Physics 40 Chapter 8 Homework Q: 12, 13 P: 3, 4, 7, 15, 19, 24, 32, 34, 39, 54, 55, 58, 59, 62, 64

Size: px
Start display at page:

Download "Physics 40 Chapter 8 Homework Q: 12, 13 P: 3, 4, 7, 15, 19, 24, 32, 34, 39, 54, 55, 58, 59, 62, 64"

Transcription

1 Physics 40 Chapter 8 Homework Q:, 3 P: 3, 4, 7, 5, 9, 4, 3, 34, 39, 54, 55, 58, 59, 6, 64 Conceptual Questions *Q8. We hae (/)m = μ k mgd so d = /μ k g. The quantity /μ k controls the skidding distance. In the cases quoted respectiely, this quantity has the numerical alue (a) 5 (b).5 (c).5 (d) 0 (e) 0 () 5. In order the ranking is then d > e > = a > b > c. *Q8.3 Yes, i it is exerted by an object that is moing in our rame o reerence. The lat bed o a truck exerts a static riction orce to start a pumpkin moing orward as it slowly starts up. Problems P8.3 U K U K : + = + i i mgh + 0= mg + m g( 3.50) = g + F= : = 3.00g m n+ mg= m 3.00g n= m g = m g =.00mg 3 n = kg 9.80 m s = N downward FIG. P8.3 P8. 4 (a) ( Δ K ) = W = W g = mg Δ h = mg ( ) A B mb ma = m B = 5.94 m s ( 9.80)(.80) Similarly, g C = = 7.67 m s A (b) W g = mg( 3.00 m ) = 47 J A C FIG. P8. 4

2 P8.7 Using conseration o energy or the system o the Earth and the two objects (a) ( 5.00 kg) g( 4.00 m ) = ( 3.00 kg) g( 4.00 m ) + ( ) = 9.6 = 4.43 m s (b) Now we apply conseration o energy or the system o the 3.00 kg object and the Earth during the time interal between the instant when the string goes slack and the instant at which the 3.00 kg object reaches its highest position in its ree all. ( 3.00 ) = mgδ y= 3.00 gδy Δ y =.00 m y max = 4.00 m +Δ y= 5.00 m FIG. P8.7 P8.5 (a) W = mgl cos( θ ) g W = 0.0 kg 9.80 m s 5.00 m cos0 = 68 J g (b) = μ n= μ mgcosθ k k k Δ E = l = lμ mgcosθ int int k k Δ E = 5.00 m cos0.0 = 84 J (c) W Fl F = = = 500 J (d) K Wother Eint WF Wg Eint (e) Δ = Δ = + Δ = Δ K = m m i ( ΔK) 48 J 48 = + (.50) i = + = 5.65 m s m 0.0 FIG. P8.5 P8.9 Ui + Ki +Δ E = U + K : mech mgh h= m + m = μn= μm g mgh μmgh = ( m+ m) ( μ ) m m hg = m + m FIG. P m s.50 m 5.00 kg kg = = 3.74 m s 8.00 kg

3 P8.4 (a) There is an equilibrium point whereer the graph o potential energy is horizontal: At r=. 5 mm and 3. mm, the equilibrium is stable. At r=. 3 mm, the equilibrium is unstable. A particle moing out toward r approaches neutral equilibrium. (b) The system energy E cannot be less than 5.6 J. The particle is bound i 5.6 J E < J. (c) (d) I the system energy is 3 J, its potential energy must be less than or equal to 3 J. Thus, the particle s position is limited to 0.6 mm r 3.6 mm. K U E. Thus, + = K E U max = min = 3.0 J 5.6 J =.6 J. (e) Kinetic energy is a maximum when the potential energy is a minimum, at r=.5 mm. () 3 J+ W = J. Hence, the binding energy is W = 4 J. P8.3 (a) The distance moed upward in the irst 3.00 s is m s Δ y = t = ( 3.00 s ) =.63 m The motor and the earth s graity do work on the eleator car: mi + Wmotor + mgδ y cos80 = m 4 Wmotor = ( 650 kg )(.75 m s ) 0 + ( 650 kg ) g(.63 m ) =.77 0 J 4 W.77 0 J 3 Also, W = P t so P = = = W = 7.9 hp. t 3.00 s (b) When moing upward at constant speed ( =.75 m s) the applied orce equals the 3 w eight = ( 650 kg)( 9.80 m s ) = N. Thereore, P 3 4 = F = N.75 m s =. 0 W = 4.9 hp P8.34 The useul output energy is 0 Wh 0.60 = mg y y = F Δy i g 0 W s 0.40 J N m Δ y = = 890 N W s J 94 m

