Lecture 15 Random variables

Size: px
Start display at page:

Download "Lecture 15 Random variables"

Transcription

1 Lecture 15 Random variables Weinan E 1,2 and Tiejun Li 2 1 Department of Mathematics, Princeton University, weinan@princeton.edu 2 School of Mathematical Sciences, Peking University, tieli@pku.edu.cn No.1 Science Building, 1575

2 Outline Motivations Basic idea of Monte Carlo integration Random variables

3 High dimensional quadrature in statistical physics Ising model for mean field ferromagnet modeling 1 2 Spin system M

4 High dimensional quadrature in statistical physics Ising model in statistical physics Define the Hamiltonian H(σ) = J <ij> σ iσ j, where σ i = ±1, < ij > means to take sum w.r.t all neighboring spins i j = 1. The internal energy per site U M = 1 M σ H(σ) exp{ βh(σ)} Z M, where Z M = σ exp{ βh(σ)} is the partition function and β = (k BT ) 1. Total number of configuration states: 2 M

5 High dimensional quadrature in statistical physics A 1 A(c)e βh(c) dc Z R 6N Z = e βh(c) dc (partition R 6N funtion) β = (k BT ) 1 k B Boltzmann T dc = dx 1 dx N dp 1 dp N N.

6 Stochastic simulations Biological network Suppose there are N s species of molecules S i, i = 1,..., N s, and M R reaction channels R j, j = 1,..., M R. x i is the number of molecules of species S i. Then the state of the system is given by x = (x 1, x 2,..., x Ns ). Each reaction R j is characterized by a rate function a j(x) and a vector ν j that describes the change of state due to reaction (after the j th reaction, x x + ν j). In shorthand denote R j = (a j, ν j) How to simulate this biological process?

7 Numerical solution of stochastic differential equations In mathematical economics, the Merton s model for asset price ds t = µs tdt + σs tdw t where S t is the asset price, W t is the standard Brownian motion. In the Langevin equation for Brownian particles dx t = v tdt dv t = γ m vtdt 1 m V (xt)dt + 2k BT γdw t where V (x) is the potential, γ is the viscosity, m is the mass.

8 Outline Motivations Basic idea of Monte Carlo integration Random variables

9 Monte Carlo I(f) = 1 (trapzoidal rule) 0 f(x)dx (1) I(f) [ N f(x0) + f(x i) f(xn )] h (2) h = 1, xi = ih (i = 0, 1,..., N) N O(h 2 ) = O(N 2 ) i=1

10 Basic random variables (discrete case) Bernoulli distribution: P (X) = { p, X = 1, q, X = 0. where p > 0, q > 0, p + q = 1. The mean and variance are EX = p, Var(X) = pq. If p = q = 1, it is the well-known fair-coin tossing game. 2 Binomial distribution B(n, p): n independent experiments of Bernoulli distribution X k, X := X X n, then The mean and variance are P (X = k) = C k np k q n k. EX = np, Var(X) = npq.

11 Basic random variables (continuous case) Uniform distribution U[0, 1]: { 1 if x [0, 1] p(x) = 0 otherwise The mean and variance are EX = 1 2, Var(X) = Exponential distribution:(λ > 0) { 0 if x < 0 p(x) = λe λx if x 0 The mean and variance are EX = 1 λ, Var(X) = 1 λ. 2

12 Basic random variables (continuous case) Normal distribution(gaussian distribution)(n(0, 1)): or more generally N(µ, σ) p(x) = 1 e x2 2 2π p(x) = 1 (x µ)2 e 2σ 2 2πσ 2 where µ is the mean (expectation), σ 2 is the variance. High dimensional case (N(µ, Σ)) p(x) = 1 T Σ 1 (X µ) (2π) n/2 e (X µ) (det Σ) 1/2 where µ is the mean, Σ is a symmetric positive definite matrix, which is the covariance matrix of X. det Σ is the determinant of Σ.

13 Monte Carlo Monte Carlo I(f) I(f) = Ef(X), X [0, 1] Monte Carlo I(f) 1 N N f(x i) I N (f) (3) i=1 x i (i = 1, 2,..., N) [0, 1] i.i.d. U[0, 1], I N (f) I(f). I N (f) I(f) O(N 1 2 ).

14 Monte Carlo R d Ω = [0, 1] d I(f) = f(x)p(x)dx (4) p(x) p(x)dx = 1 p(x) 0 [0, 1] n O(n 2 ) N = n d Monte Carlo M i.i.d X 1,, X M I M 1 M i=1 M f(x i) I O(M 2 1 ) M M = n d n = M 1/d. d > 4 n 2 > M 2 1 Monte Carlo ; d < 4 Monte Carlo Ω

15 Outline Motivations Basic idea of Monte Carlo integration Random variables

16 Generation of uniform distribution U(0, 1) (1) Von Neumann (midsquare) Von Neumann

17 Generation of uniform distribution U(0, 1) (2) (linear congruential algorithm): U[0, 1] X n+1 = ax n + b(mod m) (5) a, b, m (cycle length) : a, b, m (i) b m ; (ii) (a 1) m (iii) m 4 (a 1) 4 m m = 2 k, a = 4c + 1, b

18 Generation of uniform distribution U(0, 1) (3) Lewis, Goodman Miller X n+1 = ax n (mod m) (6) a = 7 5 = 16807, m = = Shrage L Ecuyer Bays-Durham Numerical Recipe ran2(). 1000

19 Generation of uniform distribution U(0, 1) Generation of U(0, 1) with MATLAB Histograms

20 Law of Large Numbers (LLN) Theorem (Weak Law of Large Numbers, WLLN) If E X i < +, then in probability. S n n η Theorem (Strong Law of Large Numbers, SLLN) if and only if E X i < + S n n η a.s.

