Classification. Linear Classification. What is a Linear Disciminant? Representing Classes. Decision Boundaries. What can be expressed?

Size: px
Start display at page:

Download "Classification. Linear Classification. What is a Linear Disciminant? Representing Classes. Decision Boundaries. What can be expressed?"

Transcription

1 Classfcao Lar Classfcao Ro Parr CPS 7 Survsd larg framork Faurs ca b ayhg args ar dscr classs: Saf mushrooms vs. osoous Malga vs. bg Good crd rsk vs. bad Ca ra classs as umbrs? Sgl class? Mul class? Wh co adad from Adr Ng, Ls Goor, ad om Drch Fgurs from book coursy of Chrs Bsho ad Chrs Bsho Rrsg Classs Irr as h robably ha h h lm s a arcular class Classs usually dso For mulclass, s a vcor [] f h lm s class, OW Noao: For covc, ll somms rfr o h ra varabls, rahr ha h faurs as s hrough h ls of our faurs, φ Wha s a Lar Dscma? Smls kd of classfr, a lar hrshold u LU: f L y ohrs θ W somms assum, so y A lar dscrma s a - dmsoal hyrla s orhogoal o hs W ll look a hr algorhms, all of hch lar lar dcso boudars: Drcly lar h LU: Usg Las Ma Squar LMS algorhm Lar h codoal dsrbuo: Logsc rgrsso Lar h o dsrbuo: Lar dscrma aalyss LDA Dcso Boudars A classfr ca b vd as arog h u sac or faur sac X o dcso rgos A lar hrshold u alays roducs a lar dcso boudary. A s of os ha ca b sarad by a lar dcso boudary s larly sarabl. Wha ca b rssd? Eamls of hgs ha ca b rssd Assum boola/ faurs Coucos: ^ 3^ 4 : ^ 3^ 4 : a-las-m-of- a-las--of,, Eamls of hgs ha cao b rssd: No-rval dsucos: ^ 3 3^ 4 Eclusv-Or ^ ^

2 No-larly sarabl aml Mulclass k classs Ok o vs. o classfrs Esv May o b coss k- o vs. rs classfrs Lss sv Sll may o b coss K lar fucos Assg o class f > for all Gvs cov, sgly cocd dcso rgos Ho o ck h lar fucos? Why o us rgrsso? Rgrsso mmzs sum of squard rrors o arg fuco Gvs srog fluc o oulrs h Nural Sory Par I Nc o usfy mach larg /aur Naïv rosco orks badly Nural modl bologcally lausbl Sgl uro, lar hrshold u rcro Logr ra o hs lar Prcro Prcro Larg od/ uro f Y W ar gv a s of us s a s of arg ouus boola {-,} s our s of ghs ouu of rcro Prcro_rror, -, Goal: Pck o omz: f s a sml s fuco sg m msclassf d rcro_ rror,

3 msclassfd &5/,9#: : α!! "" # # # " "$ " %&#! Prcro Larg Prors LU Prors Good s: If hr ss a s of ghs ha ll corrcly classfy vry aml, h rcrolarg rul ll fd Dos o dd o s sz Bad s: Prcrosca rrs oly a small class of fucos, larly sarabl, fucos May osclla f o sarabl No obvous gralzao for mulclass Logsc Rgrsso I logsc rgrsso, lar h codoal dsrbuo P L b our sma of P, hr s a vcor of adusabl aramrs. Assum hr ar o classs, ad ad hs s quval o log Why hs form? O raso: rasforms a lar fuco h rag -, o b osv ad sum o so ha ca rrs a robably IOW, h log odds of class s a lar fuco of Cosrucg a Larg Algorhm Fd h robably dsrbuo h ha s mos lkly, gv h daa. P X h P h arg ma P h X arg ma by Bays Rul h h P X arg ma P X h P h bcaus PX dos dd o h h arg ma P X h f assum Ph s uform h arg ma log P X h bcaus log s mooo h h lklhood fuco vs PX h as a fuco of h aramrs h modl. I hs cas, our aramrs ar h ghs,. LX PX h h log lklhood s a commoly usd obcv fuco for larg algorhms. I s dod lx h ha mamzs h lklhood of h rag daa s calld h mamum lklhood smaor Log Lklhood for Codoal Probably Esmaors W ca rss h log lklhood a comac from calld h cross-roy ak a aml, f y, h log lklhood s log- f y, h log lklhood s log θ hs o ar muually clusv, so ca comb hm o g: l [ ] log, log P, log h goal of our larg algorhm ll b o fd o mamz: J l X,

4 Comug h Grad, J θ l [ ] log log l [ ] [ ] [ ] Grad co. Aohr ay of rg h logsc rgrsso fuco s: So g: Grad co. h grad of h loglklhood for a sgl o s: h ovrall grad s:, l [ ] [ ] J Comar /rco rul! Summary of Logsc Rgrsso Lars h Codoal Probably Dsrbuo P No closd form soluo Vry sml rsso for grad Solv by local sarch: Bgs h al gh vcor. Grad asc o mamz obcv fuco. Obcv fuco s h log lklhoodof h daa Algorhm sks h robably dsrbuo P ha s mos lkly gv h daa. May b do ol or bach Ca b usd h acclrao mhods No- Rahso, c. Wha W Alrady Ko Lar hrshold U LU rs o dscovr a lar fuco faur sac ha saras osv ad gav amls Logsc Rgrsso Uss rgrsso o sma h fuco log Dsy Esmao Basc usurvsd larg chqu Dscussd hr co of classfcao Ida: Esma o robably of faurs ad class labls

5 Dscr Cas Suos ko PX X Ho do g hs? Mamum lklhood sma coms from coug rlav frqucy Broul dsrbuo Bg o y Assumg: Bary loss fuco Chocs:, Favor h P > P Us dfo of codoal robably: W s a Wha s our guss for? P... P... P... So, ar do??? Ho may aramrs dd for o? Is hs raccal? Smlfcao Naïv Bays: P X... X P X Q: Ho s hs mor raccal? Naïv Bays Aco Sam flrg X X: Sam rlad faurs : Sam labl Comb Bays Rul /Naïv Bays: P X... X P P X... X P X... X P X P P X... X hgs o o: Do orry abou PX X? Ifluc of P? Is Naïv Bays Rasoabl? Ar faurs corrlad h classs? Ho ould hur us f hy r? Lar Dscrma Aalyss I LDA, lar h dsrbuo P W assum ha s couous W assum P s dsrbud accordg o a mulvara ormal dsrbuo ad P s a dscr dsrbuo Mor o hs h dscuss Baysa orks

