Stochastic Simulation Variance reduction methods Bo Friis Nielsen

Size: px
Start display at page:

Download "Stochastic Simulation Variance reduction methods Bo Friis Nielsen"

Transcription

1 Stochastic Simulation Variance reduction methods Bo Friis Nielsen Applied Mathematics and Computer Science Technical University of Denmark 2800 Kgs. Lyngby Denmark

2 Variance reduction methods To obtain better estimates with the same ressources Exploit analytical knowledge and/or correlation Methods: Antithetic variables Control variates Stratified sampling Importance sampling Bo Friis Nielsen 6/ lecture 7 2

3 Case: Monte Carlo evaluation of integral Consider the integral 1 0 We can interpret this interval as e x dx E ( e U) = 1 0 e x dx = θ U U(0,1) To estimate the integral: sample of the random variable e U and take the average. X i = e U i X = n i=1 X i n This is the crude Monte Carlo estimator, crude because we use no refinements whatsoever. Bo Friis Nielsen 6/ lecture 7 3

4 Analytical considerations It is straightforward to calculate the integral in this case The estimator X 1 0 e x dx = e E(X) = e 1 V(X) = E(X 2 ) E(X) 2 E(X 2 ) = Based on one observation 1 0 (e x ) 2 dx = 1 2 ( e 2 1 ) V(X) = 1 2 ( e 2 1 ) (e 1) 2 = Bo Friis Nielsen 6/ lecture 7 4

5 Antithetic variables General idea: to exploit correlation If the estimator is positively correlated with U i (monotone function): Use 1 U also Y i = eu i +e 1 U i 2 = eu i + e e U i 2 Ȳ = n i=0 Y i n The computational effort of calculating the effort needed to compute X. Ȳ should be similar to By the latter expression of Y i we can generate the same number of Y s as X s Bo Friis Nielsen 6/ lecture 7 5

6 Antithetic variables - analytical We can analyse the example analytically due to its simplicity E(Ȳ) = E( X) = θ To calculate V(Ȳ) we start with V(Y i). V(Y i ) = 1 4 V( e U i ) V( e 1 U i ) Cov( e U i,e 1 U i ) = 1 2 V( e U i ) Cov( e U i (e 1 U i ) Cov ( e U i,e 1 U i ) = E ( e U i e 1 U i ) E ( e U i ) E ( e 1 U i ) = e (e 1) 2 = 3e e 2 1 = V(Y i ) = 1 ( ) = Bo Friis Nielsen 6/ lecture 7 6

7 Comparison: Crude method vs. antithetic Crude method: V(X i ) = 1 2 ( e 2 1 ) (e 1) 2 = Antithetic method: V(Y i ) = 1 ( ) = I.e, a reduction by 98 %, almost for free. The variance on X - and samples. Ȳ - will scale with 1/n, the number of Going from crude to antithetic method, reduces the variance as much as increasing number of samples with a factor 50. Bo Friis Nielsen 6/ lecture 7 7

8 Antethetic variables in more complex models If X = h(u 1,...,U n ) where h is monotone in each of its coordinates, then we can use antithetic variables to reduce the variance, because Y = h(1 U 1,...,1 U n ) Cov(X,Y) 0 and therefore V( 1 2 (X +Y)) 1 2 V(X). Bo Friis Nielsen 6/ lecture 7 8

9 Antithetic variables in the queue simulation Can you device the queueing model of yesterday, so that the number of rejections is a monotone function of the underlying U i s? Yes: Make sure that we always use either U i or 1 U i, so that a large U i implies customers arriving quickly and remaining long. Bo Friis Nielsen 6/ lecture 7 9

10 Control variates Use of covariates Z = X +c(y µ y ) E(Y) = µ y ( known) V(Z) = V(X)+c 2 V(Y)+2cCov(Y,X) We can minimize V(Z) by choosing to get c = Cov(X,Y) V(Y) V(Z) = V(X) Cov(X,Y)2 V(Y) Bo Friis Nielsen 6/ lecture 7 10

11 Example Use U as control variate Z i = X i +c ( U i 1 ) 2 X i = e U i The optimal value can be found by Cov(X,Y) = Cov ( U,e U) = E ( Ue U) E(U)E ( e U) In practice we would not know this covariance, but estimate it empirically. V(Z c= /12 ) = V ( e U) Cov( e U,U ) 2 V(U) = Bo Friis Nielsen 6/ lecture 7 11

12 Stratified sampling This is a general survey technique: We sample in predetermined areas, using knowledge of structure of the sampling space eui,1 10 +e U i, e U i,10 10 W i = 10 What is an appropriate number of strata? (In this case there is a simple answer; for complex problems not so) Bo Friis Nielsen 6/ lecture 7 12

13 Importance sampling Suppose we want to evaluate θ = E(h(X)) = h(x)f(x)dx For g(x) > 0 whenever f(x) > 0 this is equivalent to ( ) h(x)f(x) h(y)f(y) θ = g(x)dx = E g(x) g(y) where Y is distributed according to g(y) This is an efficient estimator ) of θ, if we have chosen g such that the variance of is small. ( h(y)f(y) g(y) Such a g will lead to more Y s where h(y) is large. More important regions will be sampled more often. Bo Friis Nielsen 6/ lecture 7 13