4 3 P8.39 (a) x = t+.00t dx = = t Thereore, dt ( 4.00 )( 6.00 ) ( K = m = + t = + t + t ) J d dt (b) a= = ( t).0 m s F= ma= t = 48.0 t N (c) P = F = ( t )( + t ) = ( t + t 3 ) W (d) P W = dt = 48.0t+ 88t dt = 50 J 0 0 P8.54 (a) Between the second and the third picture, Δ Emech =Δ K+Δ U μmgd = m i + kd ( 50.0 N m ) d (.00 kg)( 9.80 m s ) d (.00 kg )( 3.00 m s) = 0 [.45 ±.35 ] N d = = m 50.0 N m (b) Between picture two and picture our, Δ Emech =Δ K+Δ U ( d) = m m i = 3.00 m s.45 N m =.30 m s (.00 kg) (c) For the motion rom picture two to picture ie, Δ E =Δ K+ΔU mech D+ = D ( d) (.00 kg)( 3.00 m s) 9.00 J = ( m) =.08 m FIG. P kg 9.80 m s

5 P8.55 Δ mech E = Δx E E = d i BC mgh kx μ = = mgd kx mgh = μmgd BC BC 0.38 FIG. P8.55 P8.60 (a) Between the second and the third picture, Δ Emech =Δ K +Δ U μmgd= mi + kd ( 50.0 N m ) d (.00 kg)( 9.80 m s ) d (.00 kg)( 3.00 m s ) = 0 [.45±.5 ] N d = = m 50.0 N m (b) Between picture two and picture our, Δ Emech =Δ K +Δ U ( d) = m m i = 3.00 m s.45 N m =.30 m s (.00 kg) (c) For the motion rom picture two to picture ie, Δ E = Δ K +ΔU mech D ( + d) = (.00 kg)( 3.00 m s) 9.00 J D = ( m ) =.08 m kg 9.80 m s FIG. P8.60 P8.58 The geometry reeals D = Lsin θ + Lsin φ, 50.0 m 40.0 m ( sin 50 sin φ ) (a) From takeo to alighting or the Jane-Earth system ( K+ Ug) + Wwind = ( K+ Ug) i mi + mg( Lcosθ) + FD ( ) = 0 + mg( Lcosφ) 50 kg i + 50 kg 9.8 m s 40 m cos 50 0 N 50 m = 50 kg 9.8 m s 40 m cos 8.9 = +, φ = kg i.6 0 J J =.7 0 J 947 J i = = 50 kg 6.5 m s (b) For the swing back

6 mi + mg L + FD + = + mg L ( cosφ) 0 ( cosθ) 30 kg 30 kg 9.8 m s i + 40 m cos N 50 m = 30 kg 9.8 m s 40 m cos50 30 kg J J i + = J 6340 J i = = 30 kg 9.87 m s P8.59 (a) Initial compression o spring: kx = m ( 450 N m )( Δ x) = ( kg)(.0 m s) Thereore, Δ x = m (b) Speed o block at top o track: Δ Emech = Δ x FIG. P8.59 mght + m T mgh B + mb = ( π ) T = ( kg)( 9.80 m s )(.00 m ) + ( kg) ( kg)(.0 m s) 0.50 T 4. T = = 4.0 m s ( 7.00 N )( π )(.00 m ) (c) Does block all o at or beore top o track? Block alls i ac < ( 4.0) T ac = = = 6.8 m s.00 Thereore ac > g and the block stays on the track. g P8.6 (a) Energy is consered in the swing o the pendulum, and the stationary peg does no work. So the ball s speed does not change when the string hits or leaes the peg, and the ball swings equally high on both sides. (b) elatie to the point o suspension, L θ Peg d U i = 0, U = mg d ( L d) From this we ind that mg( d L) + m = 0 FIG. P8.7 Also or centripetal motion,

7 m mg= where = L d. Upon soling, we get 3L d =. 5 P8.64 (a) At the top o the loop the car and riders are in ree all: m Fy = may: mg down = down = g Energy o the car-riders-earth system is consered between release and top o loop: Ki + Ugi = K + Ug : 0+ mgh = m + mg gh = g + g h=.50 (b) Let h now represent the height.5 o the release point. At the bottom o the loop we hae mgh = m b or b = gh F mb y = may: nb mg= ( up) m( gh) nb = mg+ At the top o the loop, mgh = m t + mg = gh 4g F = ma : y y t mt nt mg= m nt = mg+ gh 4g m( gh) nt = 5mg FIG. P8.64 Then the normal orce at the bottom is larger by

8 ( ) ( ) m gh m gh nb nt = mg + + 5mg = 6mg

The negative root tells how high the mass will rebound if it is instantly glued to the spring. We want

The negative root tells how high the mass will rebound if it is instantly glued to the spring. We want 8.38 (a) The mass moves down distance.0 m + x. Choose y = 0 at its lower point. K i + U gi + U si + E = K f + U gf + U sf 0 + mgy i + 0 + 0 = 0 + 0 + kx (.50 kg)9.80 m/s (.0 m + x) = (30 N/m) x 0 = (60

More information

P8.14. m 1 > m 2. m 1 gh = 1 ( 2 m 1 + m 2 )v 2 + m 2 gh. 2( m 1. v = m 1 + m 2. 2 m 2v 2 Δh determined from. m 2 g Δh = 1 2 m 2v 2.