6 Esmag h MVG aramrs Gv a s of daa os {,, N }, h mamum lklhood smas for h aramrs of h MVG ar: ˆ µ N Σˆ N ˆ µ ˆ µ Pug all oghr LDA Also calld Gaussa Dscrma Aalyss Hr Broull Νµ, Σ Νµ, Σ Wrg hs ou, g: / µ Σ / Σ µ π / / µ Σ Σ µ π Pckg A Class W aga us Bays rul: MVG codoal faur robably P X P P X P X Posror labl robably Pror class robably Pror faur robably gord h Bauy of Homoscdascy Rcall assumd Σsam for all classs Wh s Py >Py??? / / µ Σ µ y > π Σ / / µ Σ µ y π Σ µ Σ µ > µ Σ k µ Lar!!! 3 4 Eaml Homoscdasc LDA Dscusso For mulclass, hs gvs cov dcso boudars Sasfs dsdraa for mulclass dcso boudars Ho ralsc s hs? Wha do gv u? h dcso boudary s a y.5

7 Hroscdasc Dsrbuos Comarg LU, LR, LDA Bg dba abou h rlav mrs of drc classfrs lk LU vrsus codoal modls lk LR vrsus grav modls lk LDA '*,-. *-,/ 3 4,5,- 67, 89438: LDA vs LR Issus Wha s h rlaosh? I LDA, urs ou h ca b rssd as a logsc fuco hr h ghs ar som fuco of µ, µ, ad Σ! Bu, h covrs s NO ru. If s a logsc fuco, ha dos o mly s MVG LDA maks srogr modlg assumos ha LR h hs modlg assumos ar corrc, LDA ll rform br LDA s asymocally ffc: h lm of vry larg rag ss, hr s o algorhm ha s srcly br ha LDA hovr, h hs assumos ar corrc, LR s mor robus akr assumos, mor robus o dvaos from modlg assumos f h daa ar o-gaussa, h h lm, logsc ourforms LDA For hs raso, LR s a mor commoly usd algorhm Sascal ffccy: f h grav modl s corrc, h usually gvs br accuracy, scally for small rag ss. Comuaoal ffccy:grav modls ycally ar h ass o comu. I LDA, smad h aramrs drcly, o d for grad asc Robusss o chagg loss fuco: Boh grav ad codoal modls allo h loss fuco o chag hou rsmag h modl. hs s o ru for drc LU mhods Robusss o modl assumos: h grav modl usually rforms oorly h h assumos ar volad. Robusss o mssg valus ad os: I may alcaos, som of h faurs may b mssg or corrud for som rag amls. Grav modls rovd br ays of hadlg hs ha o-grav modls.

8. Queueing systems. Contents. Simple teletraffic model. Pure queueing system

8. Queueing systems. Contents. Simple teletraffic model. Pure queueing system 8. Quug sysms Cos 8. Quug sysms Rfrshr: Sml lraffc modl Quug dscl M/M/ srvr wag lacs Alcao o ack lvl modllg of daa raffc M/M/ srvrs wag lacs lc8. S-38.45 Iroduco o Tlraffc Thory Srg 5 8. Quug sysms 8.

More information

Reliability analysis of time - dependent stress - strength system when the number of cycles follows binomial distribution

Reliability analysis of time - dependent stress - strength system when the number of cycles follows binomial distribution raoal Joural of Sascs ad Ssms SSN 97-675 Volum, Numbr 7,. 575-58 sarch da Publcaos h://www.rublcao.com labl aalss of m - dd srss - srgh ssm wh h umbr of ccls follows bomal dsrbuo T.Sumah Umamahswar, N.Swah,

More information

ISSN No. (Print) :

ISSN No. (Print) : Iraoal Joural o Emrgg Tchologs (Scal Issu NCETST-07) 8(): 88-94(07) (Publshd by Rsarch Trd, Wbs: www.rsarchrd.) ISSN No. (Pr) : 0975-8364 ISSN No. (Ol) : 49-355 Comarso bw Baysa ad Mamum Lklhood Esmao

More information

CHAPTER: 3 INVERSE EXPONENTIAL DISTRIBUTION: DIFFERENT METHOD OF ESTIMATIONS

CHAPTER: 3 INVERSE EXPONENTIAL DISTRIBUTION: DIFFERENT METHOD OF ESTIMATIONS CHAPTER: 3 INVERSE EXPONENTIAL DISTRIBUTION: DIFFERENT METHOD OF ESTIMATIONS 3. INTRODUCTION Th Ivrs Expoal dsrbuo was roducd by Kllr ad Kamah (98) ad has b sudd ad dscussd as a lfm modl. If a radom varabl

More information

Dr. Junchao Xia Center of Biophysics and Computational Biology. Fall /21/2016 1/23

Dr. Junchao Xia Center of Biophysics and Computational Biology. Fall /21/2016 1/23 BIO53 Bosascs Lcur 04: Cral Lm Thorm ad Thr Dsrbuos Drvd from h Normal Dsrbuo Dr. Juchao a Cr of Bophyscs ad Compuaoal Bology Fall 06 906 3 Iroduco I hs lcur w wll alk abou ma cocps as lsd blow, pcd valu

More information

Overview. Introduction Building Classifiers (2) Introduction Building Classifiers. Introduction. Introduction to Pattern Recognition and Data Mining

Overview. Introduction Building Classifiers (2) Introduction Building Classifiers. Introduction. Introduction to Pattern Recognition and Data Mining Ovrv Iroduco o ar Rcogo ad Daa Mg Lcur 4: Lar Dcra Fuco Irucor: Dr. Gova Dpar of Copur Egrg aa Clara Uvry Iroduco Approach o uldg clafr Lar dcra fuco: dfo ad urfac Lar paral ca rcpro crra Ohr hod Lar Dcra

More information

Almost unbiased exponential estimator for the finite population mean

Almost unbiased exponential estimator for the finite population mean Almos ubasd poal smaor for f populao ma Rajs Sg, Pakaj aua, ad rmala Saa, Scool of Sascs, DAVV, Idor (M.P., Ida (rsgsa@aoo.com Flor Smaradac ar of Dparm of Mamacs, Uvrs of Mco, Gallup, USA (smarad@um.du

More information

Chap 2: Reliability and Availability Models

Chap 2: Reliability and Availability Models Chap : lably ad valably Modls lably = prob{s s fully fucog [,]} Suppos from [,] m prod, w masur ou of N compos, of whch N : # of compos oprag corrcly a m N f : # of compos whch hav fald a m rlably of h

More information

Chapter 3: Maximum-Likelihood & Bayesian Parameter Estimation (part 1)

Chapter 3: Maximum-Likelihood & Bayesian Parameter Estimation (part 1) Aoucemes Reags o E-reserves Proec roosal ue oay Parameer Esmao Bomercs CSE 9-a Lecure 6 CSE9a Fall 6 CSE9a Fall 6 Paer Classfcao Chaer 3: Mamum-Lelhoo & Bayesa Parameer Esmao ar All maerals hese sles were

More information

Anouncements. Conjugate Gradients. Steepest Descent. Outline. Steepest Descent. Steepest Descent