21 Central Limit Theorem (CLT) Theorem (Central Limit Theorem, CLT) Assume that EX 2 i σ 2 = Var(X i). Then S n nη nσ 2 N(0, 1) < + and let in the sense of distribution.

22 Generation of general RVs (1) (Transformation method) : Y F (y) P {Y y} = F (y) (7) X U[0, 1] Y = F 1 (X) x p(y) F(y) y 1 y y 1 y 2 y y 2 Y Y

23 Generation of exponentially distributed RVs (i) { 0 y 0 p(y) = λe λy y 0 F (y) = y p(z)dz = 1 0 e λy F 1 (x) = 1 ln(1 x), x (0, 1) λ (8) X i U(0, 1) Y i = 1 ln(1 Xi) i = 1, 2,... (9) λ

24 Generation of exponentially distributed RVs Generation of exponentially distributed RVs Histograms Central Limit Theorem

25 Generation of normally distributed RVs (ii) p(x) = 1 2π e x2 2 (10) F (x) = x p(y)dy = erf( x 2 ) (11) erf(x) = 2 π x 0 e t2 dt (error function) F 1 (x) = 2erf 1 (2x 1) erf 1 Box-Muller

26 Generation of normally distributed RVs (2) Box-Muler : + ( + e x2 dx) 2 = = π 0 0 e x2 dx e (x2 +y 2) dxdy e r2 rdrdθ = π (12) Box-Muller (x 1, x 2) = (r cos θ, r sin θ) x x2 2 2π e 2 dx 1dx 2 = 1 r 2 2π e ( 1 = 2π dθ 2 rdrdθ ) ) (e r22 rdr (13) θ r 1 θ 2π U[0, 2π] e r2 2 r r F (r) = 2 r 2 sds = 1 e r2 2 0 e s

27 Generation of normally distributed RVs X 1, X 2 U[0, 1] { Y1 = 2 ln X 1 cos(2πx 2) Y 2 = 2 ln X 1 sin(2πx 2) (Y 1, Y 2) Numerical Recipe (14) Generation of Gaussian RVs with MATLAB Histogram

28 Homework assignment Generate the uniform distribution, exponential and Gaussian random variables and test the Weak Law of Large Numbers and Central Limit Theorem with MATLAB.

29 References R.E. Caflish, Monte Carlo and Quasi-Monte Carlo methods, Acta Numerica, Vol. 7, 1-49, 1998.,,.

Lecture 1 Numerical methods: principles, algorithms and applications: an introduction

Lecture 1 Numerical methods: principles, algorithms and applications: an introduction Lecture 1 Numerical methods: principles, algorithms and applications: an introduction Weinan E 1,2 and Tiejun Li 2 1 Department of Mathematics, Princeton University, weinan@princeton.edu 2 School of Mathematical

More information

Random Variables and Their Distributions

Random Variables and Their Distributions Chapter 3 Random Variables and Their Distributions A random variable (r.v.) is a function that assigns one and only one numerical value to each simple event in an experiment. We will denote r.vs by capital

More information

BMIR Lecture Series on Probability and Statistics Fall, 2015 Uniform Distribution

BMIR Lecture Series on Probability and Statistics Fall, 2015 Uniform Distribution Lecture #5 BMIR Lecture Series on Probability and Statistics Fall, 2015 Department of Biomedical Engineering and Environmental Sciences National Tsing Hua University s 5.1 Definition ( ) A continuous random

More information

2 Random Variable Generation

2 Random Variable Generation 2 Random Variable Generation Most Monte Carlo computations require, as a starting point, a sequence of i.i.d. random variables with given marginal distribution. We describe here some of the basic methods

More information

Ching-Han Hsu, BMES, National Tsing Hua University c 2015 by Ching-Han Hsu, Ph.D., BMIR Lab. = a + b 2. b a. x a b a = 12

Ching-Han Hsu, BMES, National Tsing Hua University c 2015 by Ching-Han Hsu, Ph.D., BMIR Lab. = a + b 2. b a. x a b a = 12 Lecture 5 Continuous Random Variables BMIR Lecture Series in Probability and Statistics Ching-Han Hsu, BMES, National Tsing Hua University c 215 by Ching-Han Hsu, Ph.D., BMIR Lab 5.1 1 Uniform Distribution

More information

1 Review of Probability and Distributions

1 Review of Probability and Distributions Random variables. A numerically valued function X of an outcome ω from a sample space Ω X : Ω R : ω X(ω) is called a random variable (r.v.), and usually determined by an experiment. We conventionally denote

