Outline for today. Computation of the likelihood function for GLMMs. Likelihood for generalized linear mixed model

Size: px
Start display at page:

Download "Outline for today. Computation of the likelihood function for GLMMs. Likelihood for generalized linear mixed model"

Transcription

1 Outline for today Computation of the likelihood function for GLMMs asmus Waagepetersen Department of Mathematics Aalborg University Denmark Computation of likelihood function. Gaussian quadrature 2. Monte Carlo methods Newton-aphson EM-algorithm case study of non-linear mixed effects model April 30, 202 /27 2/27 Generalized linear mixed effects models Consider stochastic variable Y = (Y,...,Y n ) and random effects U. Two step formulation of GLMM: U N(0,Σ). Given realization u of U, Y i independent and each follows density f i (y u) with mean µ i = g (η i ) and linear predictor η = Xβ +Zu. I.e. conditional on U, Y i follows a generalized linear model. NB: GLMM specified in terms of marginal density of U and conditional density of Y given U. But the likelihood is the marginal density of f(y) which can be hard to evaluate! Likelihood for generalized linear mixed model For normal linear mixed models we could compute the marginal distribution of Y directly as a multivariate normal. That is, f(y) is a density of a multivariate normal distribution. For a generalized linear mixed model it is difficult to evaluate the integral: f(y) = f(y,u)du = f(y u)f(u)du m m since f(y u)f(u) is a very complex function. 3/27 4/27

2 Adaptive Gaussian Quadrature - one random effect Gauss-Hermite quadrature (numerical integration) is n f(x)dx w i f(x i ) where φ is the standard normal density and (x i,w i ),i =,n are certain arguments and weights which can be looked up in a table. i= Advantage f(y u)f(u) φ(u;µ LP,σLP 2 ) = f(y σ LPx +µ LP )f(σ LP x +µ LP ) x = (u µ LP )/σ LP close to constant (f(y)) hence adaptive G-H quadrature very accurate. We can replace with = whenever f is a polynomial of degree 2n or less. Adaptive Gauss-Hermite quadrature: f(y u)f(u) f(y u)f(u)du φ(u;µ LP,σLP 2 )φ(u;µ LP,σLP 2 )du = f(y σlp x +µ LP )f(σ LP x +µ LP ) σ LP dx (change of variable: x = (u µ LP )/σ LP ) 5/27 GH scheme with n = 5: x w (x s are roots of Hermite polynomial computed using ghq in library glmmml). (GH schmes for n = 5 and n = 0 available on web page) 6/27 Prediction of random effects for GLMM Computation of conditional expectations (prediction) Conditional mean E[U Y = y] = uf(u y)du is minimum mean square error predictor, i.e. E(U Û)2 E[U Y = y] = f(y) u f(y u)f(u) du = f(y) (σ LP x+µ LP ) f(y σ LPx +µ LP )f(σ LP x +µ LP ) σ LP dx is minimal with Û = H(Y) where H(y) = E[U Y = y] Note: Difficult to analytically evaluate E[U Y = y] = uf(y u)f(u)/f(y)du (σ LP x +µ LP ) f(y σ LPx +µ LP )f(σ LP x +µ LP ) σ LP behaves like a first order polynomial in x - hence GH still accurate. 7/27 8/27

3 Difficult cases for numerical integration - dimension m > Monte Carlo computation of likelihood for GLMM correlated random effects crossed random effects nested random effects Not possible to factorize likelihood into low-dimensional integrals Number of quadrature points k m where k is number of quadrature points for D hence numerical quadrature may not be feasible. Likelihood function is an expectation: L(θ) = f(y;θ) = f(y u;β)f(u;τ 2 )du = E τ 2f(y U;β) m Use Monte Carlo simulations to approximate expectation. NB: also applicable in high dimensions Alternatives: PQL and Laplace-approximation or Monte Carlo computation. 9/27 0/27 Importance sampling Consider Z f and suppose we wish to evaluate Eh(Z) where h(z) has large variance. Suppose we can find density g so that Then h(z)f(z) g(z) where Y g. const and h(z)f(z) > 0 g(z) > 0 h(z)f(z) Eh(Z) = g(z)dz = E h(y)f(y) g(z) g(y) Importance sampling for GLMM g( ) probability density on m. L(θ) = L(θ) L IS,h (θ) = M f(y u;β)f(u;τ 2 )du = E f(y V;β)f(V;τ2 ) g(v) f(y V l ;β)f(v l ;τ 2 ) g(v l ) f(y u;β)f(u;τ 2 ) g(u)du = g(u) where V g( ). where V l g( ),l =,...,M Note variance of h(y)f(y)/g(y) small so estimate Eh(Z) n has small Monte Carlo error. n i= h(y i )f(y i ) g(y i ) /27 Find h so Var f(y V;β)f(V;τ2 ) g(v) small. VarL IS,h (θ) < if f(y v;θ)f(v;θ)/g(v) bounded (i.e. use g( ) with heavy tails). 2/27