14 Re-using the random numbers We want to compare two different queueing systems. We can estimate the rejection rate of system i = 1,2 by θ i = E(g i (U 1,...,U n )) and then rate the two systems according to ˆθ 2 ˆθ 1 But typically g 1 ( ) and g 2 ( ) are positively correlated: Long service times imply many rejections. Bo Friis Nielsen 6/ lecture 7 14

15 Then are more efficient estimator is based on θ 2 θ 1 = E(g 2 (U 1,...,U n ) g 1 (U 1,...,U n )) This amounts to letting the two systems run with the same input sequence of random numbers, i.e. same arrival and service time for each customer. With some program flows, this is easily obtained by re-setting the seed of the RNG. When this is not sufficient, you must store the sequence of arrival and service times, so they can be re-used. Bo Friis Nielsen 6/ lecture 7 15

16 Exercise 5: Variance reduction methods Estimate the integral 1 0 ex dx by simulation (the crude Monte Carlo estimator). Use eg. an estimator based on 100 samples and present the result as the point estimator and a confidence interval. Estimate the integral 1 0 ex dx using antithetic variables, with comparable computer ressources. Estimate the integral 1 0 ex dx using a control variable, with comparable computer ressources. Estimate the integral 1 0 ex dx using stratified sampling, with comparable computer ressources. Use control variates to reduce the variance of the estimator in exercise 4 (Poisson arrivals). Bo Friis Nielsen 6/ lecture 7 16

Variance reduction. Michel Bierlaire. Transport and Mobility Laboratory. Variance reduction p. 1/18

Variance reduction. Michel Bierlaire. Transport and Mobility Laboratory. Variance reduction p. 1/18 Variance reduction p. 1/18 Variance reduction Michel Bierlaire michel.bierlaire@epfl.ch Transport and Mobility Laboratory Variance reduction p. 2/18 Example Use simulation to compute I = 1 0 e x dx We

More information

Stochastic Simulation Discrete simulation/event-by-event

Stochastic Simulation Discrete simulation/event-by-event Stochastic Simulation Discrete simulation/event-by-event Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby Denmark Email: bfni@dtu.dk Discrete event

More information

7 Variance Reduction Techniques

7 Variance Reduction Techniques 7 Variance Reduction Techniques In a simulation study, we are interested in one or more performance measures for some stochastic model. For example, we want to determine the long-run average waiting time,

More information

Monte-Carlo MMD-MA, Université Paris-Dauphine. Xiaolu Tan

Monte-Carlo MMD-MA, Université Paris-Dauphine. Xiaolu Tan Monte-Carlo MMD-MA, Université Paris-Dauphine Xiaolu Tan tan@ceremade.dauphine.fr Septembre 2015 Contents 1 Introduction 1 1.1 The principle.................................. 1 1.2 The error analysis

More information

Stochastic Simulation Introduction Bo Friis Nielsen

Stochastic Simulation Introduction Bo Friis Nielsen Stochastic Simulation Introduction Bo Friis Nielsen Applied Mathematics and Computer Science Technical University of Denmark 2800 Kgs. Lyngby Denmark Email: bfn@imm.dtu.dk Practicalities Notes will handed

More information

Optimization and Simulation

Optimization and Simulation Optimization and Simulation Variance reduction Michel Bierlaire Transport and Mobility Laboratory School of Architecture, Civil and Environmental Engineering Ecole Polytechnique Fédérale de Lausanne M.

More information

Qualifying Exam CS 661: System Simulation Summer 2013 Prof. Marvin K. Nakayama

Qualifying Exam CS 661: System Simulation Summer 2013 Prof. Marvin K. Nakayama Qualifying Exam CS 661: System Simulation Summer 2013 Prof. Marvin K. Nakayama Instructions This exam has 7 pages in total, numbered 1 to 7. Make sure your exam has all the pages. This exam will be 2 hours

More information

CSCI-6971 Lecture Notes: Monte Carlo integration

CSCI-6971 Lecture Notes: Monte Carlo integration CSCI-6971 Lecture otes: Monte Carlo integration Kristopher R. Beevers Department of Computer Science Rensselaer Polytechnic Institute beevek@cs.rpi.edu February 21, 2006 1 Overview Consider the following

More information

F denotes cumulative density. denotes probability density function; (.)

