn Classfer Lecturer: Mchael Jordan Scrbes: Jana van Greunen Corrected verson - /1/004 1 References/Recommended Readng 1.1 Webstes www.kernel-machnes.org

More information

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix Lectures - Week 4 Matrx norms, Condtonng, Vector Spaces, Lnear Independence, Spannng sets and Bass, Null space and Range of a Matrx Matrx Norms Now we turn to assocatng a number to each matrx. We could

More information

Clustering gene expression data & the EM algorithm

Clustering gene expression data & the EM algorithm CG, Fall 2011-12 Clusterng gene expresson data & the EM algorthm CG 08 Ron Shamr 1 How Gene Expresson Data Looks Entres of the Raw Data matrx: Rato values Absolute values Row = gene s expresson pattern

More information

Common loop optimizations. Example to improve locality. Why Dependence Analysis. Data Dependence in Loops. Goal is to find best schedule:

Common loop optimizations. Example to improve locality. Why Dependence Analysis. Data Dependence in Loops. Goal is to find best schedule: 15-745 Lecture 6 Data Dependence n Loops Copyrght Seth Goldsten, 2008 Based on sldes from Allen&Kennedy Lecture 6 15-745 2005-8 1 Common loop optmzatons Hostng of loop-nvarant computatons pre-compute before

More information

A be a probability space. A random vector

A be a probability space. A random vector Statstcs 1: Probablty Theory II 8 1 JOINT AND MARGINAL DISTRIBUTIONS In Probablty Theory I we formulate the concept of a (real) random varable and descrbe the probablstc behavor of ths random varable by

More information

EXPANSIVE MAPPINGS. by W. R. Utz

EXPANSIVE MAPPINGS. by W. R. Utz Volume 3, 978 Pages 6 http://topology.auburn.edu/tp/ EXPANSIVE MAPPINGS by W. R. Utz Topology Proceedngs Web: http://topology.auburn.edu/tp/ Mal: Topology Proceedngs Department of Mathematcs & Statstcs

More information

OPTIMISATION. Introduction Single Variable Unconstrained Optimisation Multivariable Unconstrained Optimisation Linear Programming

OPTIMISATION. Introduction Single Variable Unconstrained Optimisation Multivariable Unconstrained Optimisation Linear Programming OPTIMIATION Introducton ngle Varable Unconstraned Optmsaton Multvarable Unconstraned Optmsaton Lnear Programmng Chapter Optmsaton /. Introducton In an engneerng analss, sometmes etremtes, ether mnmum or

More information

Lecture 3: Shannon s Theorem

Lecture 3: Shannon s Theorem CSE 533: Error-Correctng Codes (Autumn 006 Lecture 3: Shannon s Theorem October 9, 006 Lecturer: Venkatesan Guruswam Scrbe: Wdad Machmouch 1 Communcaton Model The communcaton model we are usng conssts

More information

Lecture 4: November 17, Part 1 Single Buffer Management

Lecture 4: November 17, Part 1 Single Buffer Management Lecturer: Ad Rosén Algorthms for the anagement of Networs Fall 2003-2004 Lecture 4: November 7, 2003 Scrbe: Guy Grebla Part Sngle Buffer anagement In the prevous lecture we taled about the Combned Input

More information

Turing Machines (intro)

Turing Machines (intro) CHAPTER 3 The Church-Turng Thess Contents Turng Machnes defntons, examples, Turng-recognzable and Turng-decdable languages Varants of Turng Machne Multtape Turng machnes, non-determnstc Turng Machnes,

More information

Which Separator? Spring 1

Which Separator? Spring 1 Whch Separator? 6.034 - Sprng 1 Whch Separator? Mamze the margn to closest ponts 6.034 - Sprng Whch Separator? Mamze the margn to closest ponts 6.034 - Sprng 3 Margn of a pont " # y (w $ + b) proportonal

More information

Spectral Graph Theory and its Applications September 16, Lecture 5

Spectral Graph Theory and its Applications September 16, Lecture 5 Spectral Graph Theory and ts Applcatons September 16, 2004 Lecturer: Danel A. Spelman Lecture 5 5.1 Introducton In ths lecture, we wll prove the followng theorem: Theorem 5.1.1. Let G be a planar graph