More information

18.175: Lecture 17 Poisson random variables

18.175: Lecture 17 Poisson random variables 18.175: Lecture 17 Poisson random variables Scott Sheffield MIT 1 Outline More on random walks and local CLT Poisson random variable convergence Extend CLT idea to stable random variables 2 Outline More

More information

Probability and Distributions

Probability and Distributions Probability and Distributions What is a statistical model? A statistical model is a set of assumptions by which the hypothetical population distribution of data is inferred. It is typically postulated

More information

1: PROBABILITY REVIEW

1: PROBABILITY REVIEW 1: PROBABILITY REVIEW Marek Rutkowski School of Mathematics and Statistics University of Sydney Semester 2, 2016 M. Rutkowski (USydney) Slides 1: Probability Review 1 / 56 Outline We will review the following

More information

Chapter 4: Monte-Carlo Methods

Chapter 4: Monte-Carlo Methods Chapter 4: Monte-Carlo Methods A Monte-Carlo method is a technique for the numerical realization of a stochastic process by means of normally distributed random variables. In financial mathematics, it

More information

STAT Chapter 5 Continuous Distributions

STAT Chapter 5 Continuous Distributions STAT 270 - Chapter 5 Continuous Distributions June 27, 2012 Shirin Golchi () STAT270 June 27, 2012 1 / 59 Continuous rv s Definition: X is a continuous rv if it takes values in an interval, i.e., range

More information

1 Presessional Probability

1 Presessional Probability 1 Presessional Probability Probability theory is essential for the development of mathematical models in finance, because of the randomness nature of price fluctuations in the markets. This presessional

More information

Lecture Notes 5 Convergence and Limit Theorems. Convergence with Probability 1. Convergence in Mean Square. Convergence in Probability, WLLN

Lecture Notes 5 Convergence and Limit Theorems. Convergence with Probability 1. Convergence in Mean Square. Convergence in Probability, WLLN Lecture Notes 5 Convergence and Limit Theorems Motivation Convergence with Probability Convergence in Mean Square Convergence in Probability, WLLN Convergence in Distribution, CLT EE 278: Convergence and

More information

Lecture 10 Polynomial interpolation

Lecture 10 Polynomial interpolation Lecture 10 Polynomial interpolation Weinan E 1,2 and Tiejun Li 2 1 Department of Mathematics, Princeton University, weinan@princeton.edu 2 School of Mathematical Sciences, Peking University, tieli@pku.edu.cn

More information

18.175: Lecture 13 Infinite divisibility and Lévy processes

18.175: Lecture 13 Infinite divisibility and Lévy processes 18.175 Lecture 13 18.175: Lecture 13 Infinite divisibility and Lévy processes Scott Sheffield MIT Outline Poisson random variable convergence Extend CLT idea to stable random variables Infinite divisibility

More information

Part IA Probability. Definitions. Based on lectures by R. Weber Notes taken by Dexter Chua. Lent 2015

Part IA Probability. Definitions. Based on lectures by R. Weber Notes taken by Dexter Chua. Lent 2015 Part IA Probability Definitions Based on lectures by R. Weber Notes taken by Dexter Chua Lent 2015 These notes are not endorsed by the lecturers, and I have modified them (often significantly) after lectures.

More information

Chapter 5 continued. Chapter 5 sections

Chapter 5 continued. Chapter 5 sections Chapter 5 sections Discrete univariate distributions: 5.2 Bernoulli and Binomial distributions Just skim 5.3 Hypergeometric distributions 5.4 Poisson distributions Just skim 5.5 Negative Binomial distributions

More information

6 The normal distribution, the central limit theorem and random samples

6 The normal distribution, the central limit theorem and random samples 6 The normal distribution, the central limit theorem and random samples 6.1 The normal distribution We mentioned the normal (or Gaussian) distribution in Chapter 4. It has density f X (x) = 1 σ 1 2π e

More information

Joint p.d.f. and Independent Random Variables

Joint p.d.f. and Independent Random Variables 1 Joint p.d.f. and Independent Random Variables Let X and Y be two discrete r.v. s and let R be the corresponding space of X and Y. The joint p.d.f. of X = x and Y = y, denoted by f(x, y) = P(X = x, Y

More information

System Simulation Part II: Mathematical and Statistical Models Chapter 5: Statistical Models

System Simulation Part II: Mathematical and Statistical Models Chapter 5: Statistical Models System Simulation Part II: Mathematical and Statistical Models Chapter 5: Statistical Models Fatih Cavdur fatihcavdur@uludag.edu.tr March 20, 2012 Introduction Introduction The world of the model-builder

More information

functions Poisson distribution Normal distribution Arbitrary functions

functions Poisson distribution Normal distribution Arbitrary functions Physics 433: Computational Physics Lecture 6 Random number distributions Generation of random numbers of various distribuition functions Normal distribution Poisson distribution Arbitrary functions Random

More information

Machine Learning. Probability Basics. Marc Toussaint University of Stuttgart Summer 2014