F denotes cumulative density. denotes probability density function; (.) BAYESIAN ANALYSIS: FOREWORDS Notation. System means the real thing and a model is an assumed mathematical form for the system.. he probability model class M contains the set of the all admissible models

More information

f X, Y (x, y)dx (x), where f(x,y) is the joint pdf of X and Y. (x) dx

f X, Y (x, y)dx (x), where f(x,y) is the joint pdf of X and Y. (x) dx INDEPENDENCE, COVARIANCE AND CORRELATION Independence: Intuitive idea of "Y is independent of X": The distribution of Y doesn't depend on the value of X. In terms of the conditional pdf's: "f(y x doesn't

More information

Variance reduction techniques

Variance reduction techniques Variance reduction techniques Lecturer: Dmitri A. Moltchanov E-mail: moltchan@cs.tut.fi http://www.cs.tut.fi/kurssit/elt-53606/ OUTLINE: Simulation with a given accuracy; Variance reduction techniques;

More information

S6880 #13. Variance Reduction Methods

S6880 #13. Variance Reduction Methods S6880 #13 Variance Reduction Methods 1 Variance Reduction Methods Variance Reduction Methods 2 Importance Sampling Importance Sampling 3 Control Variates Control Variates Cauchy Example Revisited 4 Antithetic

More information

Nonlife Actuarial Models. Chapter 14 Basic Monte Carlo Methods

Nonlife Actuarial Models. Chapter 14 Basic Monte Carlo Methods Nonlife Actuarial Models Chapter 14 Basic Monte Carlo Methods Learning Objectives 1. Generation of uniform random numbers, mixed congruential method 2. Low discrepancy sequence 3. Inversion transformation

More information

Scientific Computing: Monte Carlo

Scientific Computing: Monte Carlo Scientific Computing: Monte Carlo Aleksandar Donev Courant Institute, NYU 1 donev@courant.nyu.edu 1 Course MATH-GA.2043 or CSCI-GA.2112, Spring 2012 April 5th and 12th, 2012 A. Donev (Courant Institute)

More information

Numerical Methods I Monte Carlo Methods

Numerical Methods I Monte Carlo Methods Numerical Methods I Monte Carlo Methods Aleksandar Donev Courant Institute, NYU 1 donev@courant.nyu.edu 1 Course G63.2010.001 / G22.2420-001, Fall 2010 Dec. 9th, 2010 A. Donev (Courant Institute) Lecture

More information

Simulation. Alberto Ceselli MSc in Computer Science Univ. of Milan. Part 4 - Statistical Analysis of Simulated Data

Simulation. Alberto Ceselli MSc in Computer Science Univ. of Milan. Part 4 - Statistical Analysis of Simulated Data Simulation Alberto Ceselli MSc in Computer Science Univ. of Milan Part 4 - Statistical Analysis of Simulated Data A. Ceselli Simulation P.4 Analysis of Sim. data 1 / 15 Statistical analysis of simulated

More information

[Chapter 6. Functions of Random Variables]

[Chapter 6. Functions of Random Variables] [Chapter 6. Functions of Random Variables] 6.1 Introduction 6.2 Finding the probability distribution of a function of random variables 6.3 The method of distribution functions 6.5 The method of Moment-generating

More information

Variance reduction. Timo Tiihonen

Variance reduction. Timo Tiihonen Variance reduction Timo Tiihonen 2014 Variance reduction techniques The most efficient way to improve the accuracy and confidence of simulation is to try to reduce the variance of simulation results. We

More information

Simulation. Where real stuff starts

Simulation. Where real stuff starts 1 Simulation Where real stuff starts ToC 1. What is a simulation? 2. Accuracy of output 3. Random Number Generators 4. How to sample 5. Monte Carlo 6. Bootstrap 2 1. What is a simulation? 3 What is a simulation?

More information

Simulation. Where real stuff starts

Simulation. Where real stuff starts Simulation Where real stuff starts March 2019 1 ToC 1. What is a simulation? 2. Accuracy of output 3. Random Number Generators 4. How to sample 5. Monte Carlo 6. Bootstrap 2 1. What is a simulation? 3

More information

Monte Carlo and Empirical Methods for Stochastic Inference (MASM11/FMS091)

Monte Carlo and Empirical Methods for Stochastic Inference (MASM11/FMS091) Monte Carlo and Empirical Methods for Stochastic Inference (MASM11/FMS091) Magnus Wiktorsson Centre for Mathematical Sciences Lund University, Sweden Lecture 4 Variance reduction for MC methods January

More information

IE 581 Introduction to Stochastic Simulation

IE 581 Introduction to Stochastic Simulation 1. List criteria for choosing the majorizing density r (x) when creating an acceptance/rejection random-variate generator for a specified density function f (x). 2. Suppose the rate function of a nonhomogeneous

More information

Exercise 5 Release: Due:

Exercise 5 Release: Due: Stochastic Modeling and Simulation Winter 28 Prof. Dr. I. F. Sbalzarini, Dr. Christoph Zechner (MPI-CBG/CSBD TU Dresden, 87 Dresden, Germany Exercise 5 Release: 8..28 Due: 5..28 Question : Variance of

More information

Bindel, Fall 2011 Intro to Scientific Computing (CS 3220) Week 14: Monday, May 2

Bindel, Fall 2011 Intro to Scientific Computing (CS 3220) Week 14: Monday, May 2 Logistics Week 14: Monday, May 2 Welcome to the last week of classes! Project 3 is due Friday, May 6. Final is Friday, May 13. Lecture Wednesday will be a review, and section this week will be devoted

More information

Monte Carlo-based statistical methods (MASM11/FMS091)