4 Simple Monte Carlo: g(u) = f(u;τ 2 ) L(θ) = M f(y u;β)f(u;τ 2 )du = E τ 2f(y U;β) L SMC (θ) = f(y U l ;β) where U l N(0,τ 2 ) independent Monte Carlo variance: Var(L SMC (θ)) = M Varf(y U ;β) Estimate Varf(y U ;β) using empirical variance estimate based on f(y U l ;β), l =,...,M: M (f(y U l ;β) L SMC (θ)) 2 Often Varf(y U ;β) is large so large M is needed. Increasing dimension leads to worse performance (useless in high dimensions) 3/27 4/27 Possibility: Consider fixed θ 0 : Possibility: Note f(y u,β)f(u;τ 2 ) = f(y;θ) = L(θ) = const f(u y;θ) Laplace: U Y = y N ( µ LP,σLP 2 ) Use g( ) density for N ( µ LP,σ 2 LP) or tν ( µlp,σ 2 LP) -distribution: so small variance. Simulation straightforward. f(y u,β)f(u;τ 2 ) g(u) const Note: Monte Carlo version of adaptive Gaussian quadrature. g(u) = f(u y,θ 0 ) = f(y u;θ 0 )f(u;θ 0 )/L(θ 0 ) Then f(y u;β)f(u;τ 2 ) f(y u;β)f(u;τ 2 ) L(θ) = g(u)du = L(θ 0 ) g(u) f(y u;β 0 )f(u;τ0 2)f(u y,θ 0)du = [ f(y U;β)f(U;τ 2 ) ] L(θ 0 )E θ0 f(y U;β 0 )f(u;τ0 2) Y = y L(θ) [ f(y U;β)f(U;τ 2 L(θ 0 ) = E ) ] θ 0 f(y U;β 0 )f(u;τ0 2) Y = y So we can estimate ratio L(θ)/L(θ 0 ) where L(θ 0 ) is unknown constant. This suffices for finding MLE: L(θ) arg maxl(θ) = argmax θ θ L(θ 0 ) M f(y U l ;β)f(u l ;τ 2 ) f(y U l ;β 0 )f(u l ;τ 2 0 ) 5/27 where U l f(u y;θ 0 ) 6/27

5 Simulation of random variables Direct methods exists for many standard distributions (normal, binomial, t, etc.: rnorm(), rbinom(), rt() etc.) Suppose f is a non-standard density but f(z) Kg(z) for some constant K and standard density g. Then we may apply rejection sampling:. Generate Y g and W unif[0,]. 2. If W f(y) Kg(Y) return Y (accept); otherwise go to (reject). Note probability of accept is /K. Proof of rejection sampling: compute P(Y y accept) = P(Y y W f(y) Kg(Y) ) If f is high-dimensional density it may be hard to find g with small K so rejection sampling mainly useful in small dimensions. MCMC is then useful alternative (later). 7/27 8/27 Prediction of U using conditional simulation Conditional simulation of U Y = y using rejection sampling Compute Monte Carlo estimate of E(U Y = y) using conditional simulations of U Y = y or importance sampling. E(U Y = y) = M U m, U m f(u y) m= We can also evaluate e.g. P(U i > c y) or P(U i > U l,l i Y) etc. Note f(y u;β 0 )f(u;τ 2 0)/f(y;θ 0 ) K t ν (u;µ LP,σ 2 LP ) for some constant K. ejection sampling:. Generate V t ν (µ LP,σLP 2 ) and W Unif(]0,[) 2. eturn V if W f(v y;θ 0 )/(K t(v;µ LP,σLP 2 )); otherwise go to. 9/27 20/27

6 Maximization of likelihood using Newton-aphson Let Then and V θ (y,u) = d dθ logf(y,u θ) u(θ) = d dθ logl(θ) = E θ[v θ (y,u) Y = y] j(θ) = d2 dθ T dθ logl(θ) = ( E θ [dv θ (y,u)/dθ T Y = y] Var θ [V θ (y,u) Y = y] ) Newton-aphson: θ l+ = θ l +j(θ l ) u(θ l ) All unknown expectations and variances can be estimated using the previous numerical integration or Monte Carlo methods! EM-algorithm Given current estimate θ l :. (E) compute Q(θ l,θ) = E θl [logf(y,u θ) Y = y] 2. (M) θ l+ = argmax θ Q(θ l,θ). For LNMM E-step can be computed explicitly (Jiang page 65) but seems pointless as likelihood is available in closed form. For GLMMs (E) step needs numerical integration or Monte Carlo. Convergence of EM-algorithm can be quite slow. Maximization of likelihood using Newton-aphson seems better alternative. 2/27 22/27 Overview of Jiang page 65-7 Case study: non-linear mixed effects model for cow mats data Compression vs. pressure for two brands of mats Page (Monte Carlo) EM for linear mixed model and threshold model Non-linear relation Page 68-69: Newton-ahpson and importance sampling. Page 70-7: Monte Carlo EM with adaptive importance sampling (t-distribution + Laplace approximation) compression y = mmf(x) = ab +cxd b +x d, andom variation between mats of same brand, small measurement noise pressure 23/27 24/27

7 Simulated data from the two models: Estimation of non-linear model with fixed effects: Fixed effects: residual standard error 0.72 With random effects: residual standard error 0.7 nlsfit=nls(nedtryk~mmf(tryk,a,b,c,d),start= c(a=0.,b=.670,c=80,d=0.6),data=mattressdata) Estimation of non-linear model with a, b, c as random effects: nlmerfit=nlmer(nedtryk~mmfnlmer(tryk,a,b,c,d)~(a matno)+ (b matno)+(c matno),mattressdata,start=c(a=0.04,b=.64,c=74,d=0.64)) compression compression pressure pressure 25/27 Std. err. for a,b,c are 0.64,0.05 and 0.4 andom effects model gives much better representation of variability in data. 26/27 NB: to assess influence of variability of different parameters we need to look at partial derivatives (sensitivities) wrt. these parameters. Exercises. Exercise 4.3 on page 229 in Jiang. 2. exercises on exercise-sheets exercises6.pdf and exercises7.pdf. 3. Check formulas for u(θ) and j(θ). How can these expression be computed using importance sampling? 27/27

Outline for today. Computation of the likelihood function for GLMMs. Likelihood for generalized linear mixed model

Outline for today. Computation of the likelihood function for GLMMs. Likelihood for generalized linear mixed model Outline for today Computation of the likelihood function for GLMMs asmus Waagepetersen Department of Mathematics Aalborg University Denmark likelihood for GLMM penalized quasi-likelihood estimation Laplace