Anouncements. Conjugate Gradients. Steepest Descent. Outline. Steepest Descent. Steepest Descent oucms Couga Gas Mchal Kazha (6.657) Ifomao abou h Sma (6.757) hav b pos ol: hp://www.cs.hu.u/~msha Tch Spcs: o M o Tusay afoo. o Two paps scuss ach w. o Vos fo w s caa paps u by Thusay vg. Oul Rvw of Sps

More information

Introduction to logistic regression

Introduction to logistic regression Itroducto to logstc rgrsso Gv: datast D { 2 2... } whr s a k-dmsoal vctor of ral-valud faturs or attrbuts ad s a bar class labl or targt. hus w ca sa that R k ad {0 }. For ampl f k 4 a datast of 3 data

More information

EE 6885 Statistical Pattern Recognition

EE 6885 Statistical Pattern Recognition EE 6885 Sascal Paer Recogo Fall 005 Prof. Shh-Fu Chag hp://.ee.columba.edu/~sfchag Lecure 8 (/8/05 8- Readg Feaure Dmeso Reduco PCA, ICA, LDA, Chaper 3.8, 0.3 ICA Tuoral: Fal Exam Aapo Hyväre ad Erkk Oja,

More information

Least squares and motion. Nuno Vasconcelos ECE Department, UCSD

Least squares and motion. Nuno Vasconcelos ECE Department, UCSD Las squars ad moo uo Vascoclos ECE Dparm UCSD Pla for oda oda w wll dscuss moo smao hs s rsg wo was moo s vr usful as a cu for rcogo sgmao comprsso c. s a gra ampl of las squars problm w wll also wrap

More information

Let's revisit conditional probability, where the event M is expressed in terms of the random variable. P Ax x x = =

Let's revisit conditional probability, where the event M is expressed in terms of the random variable. P Ax x x = = L's rvs codol rol whr h v M s rssd rs o h rdo vrl. L { M } rrr v such h { M } Assu. { } { A M} { A { } } M < { } { } A u { } { } { A} { A} ( A) ( A) { A} A A { A } hs llows us o cosdr h cs wh M { } [ (

More information

Learning of Graphical Models Parameter Estimation and Structure Learning

Learning of Graphical Models Parameter Estimation and Structure Learning Learg of Grahal Models Parameer Esmao ad Sruure Learg e Fukumzu he Isue of Sasal Mahemas Comuaoal Mehodology Sasal Iferee II Work wh Grahal Models Deermg sruure Sruure gve by modelg d e.g. Mxure model

More information

Control Systems (Lecture note #6)

Control Systems (Lecture note #6) 6.5 Corol Sysms (Lcur o #6 Las Tm: Lar algbra rw Lar algbrac quaos soluos Paramrzao of all soluos Smlary rasformao: compao form Egalus ad gcors dagoal form bg pcur: o brach of h cours Vcor spacs marcs

More information

Mathematical Statistics. Chapter VIII Sampling Distributions and the Central Limit Theorem

Mathematical Statistics. Chapter VIII Sampling Distributions and the Central Limit Theorem Mahmacal ascs 8 Chapr VIII amplg Dsrbos ad h Cral Lm Thorm Fcos of radom arabls ar sall of rs sascal applcao Cosdr a s of obsrabl radom arabls L For ampl sppos h arabls ar a radom sampl of s from a poplao

More information

EE 6885 Statistical Pattern Recognition

EE 6885 Statistical Pattern Recognition EE 6885 Sascal Paer Recogo Fall 005 Prof. Shh-Fu Chag hp://www.ee.columba.edu/~sfchag Lecure 5 (9//05 4- Readg Model Parameer Esmao ML Esmao, Chap. 3. Mure of Gaussa ad EM Referece Boo, HTF Chap. 8.5 Teboo,

More information

Multi-fluid magnetohydrodynamics in the solar atmosphere

Multi-fluid magnetohydrodynamics in the solar atmosphere Mul-flud magohydrodyams h solar amoshr Tmuraz Zaqarashvl თეიმურაზ ზაქარაშვილი Sa Rsarh Isu of Ausra Aadmy of Ss Graz Ausra ISSI-orksho Parally ozd lasmas asrohyss 6 Jauary- Fbruary 04 ISSI-orksho Parally

More information

MECE 3320 Measurements & Instrumentation. Static and Dynamic Characteristics of Signals

MECE 3320 Measurements & Instrumentation. Static and Dynamic Characteristics of Signals MECE 330 MECE 330 Masurms & Isrumao Sac ad Damc Characrscs of Sgals Dr. Isaac Chouapall Dparm of Mchacal Egrg Uvrs of Txas Pa Amrca MECE 330 Sgal Cocps A sgal s h phscal formao abou a masurd varabl bg

More information

Almost Unbiased Exponential Estimator for the Finite Population Mean

Almost Unbiased Exponential Estimator for the Finite Population Mean Rajs Sg, Pakaj aua, rmala Saa Scool of Sascs, DAVV, Idor (M.P., Ida Flor Smaradac Uvrs of Mco, USA Almos Ubasd Epoal Esmaor for F Populao Ma Publsd : Rajs Sg, Pakaj aua, rmala Saa, Flor Smaradac (Edors

More information

Major: All Engineering Majors. Authors: Autar Kaw, Luke Snyder

Major: All Engineering Majors. Authors: Autar Kaw, Luke Snyder Nolr Rgrsso Mjor: All Egrg Mjors Auhors: Aur Kw, Luk Sydr hp://urclhodsgusfdu Trsforg Nurcl Mhods Educo for STEM Udrgrdus 3/9/5 hp://urclhodsgusfdu Nolr Rgrsso hp://urclhodsgusfdu Nolr Rgrsso So populr

More information

Two-Dimensional Quantum Harmonic Oscillator

Two-Dimensional Quantum Harmonic Oscillator D Qa Haroc Oscllaor Two-Dsoal Qa Haroc Oscllaor 6 Qa Mchacs Prof. Y. F. Ch D Qa Haroc Oscllaor D Qa Haroc Oscllaor ch5 Schrödgr cosrcd h cohr sa of h D H.O. o dscrb a classcal arcl wh a wav ack whos cr

More information

Comparison of the Bayesian and Maximum Likelihood Estimation for Weibull Distribution

Comparison of the Bayesian and Maximum Likelihood Estimation for Weibull Distribution Joural of Mahemacs ad Sascs 6 (2): 1-14, 21 ISSN 1549-3644 21 Scece Publcaos Comarso of he Bayesa ad Maxmum Lkelhood Esmao for Webull Dsrbuo Al Omar Mohammed Ahmed, Hadeel Salm Al-Kuub ad Noor Akma Ibrahm

More information

Series of New Information Divergences, Properties and Corresponding Series of Metric Spaces