Monte Carlo-based statistical methods (MASM11/FMS091) Monte Carlo-based statistical methods (MASM11/FMS091) Jimmy Olsson Centre for Mathematical Sciences Lund University, Sweden Lecture 4 Variance reduction for MC methods February 1, 2013 J. Olsson Monte

More information

IEOR E4703: Monte-Carlo Simulation

IEOR E4703: Monte-Carlo Simulation IEOR E4703: Monte-Carlo Simulation Output Analysis for Monte-Carlo Martin Haugh Department of Industrial Engineering and Operations Research Columbia University Email: martin.b.haugh@gmail.com Output Analysis

More information

MAS223 Statistical Inference and Modelling Exercises

MAS223 Statistical Inference and Modelling Exercises MAS223 Statistical Inference and Modelling Exercises The exercises are grouped into sections, corresponding to chapters of the lecture notes Within each section exercises are divided into warm-up questions,

More information

Time Series Analysis

Time Series Analysis Time Series Analysis hm@imm.dtu.dk Informatics and Mathematical Modelling Technical University of Denmark DK-2800 Kgs. Lyngby 1 Outline of the lecture Regression based methods, 1st part: Introduction (Sec.

More information

Mathematical Methods for Neurosciences. ENS - Master MVA Paris 6 - Master Maths-Bio ( )

Mathematical Methods for Neurosciences. ENS - Master MVA Paris 6 - Master Maths-Bio ( ) Mathematical Methods for Neurosciences. ENS - Master MVA Paris 6 - Master Maths-Bio (2014-2015) Etienne Tanré - Olivier Faugeras INRIA - Team Tosca October 22nd, 2014 E. Tanré (INRIA - Team Tosca) Mathematical

More information

ISyE 6644 Fall 2014 Test 3 Solutions

ISyE 6644 Fall 2014 Test 3 Solutions 1 NAME ISyE 6644 Fall 14 Test 3 Solutions revised 8/4/18 You have 1 minutes for this test. You are allowed three cheat sheets. Circle all final answers. Good luck! 1. [4 points] Suppose that the joint

More information

ACM 116: Lectures 3 4

ACM 116: Lectures 3 4 1 ACM 116: Lectures 3 4 Joint distributions The multivariate normal distribution Conditional distributions Independent random variables Conditional distributions and Monte Carlo: Rejection sampling Variance

More information

Math 3215 Intro. Probability & Statistics Summer 14. Homework 5: Due 7/3/14

Math 3215 Intro. Probability & Statistics Summer 14. Homework 5: Due 7/3/14 Math 325 Intro. Probability & Statistics Summer Homework 5: Due 7/3/. Let X and Y be continuous random variables with joint/marginal p.d.f. s f(x, y) 2, x y, f (x) 2( x), x, f 2 (y) 2y, y. Find the conditional

More information

Computer Systems Modelling

Computer Systems Modelling Computer Systems Modelling Computer Laboratory Computer Science Tripos, Part II Lent Term 2010/11 R. J. Gibbens Problem sheet William Gates Building 15 JJ Thomson Avenue Cambridge CB3 0FD http://www.cl.cam.ac.uk/

More information

S-Y0 U-G0 CANDIDATES

S-Y0 U-G0 CANDIDATES «< «X((«( (V«" j -- Y ? K «: :» V X K j 44 E GVE E E EY Y VE E 2 934 VE EEK E-EE E E 4 E -Y0 U-G0 E - Y - V Y ^ K - G --Y-G G - E K - : - ( > x 200 G < G E - : U x K K - " - z E V E E " E " " j j x V

More information

Stochastic Processes - lesson 2

Stochastic Processes - lesson 2 Stochastic Processes - lesson 2 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby Denmark Email: bfn@imm.dtu.dk Outline Basic probability theory (from

More information

Variance reduction techniques

Variance reduction techniques Variance reduction techniques Lecturer: Dmitri A. Moltchanov E-mail: moltchan@cs.tut.fi http://www.cs.tut.fi/ moltchan/modsim/ http://www.cs.tut.fi/kurssit/tlt-2706/ OUTLINE: Simulation with a given confidence;

More information

Simulation of stationary processes. Timo Tiihonen

Simulation of stationary processes. Timo Tiihonen Simulation of stationary processes Timo Tiihonen 2014 Tactical aspects of simulation Simulation has always a goal. How to organize simulation to reach the goal sufficiently well and without unneccessary

More information

Chapter 4. Continuous Random Variables

Chapter 4. Continuous Random Variables Chapter 4. Continuous Random Variables Review Continuous random variable: A random variable that can take any value on an interval of R. Distribution: A density function f : R R + such that 1. non-negative,

More information

Robustness to Parametric Assumptions in Missing Data Models

Robustness to Parametric Assumptions in Missing Data Models Robustness to Parametric Assumptions in Missing Data Models Bryan Graham NYU Keisuke Hirano University of Arizona April 2011 Motivation Motivation We consider the classic missing data problem. In practice