P8.14. m 1 > m 2. m 1 gh = 1 ( 2 m 1 + m 2 )v 2 + m 2 gh. 2( m 1. v = m 1 + m 2. 2 m 2v 2 Δh determined from. m 2 g Δh = 1 2 m 2v 2. . Two objects are connected by a light string passing over a light frictionless pulley as in Figure P8.3. The object of mass m is released from rest at height h. Using the principle of conservation of

More information

Potential energy functions used in Chapter 7

Potential energy functions used in Chapter 7 Potential energy functions used in Chapter 7 CHAPTER 7 CONSERVATION OF ENERGY Conservation of mechanical energy Conservation of total energy of a system Examples Origin of friction Gravitational potential

More information

Ch 8 Conservation of Energy

Ch 8 Conservation of Energy Ch 8 Conservation of Energy Cons. of Energy It has been determined, through experimentation, that the total mechanical energy of a system remains constant in any isolated system of objects that interact

More information

A. B. C. D. E. v x. ΣF x

A. B. C. D. E. v x. ΣF x Q4.3 The graph to the right shows the velocity of an object as a function of time. Which of the graphs below best shows the net force versus time for this object? 0 v x t ΣF x ΣF x ΣF x ΣF x ΣF x 0 t 0

More information

Chapter 11 Collision Theory

Chapter 11 Collision Theory Chapter Collision Theory Introduction. Center o Mass Reerence Frame Consider two particles o masses m and m interacting ia some orce. Figure. Center o Mass o a system o two interacting particles Choose

More information

Chapter 8 Solutions. The change in potential energy as it moves from A to B is. The change in potential energy in going from A to B is

Chapter 8 Solutions. The change in potential energy as it moves from A to B is. The change in potential energy in going from A to B is Chapter 8 Solutions *8. (a) With our choice for the zero level for potential energy at point B, U B = 0. At point A, the potential energy is given by U A = mgy where y is the vertical height above zero

More information

Work Up an Incline. Work = Force x Distance. Push up: 1500J. What is the PE at the top? mg = 500N. An incline is a simple machine!

Work Up an Incline. Work = Force x Distance. Push up: 1500J. What is the PE at the top? mg = 500N. An incline is a simple machine! Quick Question Work Up an Incline The block o ice weighs 500 Newtons. How much work does it take to push it up the incline compared to liting it straight up? Ignore riction. Work Up an Incline Work = Force

More information

Potential Energy and Conservation

Potential Energy and Conservation PH 1-3A Fall 009 Potential Energy and Conservation of Energy Lecture 1-13 Chapter 8 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition) Chapter 8 Potential Energy and Conservation of Energy

More information

Homework 6. problems: 8.-, 8.38, 8.63

Homework 6. problems: 8.-, 8.38, 8.63 Homework 6 problems: 8.-, 8.38, 8.63 Problem A circus trapeze consists of a bar suspended by two parallel ropes, each of length l. allowing performers to swing in a vertical circular arc. Suppose a performer

More information

CJ57.P.003 REASONING AND SOLUTION According to the impulse-momentum theorem (see Equation 7.4), F t = mv

CJ57.P.003 REASONING AND SOLUTION According to the impulse-momentum theorem (see Equation 7.4), F t = mv Solution to HW#7 CJ57.CQ.003. RASONNG AND SOLUTON a. Yes. Momentum is a ector, and the two objects hae the same momentum. This means that the direction o each object s momentum is the same. Momentum is

More information

Physics 111. Lecture 18 (Walker: 8.3-4) Energy Conservation I March 11, Conservation of Mechanical Energy

Physics 111. Lecture 18 (Walker: 8.3-4) Energy Conservation I March 11, Conservation of Mechanical Energy Physics 111 Lecture 18 (Walker: 8.3-4) Energy Conservation I March 11, 2009 Lecture 18 1/24 Conservation o Mechanical Energy Deinition o mechanical energy: (8-6) I the only work done in going rom the initial

More information

Chapter 6: Work and Kinetic Energy

Chapter 6: Work and Kinetic Energy Chapter 6: Work and Kinetic Energy Suppose you want to find the final velocity of an object being acted on by a variable force. Newton s 2 nd law gives the differential equation (for 1D motion) dv dt =

More information

Power. Power is the time rate at which work W is done by a force Average power. (energy per time) P = dw/dt = (Fcosφ dx)/dt = F v cosφ= F.