More information

Normalising constants and maximum likelihood inference

Normalising constants and maximum likelihood inference Normalising constants and maximum likelihood inference Jakob G. Rasmussen Department of Mathematics Aalborg University Denmark March 9, 2011 1/14 Today Normalising constants Approximation of normalising

More information

Stat 451 Lecture Notes Numerical Integration

Stat 451 Lecture Notes Numerical Integration Stat 451 Lecture Notes 03 12 Numerical Integration Ryan Martin UIC www.math.uic.edu/~rgmartin 1 Based on Chapter 5 in Givens & Hoeting, and Chapters 4 & 18 of Lange 2 Updated: February 11, 2016 1 / 29

More information

Mixed models in R using the lme4 package Part 7: Generalized linear mixed models

Mixed models in R using the lme4 package Part 7: Generalized linear mixed models Mixed models in R using the lme4 package Part 7: Generalized linear mixed models Douglas Bates University of Wisconsin - Madison and R Development Core Team University of

More information

Density Estimation. Seungjin Choi

Density Estimation. Seungjin Choi Density Estimation Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea seungjin@postech.ac.kr http://mlg.postech.ac.kr/

More information

Mixed models in R using the lme4 package Part 5: Generalized linear mixed models

Mixed models in R using the lme4 package Part 5: Generalized linear mixed models Mixed models in R using the lme4 package Part 5: Generalized linear mixed models Douglas Bates 2011-03-16 Contents 1 Generalized Linear Mixed Models Generalized Linear Mixed Models When using linear mixed

More information

Outline. Mixed models in R using the lme4 package Part 5: Generalized linear mixed models. Parts of LMMs carried over to GLMMs

Outline. Mixed models in R using the lme4 package Part 5: Generalized linear mixed models. Parts of LMMs carried over to GLMMs Outline Mixed models in R using the lme4 package Part 5: Generalized linear mixed models Douglas Bates University of Wisconsin - Madison and R Development Core Team UseR!2009,

More information

Computer Intensive Methods in Mathematical Statistics

Computer Intensive Methods in Mathematical Statistics Computer Intensive Methods in Mathematical Statistics Department of mathematics johawes@kth.se Lecture 16 Advanced topics in computational statistics 18 May 2017 Computer Intensive Methods (1) Plan of

More information

Conditional Distributions

Conditional Distributions Conditional Distributions The goal is to provide a general definition of the conditional distribution of Y given X, when (X, Y ) are jointly distributed. Let F be a distribution function on R. Let G(,

More information

Stat 451 Lecture Notes Monte Carlo Integration

Stat 451 Lecture Notes Monte Carlo Integration Stat 451 Lecture Notes 06 12 Monte Carlo Integration Ryan Martin UIC www.math.uic.edu/~rgmartin 1 Based on Chapter 6 in Givens & Hoeting, Chapter 23 in Lange, and Chapters 3 4 in Robert & Casella 2 Updated:

More information

Computational methods for mixed models

Computational methods for mixed models Computational methods for mixed models Douglas Bates Department of Statistics University of Wisconsin Madison March 27, 2018 Abstract The lme4 package provides R functions to fit and analyze several different

More information

EM Algorithm. Expectation-maximization (EM) algorithm.

EM Algorithm. Expectation-maximization (EM) algorithm. EM Algorithm Outline: Expectation-maximization (EM) algorithm. Examples. Reading: A.P. Dempster, N.M. Laird, and D.B. Rubin, Maximum likelihood from incomplete data via the EM algorithm, J. R. Stat. Soc.,

More information

Mixed models in R using the lme4 package Part 5: Generalized linear mixed models

Mixed models in R using the lme4 package Part 5: Generalized linear mixed models Mixed models in R using the lme4 package Part 5: Generalized linear mixed models Douglas Bates Madison January 11, 2011 Contents 1 Definition 1 2 Links 2 3 Example 7 4 Model building 9 5 Conclusions 14

More information

Penalized least squares versus generalized least squares representations of linear mixed models

Penalized least squares versus generalized least squares representations of linear mixed models Penalized least squares versus generalized least squares representations of linear mixed models Douglas Bates Department of Statistics University of Wisconsin Madison April 6, 2017 Abstract The methods

More information

Bayesian Regression Linear and Logistic Regression

Bayesian Regression Linear and Logistic Regression When we want more than point estimates Bayesian Regression Linear and Logistic Regression Nicole Beckage Ordinary Least Squares Regression and Lasso Regression return only point estimates But what if we

More information

Stochastic Simulation Variance reduction methods Bo Friis Nielsen

Stochastic Simulation Variance reduction methods Bo Friis Nielsen Stochastic Simulation Variance reduction methods Bo Friis Nielsen Applied Mathematics and Computer Science Technical University of Denmark 2800 Kgs. Lyngby Denmark Email: bfni@dtu.dk Variance reduction

More information

Mixed models in R using the lme4 package Part 4: Theory of linear mixed models

Mixed models in R using the lme4 package Part 4: Theory of linear mixed models Mixed models in R using the lme4 package Part 4: Theory of linear mixed models Douglas Bates 8 th International Amsterdam Conference on Multilevel Analysis 2011-03-16 Douglas Bates

More information

Chapter 4 - Fundamentals of spatial processes Lecture notes

Chapter 4 - Fundamentals of spatial processes Lecture notes Chapter 4 - Fundamentals of spatial processes Lecture notes Geir Storvik January 21, 2013 STK4150 - Intro 2 Spatial processes Typically correlation between nearby sites Mostly positive correlation Negative