Machine Learning. Probability Basics. Marc Toussaint University of Stuttgart Summer 2014 Machine Learning Probability Basics Basic definitions: Random variables, joint, conditional, marginal distribution, Bayes theorem & examples; Probability distributions: Binomial, Beta, Multinomial, Dirichlet,

More information

1 Exercises for lecture 1

1 Exercises for lecture 1 1 Exercises for lecture 1 Exercise 1 a) Show that if F is symmetric with respect to µ, and E( X )

More information

EE4601 Communication Systems

EE4601 Communication Systems EE4601 Communication Systems Week 2 Review of Probability, Important Distributions 0 c 2011, Georgia Institute of Technology (lect2 1) Conditional Probability Consider a sample space that consists of two

More information

Chapter 5. Random Variables (Continuous Case) 5.1 Basic definitions

Chapter 5. Random Variables (Continuous Case) 5.1 Basic definitions Chapter 5 andom Variables (Continuous Case) So far, we have purposely limited our consideration to random variables whose ranges are countable, or discrete. The reason for that is that distributions on

More information

DUBLIN CITY UNIVERSITY

DUBLIN CITY UNIVERSITY DUBLIN CITY UNIVERSITY SAMPLE EXAMINATIONS 2017/2018 MODULE: QUALIFICATIONS: Simulation for Finance MS455 B.Sc. Actuarial Mathematics ACM B.Sc. Financial Mathematics FIM YEAR OF STUDY: 4 EXAMINERS: Mr

More information

I. ANALYSIS; PROBABILITY

I. ANALYSIS; PROBABILITY ma414l1.tex Lecture 1. 12.1.2012 I. NLYSIS; PROBBILITY 1. Lebesgue Measure and Integral We recall Lebesgue measure (M411 Probability and Measure) λ: defined on intervals (a, b] by λ((a, b]) := b a (so

More information

Lecture 1: August 28

Lecture 1: August 28 36-705: Intermediate Statistics Fall 2017 Lecturer: Siva Balakrishnan Lecture 1: August 28 Our broad goal for the first few lectures is to try to understand the behaviour of sums of independent random

More information

18.440: Lecture 28 Lectures Review

18.440: Lecture 28 Lectures Review 18.440: Lecture 28 Lectures 18-27 Review Scott Sheffield MIT Outline Outline It s the coins, stupid Much of what we have done in this course can be motivated by the i.i.d. sequence X i where each X i is

More information

Lecture 5: Moment Generating Functions

Lecture 5: Moment Generating Functions Lecture 5: Moment Generating Functions IB Paper 7: Probability and Statistics Carl Edward Rasmussen Department of Engineering, University of Cambridge February 28th, 2018 Rasmussen (CUED) Lecture 5: Moment

More information

Example continued. Math 425 Intro to Probability Lecture 37. Example continued. Example

Example continued. Math 425 Intro to Probability Lecture 37. Example continued. Example continued : Coin tossing Math 425 Intro to Probability Lecture 37 Kenneth Harris kaharri@umich.edu Department of Mathematics University of Michigan April 8, 2009 Consider a Bernoulli trials process with

More information

1 Random Variable: Topics

1 Random Variable: Topics Note: Handouts DO NOT replace the book. In most cases, they only provide a guideline on topics and an intuitive feel. 1 Random Variable: Topics Chap 2, 2.1-2.4 and Chap 3, 3.1-3.3 What is a random variable?

More information

Moments. Raw moment: February 25, 2014 Normalized / Standardized moment:

Moments. Raw moment: February 25, 2014 Normalized / Standardized moment: Moments Lecture 10: Central Limit Theorem and CDFs Sta230 / Mth 230 Colin Rundel Raw moment: Central moment: µ n = EX n ) µ n = E[X µ) 2 ] February 25, 2014 Normalized / Standardized moment: µ n σ n Sta230

More information

THE QUEEN S UNIVERSITY OF BELFAST

THE QUEEN S UNIVERSITY OF BELFAST THE QUEEN S UNIVERSITY OF BELFAST 0SOR20 Level 2 Examination Statistics and Operational Research 20 Probability and Distribution Theory Wednesday 4 August 2002 2.30 pm 5.30 pm Examiners { Professor R M

More information

Chapter 3: Random Variables 1

Chapter 3: Random Variables 1 Chapter 3: Random Variables 1 Yunghsiang S. Han Graduate Institute of Communication Engineering, National Taipei University Taiwan E-mail: yshan@mail.ntpu.edu.tw 1 Modified from the lecture notes by Prof.

More information

Chapter 1 Statistical Reasoning Why statistics? Section 1.1 Basics of Probability Theory

Chapter 1 Statistical Reasoning Why statistics? Section 1.1 Basics of Probability Theory Chapter 1 Statistical Reasoning Why statistics? Uncertainty of nature (weather, earth movement, etc. ) Uncertainty in observation/sampling/measurement Variability of human operation/error imperfection

More information

Part IA Probability. Theorems. Based on lectures by R. Weber Notes taken by Dexter Chua. Lent 2015

Part IA Probability. Theorems. Based on lectures by R. Weber Notes taken by Dexter Chua. Lent 2015 Part IA Probability Theorems Based on lectures by R. Weber Notes taken by Dexter Chua Lent 2015 These notes are not endorsed by the lecturers, and I have modified them (often significantly) after lectures.