Series of New Information Divergences, Properties and Corresponding Series of Metric Spaces Srs of Nw Iforao Dvrgcs, Proprs ad Corrspodg Srs of Mrc Spacs K.C.Ja, Praphull Chhabra Profssor, Dpar of Mahacs, Malavya Naoal Isu of Tchology, Japur (Rajasha), Ida Ph.d Scholar, Dpar of Mahacs, Malavya

More information

Linear Regression Linear Regression with Shrinkage

Linear Regression Linear Regression with Shrinkage Lear Regresso Lear Regresso h Shrkage Iroduco Regresso meas predcg a couous (usuall scalar oupu from a vecor of couous pus (feaures x. Example: Predcg vehcle fuel effcec (mpg from 8 arbues: Lear Regresso

More information

Chapter 5 Transient Analysis

Chapter 5 Transient Analysis hpr 5 rs Alyss Jsug Jg ompl rspos rs rspos y-s rspos m os rs orr co orr Dffrl Equo. rs Alyss h ffrc of lyss of crcus wh rgy sorg lms (ucors or cpcors) & m-ryg sgls wh rss crcus s h h quos rsulg from r

More information

Lecture 12: Introduction to nonlinear optics II.

Lecture 12: Introduction to nonlinear optics II. Lcur : Iroduco o olar opcs II r Kužl ropagao of srog opc sgals propr olar ffcs Scod ordr ffcs! Thr-wav mxg has machg codo! Scod harmoc grao! Sum frqucy grao! aramrc grao Thrd ordr ffcs! Four-wav mxg! Opcal

More information

Least Squares Fitting (LSQF) with a complicated function Theexampleswehavelookedatsofarhavebeenlinearintheparameters

Least Squares Fitting (LSQF) with a complicated function Theexampleswehavelookedatsofarhavebeenlinearintheparameters Leas Squares Fg LSQF wh a complcaed fuco Theeampleswehavelookedasofarhavebeelearheparameers ha we have bee rg o deerme e.g. slope, ercep. For he case where he fuco s lear he parameers we ca fd a aalc soluo

More information

Gauge Theories. Elementary Particle Physics Strong Interaction Fenomenology. Diego Bettoni Academic year

Gauge Theories. Elementary Particle Physics Strong Interaction Fenomenology. Diego Bettoni Academic year Gau Thors Elmary Parcl Physcs Sro Iraco Fomoloy o Bo cadmc yar - Gau Ivarac Gau Ivarac Whr do Laraas or Hamloas com from? How do w kow ha a cra raco should dscrb a acual hyscal sysm? Why s h lcromac raco

More information

Density estimation. Density estimations. CS 2750 Machine Learning. Lecture 5. Milos Hauskrecht 5329 Sennott Square

Density estimation. Density estimations. CS 2750 Machine Learning. Lecture 5. Milos Hauskrecht 5329 Sennott Square Lecure 5 esy esmao Mlos Hauskrec mlos@cs..edu 539 Seo Square esy esmaos ocs: esy esmao: Mamum lkelood ML Bayesa arameer esmaes M Beroull dsrbuo. Bomal dsrbuo Mulomal dsrbuo Normal dsrbuo Eoeal famly Noaramerc

More information

CHAPTER 7. X and 2 = X

CHAPTER 7. X and 2 = X CHATR 7 Sco 7-7-. d r usd smors o. Th vrcs r d ; comr h S vrc hs cs / / S S Θ Θ Sc oh smors r usd mo o h vrcs would coclud h s h r smor wh h smllr vrc. 7-. [ ] Θ 7 7 7 7 7 7 [ ] Θ ] [ 7 6 Boh d r usd sms

More information

Density estimation III.

Density estimation III. Lecure 4 esy esmao III. Mlos Hauskrec mlos@cs..edu 539 Seo Square Oule Oule: esy esmao: Mamum lkelood ML Bayesa arameer esmaes MP Beroull dsrbuo. Bomal dsrbuo Mulomal dsrbuo Normal dsrbuo Eoeal famly Eoeal

More information

Inference on Curved Poisson Distribution Using its Statistical Curvature

Inference on Curved Poisson Distribution Using its Statistical Curvature Rsarch Joural of Mahacal ad Sascal Sccs ISSN 3 647 ol. 5 6-6 Ju 3 Rs. J. Mahacal ad Sascal Sc. Ifrc o Curvd Posso Dsrbuo Usg s Sascal Curvaur Absrac Sal Babulal ad Sadhu Sachaya Dpar of sascs Th Uvrsy

More information

Survival Analysis for Randomized Clinical Trials II Cox Regression. Ziad Taib Biostatistics AstraZeneca February 26, 2008

Survival Analysis for Randomized Clinical Trials II Cox Regression. Ziad Taib Biostatistics AstraZeneca February 26, 2008 Survval alyss for Raomz Clcal rals II Cox Rgrsso a ab osascs sraca Fbruary 6, 8 la Irouco o proporoal azar mol H aral lkloo Comparg wo groups umrcal xampl Comparso w log-rak s mol xp z + + k k z Ursag

More information

Density estimation III.

Density estimation III. Lecure 6 esy esmao III. Mlos Hausrec mlos@cs..eu 539 Seo Square Oule Oule: esy esmao: Bomal srbuo Mulomal srbuo ormal srbuo Eoeal famly aa: esy esmao {.. } a vecor of arbue values Objecve: ry o esmae e

More information

Improved Exponential Estimator for Population Variance Using Two Auxiliary Variables

Improved Exponential Estimator for Population Variance Using Two Auxiliary Variables Improvd Epoal Emaor for Populao Varac Ug Two Aular Varabl Rajh gh Dparm of ac,baara Hdu Uvr(U.P., Ida (rgha@ahoo.com Pakaj Chauha ad rmala awa chool of ac, DAVV, Idor (M.P., Ida Flor maradach Dparm of

More information

T h e C S E T I P r o j e c t

T h e C S E T I P r o j e c t T h e P r o j e c t T H E P R O J E C T T A B L E O F C O N T E N T S A r t i c l e P a g e C o m p r e h e n s i v e A s s es s m e n t o f t h e U F O / E T I P h e n o m e n o n M a y 1 9 9 1 1 E T

More information

On the Hubbard-Stratonovich Transformation for Interacting Bosons

On the Hubbard-Stratonovich Transformation for Interacting Bosons O h ubbrd-sroovh Trsformo for Irg osos Mr R Zrbur ff Fbrury 8 8 ubbrd-sroovh for frmos: rmdr osos r dffr! Rdom mrs: hyrbol S rsformo md rgorous osus for rg bosos /8 Wyl grou symmry L : G GL V b rrso of

More information

The rise of neural networks. Deep networks. Why many layers? Why many layers? Why many layers? 24/03/2017

The rise of neural networks. Deep networks. Why many layers? Why many layers? Why many layers? 24/03/2017 Th rs of ural ors I h md-s, hr has b a rsurgc of ural ors, mal du o rasos: hgh compuaoal por bcam avalabl a lo cos va gral-purpos graphcs procssg us (GPGPUs). maor plars l Googl, crosof, ad Facboo, dd