Power. Power is the time rate at which work W is done by a force Average power. (energy per time) P = dw/dt = (Fcosφ dx)/dt = F v cosφ= F. Power Power is the time rate at which work W is done by a force Aerage power P ag = W/ t Instantaneous power (energy per time) P = dw/dt = (Fcosφ dx)/dt = F cosφ= F. Unit: watt 1 watt = 1 W = 1 J/s 1 horsepower

More information

Work and kinetic energy. If a net force is applied on an object, the object may

Work and kinetic energy. If a net force is applied on an object, the object may Work and kinetic energy If a net force is applied on an object, the object may CHAPTER 6 WORK AND ENERGY experience a change in position, i.e., a displacement. When a net force is applied over a distance,

More information

PHYS Summer Professor Caillault Homework Solutions. Chapter 8

PHYS Summer Professor Caillault Homework Solutions. Chapter 8 PHYS 1111 - Summer 007 - Professor Caillault Homework Solutions Chapter 8 5. Picture the Problem The physical situation is depicted at right. for the Strategy Use W sp = 1 k x i x f work done by the spring.

More information

POTENTIAL ENERGY AND ENERGY CONSERVATION

POTENTIAL ENERGY AND ENERGY CONSERVATION 7 POTENTIAL ENERGY AND ENERGY CONSERVATION 7.. IDENTIFY: U grav = mgy so ΔU grav = mg( y y ) SET UP: + y is upward. EXECUTE: (a) ΔU = (75 kg)(9.8 m/s )(4 m 5 m) = +6.6 5 J (b) ΔU = (75 kg)(9.8 m/s )(35

More information

Chapter 10, Solutions, Physics 121

Chapter 10, Solutions, Physics 121 Chapter 0, Solutions, Physics 0.. Model: We will use the particle model for the bullet (B) and the bowling ball (BB). Solve: For the bullet, For the bowling ball, K = m v = (0.0 kg)(500 m/s) = 50 J B B

More information

Solutions to Physics: Principles with Applications, 5/E, Giancoli Chapter 6

Solutions to Physics: Principles with Applications, 5/E, Giancoli Chapter 6 CHAPTER 6 1. Because there is no acceleration, the contact orce must have the same magnitude as the weight. The displacement in the direction o this orce is the vertical displacement. Thus, W = F Æy =

More information

FOCUS ON CONCEPTS Section 7.1 The Impulse Momentum Theorem

FOCUS ON CONCEPTS Section 7.1 The Impulse Momentum Theorem WEEK-6 Recitation PHYS 3 FOCUS ON CONCEPTS Section 7. The Impulse Momentum Theorem Mar, 08. Two identical cars are traeling at the same speed. One is heading due east and the other due north, as the drawing

More information

Phys101 Second Major-162 Zero Version Coordinator: Dr. Kunwar S. Saturday, March 25, 2017 Page: N Ans:

Phys101 Second Major-162 Zero Version Coordinator: Dr. Kunwar S. Saturday, March 25, 2017 Page: N Ans: Coordinator: Dr. Kunwar S. Saturday, March 25, 2017 Page: 1 Q1. Only two horizontal forces act on a 3.0 kg body that can move over a frictionless floor. One force is 20 N, acting due east, and the other

More information

Physics 201, Review 2

Physics 201, Review 2 Physics 01, Review Important Notes: v This review does not replace your own preparation efforts v The review is not meant to be complete. v Exercises used in this review do not form a test problem pool.

More information

grav mgr, where r is the radius of the bowl and grav W mgr kg 9.8 m s m J.

grav mgr, where r is the radius of the bowl and grav W mgr kg 9.8 m s m J. Phys 0 Homework 9 Solutions 3. (a) The force of ity is constant, so the work it does is given by W F d, where F is the force and d is the displacement. The force is vertically downward and has magnitude

More information

(A) 10 m (B) 20 m (C) 25 m (D) 30 m (E) 40 m

(A) 10 m (B) 20 m (C) 25 m (D) 30 m (E) 40 m PSI AP Physics C Work and Energy (Algebra Based) Multiple Choice Questions (use g = 10 m/s 2 ) 1. A student throws a ball upwards from the ground level where gravitational potential energy is zero. At

More information

Conservation of mechanical energy *

Conservation of mechanical energy * OpenStax-CNX module: m15102 1 Conservation of mechanical energy * Sunil Kumar Singh This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 2.0 Abstract When only

More information

Physics 4A Solutions to Chapter 9 Homework

Physics 4A Solutions to Chapter 9 Homework Physics 4A Solutions to Chapter 9 Homework Chapter 9 Questions:, 10, 1 Exercises & Problems: 3, 19, 33, 46, 51, 59, 86, 90, 100, 104 Answers to Questions: Q 9- (a) ac, cd, bc (b) bc (c) bd, ad Q 9-10 a,

More information

Fs (30.0 N)(50.0 m) The magnitude of the force that the shopper exerts is f 48.0 N cos 29.0 cos 29.0 b. The work done by the pushing force F is