More information

MATH Solutions to Probability Exercises

MATH Solutions to Probability Exercises MATH 5 9 MATH 5 9 Problem. Suppose we flip a fair coin once and observe either T for tails or H for heads. Let X denote the random variable that equals when we observe tails and equals when we observe

More information

Chapter 3 sections. SKIP: 3.10 Markov Chains. SKIP: pages Chapter 3 - continued

Chapter 3 sections. SKIP: 3.10 Markov Chains. SKIP: pages Chapter 3 - continued Chapter 3 sections Chapter 3 - continued 3.1 Random Variables and Discrete Distributions 3.2 Continuous Distributions 3.3 The Cumulative Distribution Function 3.4 Bivariate Distributions 3.5 Marginal Distributions

More information

Chapter 2: Random Variables

Chapter 2: Random Variables ECE54: Stochastic Signals and Systems Fall 28 Lecture 2 - September 3, 28 Dr. Salim El Rouayheb Scribe: Peiwen Tian, Lu Liu, Ghadir Ayache Chapter 2: Random Variables Example. Tossing a fair coin twice:

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence Probabilities Marc Toussaint University of Stuttgart Winter 2018/19 Motivation: AI systems need to reason about what they know, or not know. Uncertainty may have so many sources:

More information

Northwestern University Department of Electrical Engineering and Computer Science

Northwestern University Department of Electrical Engineering and Computer Science Northwestern University Department of Electrical Engineering and Computer Science EECS 454: Modeling and Analysis of Communication Networks Spring 2008 Probability Review As discussed in Lecture 1, probability

More information

Chapter 2: Fundamentals of Statistics Lecture 15: Models and statistics

Chapter 2: Fundamentals of Statistics Lecture 15: Models and statistics Chapter 2: Fundamentals of Statistics Lecture 15: Models and statistics Data from one or a series of random experiments are collected. Planning experiments and collecting data (not discussed here). Analysis:

More information

18.440: Lecture 19 Normal random variables

18.440: Lecture 19 Normal random variables 18.440 Lecture 19 18.440: Lecture 19 Normal random variables Scott Sheffield MIT Outline Tossing coins Normal random variables Special case of central limit theorem Outline Tossing coins Normal random

More information

1 Review of Probability

1 Review of Probability 1 Review of Probability Random variables are denoted by X, Y, Z, etc. The cumulative distribution function (c.d.f.) of a random variable X is denoted by F (x) = P (X x), < x

More information

Hochdimensionale Integration

Hochdimensionale Integration Oliver Ernst Institut für Numerische Mathematik und Optimierung Hochdimensionale Integration 14-tägige Vorlesung im Wintersemester 2010/11 im Rahmen des Moduls Ausgewählte Kapitel der Numerik Contents

More information

3. Probability and Statistics

3. Probability and Statistics FE661 - Statistical Methods for Financial Engineering 3. Probability and Statistics Jitkomut Songsiri definitions, probability measures conditional expectations correlation and covariance some important

More information

Let X and Y denote two random variables. The joint distribution of these random

Let X and Y denote two random variables. The joint distribution of these random EE385 Class Notes 9/7/0 John Stensby Chapter 3: Multiple Random Variables Let X and Y denote two random variables. The joint distribution of these random variables is defined as F XY(x,y) = [X x,y y] P.

More information

4. CONTINUOUS RANDOM VARIABLES

4. CONTINUOUS RANDOM VARIABLES IA Probability Lent Term 4 CONTINUOUS RANDOM VARIABLES 4 Introduction Up to now we have restricted consideration to sample spaces Ω which are finite, or countable; we will now relax that assumption We

More information

Scientific Computing: Monte Carlo

Scientific Computing: Monte Carlo Scientific Computing: Monte Carlo Aleksandar Donev Courant Institute, NYU 1 donev@courant.nyu.edu 1 Course MATH-GA.2043 or CSCI-GA.2112, Spring 2012 April 5th and 12th, 2012 A. Donev (Courant Institute)

More information

STA205 Probability: Week 8 R. Wolpert

STA205 Probability: Week 8 R. Wolpert INFINITE COIN-TOSS AND THE LAWS OF LARGE NUMBERS The traditional interpretation of the probability of an event E is its asymptotic frequency: the limit as n of the fraction of n repeated, similar, and

More information

STAT/MATH 395 A - PROBABILITY II UW Winter Quarter Moment functions. x r p X (x) (1) E[X r ] = x r f X (x) dx (2) (x E[X]) r p X (x) (3)

STAT/MATH 395 A - PROBABILITY II UW Winter Quarter Moment functions. x r p X (x) (1) E[X r ] = x r f X (x) dx (2) (x E[X]) r p X (x) (3) STAT/MATH 395 A - PROBABILITY II UW Winter Quarter 07 Néhémy Lim Moment functions Moments of a random variable Definition.. Let X be a rrv on probability space (Ω, A, P). For a given r N, E[X r ], if it