More information

Frequency Response. Response of an LTI System to Eigenfunction

Frequency Response. Response of an LTI System to Eigenfunction Frquncy Rsons Las m w Rvsd formal dfnons of lnary and m-nvaranc Found an gnfuncon for lnar m-nvaran sysms Found h frquncy rsons of a lnar sysm o gnfuncon nu Found h frquncy rsons for cascad, fdbac, dffrnc

More information

Introduction to Laplace Transforms October 25, 2017

Introduction to Laplace Transforms October 25, 2017 Iroduco o Lplc Trform Ocobr 5, 7 Iroduco o Lplc Trform Lrr ro Mchcl Egrg 5 Smr Egrg l Ocobr 5, 7 Oul Rvw l cl Wh Lplc rform fo of Lplc rform Gg rform b gro Fdg rform d vr rform from bl d horm pplco o dffrl

More information

MEM 355 Performance Enhancement of Dynamical Systems A First Control Problem - Cruise Control

MEM 355 Performance Enhancement of Dynamical Systems A First Control Problem - Cruise Control MEM 355 Prformanc Enhancmn of Dynamical Sysms A Firs Conrol Problm - Cruis Conrol Harry G. Kwany Darmn of Mchanical Enginring & Mchanics Drxl Univrsiy Cruis Conrol ( ) mv = F mg sinθ cv v +.2v= u 9.8θ

More information

Unbalanced Panel Data Models

Unbalanced Panel Data Models Ubalacd Pal Data odls Chaptr 9 from Baltag: Ecoomtrc Aalyss of Pal Data 5 by Adrás alascs 4448 troducto balacd or complt pals: a pal data st whr data/obsrvatos ar avalabl for all crosssctoal uts th tr

More information

Chain DOUBLE PITCH TYPE RS TYPE RS POLY-STEEL TYPE

Chain DOUBLE PITCH TYPE RS TYPE RS POLY-STEEL TYPE d Fr Flw OULE IC YE YE OLY-EEL YE Oubard wh d s (d ) s usd fr fr flw vya. Usually w srads ar usd h qupm. d s basd sadard rllr ha wh sd rllrs salld xdd ps. hr ar hr yps f bas ha: (1) ubl ph rllr ha wh sadard

More information

Machine Learning. Hidden Markov Model. Eric Xing / /15-781, 781, Fall Lecture 17, March 24, 2008

Machine Learning. Hidden Markov Model. Eric Xing / /15-781, 781, Fall Lecture 17, March 24, 2008 Mache Learg 0-70/5 70/5-78 78 Fall 2008 Hdde Marov Model Erc Xg Lecure 7 March 24 2008 Readg: Cha. 3 C.B boo Erc Xg Erc Xg 2 Hdde Marov Model: from sac o damc mure models Sac mure Damc mure Y Y Y 2 Y 3

More information

Three Main Questions on HMMs

Three Main Questions on HMMs Mache Learg 0-70/5-78 78 Srg 00 Hdde Marov Model II Erc Xg Lecure Februar 4 00 Readg: Cha. 3 CB Three Ma Quesos o HMMs. Evaluao GIVEN a HMM M ad a sequece FIND Prob M ALGO. Forward. Decodg GIVEN a HMM

More information

The Variance-Covariance Matrix

The Variance-Covariance Matrix Th Varanc-Covaranc Marx Our bggs a so-ar has bn ng a lnar uncon o a s o daa by mnmzng h las squars drncs rom h o h daa wh mnsarch. Whn analyzng non-lnar daa you hav o us a program l Malab as many yps o

More information

Chapter 1 Basic Concepts

Chapter 1 Basic Concepts Ch Bsc Cocs oduco od: X X ε ε ε ε ε O h h foog ssuos o css ε ε ε ε ε N Co No h X Chcscs of od: cos c ddc (ucod) d s of h soss dd of h ssocd c S qusos sd: Wh f h cs of h soss o cos d dd o h ssocd s? Wh

More information

Lecture 1: Empirical economic relations

Lecture 1: Empirical economic relations Ecoomcs 53 Lctur : Emprcal coomc rlatos What s coomtrcs? Ecoomtrcs s masurmt of coomc rlatos. W d to kow What s a coomc rlato? How do w masur such a rlato? Dfto: A coomc rlato s a rlato btw coomc varabls.

More information

EE 6885 Statistical Pattern Recognition

EE 6885 Statistical Pattern Recognition EE 6885 Sascal Paer Recogo Fall 005 Prof. Shh-Fu Chag hp://.ee.columba.edu/~sfchag Reve: Fal Exam (//005) Reve-Fal- Fal Exam Dec. 6 h Frday :0-3 pm, Mudd Rm 644 Reve Fal- Chap 5: Lear Dscrma Fucos Reve

More information

A L A BA M A L A W R E V IE W

A L A BA M A L A W R E V IE W A L A BA M A L A W R E V IE W Volume 52 Fall 2000 Number 1 B E F O R E D I S A B I L I T Y C I V I L R I G HT S : C I V I L W A R P E N S I O N S A N D TH E P O L I T I C S O F D I S A B I L I T Y I N

More information

1973 AP Calculus BC: Section I

1973 AP Calculus BC: Section I 97 AP Calculus BC: Scio I 9 Mius No Calculaor No: I his amiaio, l dos h aural logarihm of (ha is, logarihm o h bas ).. If f ( ) =, h f ( ) = ( ). ( ) + d = 7 6. If f( ) = +, h h s of valus for which f

More information

Web-appendix 1: macro to calculate the range of ( ρ, for which R is positive definite

Web-appendix 1: macro to calculate the range of ( ρ, for which R is positive definite Wb-basd Supplmary Marials for Sampl siz cosidraios for GEE aalyss of hr-lvl clusr radomizd rials by Sv Trsra, Big Lu, oh S. Prissr, Tho va Achrbrg, ad Gorg F. Borm Wb-appdix : macro o calcula h rag of

More information

The Poisson Process Properties of the Poisson Process

The Poisson Process Properties of the Poisson Process Posso Processes Summary The Posso Process Properes of he Posso Process Ierarrval mes Memoryless propery ad he resdual lfeme paradox Superposo of Posso processes Radom seleco of Posso Pos Bulk Arrvals ad

More information

On the Existence and uniqueness for solution of system Fractional Differential Equations

On the Existence and uniqueness for solution of system Fractional Differential Equations OSR Jourl o Mhms OSR-JM SSN: 78-578. Volum 4 ssu 3 Nov. - D. PP -5 www.osrjourls.org O h Es d uquss or soluo o ssm rol Drl Equos Mh Ad Al-Wh Dprm o Appld S Uvrs o holog Bghdd- rq Asr: hs ppr w d horm o