Fs (30.0 N)(50.0 m) The magnitude of the force that the shopper exerts is f 48.0 N cos 29.0 cos 29.0 b. The work done by the pushing force F is Chapter 6: Problems 5, 6, 8, 38, 43, 49 & 53 5. ssm Suppose in Figure 6. that +1.1 1 3 J o work is done by the orce F (magnitude 3. N) in moving the suitcase a distance o 5. m. At what angle θ is the orce

More information

Chapter 07: Kinetic Energy and Work

Chapter 07: Kinetic Energy and Work Chapter 07: Kinetic Energy and Work Like other undamental concepts, energy is harder to deine in words than in equations. It is closely linked to the concept o orce. Conservation o Energy is one o Nature

More information

There are two types of forces: conservative (gravity, spring force) nonconservative (friction)

There are two types of forces: conservative (gravity, spring force) nonconservative (friction) Chapter 8: Conservation o Energy There are two types o orces: conservative (gravity, spring orce) nonconservative (riction) Conservative Forces Conservative Force the work done by the orce on an object

More information

AP Physics. Chapters 7 & 8 Review

AP Physics. Chapters 7 & 8 Review AP Physics Chapters 7 & 8 Review 1.A particle moves along the x axis and is acted upon by a single conservative force given by F x = ( 20 4.0x)N where x is in meters. The potential energy associated with

More information

One-Dimensional Motion Review IMPORTANT QUANTITIES Name Symbol Units Basic Equation Name Symbol Units Basic Equation Time t Seconds Velocity v m/s

One-Dimensional Motion Review IMPORTANT QUANTITIES Name Symbol Units Basic Equation Name Symbol Units Basic Equation Time t Seconds Velocity v m/s One-Dimensional Motion Review IMPORTANT QUANTITIES Name Symbol Units Basic Equation Name Symbol Units Basic Equation Time t Seconds Velocity v m/s v x t Position x Meters Speed v m/s v t Length l Meters

More information

Physics 2211 A & B Quiz #4 Solutions Fall 2016

Physics 2211 A & B Quiz #4 Solutions Fall 2016 Physics 22 A & B Quiz #4 Solutions Fall 206 I. (6 points) A pendulum bob of mass M is hanging at rest from an ideal string of length L. A bullet of mass m traveling horizontally at speed v 0 strikes it

More information

(35+70) 35 g (m 1+m 2)a=m1g a = 35 a= =3.27 g 105

(35+70) 35 g (m 1+m 2)a=m1g a = 35 a= =3.27 g 105 Coordinator: Dr. W. L-Basheer Monday, March 16, 2015 Page: 1 Q1. 70 N block and a 35 N block are connected by a massless inextendable string which is wrapped over a frictionless pulley as shown in Figure

More information

Chapters 10 & 11: Energy

Chapters 10 & 11: Energy Chapters 10 & 11: Energy Power: Sources of Energy Tidal Power SF Bay Tidal Power Project Main Ideas (Encyclopedia of Physics) Energy is an abstract quantity that an object is said to possess. It is not

More information

1. The potential energy stored by the spring is given by U = J

1. The potential energy stored by the spring is given by U = J 1. The potential energy stored by the spring is given by U = 1 kx, where k is the spring constant and x is the displacement of the end of the spring from its position when the spring is in equilibrium.

More information

(b) The mechanical energy would be 20% of the results of part (a), so (0 20)(920 m) 180 m.

(b) The mechanical energy would be 20% of the results of part (a), so (0 20)(920 m) 180 m. PH Chapter 7 Solutions 7.4. IDENTIFY: The energy from the food goes into the increased gravitational potential energy of the hiker. We must convert food calories to joules. SET P: The change in gravitational

More information

Physics for Scientists and Engineers. Chapter 6 Dynamics I: Motion Along a Line

Physics for Scientists and Engineers. Chapter 6 Dynamics I: Motion Along a Line Physics for Scientists and Engineers Chapter 6 Dynamics I: Motion Along a Line Spring, 008 Ho Jung Paik Applications of Newton s Law Objects can be modeled as particles Masses of strings or ropes are negligible

More information

Chapter 8. Potential Energy & Conservation of Energy

Chapter 8. Potential Energy & Conservation of Energy Chapter 8 Potential Energy & Conservation of Energy 8.1 Potential Energy Technically, potential energy is energy that can be associated with the configuration (arrangement) of a system of objects that

More information

Work and Energy Problems

Work and Energy Problems 09//00 Multiple hoice orce o strength 0N acts on an object o ass 3kg as it oes a distance o 4. I is perpendicular to the 4 displaceent, the work done is equal to: Work and Energy Probles a) 0J b) 60J c)

More information

WORK ENERGY AND POWER

WORK ENERGY AND POWER WORK ENERGY AND POWER WORK PHYSICAL DEINITION When the point of application of force moves in the direction of the applied force under its effect then work is said to be done. MATHEMATICAL DEINITION O

More information

P = dw dt. P = F net. = W Δt. Conservative Force: P ave. Net work done by a conservative force on an object moving around every closed path is zero