More information

Monte-Carlo MMD-MA, Université Paris-Dauphine. Xiaolu Tan

Monte-Carlo MMD-MA, Université Paris-Dauphine. Xiaolu Tan Monte-Carlo MMD-MA, Université Paris-Dauphine Xiaolu Tan tan@ceremade.dauphine.fr Septembre 2015 Contents 1 Introduction 1 1.1 The principle.................................. 1 1.2 The error analysis

More information

EE126: Problem Set # 7: Solutions

EE126: Problem Set # 7: Solutions EE26: Problem Set # 7: Solutions Instructor: Jean Walrand TA: S. Mubaraq Mishra Assigned: October 7, 23 Due: October 24, 23 Problem. Let X, Y, Z, V be independent N(, ) random variables. Find the p.d.f.

More information

Chapter 3: Random Variables 1

Chapter 3: Random Variables 1 Chapter 3: Random Variables 1 Yunghsiang S. Han Graduate Institute of Communication Engineering, National Taipei University Taiwan E-mail: yshan@mail.ntpu.edu.tw 1 Modified from the lecture notes by Prof.

More information

Basics on Probability. Jingrui He 09/11/2007

Basics on Probability. Jingrui He 09/11/2007 Basics on Probability Jingrui He 09/11/2007 Coin Flips You flip a coin Head with probability 0.5 You flip 100 coins How many heads would you expect Coin Flips cont. You flip a coin Head with probability

More information

EE514A Information Theory I Fall 2013

EE514A Information Theory I Fall 2013 EE514A Information Theory I Fall 2013 K. Mohan, Prof. J. Bilmes University of Washington, Seattle Department of Electrical Engineering Fall Quarter, 2013 http://j.ee.washington.edu/~bilmes/classes/ee514a_fall_2013/

More information

Brief Review of Probability

Brief Review of Probability Maura Department of Economics and Finance Università Tor Vergata Outline 1 Distribution Functions Quantiles and Modes of a Distribution 2 Example 3 Example 4 Distributions Outline Distribution Functions

More information

Chapter 4. Chapter 4 sections

Chapter 4. Chapter 4 sections Chapter 4 sections 4.1 Expectation 4.2 Properties of Expectations 4.3 Variance 4.4 Moments 4.5 The Mean and the Median 4.6 Covariance and Correlation 4.7 Conditional Expectation SKIP: 4.8 Utility Expectation

More information

Chap 2.1 : Random Variables

Chap 2.1 : Random Variables Chap 2.1 : Random Variables Let Ω be sample space of a probability model, and X a function that maps every ξ Ω, toa unique point x R, the set of real numbers. Since the outcome ξ is not certain, so is

More information

Monte Carlo Simulations

Monte Carlo Simulations Monte Carlo Simulations What are Monte Carlo Simulations and why ones them? Pseudo Random Number generators Creating a realization of a general PDF The Bootstrap approach A real life example: LOFAR simulations

More information

SDS 321: Introduction to Probability and Statistics

SDS 321: Introduction to Probability and Statistics SDS 321: Introduction to Probability and Statistics Lecture 14: Continuous random variables Purnamrita Sarkar Department of Statistics and Data Science The University of Texas at Austin www.cs.cmu.edu/

More information

Statistics 1B. Statistics 1B 1 (1 1)

Statistics 1B. Statistics 1B 1 (1 1) 0. Statistics 1B Statistics 1B 1 (1 1) 0. Lecture 1. Introduction and probability review Lecture 1. Introduction and probability review 2 (1 1) 1. Introduction and probability review 1.1. What is Statistics?

More information

Random variables. DS GA 1002 Probability and Statistics for Data Science.

Random variables. DS GA 1002 Probability and Statistics for Data Science. Random variables DS GA 1002 Probability and Statistics for Data Science http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall17 Carlos Fernandez-Granda Motivation Random variables model numerical quantities

More information

From Random Numbers to Monte Carlo. Random Numbers, Random Walks, Diffusion, Monte Carlo integration, and all that

From Random Numbers to Monte Carlo. Random Numbers, Random Walks, Diffusion, Monte Carlo integration, and all that From Random Numbers to Monte Carlo Random Numbers, Random Walks, Diffusion, Monte Carlo integration, and all that Random Walk Through Life Random Walk Through Life If you flip the coin 5 times you will

More information

Things to remember when learning probability distributions:

Things to remember when learning probability distributions: SPECIAL DISTRIBUTIONS Some distributions are special because they are useful They include: Poisson, exponential, Normal (Gaussian), Gamma, geometric, negative binomial, Binomial and hypergeometric distributions

More information

Final Exam # 3. Sta 230: Probability. December 16, 2012

Final Exam # 3. Sta 230: Probability. December 16, 2012 Final Exam # 3 Sta 230: Probability December 16, 2012 This is a closed-book exam so do not refer to your notes, the text, or any other books (please put them on the floor). You may use the extra sheets

More information

1 Stat 605. Homework I. Due Feb. 1, 2011

1 Stat 605. Homework I. Due Feb. 1, 2011 The first part is homework which you need to turn in. The second part is exercises that will not be graded, but you need to turn it in together with the take-home final exam. 1 Stat 605. Homework I. Due