More information

3.4 Properties of the Stress Tensor

3.4 Properties of the Stress Tensor cto.4.4 Proprts of th trss sor.4. trss rasformato Lt th compots of th Cauchy strss tsor a coordat systm wth bas vctors b. h compots a scod coordat systm wth bas vctors j,, ar gv by th tsor trasformato

More information

Statistics: Part 1 Parameter Estimation

Statistics: Part 1 Parameter Estimation Hery Sar ad Joh W. Woods, robably, Sascs, ad Radom ables for geers, h ed., earso ducao Ic., 0. ISBN: 978-0-3-33-6 Chaer 6 Sascs: ar arameer smao Secos 6. Iroduco 30 Ideede, Idecally Dsrbued (..d.) Observaos

More information

Chapter 8. Simple Linear Regression

Chapter 8. Simple Linear Regression Chaper 8. Smple Lear Regresso Regresso aalyss: regresso aalyss s a sascal mehodology o esmae he relaoshp of a respose varable o a se of predcor varable. whe here s jus oe predcor varable, we wll use smple

More information

176 5 t h Fl oo r. 337 P o ly me r Ma te ri al s

176 5 t h Fl oo r. 337 P o ly me r Ma te ri al s A g la di ou s F. L. 462 E l ec tr on ic D ev el op me nt A i ng er A.W.S. 371 C. A. M. A l ex an de r 236 A d mi ni st ra ti on R. H. (M rs ) A n dr ew s P. V. 326 O p ti ca l Tr an sm is si on A p ps

More information

Beechwood Music Department Staff

Beechwood Music Department Staff Beechwood Music Department Staff MRS SARAH KERSHAW - HEAD OF MUSIC S a ra h K e rs h a w t r a i n e d a t t h e R oy a l We ls h C o l le g e of M u s i c a n d D ra m a w h e re s h e ob t a i n e d

More information

Modeling and Predicting Sequences: HMM and (may be) CRF. Amr Ahmed Feb 25

Modeling and Predicting Sequences: HMM and (may be) CRF. Amr Ahmed Feb 25 Modelg d redcg Sequeces: HMM d m be CRF Amr Ahmed 070 Feb 25 Bg cure redcg Sgle Lbel Ipu : A se of feures: - Bg of words docume - Oupu : Clss lbel - Topc of he docume - redcg Sequece of Lbels Noo Noe:

More information

8. Queueing systems lect08.ppt S Introduction to Teletraffic Theory - Fall

8. Queueing systems lect08.ppt S Introduction to Teletraffic Theory - Fall 8. Queueg sysems lec8. S-38.45 - Iroduco o Teleraffc Theory - Fall 8. Queueg sysems Coes Refresher: Smle eleraffc model M/M/ server wag laces M/M/ servers wag laces 8. Queueg sysems Smle eleraffc model

More information

Get Funky this Christmas Season with the Crew from Chunky Custard

Get Funky this Christmas Season with the Crew from Chunky Custard Hol Gd Chcllo Adld o Hdly Fdy d Sudy Nhs Novb Dcb 2010 7p 11.30p G Fuky hs Chss Sso wh h Cw fo Chuky Cusd Fdy Nhs $99pp Sudy Nhs $115pp Tck pc cluds: Full Chss d buff, 4.5 hou bv pck, o sop. Ts & Codos

More information

Fault Tolerant Computing. Fault Tolerant Computing CS 530 Probabilistic methods: overview

Fault Tolerant Computing. Fault Tolerant Computing CS 530 Probabilistic methods: overview Probably 1/19/ CS 53 Probablsc mehods: overvew Yashwa K. Malaya Colorado Sae Uversy 1 Probablsc Mehods: Overvew Cocree umbers presece of uceray Probably Dsjo eves Sascal depedece Radom varables ad dsrbuos

More information

MODEL QUESTION. Statistics (Theory) (New Syllabus) dx OR, If M is the mode of a discrete probability distribution with mass function f

MODEL QUESTION. Statistics (Theory) (New Syllabus) dx OR, If M is the mode of a discrete probability distribution with mass function f MODEL QUESTION Statstcs (Thory) (Nw Syllabus) GROUP A d θ. ) Wrt dow th rsult of ( ) ) d OR, If M s th mod of a dscrt robablty dstrbuto wth mass fucto f th f().. at M. d d ( θ ) θ θ OR, f() mamum valu

More information

(Reference: sections in Silberberg 5 th ed.)

(Reference: sections in Silberberg 5 th ed.) ALE. Atomic Structur Nam HEM K. Marr Tam No. Sctio What is a atom? What is th structur of a atom? Th Modl th structur of a atom (Rfrc: sctios.4 -. i Silbrbrg 5 th d.) Th subatomic articls that chmists

More information

Fourier Series: main points

Fourier Series: main points BIOEN 3 Lcur 6 Fourir rasforms Novmbr 9, Fourir Sris: mai pois Ifii sum of sis, cosis, or boh + a a cos( + b si( All frqucis ar igr mulipls of a fudamal frqucy, o F.S. ca rprs ay priodic fucio ha w ca

More information

An N-Component Series Repairable System with Repairman Doing Other Work and Priority in Repair

An N-Component Series Repairable System with Repairman Doing Other Work and Priority in Repair Mor ppl Novmbr 8 N-Compo r Rparabl m h Rparma Dog Ohr ork a ror Rpar Jag Yag E-mal: jag_ag7@6om Xau Mg a uo hg ollag arb Normal Uvr Yaq ua Taoao ag uppor b h Fouao or h aural o b prov o Cha 5 uppor b h

More information

A Simple Representation of the Weighted Non-Central Chi-Square Distribution

A Simple Representation of the Weighted Non-Central Chi-Square Distribution SSN: 9-875 raoa Joura o ovav Rarch Scc grg a Tchoogy (A S 97: 7 Cr rgaao) Vo u 9 Sbr A S Rrao o h Wgh No-Cra Ch-Squar Drbuo Dr ay A hry Dr Sahar A brah Dr Ya Y Aba Proor D o Mahaca Sac u o Saca Su a Rarch

More information

Improved Exponential Estimator for Population Variance Using Two Auxiliary Variables

Improved Exponential Estimator for Population Variance Using Two Auxiliary Variables Rajh gh Dparm of ac,baara Hdu Uvr(U.P.), Ida Pakaj Chauha, rmala awa chool of ac, DAVV, Idor (M.P.), Ida Flor maradach Dparm of Mahmac, Uvr of w Mco, Gallup, UA Improvd Epoal Emaor for Populao Varac Ug

More information

Supplementary Figure 1. Experiment and simulation with finite qudit. anharmonicity. (a), Experimental data taken after a 60 ns three-tone pulse.