More information

Pattern Recognition and Machine Learning. Bishop Chapter 11: Sampling Methods

Pattern Recognition and Machine Learning. Bishop Chapter 11: Sampling Methods Pattern Recognition and Machine Learning Chapter 11: Sampling Methods Elise Arnaud Jakob Verbeek May 22, 2008 Outline of the chapter 11.1 Basic Sampling Algorithms 11.2 Markov Chain Monte Carlo 11.3 Gibbs

More information

Exponential Family and Maximum Likelihood, Gaussian Mixture Models and the EM Algorithm. by Korbinian Schwinger

Exponential Family and Maximum Likelihood, Gaussian Mixture Models and the EM Algorithm. by Korbinian Schwinger Exponential Family and Maximum Likelihood, Gaussian Mixture Models and the EM Algorithm by Korbinian Schwinger Overview Exponential Family Maximum Likelihood The EM Algorithm Gaussian Mixture Models Exponential

More information

Course topics (tentative) The role of random effects

Course topics (tentative) The role of random effects Course topics (tentative) random effects linear mixed models analysis of variance frequentist likelihood-based inference (MLE and REML) prediction Bayesian inference The role of random effects Rasmus Waagepetersen

More information

Bayesian inference. Rasmus Waagepetersen Department of Mathematics Aalborg University Denmark. April 10, 2017

Bayesian inference. Rasmus Waagepetersen Department of Mathematics Aalborg University Denmark. April 10, 2017 Bayesian inference Rasmus Waagepetersen Department of Mathematics Aalborg University Denmark April 10, 2017 1 / 22 Outline for today A genetic example Bayes theorem Examples Priors Posterior summaries

More information

Approximate Likelihoods

Approximate Likelihoods Approximate Likelihoods Nancy Reid July 28, 2015 Why likelihood? makes probability modelling central l(θ; y) = log f (y; θ) emphasizes the inverse problem of reasoning y θ converts a prior probability

More information

Maximum Likelihood Estimation

Maximum Likelihood Estimation University of Pavia Maximum Likelihood Estimation Eduardo Rossi Likelihood function Choosing parameter values that make what one has observed more likely to occur than any other parameter values do. Assumption(Distribution)

More information

SB1a Applied Statistics Lectures 9-10

SB1a Applied Statistics Lectures 9-10 SB1a Applied Statistics Lectures 9-10 Dr Geoff Nicholls Week 5 MT15 - Natural or canonical) exponential families - Generalised Linear Models for data - Fitting GLM s to data MLE s Iteratively Re-weighted

More information

ML estimation: Random-intercepts logistic model. and z

ML estimation: Random-intercepts logistic model. and z ML estimation: Random-intercepts logistic model log p ij 1 p = x ijβ + υ i with υ i N(0, συ) 2 ij Standardizing the random effect, θ i = υ i /σ υ, yields log p ij 1 p = x ij β + σ υθ i with θ i N(0, 1)

More information

CS Tutorial 5 - Differential Geometry I - Surfaces

CS Tutorial 5 - Differential Geometry I - Surfaces 236861 Numerical Geometry of Images Tutorial 5 Differential Geometry II Surfaces c 2009 Parameterized surfaces A parameterized surface X : U R 2 R 3 a differentiable map 1 X from an open set U R 2 to R

More information

Stat 5102 Final Exam May 14, 2015

Stat 5102 Final Exam May 14, 2015 Stat 5102 Final Exam May 14, 2015 Name Student ID The exam is closed book and closed notes. You may use three 8 1 11 2 sheets of paper with formulas, etc. You may also use the handouts on brand name distributions

More information

Bayesian Inference for DSGE Models. Lawrence J. Christiano

Bayesian Inference for DSGE Models. Lawrence J. Christiano Bayesian Inference for DSGE Models Lawrence J. Christiano Outline State space-observer form. convenient for model estimation and many other things. Bayesian inference Bayes rule. Monte Carlo integation.

More information

Inference in non-linear time series

Inference in non-linear time series Intro LS MLE Other Erik Lindström Centre for Mathematical Sciences Lund University LU/LTH & DTU Intro LS MLE Other General Properties Popular estimatiors Overview Introduction General Properties Estimators

More information

Outline for today. Maximum likelihood estimation. Computation with multivariate normal distributions. Multivariate normal distribution

Outline for today. Maximum likelihood estimation. Computation with multivariate normal distributions. Multivariate normal distribution Outline for today Maximum likelihood estimation Rasmus Waageetersen Deartment of Mathematics Aalborg University Denmark October 30, 2007 the multivariate normal distribution linear and linear mixed models

More information

Lecture Particle Filters. Magnus Wiktorsson

Lecture Particle Filters. Magnus Wiktorsson Lecture Particle Filters Magnus Wiktorsson Monte Carlo filters The filter recursions could only be solved for HMMs and for linear, Gaussian models. Idea: Approximate any model with a HMM. Replace p(x)

More information

System Identification, Lecture 4

System Identification, Lecture 4 System Identification, Lecture 4 Kristiaan Pelckmans (IT/UU, 2338) Course code: 1RT880, Report code: 61800 - Spring 2016 F, FRI Uppsala University, Information Technology 13 April 2016 SI-2016 K. Pelckmans

More information

Likelihood, MLE & EM for Gaussian Mixture Clustering. Nick Duffield Texas A&M University

Likelihood, MLE & EM for Gaussian Mixture Clustering. Nick Duffield Texas A&M University Likelihood, MLE & EM for Gaussian Mixture Clustering Nick Duffield Texas A&M University Probability vs. Likelihood Probability: predict unknown outcomes based on known parameters: P(x q) Likelihood: estimate

More information

Statistics & Data Sciences: First Year Prelim Exam May 2018

Statistics & Data Sciences: First Year Prelim Exam May 2018 Statistics & Data Sciences: First Year Prelim Exam May 2018 Instructions: 1. Do not turn this page until instructed to do so. 2. Start each new question on a new sheet of paper. 3. This is a closed book