More information

NP-Completeness : Proofs

NP-Completeness : Proofs NP-Completeness : Proofs Proof Methods A method to show a decson problem Π NP-complete s as follows. (1) Show Π NP. (2) Choose an NP-complete problem Π. (3) Show Π Π. A method to show an optmzaton problem

More information

Physics 2A Chapter 3 HW Solutions

Physics 2A Chapter 3 HW Solutions Phscs A Chapter 3 HW Solutons Chapter 3 Conceptual Queston: 4, 6, 8, Problems: 5,, 8, 7, 3, 44, 46, 69, 70, 73 Q3.4. Reason: (a) C = A+ B onl A and B are n the same drecton. Sze does not matter. (b) C

More information

Grid Generation around a Cylinder by Complex Potential Functions

Grid Generation around a Cylinder by Complex Potential Functions Research Journal of Appled Scences, Engneerng and Technolog 4(): 53-535, 0 ISSN: 040-7467 Mawell Scentfc Organzaton, 0 Submtted: December 0, 0 Accepted: Januar, 0 Publshed: June 0, 0 Grd Generaton around

More information

MODELING TRAFFIC LIGHTS IN INTERSECTION USING PETRI NETS

MODELING TRAFFIC LIGHTS IN INTERSECTION USING PETRI NETS The 3 rd Internatonal Conference on Mathematcs and Statstcs (ICoMS-3) Insttut Pertanan Bogor, Indonesa, 5-6 August 28 MODELING TRAFFIC LIGHTS IN INTERSECTION USING PETRI NETS 1 Deky Adzkya and 2 Subono

More information

FRACTALS IN PATTERN RECOGNITION

FRACTALS IN PATTERN RECOGNITION FRACTALS IN PATTERN RECOGNITION b Wtold Dzwnel Fractals We consder a mathematcal set F to be fractal, we thnk of t as havng (some) of the followng propertes : F has detal at ever scale. F s (eactl, appromatel,

More information

Evaluation for sets of classes

Evaluation for sets of classes Evaluaton for Tet Categorzaton Classfcaton accuracy: usual n ML, the proporton of correct decsons, Not approprate f the populaton rate of the class s low Precson, Recall and F 1 Better measures 21 Evaluaton

More information

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal Inner Product Defnton 1 () A Eucldean space s a fnte-dmensonal vector space over the reals R, wth an nner product,. Defnton 2 (Inner Product) An nner product, on a real vector space X s a symmetrc, blnear,

More information

Associative Memories

Associative Memories Assocatve Memores We consder now modes for unsupervsed earnng probems, caed auto-assocaton probems. Assocaton s the task of mappng patterns to patterns. In an assocatve memory the stmuus of an ncompete

More information

P R. Lecture 4. Theory and Applications of Pattern Recognition. Dept. of Electrical and Computer Engineering /

P R. Lecture 4. Theory and Applications of Pattern Recognition. Dept. of Electrical and Computer Engineering / Theory and Applcatons of Pattern Recognton 003, Rob Polkar, Rowan Unversty, Glassboro, NJ Lecture 4 Bayes Classfcaton Rule Dept. of Electrcal and Computer Engneerng 0909.40.0 / 0909.504.04 Theory & Applcatons

More information

Probability and Random Variable Primer

Probability and Random Variable Primer B. Maddah ENMG 622 Smulaton 2/22/ Probablty and Random Varable Prmer Sample space and Events Suppose that an eperment wth an uncertan outcome s performed (e.g., rollng a de). Whle the outcome of the eperment

More information

More metrics on cartesian products

More metrics on cartesian products More metrcs on cartesan products If (X, d ) are metrc spaces for 1 n, then n Secton II4 of the lecture notes we defned three metrcs on X whose underlyng topologes are the product topology The purpose of

More information

Why Monte Carlo Integration? Introduction to Monte Carlo Method. Continuous Probability. Continuous Probability