Supplementary Figure 1. Experiment and simulation with finite qudit. anharmonicity. (a), Experimental data taken after a 60 ns three-tone pulse. Supplmnar Fgur. Eprmn and smulaon wh fn qud anharmonc. a, Eprmnal daa akn afr a 6 ns hr-on puls. b, Smulaon usng h amlonan. Supplmnar Fgur. Phagoran dnamcs n h m doman. a, Eprmnal daa. Th hr-on puls s

More information

Continous system: differential equations

Continous system: differential equations /6/008 Coious sysm: diffrial quaios Drmiisic modls drivaivs isad of (+)-( r( compar ( + ) R( + r ( (0) ( R ( 0 ) ( Dcid wha hav a ffc o h sysm Drmi whhr h paramrs ar posiiv or gaiv, i.. giv growh or rducio

More information

Bayes (Naïve or not) Classifiers: Generative Approach

Bayes (Naïve or not) Classifiers: Generative Approach Logstc regresso Bayes (Naïve or ot) Classfers: Geeratve Approach What do we mea by Geeratve approach: Lear p(y), p(x y) ad the apply bayes rule to compute p(y x) for makg predctos Ths s essetally makg

More information

Introduction to logistic regression

Introduction to logistic regression Itroducto to logstc rgrsso Gv: datast D {... } whr s a k-dmsoal vctor of ral-valud faturs or attrbuts ad s a bar class labl or targt. hus w ca sa that R k ad {0 }. For ampl f k 4 a datast of 3 data pots

More information

Phys Nov. 3, 2017 Today s Topics. Continue Chapter 2: Electromagnetic Theory, Photons, and Light Reading for Next Time

Phys Nov. 3, 2017 Today s Topics. Continue Chapter 2: Electromagnetic Theory, Photons, and Light Reading for Next Time Phys 31. No. 3, 17 Today s Topcs Cou Chap : lcomagc Thoy, Phoos, ad Lgh Radg fo Nx Tm 1 By Wdsday: Radg hs Wk Fsh Fowls Ch. (.3.11 Polazao Thoy, Jos Macs, Fsl uaos ad Bws s Agl Homwok hs Wk Chap Homwok

More information

J = 1 J = 1 0 J J =1 J = Bout. Bin (1) Ey = 4E0 cos(kz (2) (2) (3) (4) (5) (3) cos(kz (1) ωt +pπ/2) (2) (6) (4) (3) iωt (3) (5) ωt = π E(1) E = [E e

J = 1 J = 1 0 J J =1 J = Bout. Bin (1) Ey = 4E0 cos(kz (2) (2) (3) (4) (5) (3) cos(kz (1) ωt +pπ/2) (2) (6) (4) (3) iωt (3) (5) ωt = π E(1) E = [E e ) ) Cov&o for rg h of olr&o for gog o&v r&o: - Look wv rog&g owr ou (look r&o). - F r wh o&o of fil vor. - I h CCWLHCP CWRHCP - u &l & hv oo g, h lr- fil vor r ou rgh- h orkrw for RHCP! 3) For h followg

More information

The Exile Began. Family Journal Page. God Called Jeremiah Jeremiah 1. Preschool. below. Tell. them too. Kids. Ke Passage: Ezekiel 37:27

The Exile Began. Family Journal Page. God Called Jeremiah Jeremiah 1. Preschool. below. Tell. them too. Kids. Ke Passage: Ezekiel 37:27 Faily Jo Pag Th Exil Bg io hy u c prof b jo ou Shar ab ou job ab ar h o ay u Yo ra u ar u r a i A h ) ar par ( grp hav h y y b jo i crib blo Tll ri ir r a r gro up Allo big u r a i Rvi h b of ha u ha a

More information

t=0 t>0: + vr - i dvc Continuation

t=0 t>0: + vr - i dvc Continuation hapr Ga Dlay and rcus onnuaon s rcu Equaon >: S S Ths dffrnal quaon, oghr wh h nal condon, fully spcfs bhaor of crcu afr swch closs Our n challng: larn how o sol such quaons TUE/EE 57 nwrk analys 4/5 NdM

More information

counting statistics in thermal transport in nanojunctions

counting statistics in thermal transport in nanojunctions rs bhvor d fll cog sscs hrml rspor ojcos J-Shg Wg Dp PhysNUS Ol of h lk rodco Mhod of oqlbrm r s fcos Applcos hrml crrs D ch d obs rs problm Fll cog sscs MS workshop Forr s lw for h codco J [ ] f f d Forr

More information

Real-time Classification of Large Data Sets using Binary Knapsack

Real-time Classification of Large Data Sets using Binary Knapsack Real-me Classfcao of Large Daa Ses usg Bary Kapsack Reao Bru bru@ds.uroma. Uversy of Roma La Sapeza AIRO 004-35h ANNUAL CONFERENCE OF THE ITALIAN OPERATIONS RESEARCH Sepember 7-0, 004, Lecce, Ialy Oule

More information

NHPP and S-Shaped Models for Testing the Software Failure Process

NHPP and S-Shaped Models for Testing the Software Failure Process Irol Jourl of Ls Trds Copug (E-ISSN: 45-5364 8 Volu, Issu, Dcr NHPP d S-Shpd Modls for Tsg h Sofwr Flur Procss Dr. Kr Arr Asss Profssor K.J. Soy Isu of Mg Suds & Rsrch Vdy Ngr Vdy Vhr Mu. Id. dshuh_3@yhoo.co/rrr@ssr.soy.du

More information

(1) Cov(, ) E[( E( ))( E( ))]

(1) Cov(, ) E[( E( ))( E( ))] Impac of Auocorrelao o OLS Esmaes ECON 3033/Evas Cosder a smple bvarae me-seres model of he form: y 0 x The four key assumpos abou ε hs model are ) E(ε ) = E[ε x ]=0 ) Var(ε ) =Var(ε x ) = ) Cov(ε, ε )

More information

Improvement of the Reliability of a Series-Parallel System Subject to Modified Weibull Distribution with Fuzzy Parameters

Improvement of the Reliability of a Series-Parallel System Subject to Modified Weibull Distribution with Fuzzy Parameters Joural of Mahmacs ad Sascs Rsarch Arcls Improvm of h Rlably of a Srs-Paralll Sysm Subjc o Modfd Wbull Dsrbuo wh Fuzzy Paramrs Nama Salah Youssf Tmraz Mahmacs Dparm, Faculy of Scc, Taa Uvrsy, Taa, Egyp

More information

Lecture 4 : Backpropagation Algorithm. Prof. Seul Jung ( Intelligent Systems and Emotional Engineering Laboratory) Chungnam National University

Lecture 4 : Backpropagation Algorithm. Prof. Seul Jung ( Intelligent Systems and Emotional Engineering Laboratory) Chungnam National University Lcur 4 : Bacpropagaon Algorhm Pro. Sul Jung Inllgn Sm and moonal ngnrng Laboraor Chungnam Naonal Unvr Inroducon o Bacpropagaon algorhm 969 Mn and Papr aac. 980 Parr and Wrbo dcovrd bac propagaon algorhm.