More information

Exercises Tutorial at ICASSP 2016 Learning Nonlinear Dynamical Models Using Particle Filters

Exercises Tutorial at ICASSP 2016 Learning Nonlinear Dynamical Models Using Particle Filters Exercises Tutorial at ICASSP 216 Learning Nonlinear Dynamical Models Using Particle Filters Andreas Svensson, Johan Dahlin and Thomas B. Schön March 18, 216 Good luck! 1 [Bootstrap particle filter for

More information

MCMC Sampling for Bayesian Inference using L1-type Priors

MCMC Sampling for Bayesian Inference using L1-type Priors MÜNSTER MCMC Sampling for Bayesian Inference using L1-type Priors (what I do whenever the ill-posedness of EEG/MEG is just not frustrating enough!) AG Imaging Seminar Felix Lucka 26.06.2012 , MÜNSTER Sampling

More information

CSC 2541: Bayesian Methods for Machine Learning

CSC 2541: Bayesian Methods for Machine Learning CSC 2541: Bayesian Methods for Machine Learning Radford M. Neal, University of Toronto, 2011 Lecture 10 Alternatives to Monte Carlo Computation Since about 1990, Markov chain Monte Carlo has been the dominant

More information

The Prediction of Random Effects in Generalized Linear Mixed Model

The Prediction of Random Effects in Generalized Linear Mixed Model The Prediction of Random Effects in Generalized Linear Mixed Model Wenxue Ge Department of Mathematics and Statistics University of Victoria, Canada Nov 20, 2017 @University of Victoria Outline Background

More information

CS281A/Stat241A Lecture 22

CS281A/Stat241A Lecture 22 CS281A/Stat241A Lecture 22 p. 1/4 CS281A/Stat241A Lecture 22 Monte Carlo Methods Peter Bartlett CS281A/Stat241A Lecture 22 p. 2/4 Key ideas of this lecture Sampling in Bayesian methods: Predictive distribution

More information

Introducing the Normal Distribution

Introducing the Normal Distribution Department of Mathematics Ma 3/13 KC Border Introduction to Probability and Statistics Winter 219 Lecture 1: Introducing the Normal Distribution Relevant textbook passages: Pitman [5]: Sections 1.2, 2.2,

More information

Likelihood Ratio Test in High-Dimensional Logistic Regression Is Asymptotically a Rescaled Chi-Square

Likelihood Ratio Test in High-Dimensional Logistic Regression Is Asymptotically a Rescaled Chi-Square Likelihood Ratio Test in High-Dimensional Logistic Regression Is Asymptotically a Rescaled Chi-Square Yuxin Chen Electrical Engineering, Princeton University Coauthors Pragya Sur Stanford Statistics Emmanuel

More information

Statistical Estimation

Statistical Estimation Statistical Estimation Use data and a model. The plug-in estimators are based on the simple principle of applying the defining functional to the ECDF. Other methods of estimation: minimize residuals from

More information

Solutions for Econometrics I Homework No.3

Solutions for Econometrics I Homework No.3 Solutions for Econometrics I Homework No3 due 6-3-15 Feldkircher, Forstner, Ghoddusi, Pichler, Reiss, Yan, Zeugner April 7, 6 Exercise 31 We have the following model: y T N 1 X T N Nk β Nk 1 + u T N 1

More information

Optimization. The value x is called a maximizer of f and is written argmax X f. g(λx + (1 λ)y) < λg(x) + (1 λ)g(y) 0 < λ < 1; x, y X.

Optimization. The value x is called a maximizer of f and is written argmax X f. g(λx + (1 λ)y) < λg(x) + (1 λ)g(y) 0 < λ < 1; x, y X. Optimization Background: Problem: given a function f(x) defined on X, find x such that f(x ) f(x) for all x X. The value x is called a maximizer of f and is written argmax X f. In general, argmax X f may

More information

Bayesian Methods and Uncertainty Quantification for Nonlinear Inverse Problems

Bayesian Methods and Uncertainty Quantification for Nonlinear Inverse Problems Bayesian Methods and Uncertainty Quantification for Nonlinear Inverse Problems John Bardsley, University of Montana Collaborators: H. Haario, J. Kaipio, M. Laine, Y. Marzouk, A. Seppänen, A. Solonen, Z.

More information

Rejection sampling - Acceptance probability. Review: How to sample from a multivariate normal in R. Review: Rejection sampling. Weighted resampling

Rejection sampling - Acceptance probability. Review: How to sample from a multivariate normal in R. Review: Rejection sampling. Weighted resampling Rejection sampling - Acceptance probability Review: How to sample from a multivariate normal in R Goal: Simulate from N d (µ,σ)? Note: For c to be small, g() must be similar to f(). The art of rejection

More information

Lecture 1 Bayesian inference

Lecture 1 Bayesian inference Lecture 1 Bayesian inference olivier.francois@imag.fr April 2011 Outline of Lecture 1 Principles of Bayesian inference Classical inference problems (frequency, mean, variance) Basic simulation algorithms

More information

Association studies and regression

Association studies and regression Association studies and regression CM226: Machine Learning for Bioinformatics. Fall 2016 Sriram Sankararaman Acknowledgments: Fei Sha, Ameet Talwalkar Association studies and regression 1 / 104 Administration

More information

Lecture 9 STK3100/4100

Lecture 9 STK3100/4100 Lecture 9 STK3100/4100 27. October 2014 Plan for lecture: 1. Linear mixed models cont. Models accounting for time dependencies (Ch. 6.1) 2. Generalized linear mixed models (GLMM, Ch. 13.1-13.3) Examples