P = dw dt. P = F net. = W Δt. Conservative Force: P ave. Net work done by a conservative force on an object moving around every closed path is zero Power Forces Conservative Force: P ave = W Δt P = dw dt P = F net v Net work done by a conservative force on an object moving around every closed path is zero Non-conservative Force: Net work done by a

More information

PHYSICS 221, FALL 2009 EXAM #1 SOLUTIONS WEDNESDAY, SEPTEMBER 30, 2009

PHYSICS 221, FALL 2009 EXAM #1 SOLUTIONS WEDNESDAY, SEPTEMBER 30, 2009 PHYSICS 221, FALL 2009 EXAM #1 SOLUTIONS WEDNESDAY, SEPTEMBER 30, 2009 Note: The unit vectors in the +x, +y, and +z directions of a right-handed Cartesian coordinate system are î, ĵ, and ˆk, respectively.

More information

Potential Energy and Conservation of Energy Chap. 7 & 8

Potential Energy and Conservation of Energy Chap. 7 & 8 Level : AP Physics Potential Energy and Conservation of Energy Chap. 7 & 8 Potential Energy of a System see p.191 in the textbook - Potential energy is the energy associated with the arrangement of a system

More information

Work and kinetic energy. LA info session today at 5pm in UMC235 CAPA homework due tomorrow night.

Work and kinetic energy. LA info session today at 5pm in UMC235 CAPA homework due tomorrow night. Work and kinetic energy LA info session today at 5pm in UMC235 CAPA homework due tomorrow night. 1 Work I apply a force of 2N in the x direction to an object that moves 5m in x. How much work have I done

More information

1D-04 Radial Acceleration & Tangential Velocity

1D-04 Radial Acceleration & Tangential Velocity 1D-04 Radial Acceleration & Tangential Velocity Once the string is cut, where is the ball going? AT ANY INSTANT, THE VELOCITY VECTOR OF THE BALL IS DIRECTED ALONG THE TANGENT. AT THE INSTANT WHEN THE BLADE

More information

PH211 Chapter 10 Solutions

PH211 Chapter 10 Solutions PH Chapter 0 Solutions 0.. Model: We will use the particle model for the bullet (B) and the running student (S). Solve: For the bullet, K B = m v = B B (0.00 kg)(500 m/s) = 50 J For the running student,

More information

Physics 101 Lecture 12 Equilibrium and Angular Momentum

Physics 101 Lecture 12 Equilibrium and Angular Momentum Physics 101 Lecture 1 Equilibrium and Angular Momentum Ali ÖVGÜN EMU Physics Department www.aovgun.com Static Equilibrium q Equilibrium and static equilibrium q Static equilibrium conditions n Net external

More information

Conservation of Mechanical Energy 8.01

Conservation of Mechanical Energy 8.01 Conservation o Mechanical Energy 8.01 Non-Conservative Forces Work done on the object by the orce depends on the path taken by the object Example: riction on an object moving on a level surace F riction

More information

Physics 231 Lecture 9

Physics 231 Lecture 9 Physics 31 Lecture 9 Mi Main points o today s lecture: Potential energy: ΔPE = PE PE = mg ( y ) 0 y 0 Conservation o energy E = KE + PE = KE 0 + PE 0 Reading Quiz 3. I you raise an object to a greater

More information

CIRCULAR MOTION EXERCISE 1 1. d = rate of change of angle

CIRCULAR MOTION EXERCISE 1 1. d = rate of change of angle CICULA MOTION EXECISE. d = rate of change of angle as they both complete angle in same time.. c m mg N r m N mg r Since r A r B N A N B. a Force is always perpendicular to displacement work done = 0 4.

More information

CHAPTER 8: Conservation of Energy 1.)

CHAPTER 8: Conservation of Energy 1.) CHAPTE 8: Conservation of Energy 1.) How We Got Here! We started by noticing that a force component acted along the line of a body s motion will affect the magnitude of the body s velocity. We multiplied

More information

Potential energy and conservation of energy

Potential energy and conservation of energy Chapter 8 Potential energy and conservation of energy Copyright 8.1_2 Potential Energy and Work Potential energy U is energy that can be associated with the configuration (arrangement) of a system of objects

More information

PSI AP Physics B Circular Motion

PSI AP Physics B Circular Motion PSI AP Physics B Circular Motion Multiple Choice 1. A ball is fastened to a string and is swung in a vertical circle. When the ball is at the highest point of the circle its velocity and acceleration directions

More information

Slide 1 / 76. Slide 2 / 76. Slide 3 / 76. Work & Energy Multiple Choice Problems A 1,800 B 5,000 E 300,000. A Fdcos θ - μ mgd B Fdcos θ.