Why Monte Carlo Integration? Introduction to Monte Carlo Method. Continuous Probability. Continuous Probability Introducton to Monte Carlo Method Kad Bouatouch IRISA Emal: kad@rsa.fr Wh Monte Carlo Integraton? To generate realstc lookng mages, we need to solve ntegrals of or hgher dmenson Pel flterng and lens smulaton

More information

Gravitational Acceleration: A case of constant acceleration (approx. 2 hr.) (6/7/11)

Gravitational Acceleration: A case of constant acceleration (approx. 2 hr.) (6/7/11) Gravtatonal Acceleraton: A case of constant acceleraton (approx. hr.) (6/7/11) Introducton The gravtatonal force s one of the fundamental forces of nature. Under the nfluence of ths force all objects havng

More information

CHALMERS, GÖTEBORGS UNIVERSITET. SOLUTIONS to RE-EXAM for ARTIFICIAL NEURAL NETWORKS. COURSE CODES: FFR 135, FIM 720 GU, PhD

CHALMERS, GÖTEBORGS UNIVERSITET. SOLUTIONS to RE-EXAM for ARTIFICIAL NEURAL NETWORKS. COURSE CODES: FFR 135, FIM 720 GU, PhD CHALMERS, GÖTEBORGS UNIVERSITET SOLUTIONS to RE-EXAM for ARTIFICIAL NEURAL NETWORKS COURSE CODES: FFR 35, FIM 72 GU, PhD Tme: Place: Teachers: Allowed materal: Not allowed: January 2, 28, at 8 3 2 3 SB

More information

GEMINI GEneric Multimedia INdexIng

GEMINI GEneric Multimedia INdexIng GEMINI GEnerc Multmeda INdexIng Last lecture, LSH http://www.mt.edu/~andon/lsh/ Is there another possble soluton? Do we need to perform ANN? 1 GEnerc Multmeda INdexIng dstance measure Sub-pattern Match

More information

Richard Socher, Henning Peters Elements of Statistical Learning I E[X] = arg min. E[(X b) 2 ]

Richard Socher, Henning Peters Elements of Statistical Learning I E[X] = arg min. E[(X b) 2 ] 1 Prolem (10P) Show that f X s a random varale, then E[X] = arg mn E[(X ) 2 ] Thus a good predcton for X s E[X] f the squared dfference s used as the metrc. The followng rules are used n the proof: 1.

More information

28. SIMPLE LINEAR REGRESSION III

28. SIMPLE LINEAR REGRESSION III 8. SIMPLE LINEAR REGRESSION III Ftted Values and Resduals US Domestc Beers: Calores vs. % Alcohol To each observed x, there corresponds a y-value on the ftted lne, y ˆ = βˆ + βˆ x. The are called ftted

More information

Compression in the Real World :Algorithms in the Real World. Compression in the Real World. Compression Outline

Compression in the Real World :Algorithms in the Real World. Compression in the Real World. Compression Outline Compresson n the Real World 5-853:Algorthms n the Real World Data Compresson: Lectures and 2 Generc Fle Compresson Fles: gzp (LZ77), bzp (Burrows-Wheeler), BOA (PPM) Archvers: ARC (LZW), PKZp (LZW+) Fle

More information

European Journal of Combinatorics

European Journal of Combinatorics European Journal of Combnatorcs 0 (009) 480 489 Contents lsts avalable at ScenceDrect European Journal of Combnatorcs journal homepage: www.elsever.com/locate/ejc Tlngs n Lee metrc P. Horak 1 Unversty

More information

CS 3710: Visual Recognition Classification and Detection. Adriana Kovashka Department of Computer Science January 13, 2015

CS 3710: Visual Recognition Classification and Detection. Adriana Kovashka Department of Computer Science January 13, 2015 CS 3710: Vsual Recognton Classfcaton and Detecton Adrana Kovashka Department of Computer Scence January 13, 2015 Plan for Today Vsual recognton bascs part 2: Classfcaton and detecton Adrana s research