More information

Spring 2012 Math 541A Exam 1. X i, S 2 = 1 n. n 1. X i I(X i < c), T n =

Spring 2012 Math 541A Exam 1. X i, S 2 = 1 n. n 1. X i I(X i < c), T n = Spring 2012 Math 541A Exam 1 1. (a) Let Z i be independent N(0, 1), i = 1, 2,, n. Are Z = 1 n n Z i and S 2 Z = 1 n 1 n (Z i Z) 2 independent? Prove your claim. (b) Let X 1, X 2,, X n be independent identically

More information

Generalized Linear Models for Non-Normal Data

Generalized Linear Models for Non-Normal Data Generalized Linear Models for Non-Normal Data Today s Class: 3 parts of a generalized model Models for binary outcomes Complications for generalized multivariate or multilevel models SPLH 861: Lecture

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Computer Science! Department of Statistical Sciences! rsalakhu@cs.toronto.edu! h0p://www.cs.utoronto.ca/~rsalakhu/ Lecture 7 Approximate

More information

Bayesian Inference for DSGE Models. Lawrence J. Christiano

Bayesian Inference for DSGE Models. Lawrence J. Christiano Bayesian Inference for DSGE Models Lawrence J. Christiano Outline State space-observer form. convenient for model estimation and many other things. Preliminaries. Probabilities. Maximum Likelihood. Bayesian

More information

Fast Numerical Methods for Stochastic Computations

Fast Numerical Methods for Stochastic Computations Fast AreviewbyDongbinXiu May 16 th,2013 Outline Motivation 1 Motivation 2 3 4 5 Example: Burgers Equation Let us consider the Burger s equation: u t + uu x = νu xx, x [ 1, 1] u( 1) =1 u(1) = 1 Example:

More information

Monte-Carlo MMD-MA, Université Paris-Dauphine. Xiaolu Tan

Monte-Carlo MMD-MA, Université Paris-Dauphine. Xiaolu Tan Monte-Carlo MMD-MA, Université Paris-Dauphine Xiaolu Tan tan@ceremade.dauphine.fr Septembre 2015 Contents 1 Introduction 1 1.1 The principle.................................. 1 1.2 The error analysis

More information

Foundations of Statistical Inference

Foundations of Statistical Inference Foundations of Statistical Inference Julien Berestycki Department of Statistics University of Oxford MT 2016 Julien Berestycki (University of Oxford) SB2a MT 2016 1 / 32 Lecture 14 : Variational Bayes

More information

Bayesian Learning. HT2015: SC4 Statistical Data Mining and Machine Learning. Maximum Likelihood Principle. The Bayesian Learning Framework

Bayesian Learning. HT2015: SC4 Statistical Data Mining and Machine Learning. Maximum Likelihood Principle. The Bayesian Learning Framework HT5: SC4 Statistical Data Mining and Machine Learning Dino Sejdinovic Department of Statistics Oxford http://www.stats.ox.ac.uk/~sejdinov/sdmml.html Maximum Likelihood Principle A generative model for

More information

A short introduction to INLA and R-INLA

A short introduction to INLA and R-INLA A short introduction to INLA and R-INLA Integrated Nested Laplace Approximation Thomas Opitz, BioSP, INRA Avignon Workshop: Theory and practice of INLA and SPDE November 7, 2018 2/21 Plan for this talk

More information

Bayesian Inference and MCMC

Bayesian Inference and MCMC Bayesian Inference and MCMC Aryan Arbabi Partly based on MCMC slides from CSC412 Fall 2018 1 / 18 Bayesian Inference - Motivation Consider we have a data set D = {x 1,..., x n }. E.g each x i can be the

More information

Analog Circuit Verification by Statistical Model Checking

Analog Circuit Verification by Statistical Model Checking 16 th Asian Pacific Design Automation ti Conference Analog Circuit Verification by Statistical Model Checking Author Ying-Chih Wang (Presenter) Anvesh Komuravelli Paolo Zuliani Edmund M. Clarke Date 2011/1/26

More information

Stat 710: Mathematical Statistics Lecture 27

Stat 710: Mathematical Statistics Lecture 27 Stat 710: Mathematical Statistics Lecture 27 Jun Shao Department of Statistics University of Wisconsin Madison, WI 53706, USA Jun Shao (UW-Madison) Stat 710, Lecture 27 April 3, 2009 1 / 10 Lecture 27:

More information

Modeling Real Estate Data using Quantile Regression

Modeling Real Estate Data using Quantile Regression Modeling Real Estate Data using Semiparametric Quantile Regression Department of Statistics University of Innsbruck September 9th, 2011 Overview 1 Application: 2 3 4 Hedonic regression data for house prices

More information

Stat 535 C - Statistical Computing & Monte Carlo Methods. Arnaud Doucet.

Stat 535 C - Statistical Computing & Monte Carlo Methods. Arnaud Doucet. Stat 535 C - Statistical Computing & Monte Carlo Methods Arnaud Doucet Email: arnaud@cs.ubc.ca 1 Suggested Projects: www.cs.ubc.ca/~arnaud/projects.html First assignement on the web this afternoon: capture/recapture.

More information

Review and continuation from last week Properties of MLEs

Review and continuation from last week Properties of MLEs Review and continuation from last week Properties of MLEs As we have mentioned, MLEs have a nice intuitive property, and as we have seen, they have a certain equivariance property. We will see later that

More information

Fitting Multidimensional Latent Variable Models using an Efficient Laplace Approximation

Fitting Multidimensional Latent Variable Models using an Efficient Laplace Approximation Fitting Multidimensional Latent Variable Models using an Efficient Laplace Approximation Dimitris Rizopoulos Department of Biostatistics, Erasmus University Medical Center, the Netherlands d.rizopoulos@erasmusmc.nl

More information

Stable Limit Laws for Marginal Probabilities from MCMC Streams: Acceleration of Convergence

Stable Limit Laws for Marginal Probabilities from MCMC Streams: Acceleration of Convergence Stable Limit Laws for Marginal Probabilities from MCMC Streams: Acceleration of Convergence Robert L. Wolpert Institute of Statistics and Decision Sciences Duke University, Durham NC 778-5 - Revised April,

More information

Fall 2017 STAT 532 Homework Peter Hoff. 1. Let P be a probability measure on a collection of sets A.