More information

Multiple Random Variables

Multiple Random Variables Multiple Random Variables Joint Probability Density Let X and Y be two random variables. Their joint distribution function is F ( XY x, y) P X x Y y. F XY ( ) 1, < x

More information

If we want to analyze experimental or simulated data we might encounter the following tasks:

If we want to analyze experimental or simulated data we might encounter the following tasks: Chapter 1 Introduction If we want to analyze experimental or simulated data we might encounter the following tasks: Characterization of the source of the signal and diagnosis Studying dependencies Prediction

More information

Lecture 2: Repetition of probability theory and statistics

Lecture 2: Repetition of probability theory and statistics Algorithms for Uncertainty Quantification SS8, IN2345 Tobias Neckel Scientific Computing in Computer Science TUM Lecture 2: Repetition of probability theory and statistics Concept of Building Block: Prerequisites:

More information

Qualifying Exam CS 661: System Simulation Summer 2013 Prof. Marvin K. Nakayama

Qualifying Exam CS 661: System Simulation Summer 2013 Prof. Marvin K. Nakayama Qualifying Exam CS 661: System Simulation Summer 2013 Prof. Marvin K. Nakayama Instructions This exam has 7 pages in total, numbered 1 to 7. Make sure your exam has all the pages. This exam will be 2 hours

More information

Verona Course April Lecture 1. Review of probability

Verona Course April Lecture 1. Review of probability Verona Course April 215. Lecture 1. Review of probability Viorel Barbu Al.I. Cuza University of Iaşi and the Romanian Academy A probability space is a triple (Ω, F, P) where Ω is an abstract set, F is

More information

Exponential Distribution and Poisson Process

Exponential Distribution and Poisson Process Exponential Distribution and Poisson Process Stochastic Processes - Lecture Notes Fatih Cavdur to accompany Introduction to Probability Models by Sheldon M. Ross Fall 215 Outline Introduction Exponential

More information

Week 9 The Central Limit Theorem and Estimation Concepts

Week 9 The Central Limit Theorem and Estimation Concepts Week 9 and Estimation Concepts Week 9 and Estimation Concepts Week 9 Objectives 1 The Law of Large Numbers and the concept of consistency of averages are introduced. The condition of existence of the population

More information

Chapter 7. Basic Probability Theory

Chapter 7. Basic Probability Theory Chapter 7. Basic Probability Theory I-Liang Chern October 20, 2016 1 / 49 What s kind of matrices satisfying RIP Random matrices with iid Gaussian entries iid Bernoulli entries (+/ 1) iid subgaussian entries

More information

Statistical Methods in Particle Physics

Statistical Methods in Particle Physics Statistical Methods in Particle Physics Lecture 3 October 29, 2012 Silvia Masciocchi, GSI Darmstadt s.masciocchi@gsi.de Winter Semester 2012 / 13 Outline Reminder: Probability density function Cumulative

More information

18.440: Lecture 28 Lectures Review

18.440: Lecture 28 Lectures Review 18.440: Lecture 28 Lectures 17-27 Review Scott Sheffield MIT 1 Outline Continuous random variables Problems motivated by coin tossing Random variable properties 2 Outline Continuous random variables Problems

More information

Expectation. DS GA 1002 Statistical and Mathematical Models. Carlos Fernandez-Granda

Expectation. DS GA 1002 Statistical and Mathematical Models.   Carlos Fernandez-Granda Expectation DS GA 1002 Statistical and Mathematical Models http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall16 Carlos Fernandez-Granda Aim Describe random variables with a few numbers: mean, variance,

More information

Chapter 2 Continuous Distributions

Chapter 2 Continuous Distributions Chapter Continuous Distributions Continuous random variables For a continuous random variable X the probability distribution is described by the probability density function f(x), which has the following

More information

Practice Examination # 3

Practice Examination # 3 Practice Examination # 3 Sta 23: Probability December 13, 212 This is a closed-book exam so do not refer to your notes, the text, or any other books (please put them on the floor). You may use a single

More information

Chapter 3 sections. SKIP: 3.10 Markov Chains. SKIP: pages Chapter 3 - continued

Chapter 3 sections. SKIP: 3.10 Markov Chains. SKIP: pages Chapter 3 - continued Chapter 3 sections 3.1 Random Variables and Discrete Distributions 3.2 Continuous Distributions 3.3 The Cumulative Distribution Function 3.4 Bivariate Distributions 3.5 Marginal Distributions 3.6 Conditional

More information

Lectures for APM 541: Stochastic Modeling in Biology. Jay Taylor

Lectures for APM 541: Stochastic Modeling in Biology. Jay Taylor Lectures for APM 541: Stochastic Modeling in Biology Jay Taylor November 3, 2011 Contents 1 Distributions, Expectations, and Random Variables 4 1.1 Probability Spaces...................................