More information

Line Drawing and Clipping Week 1, Lecture 2

Line Drawing and Clipping Week 1, Lecture 2 CS 43 Computer Graphcs I Lne Drawng and Clppng Week, Lecture 2 Davd Breen, Wllam Regl and Maxm Peysakhov Geometrc and Intellgent Computng Laboratory Department of Computer Scence Drexel Unversty http://gcl.mcs.drexel.edu

More information

Resource Allocation and Decision Analysis (ECON 8010) Spring 2014 Foundations of Regression Analysis

Resource Allocation and Decision Analysis (ECON 8010) Spring 2014 Foundations of Regression Analysis Resource Allocaton and Decson Analss (ECON 800) Sprng 04 Foundatons of Regresson Analss Readng: Regresson Analss (ECON 800 Coursepak, Page 3) Defntons and Concepts: Regresson Analss statstcal technques

More information

Multinomial logit regression

Multinomial logit regression 07/0/6 Multnomal logt regresson Introducton We now turn our attenton to regresson models for the analyss of categorcal dependent varables wth more than two response categores: Y car owned (many possble

More information

CSE 252C: Computer Vision III

CSE 252C: Computer Vision III CSE 252C: Computer Vson III Lecturer: Serge Belonge Scrbe: Catherne Wah LECTURE 15 Kernel Machnes 15.1. Kernels We wll study two methods based on a specal knd of functon k(x, y) called a kernel: Kernel

More information

Inductance Calculation for Conductors of Arbitrary Shape

Inductance Calculation for Conductors of Arbitrary Shape CRYO/02/028 Aprl 5, 2002 Inductance Calculaton for Conductors of Arbtrary Shape L. Bottura Dstrbuton: Internal Summary In ths note we descrbe a method for the numercal calculaton of nductances among conductors

More information

The path of ants Dragos Crisan, Andrei Petridean, 11 th grade. Colegiul National "Emil Racovita", Cluj-Napoca

The path of ants Dragos Crisan, Andrei Petridean, 11 th grade. Colegiul National Emil Racovita, Cluj-Napoca Ths artcle s wrtten by students. It may nclude omssons and mperfectons, whch were dentfed and reported as mnutely as possble by our revewers n the edtoral notes. The path of ants 07-08 Students names and

More information

Report on Image warping

Report on Image warping Report on Image warpng Xuan Ne, Dec. 20, 2004 Ths document summarzed the algorthms of our mage warpng soluton for further study, and there s a detaled descrpton about the mplementaton of these algorthms.

More information

18.1 Introduction and Recap

18.1 Introduction and Recap CS787: Advanced Algorthms Scrbe: Pryananda Shenoy and Shjn Kong Lecturer: Shuch Chawla Topc: Streamng Algorthmscontnued) Date: 0/26/2007 We contnue talng about streamng algorthms n ths lecture, ncludng

More information

SIMPLE LINEAR REGRESSION

SIMPLE LINEAR REGRESSION Smple Lnear Regresson and Correlaton Introducton Prevousl, our attenton has been focused on one varable whch we desgnated b x. Frequentl, t s desrable to learn somethng about the relatonshp between two

More information

DEMO #8 - GAUSSIAN ELIMINATION USING MATHEMATICA. 1. Matrices in Mathematica

DEMO #8 - GAUSSIAN ELIMINATION USING MATHEMATICA. 1. Matrices in Mathematica demo8.nb 1 DEMO #8 - GAUSSIAN ELIMINATION USING MATHEMATICA Obectves: - defne matrces n Mathematca - format the output of matrces - appl lnear algebra to solve a real problem - Use Mathematca to perform

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 12 10/21/2013. Martingale Concentration Inequalities and Applications

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 12 10/21/2013. Martingale Concentration Inequalities and Applications MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.65/15.070J Fall 013 Lecture 1 10/1/013 Martngale Concentraton Inequaltes and Applcatons Content. 1. Exponental concentraton for martngales wth bounded ncrements.