Fall 2017 STAT 532 Homework Peter Hoff. 1. Let P be a probability measure on a collection of sets A. 1. Let P be a probability measure on a collection of sets A. (a) For each n N, let H n be a set in A such that H n H n+1. Show that P (H n ) monotonically converges to P ( k=1 H k) as n. (b) For each n

More information

Title. Description. Remarks and examples. stata.com. stata.com. methods and formulas for gsem Methods and formulas for gsem

Title. Description. Remarks and examples. stata.com. stata.com. methods and formulas for gsem Methods and formulas for gsem Title stata.com methods and formulas for gsem Methods and formulas for gsem Description Remarks and examples References Also see Description The methods and formulas for the gsem command are presented

More information

Likelihood NIPS July 30, Gaussian Process Regression with Student-t. Likelihood. Jarno Vanhatalo, Pasi Jylanki and Aki Vehtari NIPS-2009

Likelihood NIPS July 30, Gaussian Process Regression with Student-t. Likelihood. Jarno Vanhatalo, Pasi Jylanki and Aki Vehtari NIPS-2009 with with July 30, 2010 with 1 2 3 Representation Representation for Distribution Inference for the Augmented Model 4 Approximate Laplacian Approximation Introduction to Laplacian Approximation Laplacian

More information

Introduction to General and Generalized Linear Models

Introduction to General and Generalized Linear Models Introduction to General and Generalized Linear Models Mixed effects models - Part IV Henrik Madsen Poul Thyregod Informatics and Mathematical Modelling Technical University of Denmark DK-2800 Kgs. Lyngby

More information

Mixed models in R using the lme4 package Part 6: Theory of linear mixed models, evaluating precision of estimates

Mixed models in R using the lme4 package Part 6: Theory of linear mixed models, evaluating precision of estimates Mixed models in R using the lme4 package Part 6: Theory of linear mixed models, evaluating precision of estimates Douglas Bates University of Wisconsin - Madison and R Development Core Team

More information

Generalized, Linear, and Mixed Models

Generalized, Linear, and Mixed Models Generalized, Linear, and Mixed Models CHARLES E. McCULLOCH SHAYLER.SEARLE Departments of Statistical Science and Biometrics Cornell University A WILEY-INTERSCIENCE PUBLICATION JOHN WILEY & SONS, INC. New

More information

Ph.D. Qualifying Exam Friday Saturday, January 6 7, 2017

Ph.D. Qualifying Exam Friday Saturday, January 6 7, 2017 Ph.D. Qualifying Exam Friday Saturday, January 6 7, 2017 Put your solution to each problem on a separate sheet of paper. Problem 1. (5106) Let X 1, X 2,, X n be a sequence of i.i.d. observations from a

More information

Mixed models in R using the lme4 package Part 4: Theory of linear mixed models

Mixed models in R using the lme4 package Part 4: Theory of linear mixed models Mixed models in R using the lme4 package Part 4: Theory of linear mixed models Douglas Bates Madison January 11, 11 Contents 1 Definition of linear mixed models Definition of linear mixed models As previously

More information

Bayesian Methods for Machine Learning

Bayesian Methods for Machine Learning Bayesian Methods for Machine Learning CS 584: Big Data Analytics Material adapted from Radford Neal s tutorial (http://ftp.cs.utoronto.ca/pub/radford/bayes-tut.pdf), Zoubin Ghahramni (http://hunch.net/~coms-4771/zoubin_ghahramani_bayesian_learning.pdf),

More information

Unbiased Estimation. Binomial problem shows general phenomenon. An estimator can be good for some values of θ and bad for others.

Unbiased Estimation. Binomial problem shows general phenomenon. An estimator can be good for some values of θ and bad for others. Unbiased Estimation Binomial problem shows general phenomenon. An estimator can be good for some values of θ and bad for others. To compare ˆθ and θ, two estimators of θ: Say ˆθ is better than θ if it

More information

STA 2201/442 Assignment 2

STA 2201/442 Assignment 2 STA 2201/442 Assignment 2 1. This is about how to simulate from a continuous univariate distribution. Let the random variable X have a continuous distribution with density f X (x) and cumulative distribution

More information

Introduction to Machine Learning. Maximum Likelihood and Bayesian Inference. Lecturers: Eran Halperin, Yishay Mansour, Lior Wolf

Introduction to Machine Learning. Maximum Likelihood and Bayesian Inference. Lecturers: Eran Halperin, Yishay Mansour, Lior Wolf 1 Introduction to Machine Learning Maximum Likelihood and Bayesian Inference Lecturers: Eran Halperin, Yishay Mansour, Lior Wolf 2013-14 We know that X ~ B(n,p), but we do not know p. We get a random sample

More information

Lecture 15 Random variables

Lecture 15 Random variables Lecture 15 Random variables Weinan E 1,2 and Tiejun Li 2 1 Department of Mathematics, Princeton University, weinan@princeton.edu 2 School of Mathematical Sciences, Peking University, tieli@pku.edu.cn No.1

More information

Introducing the Normal Distribution

Introducing the Normal Distribution Department of Mathematics Ma 3/103 KC Border Introduction to Probability and Statistics Winter 2017 Lecture 10: Introducing the Normal Distribution Relevant textbook passages: Pitman [5]: Sections 1.2,