More information

CHAPTER 10: LINEAR DISCRIMINATION

CHAPTER 10: LINEAR DISCRIMINATION CHAPER : LINEAR DISCRIMINAION Dscrmnan-based Classfcaon 3 In classfcaon h K classes (C,C,, C k ) We defned dscrmnan funcon g j (), j=,,,k hen gven an es eample, e chose (predced) s class label as C f g

More information

Mellin Transform Method for the Valuation of the American Power Put Option with Non-Dividend and Dividend Yields

Mellin Transform Method for the Valuation of the American Power Put Option with Non-Dividend and Dividend Yields Joural of Mahmacal Fac, 5, 5, 49-7 Publshd Ol Augus 5 ScRs. h://www.scr.org/joural/jmf h://dx.do.org/.436/jmf.5.533 Mll Trasform Mhod for h Valuao of h Amrca Powr Pu Oo wh No-Dvdd ad Dvdd Ylds Suday Emmaul

More information

θ = θ Π Π Parametric counting process models θ θ θ Log-likelihood: Consider counting processes: Score functions:

θ = θ Π Π Parametric counting process models θ θ θ Log-likelihood: Consider counting processes: Score functions: Paramerc coug process models Cosder coug processes: N,,..., ha cou he occurreces of a eve of eres for dvduals Iesy processes: Lelhood λ ( ;,,..., N { } λ < Log-lelhood: l( log L( Score fucos: U ( l( log

More information

Lecture 1: Numerical Integration The Trapezoidal and Simpson s Rule

Lecture 1: Numerical Integration The Trapezoidal and Simpson s Rule Lcur : Numrical ngraion Th Trapzoidal and Simpson s Rul A problm Th probabiliy of a normally disribud (man µ and sandard dviaion σ ) vn occurring bwn h valus a and b is B A P( a x b) d () π whr a µ b -

More information

LM A F LABL Y H FRMA H P UBLCA B LV B ACCURA ALL R PC H WVR W C A AU M RP BLY FR AY C QUC RUL G F RM H U HR F H FRMA C A HR UBJC CHA G WHU C R V R W H

LM A F LABL Y H FRMA H P UBLCA B LV B ACCURA ALL R PC H WVR W C A AU M RP BLY FR AY C QUC RUL G F RM H U HR F H FRMA C A HR UBJC CHA G WHU C R V R W H H R & C C M RX700-2 Bx C LM A F LABL Y H FRMA H P UBLCA B LV B ACCURA ALL R PC H WVR W C A AU M RP BLY FR AY C QUC RUL G F RM H U HR F H FRMA C A HR UBJC CHA G WHU C R V R W H PUBLCA M AY B U CRP RA UCH

More information

innovations shocks white noise

innovations shocks white noise Innovaons Tm-srs modls ar consrucd as lnar funcons of fundamnal forcasng rrors, also calld nnovaons or shocks Ths basc buldng blocks sasf var σ Srall uncorrlad Ths rrors ar calld wh nos In gnral, f ou

More information

Final Exam Applied Econometrics

Final Exam Applied Econometrics Fal Eam Appled Ecoomercs. 0 Sppose we have he followg regresso resl: Depede Varable: SAT Sample: 437 Iclded observaos: 437 Whe heeroskedasc-cosse sadard errors & covarace Varable Coeffce Sd. Error -Sasc

More information

ELEN E4830 Digital Image Processing

ELEN E4830 Digital Image Processing ELEN E48 Dgal Imag Procssng Mrm Eamnaon Sprng Soluon Problm Quanzaon and Human Encodng r k u P u P u r r 6 6 6 6 5 6 4 8 8 4 P r 6 6 P r 4 8 8 6 8 4 r 8 4 8 4 7 8 r 6 6 6 6 P r 8 4 8 P r 6 6 8 5 P r /

More information

COMPLEX NUMBERS AND ELEMENTARY FUNCTIONS OF COMPLEX VARIABLES

COMPLEX NUMBERS AND ELEMENTARY FUNCTIONS OF COMPLEX VARIABLES COMPLEX NUMBERS AND ELEMENTARY FUNCTIONS OF COMPLEX VARIABLES DEFINITION OF A COMPLEX NUMBER: A umbr of th form, whr = (, ad & ar ral umbrs s calld a compl umbr Th ral umbr, s calld ral part of whl s calld

More information

Brownian Motion and Stochastic Calculus. Brownian Motion and Stochastic Calculus

Brownian Motion and Stochastic Calculus. Brownian Motion and Stochastic Calculus Browa Moo Sochasc Calculus Xogzh Che Uversy of Hawa a Maoa earme of Mahemacs Seember, 8 Absrac Ths oe s abou oob decomoso he bascs of Suare egrable margales Coes oob-meyer ecomoso Suare Iegrable Margales

More information

Extinction risk depends strongly on factors contributing to stochasticity

Extinction risk depends strongly on factors contributing to stochasticity co rs dpds srogly o facors corbug o sochascy r A. Mlbour & Ala Hasgs 2 parm of cology ad voluoary ology Uvrsy of Colorado ouldr CO 839 USA 2 parm of vromal Scc ad Polcy Uvrsy of Calfora avs CA 9566 USA

More information

Consider a system of 2 simultaneous first order linear equations

Consider a system of 2 simultaneous first order linear equations Soluon of sysms of frs ordr lnar quaons onsdr a sysm of smulanous frs ordr lnar quaons a b c d I has h alrna mar-vcor rprsnaon a b c d Or, n shorhand A, f A s alrady known from con W know ha h abov sysm

More information

LECTURE 6 TRANSFORMATION OF RANDOM VARIABLES

LECTURE 6 TRANSFORMATION OF RANDOM VARIABLES LECTURE 6 TRANSFORMATION OF RANDOM VARIABLES TRANSFORMATION OF FUNCTION OF A RANDOM VARIABLE UNIVARIATE TRANSFORMATIONS TRANSFORMATION OF RANDOM VARIABLES If s a rv wth cdf F th Y=g s also a rv. If w wrt

More information

Value-at-Risk Estimation of Long Memory Data

Value-at-Risk Estimation of Long Memory Data Value-a-sk Esmao of Log Memory Daa Y-Pg Chag, Mg-Ch Hug, Ye-Hao L Dearme of Busess Mahemacs, Soochow Uversy, Tae(00), Tawa Absrac The volaly of facal me seres lays a mora role may alcaos, esecally he feld

More information

Binary Choice. Multiple Choice. LPM logit logistic regresion probit. Multinomial Logit

Binary Choice. Multiple Choice. LPM logit logistic regresion probit. Multinomial Logit (c Pogsa Porchawssul, Faculty of Ecoomcs, Chulalogor Uvrsty (c Pogsa Porchawssul, Faculty of Ecoomcs, Chulalogor Uvrsty 3 Bary Choc LPM logt logstc rgrso probt Multpl Choc Multomal Logt (c Pogsa Porchawssul,

More information