More information

U.C. Berkeley CS294: Beyond Worst-Case Analysis Luca Trevisan September 5, 2017

U.C. Berkeley CS294: Beyond Worst-Case Analysis Luca Trevisan September 5, 2017 U.C. Berkeley CS94: Beyond Worst-Case Analyss Handout 4s Luca Trevsan September 5, 07 Summary of Lecture 4 In whch we ntroduce semdefnte programmng and apply t to Max Cut. Semdefnte Programmng Recall that

More information

Lecture 20: Hypothesis testing

Lecture 20: Hypothesis testing Lecture : Hpothess testng Much of statstcs nvolves hpothess testng compare a new nterestng hpothess, H (the Alternatve hpothess to the borng, old, well-known case, H (the Null Hpothess or, decde whether

More information

Image classification. Given the bag-of-features representations of images from different classes, how do we learn a model for distinguishing i them?

Image classification. Given the bag-of-features representations of images from different classes, how do we learn a model for distinguishing i them? Image classfcaton Gven te bag-of-features representatons of mages from dfferent classes ow do we learn a model for dstngusng tem? Classfers Learn a decson rule assgnng bag-offeatures representatons of

More information

Solutions to Homework 7, Mathematics 1. 1 x. (arccos x) (arccos x) 1

Solutions to Homework 7, Mathematics 1. 1 x. (arccos x) (arccos x) 1 Solutons to Homework 7, Mathematcs 1 Problem 1: a Prove that arccos 1 1 for 1, 1. b* Startng from the defnton of the dervatve, prove that arccos + 1, arccos 1. Hnt: For arccos arccos π + 1, the defnton

More information

Introduction to Analysis of Variance (ANOVA) Part 1

Introduction to Analysis of Variance (ANOVA) Part 1 Introducton to Analss of Varance (ANOVA) Part 1 Sngle factor The logc of Analss of Varance Is the varance explaned b the model >> than the resdual varance In regresson models Varance explaned b regresson

More information

PHY2049 Exam 2 solutions Fall 2016 Solution:

PHY2049 Exam 2 solutions Fall 2016 Solution: PHY2049 Exam 2 solutons Fall 2016 General strategy: Fnd two resstors, one par at a tme, that are connected ether n SERIES or n PARALLEL; replace these two resstors wth one of an equvalent resstance. Now

More information

The Concept of Beamforming

The Concept of Beamforming ELG513 Smart Antennas S.Loyka he Concept of Beamformng Generc representaton of the array output sgnal, 1 where w y N 1 * = 1 = w x = w x (4.1) complex weghts, control the array pattern; y and x - narrowband

More information

Chapter 3 Describing Data Using Numerical Measures

Chapter 3 Describing Data Using Numerical Measures Chapter 3 Student Lecture Notes 3-1 Chapter 3 Descrbng Data Usng Numercal Measures Fall 2006 Fundamentals of Busness Statstcs 1 Chapter Goals To establsh the usefulness of summary measures of data. The

More information

A random variable is a function which associates a real number to each element of the sample space

A random variable is a function which associates a real number to each element of the sample space Introducton to Random Varables Defnton of random varable Defnton of of random varable Dscrete and contnuous random varable Probablty blt functon Dstrbuton functon Densty functon Sometmes, t s not enough

More information

Introduction to Algorithms

Introduction to Algorithms Introducton to Algorthms 6.046J/8.40J Lecture 7 Prof. Potr Indyk Data Structures Role of data structures: Encapsulate data Support certan operatons (e.g., INSERT, DELETE, SEARCH) Our focus: effcency of

More information

One Dimension Again. Chapter Fourteen

One Dimension Again. Chapter Fourteen hapter Fourteen One Dmenson Agan 4 Scalar Lne Integrals Now we agan consder the dea of the ntegral n one dmenson When we were ntroduced to the ntegral back n elementary school, we consdered only functons

More information

Introduction to Random Variables

Introduction to Random Variables Introducton to Random Varables Defnton of random varable Defnton of random varable Dscrete and contnuous random varable Probablty functon Dstrbuton functon Densty functon Sometmes, t s not enough to descrbe

More information

10.34 Fall 2015 Metropolis Monte Carlo Algorithm

10.34 Fall 2015 Metropolis Monte Carlo Algorithm 10.34 Fall 2015 Metropols Monte Carlo Algorthm The Metropols Monte Carlo method s very useful for calculatng manydmensonal ntegraton. For e.g. n statstcal mechancs n order to calculate the prospertes of