More information

Overfitting, Bias / Variance Analysis

Overfitting, Bias / Variance Analysis Overfitting, Bias / Variance Analysis Professor Ameet Talwalkar Professor Ameet Talwalkar CS260 Machine Learning Algorithms February 8, 207 / 40 Outline Administration 2 Review of last lecture 3 Basic

More information

Introduction to Estimation Methods for Time Series models Lecture 2

Introduction to Estimation Methods for Time Series models Lecture 2 Introduction to Estimation Methods for Time Series models Lecture 2 Fulvio Corsi SNS Pisa Fulvio Corsi Introduction to Estimation () Methods for Time Series models Lecture 2 SNS Pisa 1 / 21 Estimators:

More information

Ph.D. Qualifying Exam Monday Tuesday, January 4 5, 2016

Ph.D. Qualifying Exam Monday Tuesday, January 4 5, 2016 Ph.D. Qualifying Exam Monday Tuesday, January 4 5, 2016 Put your solution to each problem on a separate sheet of paper. Problem 1. (5106) Find the maximum likelihood estimate of θ where θ is a parameter

More information

Bayesian inference J. Daunizeau

Bayesian inference J. Daunizeau Bayesian inference J. Daunizeau Brain and Spine Institute, Paris, France Wellcome Trust Centre for Neuroimaging, London, UK Overview of the talk 1 Probabilistic modelling and representation of uncertainty

More information

General Bayesian Inference I

General Bayesian Inference I General Bayesian Inference I Outline: Basic concepts, One-parameter models, Noninformative priors. Reading: Chapters 10 and 11 in Kay-I. (Occasional) Simplified Notation. When there is no potential for

More information

Log Concavity and Density Estimation

Log Concavity and Density Estimation Log Concavity and Density Estimation Lutz Dümbgen, Kaspar Rufibach, André Hüsler (Universität Bern) Geurt Jongbloed (Amsterdam) Nicolai Bissantz (Göttingen) I. A Consulting Case II. III. IV. Log Concave

More information

Brandon C. Kelly (Harvard Smithsonian Center for Astrophysics)

Brandon C. Kelly (Harvard Smithsonian Center for Astrophysics) Brandon C. Kelly (Harvard Smithsonian Center for Astrophysics) Probability quantifies randomness and uncertainty How do I estimate the normalization and logarithmic slope of a X ray continuum, assuming

More information

Introduction to Bayesian Inference

Introduction to Bayesian Inference University of Pennsylvania EABCN Training School May 10, 2016 Bayesian Inference Ingredients of Bayesian Analysis: Likelihood function p(y φ) Prior density p(φ) Marginal data density p(y ) = p(y φ)p(φ)dφ

More information

Principles of Bayesian Inference

Principles of Bayesian Inference Principles of Bayesian Inference Sudipto Banerjee University of Minnesota July 20th, 2008 1 Bayesian Principles Classical statistics: model parameters are fixed and unknown. A Bayesian thinks of parameters

More information

Bayesian Inference for DSGE Models. Lawrence J. Christiano

Bayesian Inference for DSGE Models. Lawrence J. Christiano Bayesian Inference for DSGE Models Lawrence J. Christiano Outline State space-observer form. convenient for model estimation and many other things. Bayesian inference Bayes rule. Monte Carlo integation.

More information

Computer Intensive Methods in Mathematical Statistics

Computer Intensive Methods in Mathematical Statistics Computer Intensive Methods in Mathematical Statistics Department of mathematics johawes@kth.se Lecture 7 Sequential Monte Carlo methods III 7 April 2017 Computer Intensive Methods (1) Plan of today s lecture

More information

Introduction to Machine Learning. Maximum Likelihood and Bayesian Inference. Lecturers: Eran Halperin, Lior Wolf

Introduction to Machine Learning. Maximum Likelihood and Bayesian Inference. Lecturers: Eran Halperin, Lior Wolf 1 Introduction to Machine Learning Maximum Likelihood and Bayesian Inference Lecturers: Eran Halperin, Lior Wolf 2014-15 We know that X ~ B(n,p), but we do not know p. We get a random sample from X, a

More information

Regression. Machine Learning and Pattern Recognition. Chris Williams. School of Informatics, University of Edinburgh.

Regression. Machine Learning and Pattern Recognition. Chris Williams. School of Informatics, University of Edinburgh. Regression Machine Learning and Pattern Recognition Chris Williams School of Informatics, University of Edinburgh September 24 (All of the slides in this course have been adapted from previous versions

More information

Generalized linear models

Generalized linear models Generalized linear models Søren Højsgaard Department of Mathematical Sciences Aalborg University, Denmark October 29, 202 Contents Densities for generalized linear models. Mean and variance...............................

More information

F & B Approaches to a simple model

F & B Approaches to a simple model A6523 Signal Modeling, Statistical Inference and Data Mining in Astrophysics Spring 215 http://www.astro.cornell.edu/~cordes/a6523 Lecture 11 Applications: Model comparison Challenges in large-scale surveys

More information

Logistic Regression. Seungjin Choi

Logistic Regression. Seungjin Choi Logistic Regression Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea seungjin@postech.ac.kr http://mlg.postech.ac.kr/

More information

MATH 680 Fall November 27, Homework 3

MATH 680 Fall November 27, Homework 3 MATH 680 Fall 208 November 27, 208 Homework 3 This homework is due on December 9 at :59pm. Provide both pdf, R files. Make an individual R file with proper comments for each sub-problem. Subgradients and

More information

Default Priors and Effcient Posterior Computation in Bayesian

Default Priors and Effcient Posterior Computation in Bayesian Default Priors and Effcient Posterior Computation in Bayesian Factor Analysis January 16, 2010 Presented by Eric Wang, Duke University Background and Motivation A Brief Review of Parameter Expansion Literature

More information