Slide 1 / 76. Slide 2 / 76. Slide 3 / 76. Work & Energy Multiple Choice Problems A 1,800 B 5,000 E 300,000. A Fdcos θ - μ mgd B Fdcos θ. Slide 1 / 76 Work & nergy Multiple hoice Problems 1 driver in a 2000 kg Porsche wishes to pass a slow moving school bus on a 4 lane road. What is the average power in watts required to accelerate the sports

More information

Chapter 15 Periodic Motion

Chapter 15 Periodic Motion Chapter 15 Periodic Motion Slide 1-1 Chapter 15 Periodic Motion Concepts Slide 1-2 Section 15.1: Periodic motion and energy Section Goals You will learn to Define the concepts of periodic motion, vibration,

More information

P6.5 (a) static friction. v r. = r ( 30.0 cm )( 980 cm s ) P6.15 Let the tension at the lowest point be T.

P6.5 (a) static friction. v r. = r ( 30.0 cm )( 980 cm s ) P6.15 Let the tension at the lowest point be T. Q65 The speed chanes The tanential orce component causes tanential acceleration Q69 I would not accept that statement or two reasons First, to be beyond the pull o raity, one would hae to be ininitely

More information

D) No, because of the way work is defined D) remains constant at zero. D) 0 J D) zero

D) No, because of the way work is defined D) remains constant at zero. D) 0 J D) zero CHAPTER 6 REVIEW NAME 1) Can work be done on a system if there is no motion? A) Yes, if an outside force is provided. B) Yes, since motion is only relative. C) No, since a system which is not moving has

More information

( ) = ( ) W net = ΔKE = KE f KE i W F. F d x. KE = 1 2 mv2. Note: Work is the dot product of F and d. Work-Kinetic Energy Theorem

( ) = ( ) W net = ΔKE = KE f KE i W F. F d x. KE = 1 2 mv2. Note: Work is the dot product of F and d. Work-Kinetic Energy Theorem Work-Kinetic Energy Theorem KE = 1 2 mv2 W F change in the kinetic energy of an object F d x net work done on the particle ( ) = ( ) W net = ΔKE = KE f KE i Note: Work is the dot product of F and d W g

More information

(A) 10 m (B) 20 m (C) 25 m (D) 30 m (E) 40 m

(A) 10 m (B) 20 m (C) 25 m (D) 30 m (E) 40 m Work/nergy 1. student throws a ball upward where the initial potential energy is 0. t a height of 15 meters the ball has a potential energy of 60 joules and is moving upward with a kinetic energy of 40

More information

Chapter 6. Work and Energy

Chapter 6. Work and Energy Chapter 6 Work and Energy The Ideal Spring HOOKE S LAW: RESTORING FORCE OF AN IDEAL SPRING The restoring orce on an ideal spring is F x = k x SI unit or k: N/m The Ideal Spring Example: A Tire Pressure

More information

CHAPTER 4 NEWTON S LAWS OF MOTION

CHAPTER 4 NEWTON S LAWS OF MOTION 62 CHAPTER 4 NEWTON S LAWS O MOTION CHAPTER 4 NEWTON S LAWS O MOTION 63 Up to now we have described the motion of particles using quantities like displacement, velocity and acceleration. These quantities

More information

FRICTIONAL FORCES. Direction of frictional forces... (not always obvious)... CHAPTER 5 APPLICATIONS OF NEWTON S LAWS

FRICTIONAL FORCES. Direction of frictional forces... (not always obvious)... CHAPTER 5 APPLICATIONS OF NEWTON S LAWS RICTIONAL ORCES CHAPTER 5 APPLICATIONS O NEWTON S LAWS rictional forces Static friction Kinetic friction Centripetal force Centripetal acceleration Loop-the-loop Drag force Terminal velocity Direction

More information

PHYSICS 221, FALL 2011 EXAM #2 SOLUTIONS WEDNESDAY, NOVEMBER 2, 2011

PHYSICS 221, FALL 2011 EXAM #2 SOLUTIONS WEDNESDAY, NOVEMBER 2, 2011 PHYSICS 1, FALL 011 EXAM SOLUTIONS WEDNESDAY, NOVEMBER, 011 Note: The unit vectors in the +x, +y, and +z directions of a right-handed Cartesian coordinate system are î, ĵ, and ˆk, respectively. In this

More information

AP1 WEP. Answer: E. The final velocities of the balls are given by v = 2gh.