More information

Monte Carlo methods for kinetic equations

Monte Carlo methods for kinetic equations Monte Carlo methods for kinetic equations Lecture 2: Monte Carlo simulation methods Lorenzo Pareschi Department of Mathematics & CMCS University of Ferrara Italy http://utenti.unife.it/lorenzo.pareschi/

More information

Topic 3: The Expectation of a Random Variable

Topic 3: The Expectation of a Random Variable Topic 3: The Expectation of a Random Variable Course 003, 2017 Page 0 Expectation of a discrete random variable Definition (Expectation of a discrete r.v.): The expected value (also called the expectation

More information

Fundamental Tools - Probability Theory II

Fundamental Tools - Probability Theory II Fundamental Tools - Probability Theory II MSc Financial Mathematics The University of Warwick September 29, 2015 MSc Financial Mathematics Fundamental Tools - Probability Theory II 1 / 22 Measurable random

More information

Physics 403 Probability Distributions II: More Properties of PDFs and PMFs

Physics 403 Probability Distributions II: More Properties of PDFs and PMFs Physics 403 Probability Distributions II: More Properties of PDFs and PMFs Segev BenZvi Department of Physics and Astronomy University of Rochester Table of Contents 1 Last Time: Common Probability Distributions

More information

( x) ( ) F ( ) ( ) ( ) Prob( ) ( ) ( ) X x F x f s ds

( x) ( ) F ( ) ( ) ( ) Prob( ) ( ) ( ) X x F x f s ds Applied Numerical Analysis Pseudo Random Number Generator Lecturer: Emad Fatemizadeh What is random number: A sequence in which each term is unpredictable 29, 95, 11, 60, 22 Application: Monte Carlo Simulations

More information

Probability and Statistics

Probability and Statistics Probability and Statistics 1 Contents some stochastic processes Stationary Stochastic Processes 2 4. Some Stochastic Processes 4.1 Bernoulli process 4.2 Binomial process 4.3 Sine wave process 4.4 Random-telegraph

More information

Probability Distributions - Lecture 5

Probability Distributions - Lecture 5 Probability Distributions - Lecture 5 1 Introduction There are a number of mathematical models of probability density functions that represent the behavior of physical systems. In this lecture we explore

More information

Continuous Random Variables

Continuous Random Variables Continuous Random Variables Recall: For discrete random variables, only a finite or countably infinite number of possible values with positive probability. Often, there is interest in random variables

More information

1 Solution to Problem 2.1

1 Solution to Problem 2.1 Solution to Problem 2. I incorrectly worked this exercise instead of 2.2, so I decided to include the solution anyway. a) We have X Y /3, which is a - function. It maps the interval, ) where X lives) onto

More information

Recitation 2: Probability

Recitation 2: Probability Recitation 2: Probability Colin White, Kenny Marino January 23, 2018 Outline Facts about sets Definitions and facts about probability Random Variables and Joint Distributions Characteristics of distributions

More information

ES/AM Notes Numerical Methods for Random Processes

ES/AM Notes Numerical Methods for Random Processes ES/AM 448- Notes Numerical Methods for Random Processes Prof. David Chopp notes last updated: January 9, 6 Contents Review of Probability. Probability and Expectations.....................................

More information

Monte Carlo and cold gases. Lode Pollet.

Monte Carlo and cold gases. Lode Pollet. Monte Carlo and cold gases Lode Pollet lpollet@physics.harvard.edu 1 Outline Classical Monte Carlo The Monte Carlo trick Markov chains Metropolis algorithm Ising model critical slowing down Quantum Monte

More information

Chapter 4: Monte Carlo Methods. Paisan Nakmahachalasint

Chapter 4: Monte Carlo Methods. Paisan Nakmahachalasint Chapter 4: Monte Carlo Methods Paisan Nakmahachalasint Introduction Monte Carlo Methods are a class of computational algorithms that rely on repeated random sampling to compute their results. Monte Carlo

More information

Suppose that you have three coins. Coin A is fair, coin B shows heads with probability 0.6 and coin C shows heads with probability 0.8.

Suppose that you have three coins. Coin A is fair, coin B shows heads with probability 0.6 and coin C shows heads with probability 0.8. Suppose that you have three coins. Coin A is fair, coin B shows heads with probability 0.6 and coin C shows heads with probability 0.8. Coin A is flipped until a head appears, then coin B is flipped until

More information

COMPSCI 240: Reasoning Under Uncertainty

COMPSCI 240: Reasoning Under Uncertainty COMPSCI 240: Reasoning Under Uncertainty Andrew Lan and Nic Herndon University of Massachusetts at Amherst Spring 2019 Lecture 20: Central limit theorem & The strong law of large numbers Markov and Chebyshev

More information

Week 12-13: Discrete Probability

Week 12-13: Discrete Probability Week 12-13: Discrete Probability November 21, 2018 1 Probability Space There are many problems about chances or possibilities, called probability in mathematics. When we roll two dice there are possible

More information

Random Variables. Random variables. A numerically valued map X of an outcome ω from a sample space Ω to the real line R

Random Variables. Random variables. A numerically valued map X of an outcome ω from a sample space Ω to the real line R In probabilistic models, a random variable is a variable whose possible values are numerical outcomes of a random phenomenon. As a function or a map, it maps from an element (or an outcome) of a sample

More information