More information

Markov Chain Monte Carlo Lecture 1

Markov Chain Monte Carlo Lecture 1 What are Monte Carlo Methods? The subject of Monte Carlo methods can be viewed as a branch of experimental mathematics in which one uses random numbers to conduct experiments. Typically the experiments

More information

STA 2101/442 Assignment 3 1

STA 2101/442 Assignment 3 1 STA 2101/442 Assignment 3 1 These questions are practice for the midterm and final exam, and are not to be handed in. 1. Suppose X 1,..., X n are a random sample from a distribution with mean µ and variance

More information

L3 Monte-Carlo integration

L3 Monte-Carlo integration RNG MC IS Examination RNG MC IS Examination Monte-Carlo and Empirical Methods for Statistical Inference, FMS091/MASM11 Monte-Carlo integration Generating pseudo-random numbers: Rejection sampling Conditional

More information

STA 2201/442 Assignment 2

STA 2201/442 Assignment 2 STA 2201/442 Assignment 2 1. This is about how to simulate from a continuous univariate distribution. Let the random variable X have a continuous distribution with density f X (x) and cumulative distribution

More information

Chapter 6: Rational Expr., Eq., and Functions Lecture notes Math 1010

Chapter 6: Rational Expr., Eq., and Functions Lecture notes Math 1010 Section 6.1: Rational Expressions and Functions Definition of a rational expression Let u and v be polynomials. The algebraic expression u v is a rational expression. The domain of this rational expression

More information

CPSC 531: System Modeling and Simulation. Carey Williamson Department of Computer Science University of Calgary Fall 2017

CPSC 531: System Modeling and Simulation. Carey Williamson Department of Computer Science University of Calgary Fall 2017 CPSC 531: System Modeling and Simulation Carey Williamson Department of Computer Science University of Calgary Fall 2017 Quote of the Day A person with one watch knows what time it is. A person with two

More information

IEOR 6711: Stochastic Models I SOLUTIONS to the First Midterm Exam, October 7, 2008

IEOR 6711: Stochastic Models I SOLUTIONS to the First Midterm Exam, October 7, 2008 IEOR 6711: Stochastic Models I SOLUTIONS to the First Midterm Exam, October 7, 2008 Justify your answers; show your work. 1. A sequence of Events. (10 points) Let {B n : n 1} be a sequence of events in

More information

Lecture 22: Variance and Covariance

Lecture 22: Variance and Covariance EE5110 : Probability Foundations for Electrical Engineers July-November 2015 Lecture 22: Variance and Covariance Lecturer: Dr. Krishna Jagannathan Scribes: R.Ravi Kiran In this lecture we will introduce

More information

Introduction to Rare Event Simulation

Introduction to Rare Event Simulation Introduction to Rare Event Simulation Brown University: Summer School on Rare Event Simulation Jose Blanchet Columbia University. Department of Statistics, Department of IEOR. Blanchet (Columbia) 1 / 31

More information

375 PU M Sc Statistics

375 PU M Sc Statistics 375 PU M Sc Statistics 1 of 100 193 PU_2016_375_E For the following 2x2 contingency table for two attributes the value of chi-square is:- 20/36 10/38 100/21 10/18 2 of 100 120 PU_2016_375_E If the values

More information

2905 Queueing Theory and Simulation PART IV: SIMULATION

2905 Queueing Theory and Simulation PART IV: SIMULATION 2905 Queueing Theory and Simulation PART IV: SIMULATION 22 Random Numbers A fundamental step in a simulation study is the generation of random numbers, where a random number represents the value of a random

More information

DUBLIN CITY UNIVERSITY

DUBLIN CITY UNIVERSITY DUBLIN CITY UNIVERSITY SAMPLE EXAMINATIONS 2017/2018 MODULE: QUALIFICATIONS: Simulation for Finance MS455 B.Sc. Actuarial Mathematics ACM B.Sc. Financial Mathematics FIM YEAR OF STUDY: 4 EXAMINERS: Mr

More information

Variance Reduction. in Statistics, we deal with estimators or statistics all the time

Variance Reduction. in Statistics, we deal with estimators or statistics all the time Variance Reduction in Statistics, we deal with estiators or statistics all the tie perforance of an estiator is easured by MSE for biased estiators and by variance for unbiased ones hence it s useful to

More information

Hochdimensionale Integration

Hochdimensionale Integration Oliver Ernst Institut für Numerische Mathematik und Optimierung Hochdimensionale Integration 14-tägige Vorlesung im Wintersemester 2010/11 im Rahmen des Moduls Ausgewählte Kapitel der Numerik Contents

More information

Statistical Computing: Exam 1 Chapters 1, 3, 5

Statistical Computing: Exam 1 Chapters 1, 3, 5 Statistical Computing: Exam Chapters, 3, 5 Instructions: Read each question carefully before determining the best answer. Show all work; supporting computer code and output must be attached to the question

More information

Stat 451 Lecture Notes Monte Carlo Integration

Stat 451 Lecture Notes Monte Carlo Integration Stat 451 Lecture Notes 06 12 Monte Carlo Integration Ryan Martin UIC www.math.uic.edu/~rgmartin 1 Based on Chapter 6 in Givens & Hoeting, Chapter 23 in Lange, and Chapters 3 4 in Robert & Casella 2 Updated:

More information

Master s Written Examination - Solution

Master s Written Examination - Solution Master s Written Examination - Solution Spring 204 Problem Stat 40 Suppose X and X 2 have the joint pdf f X,X 2 (x, x 2 ) = 2e (x +x 2 ), 0 < x < x 2

More information

Statistics Ph.D. Qualifying Exam: Part I October 18, 2003

Statistics Ph.D. Qualifying Exam: Part I October 18, 2003 Statistics Ph.D. Qualifying Exam: Part I October 18, 2003 Student Name: 1. Answer 8 out of 12 problems. Mark the problems you selected in the following table. 1 2 3 4 5 6 7 8 9 10 11 12 2. Write your answer

More information

STAT 515 MIDTERM 2 EXAM November 14, 2018

STAT 515 MIDTERM 2 EXAM November 14, 2018 STAT 55 MIDTERM 2 EXAM November 4, 28 NAME: Section Number: Instructor: In problems that require reasoning, algebraic calculation, or the use of your graphing calculator, it is not sufficient just to write

More information

Uniform random numbers generators

Uniform random numbers generators Uniform random numbers generators Lecturer: Dmitri A. Moltchanov E-mail: moltchan@cs.tut.fi http://www.cs.tut.fi/kurssit/tlt-2707/ OUTLINE: The need for random numbers; Basic steps in generation; Uniformly

More information

ECE531 Lecture 8: Non-Random Parameter Estimation

ECE531 Lecture 8: Non-Random Parameter Estimation ECE531 Lecture 8: Non-Random Parameter Estimation D. Richard Brown III Worcester Polytechnic Institute 19-March-2009 Worcester Polytechnic Institute D. Richard Brown III 19-March-2009 1 / 25 Introduction

More information

Outline for today. Computation of the likelihood function for GLMMs. Likelihood for generalized linear mixed model

Outline for today. Computation of the likelihood function for GLMMs. Likelihood for generalized linear mixed model Outline for today Computation of the likelihood function for GLMMs asmus Waagepetersen Department of Mathematics Aalborg University Denmark Computation of likelihood function. Gaussian quadrature 2. Monte

More information

Exercises and Answers to Chapter 1

Exercises and Answers to Chapter 1 Exercises and Answers to Chapter The continuous type of random variable X has the following density function: a x, if < x < a, f (x), otherwise. Answer the following questions. () Find a. () Obtain mean

More information

Control Variates for Markov Chain Monte Carlo

Control Variates for Markov Chain Monte Carlo Control Variates for Markov Chain Monte Carlo Dellaportas, P., Kontoyiannis, I., and Tsourti, Z. Dept of Statistics, AUEB Dept of Informatics, AUEB 1st Greek Stochastics Meeting Monte Carlo: Probability

More information

Econ 2120: Section 2

Econ 2120: Section 2 Econ 2120: Section 2 Part I - Linear Predictor Loose Ends Ashesh Rambachan Fall 2018 Outline Big Picture Matrix Version of the Linear Predictor and Least Squares Fit Linear Predictor Least Squares Omitted

More information

Statistical Methods in Particle Physics

Statistical Methods in Particle Physics Statistical Methods in Particle Physics Lecture 3 October 29, 2012 Silvia Masciocchi, GSI Darmstadt s.masciocchi@gsi.de Winter Semester 2012 / 13 Outline Reminder: Probability density function Cumulative

More information

1 Stat 605. Homework I. Due Feb. 1, 2011

1 Stat 605. Homework I. Due Feb. 1, 2011 The first part is homework which you need to turn in. The second part is exercises that will not be graded, but you need to turn it in together with the take-home final exam. 1 Stat 605. Homework I. Due

More information

f(x θ)dx with respect to θ. Assuming certain smoothness conditions concern differentiating under the integral the integral sign, we first obtain

f(x θ)dx with respect to θ. Assuming certain smoothness conditions concern differentiating under the integral the integral sign, we first obtain 0.1. INTRODUCTION 1 0.1 Introduction R. A. Fisher, a pioneer in the development of mathematical statistics, introduced a measure of the amount of information contained in an observaton from f(x θ). Fisher

More information

Q = (c) Assuming that Ricoh has been working continuously for 7 days, what is the probability that it will remain working at least 8 more days?

Q = (c) Assuming that Ricoh has been working continuously for 7 days, what is the probability that it will remain working at least 8 more days? IEOR 4106: Introduction to Operations Research: Stochastic Models Spring 2005, Professor Whitt, Second Midterm Exam Chapters 5-6 in Ross, Thursday, March 31, 11:00am-1:00pm Open Book: but only the Ross

More information

Math 362, Problem set 1

Math 362, Problem set 1 Math 6, roblem set Due //. (4..8) Determine the mean variance of the mean X of a rom sample of size 9 from a distribution having pdf f(x) = 4x, < x

More information

180B Lecture Notes, W2011

180B Lecture Notes, W2011 Bruce K. Driver 180B Lecture Notes, W2011 January 11, 2011 File:180Lec.tex Contents Part 180B Notes 0 Course Notation List......................................................................................................................