More information

Reduced slides. Introduction to Analysis of Variance (ANOVA) Part 1. Single factor

Reduced slides. Introduction to Analysis of Variance (ANOVA) Part 1. Single factor Reduced sldes Introducton to Analss of Varance (ANOVA) Part 1 Sngle factor 1 The logc of Analss of Varance Is the varance explaned b the model >> than the resdual varance In regresson models Varance explaned

More information

ARTICLE IN PRESS. Available online at Mathematics and Computers in Simulation xxx (2009) xxx xxx

ARTICLE IN PRESS. Available online at  Mathematics and Computers in Simulation xxx (2009) xxx xxx Avalable onlne at wwwscencedrectcom Mathematcs and Computers n Smulaton xxx 29 xxx xxx Dervatve based global senstvty measures and ther lnk wth global senstvty ndces IM Sobol a, S Kucherenko b, a Insttute

More information

6.842 Randomness and Computation February 18, Lecture 4

6.842 Randomness and Computation February 18, Lecture 4 6.842 Randomness and Computaton February 18, 2014 Lecture 4 Lecturer: Rontt Rubnfeld Scrbe: Amartya Shankha Bswas Topcs 2-Pont Samplng Interactve Proofs Publc cons vs Prvate cons 1 Two Pont Samplng 1.1

More information

Chapter 3. r r. Position, Velocity, and Acceleration Revisited

Chapter 3. r r. Position, Velocity, and Acceleration Revisited Chapter 3 Poston, Velocty, and Acceleraton Revsted The poston vector of a partcle s a vector drawn from the orgn to the locaton of the partcle. In two dmensons: r = x ˆ+ yj ˆ (1) The dsplacement vector

More information

The Second Eigenvalue of Planar Graphs

The Second Eigenvalue of Planar Graphs Spectral Graph Theory Lecture 20 The Second Egenvalue of Planar Graphs Danel A. Spelman November 11, 2015 Dsclamer These notes are not necessarly an accurate representaton of what happened n class. The

More information

Bit Juggling. Representing Information. representations. - Some other bits. - Representing information using bits - Number. Chapter

Bit Juggling. Representing Information. representations. - Some other bits. - Representing information using bits - Number. Chapter Representng Informaton 1 1 1 1 Bt Jugglng - Representng nformaton usng bts - Number representatons - Some other bts Chapter 3.1-3.3 REMINDER: Problem Set #1 s now posted and s due next Wednesday L3 Encodng

More information

Lossy Compression. Compromise accuracy of reconstruction for increased compression.

Lossy Compression. Compromise accuracy of reconstruction for increased compression. Lossy Compresson Compromse accuracy of reconstructon for ncreased compresson. The reconstructon s usually vsbly ndstngushable from the orgnal mage. Typcally, one can get up to 0:1 compresson wth almost

More information

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur Module 3 LOSSY IMAGE COMPRESSION SYSTEMS Verson ECE IIT, Kharagpur Lesson 6 Theory of Quantzaton Verson ECE IIT, Kharagpur Instructonal Objectves At the end of ths lesson, the students should be able to:

More information

College of Computer & Information Science Fall 2009 Northeastern University 20 October 2009

College of Computer & Information Science Fall 2009 Northeastern University 20 October 2009 College of Computer & Informaton Scence Fall 2009 Northeastern Unversty 20 October 2009 CS7880: Algorthmc Power Tools Scrbe: Jan Wen and Laura Poplawsk Lecture Outlne: Prmal-dual schema Network Desgn:

More information

A Network Intrusion Detection Method Based on Improved K-means Algorithm

A Network Intrusion Detection Method Based on Improved K-means Algorithm Advanced Scence and Technology Letters, pp.429-433 http://dx.do.org/10.14257/astl.2014.53.89 A Network Intruson Detecton Method Based on Improved K-means Algorthm Meng Gao 1,1, Nhong Wang 1, 1 Informaton

More information