More information

CIVL Continuous Distributions

CIVL Continuous Distributions CIVL 3103 Continuous Distributions Learning Objectives - Continuous Distributions Define continuous distributions, and identify common distributions applicable to engineering problems. Identify the appropriate

More information

Monte Carlo Methods for Computation and Optimization (048715)

Monte Carlo Methods for Computation and Optimization (048715) Technion Department of Electrical Engineering Monte Carlo Methods for Computation and Optimization (048715) Lecture Notes Prof. Nahum Shimkin Spring 2015 i PREFACE These lecture notes are intended for

More information

Clases 7-8: Métodos de reducción de varianza en Monte Carlo *

Clases 7-8: Métodos de reducción de varianza en Monte Carlo * Clases 7-8: Métodos de reducció de variaza e Mote Carlo * 9 de septiembre de 27 Ídice. Variace reductio 2. Atithetic variates 2 2.. Example: Uiform radom variables................ 3 2.2. Example: Tail

More information

Fall 2017 STAT 532 Homework Peter Hoff. 1. Let P be a probability measure on a collection of sets A.

Fall 2017 STAT 532 Homework Peter Hoff. 1. Let P be a probability measure on a collection of sets A. 1. Let P be a probability measure on a collection of sets A. (a) For each n N, let H n be a set in A such that H n H n+1. Show that P (H n ) monotonically converges to P ( k=1 H k) as n. (b) For each n

More information

Chapter 5 Class Notes

Chapter 5 Class Notes Chapter 5 Class Notes Sections 5.1 and 5.2 It is quite common to measure several variables (some of which may be correlated) and to examine the corresponding joint probability distribution One example

More information

Multivariate Distributions CIVL 7012/8012

Multivariate Distributions CIVL 7012/8012 Multivariate Distributions CIVL 7012/8012 Multivariate Distributions Engineers often are interested in more than one measurement from a single item. Multivariate distributions describe the probability

More information

Statistics. Statistics

Statistics. Statistics The main aims of statistics 1 1 Choosing a model 2 Estimating its parameter(s) 1 point estimates 2 interval estimates 3 Testing hypotheses Distributions used in statistics: χ 2 n-distribution 2 Let X 1,

More information

Bayesian Inference. Chapter 2: Conjugate models

Bayesian Inference. Chapter 2: Conjugate models Bayesian Inference Chapter 2: Conjugate models Conchi Ausín and Mike Wiper Department of Statistics Universidad Carlos III de Madrid Master in Business Administration and Quantitative Methods Master in

More information

Non-parametric Inference and Resampling

Non-parametric Inference and Resampling Non-parametric Inference and Resampling Exercises by David Wozabal (Last update. Juni 010) 1 Basic Facts about Rank and Order Statistics 1.1 10 students were asked about the amount of time they spend surfing

More information

The Nonparametric Bootstrap

The Nonparametric Bootstrap The Nonparametric Bootstrap The nonparametric bootstrap may involve inferences about a parameter, but we use a nonparametric procedure in approximating the parametric distribution using the ECDF. We use

More information

GEOMETRIC -discrete A discrete random variable R counts number of times needed before an event occurs

GEOMETRIC -discrete A discrete random variable R counts number of times needed before an event occurs STATISTICS 4 Summary Notes. Geometric and Exponential Distributions GEOMETRIC -discrete A discrete random variable R counts number of times needed before an event occurs P(X = x) = ( p) x p x =,, 3,...

More information

MA 320 Introductory Probability, Section 1 Spring 2017 Final Exam Practice May. 1, Exam Scores. Question Score Total. Name:

MA 320 Introductory Probability, Section 1 Spring 2017 Final Exam Practice May. 1, Exam Scores. Question Score Total. Name: MA 320 Introductory Probability, Section 1 Spring 2017 Final Exam Practice May. 1, 2017 Exam Scores Question Score Total 1 10 Name: Last 4 digits of student ID #: No books or notes may be used. Turn off

More information

Lecture 10. Failure Probabilities and Safety Indexes

Lecture 10. Failure Probabilities and Safety Indexes Lecture 10. Failure Probabilities and Safety Indexes Igor Rychlik Chalmers Department of Mathematical Sciences Probability, Statistics and Risk, MVE300 Chalmers May 2013 Safety analysis - General setup:

More information

Joint Distribution of Two or More Random Variables

Joint Distribution of Two or More Random Variables Joint Distribution of Two or More Random Variables Sometimes more than one measurement in the form of random variable is taken on each member of the sample space. In cases like this there will be a few

More information

Computer Intensive Methods in Mathematical Statistics

Computer Intensive Methods in Mathematical Statistics Computer Intensive Methods in Mathematical Statistics Department of mathematics johawes@kth.se Lecture 4 Variance reduction for MC methods 30 March 2017 Computer Intensive Methods (1) What do we need to

More information

Lecture 4: Proofs for Expectation, Variance, and Covariance Formula

Lecture 4: Proofs for Expectation, Variance, and Covariance Formula Lecture 4: Proofs for Expectation, Variance, and Covariance Formula by Hiro Kasahara Vancouver School of Economics University of British Columbia Hiro Kasahara (UBC) Econ 325 1 / 28 Discrete Random Variables:

More information

ISE/OR 762 Stochastic Simulation Techniques

ISE/OR 762 Stochastic Simulation Techniques ISE/OR 762 Stochastic Simulation Techniques Topic 0: Introduction to Discrete Event Simulation Yunan Liu Department of Industrial and Systems Engineering NC State University January 9, 2018 Yunan Liu (NC

More information

Statistics & Data Sciences: First Year Prelim Exam May 2018

Statistics & Data Sciences: First Year Prelim Exam May 2018 Statistics & Data Sciences: First Year Prelim Exam May 2018 Instructions: 1. Do not turn this page until instructed to do so. 2. Start each new question on a new sheet of paper. 3. This is a closed book

More information

K-ANTITHETIC VARIATES IN MONTE CARLO SIMULATION ISSN k-antithetic Variates in Monte Carlo Simulation Abdelaziz Nasroallah, pp.

K-ANTITHETIC VARIATES IN MONTE CARLO SIMULATION ISSN k-antithetic Variates in Monte Carlo Simulation Abdelaziz Nasroallah, pp. K-ANTITHETIC VARIATES IN MONTE CARLO SIMULATION ABDELAZIZ NASROALLAH Abstract. Standard Monte Carlo simulation needs prohibitive time to achieve reasonable estimations. for untractable integrals (i.e.

More information

Chapter 5: Monte Carlo Integration and Variance Reduction

Chapter 5: Monte Carlo Integration and Variance Reduction Chapter 5: Monte Carlo Integration and Variance Reduction Lecturer: Zhao Jianhua Department of Statistics Yunnan University of Finance and Economics Outline 5.2 Monte Carlo Integration 5.2.1 Simple MC

More information

Extra Topic: DISTRIBUTIONS OF FUNCTIONS OF RANDOM VARIABLES

Extra Topic: DISTRIBUTIONS OF FUNCTIONS OF RANDOM VARIABLES Extra Topic: DISTRIBUTIONS OF FUNCTIONS OF RANDOM VARIABLES A little in Montgomery and Runger text in Section 5-5. Previously in Section 5-4 Linear Functions of Random Variables, we saw that we could find

More information

X i. X(n) = 1 n. (X i X(n)) 2. S(n) n

X i. X(n) = 1 n. (X i X(n)) 2. S(n) n Confidence intervals Let X 1, X 2,..., X n be independent realizations of a random variable X with unknown mean µ and unknown variance σ 2. Sample mean Sample variance X(n) = 1 n S 2 (n) = 1 n 1 n i=1

More information

CHAPTER 4 MATHEMATICAL EXPECTATION. 4.1 Mean of a Random Variable

CHAPTER 4 MATHEMATICAL EXPECTATION. 4.1 Mean of a Random Variable CHAPTER 4 MATHEMATICAL EXPECTATION 4.1 Mean of a Random Variable The expected value, or mathematical expectation E(X) of a random variable X is the long-run average value of X that would emerge after a

More information

Stability of optimization problems with stochastic dominance constraints

Stability of optimization problems with stochastic dominance constraints Stability of optimization problems with stochastic dominance constraints D. Dentcheva and W. Römisch Stevens Institute of Technology, Hoboken Humboldt-University Berlin www.math.hu-berlin.de/~romisch SIAM

More information

Stochastic Simulation

Stochastic Simulation Stochastic Simulation Jan-Pieter Dorsman 1 & Michel Mandjes 1,2,3 1 Korteweg-de Vries Institute for Mathematics, University of Amsterdam 2 CWI, Amsterdam 3 Eurandom, Eindhoven University of Amsterdam,

More information

Gaussian random variables inr n

Gaussian random variables inr n Gaussian vectors Lecture 5 Gaussian random variables inr n One-dimensional case One-dimensional Gaussian density with mean and standard deviation (called N, ): fx x exp. Proposition If X N,, then ax b

More information

Asymptotic Statistics-III. Changliang Zou

Asymptotic Statistics-III. Changliang Zou Asymptotic Statistics-III Changliang Zou The multivariate central limit theorem Theorem (Multivariate CLT for iid case) Let X i be iid random p-vectors with mean µ and and covariance matrix Σ. Then n (

More information

Parameter Estimation and Fitting to Data

Parameter Estimation and Fitting to Data Parameter Estimation and Fitting to Data Parameter estimation Maximum likelihood Least squares Goodness-of-fit Examples Elton S. Smith, Jefferson Lab 1 Parameter estimation Properties of estimators 3 An

More information

Exercises sheet n 1 : Introduction to MC and IS

Exercises sheet n 1 : Introduction to MC and IS Exercises sheet n 1 : Introduction to MC and IS Exercise 1 - An example in Finance In financial applications, we have to calculate quantities of the type ( (e C = E βg K, (1 + G being a standard Gaussian

More information