AP1 WEP. Answer: E. The final velocities of the balls are given by v = 2gh. 1. Bowling Ball A is dropped from a point halfway up a cliff. A second identical bowling ball, B, is dropped simultaneously from the top of the cliff. Comparing the bowling balls at the instant they reach

More information

Slide 2 / 76. Slide 1 / 76. Slide 3 / 76. Slide 4 / 76. Slide 6 / 76. Slide 5 / 76. Work & Energy Multiple Choice Problems A 1,800 B 5,000 E 300,000

Slide 2 / 76. Slide 1 / 76. Slide 3 / 76. Slide 4 / 76. Slide 6 / 76. Slide 5 / 76. Work & Energy Multiple Choice Problems A 1,800 B 5,000 E 300,000 Slide 1 / 76 Slide 2 / 76 1 driver in a 2000 kg Porsche wishes to pass a slow moving school bus on a 4 lane road. What is the average power in watts required to accelerate the sports car from 30 m/s to

More information

Lecture 12 Friction &Circular. Dynamics

Lecture 12 Friction &Circular. Dynamics Lecture 12 Friction &Circular Exam Remarks Units, units, units Dynamics Drawing graphs with arrows and labels FBDs: ma is not a force! r(r) given, derive v(t), a(t) Circular motion: the velocity vector

More information

AP Physics. Harmonic Motion. Multiple Choice. Test E

AP Physics. Harmonic Motion. Multiple Choice. Test E AP Physics Harmonic Motion Multiple Choice Test E A 0.10-Kg block is attached to a spring, initially unstretched, of force constant k = 40 N m as shown below. The block is released from rest at t = 0 sec.

More information

Chapters 10 & 11: Energy

Chapters 10 & 11: Energy Chapters 10 & 11: Energy Power: Sources of Energy Tidal Power SF Bay Tidal Power Project Main Ideas (Encyclopedia of Physics) Energy is an abstract quantity that an object is said to possess. It is not

More information

Boxcars and Ropes Stopping Force in Same Distance 56

Boxcars and Ropes Stopping Force in Same Distance 56 Boxcars and Ropes Stopping orce in Same Distance 56 In a western movie, a confederate raiding party stopped a runaway boxcar carrying gold by using many ropes tied to trees. Given below are six boxcars

More information

Last Time: Chapter 6 Today: Chapter 7

Last Time: Chapter 6 Today: Chapter 7 Last Time: Chapter 6 Today: Chapter 7 Last Time Work done by non- constant forces Work and springs Power Examples Today Poten&al Energy of gravity and springs Forces and poten&al energy func&ons Energy

More information

l1, l2, l3, ln l1 + l2 + l3 + ln

l1, l2, l3, ln l1 + l2 + l3 + ln Work done by a constant force: Consider an object undergoes a displacement S along a straight line while acted on a force F that makes an angle θ with S as shown The work done W by the agent is the product

More information

RELEASED. Go to next page. 2. The graph shows the acceleration of a car over time.

RELEASED. Go to next page. 2. The graph shows the acceleration of a car over time. 1. n object is launched across a room. How can a student determine the average horizontal velocity of the object using a meter stick and a calculator? The student can calculate the object s initial potential

More information

Lecture 12! Center of mass! Uniform circular motion!

Lecture 12! Center of mass! Uniform circular motion! Lecture 1 Center of mass Uniform circular motion Today s Topics: Center of mass Uniform circular motion Centripetal acceleration and force Banked cures Define the center of mass The center of mass is a

More information

AP1 WEP. Answer: E. The final velocities of the balls are given by v = 2gh.

AP1 WEP. Answer: E. The final velocities of the balls are given by v = 2gh. 1. Bowling Ball A is dropped from a point halfway up a cliff. A second identical bowling ball, B, is dropped simultaneously from the top of the cliff. Comparing the bowling balls at the instant they reach

More information

Work and energy. 15 m. c. Find the work done by the normal force exerted by the incline on the crate.

Work and energy. 15 m. c. Find the work done by the normal force exerted by the incline on the crate. Work and energy 1. A 10.0-kg crate is pulled 15.0 m up along a frictionless incline as shown in the figure below. The crate starts at rest and has a final speed of 6.00 m/s. motor 15 m 5 a. Draw the free-body

More information

Phys101 Second Major-152 Zero Version Coordinator: Dr. W. Basheer Monday, March 07, 2016 Page: 1

Phys101 Second Major-152 Zero Version Coordinator: Dr. W. Basheer Monday, March 07, 2016 Page: 1 Phys101 Second Major-15 Zero Version Coordinator: Dr. W. Basheer Monday, March 07, 016 Page: 1 Q1. Figure 1 shows two masses; m 1 = 4.0 and m = 6.0 which are connected by a massless rope passing over a

More information

Boxcars and Ropes Stopping Force in Same Distance 56

Boxcars and Ropes Stopping Force in Same Distance 56 Boxcars and Ropes Stopping orce in Same Distance 56 In a western movie, a confederate raiding party stopped a runaway boxcar carrying gold by using many ropes tied to trees. Given below are six boxcars

More information

Chapter 7 Solutions. The normal force and the weight are both at 90 to the motion. Both do 0 work.

Chapter 7 Solutions. The normal force and the weight are both at 90 to the motion. Both do 0 work. Chapter 7 Solutions *7. W Fd (5000 N)(3.00 km) 5.0 MJ *7. The component of force along the direction of motion is F cos θ (35.0 N) cos 5.0 3.7 N The work done by this force is W (F cos θ)d (3.7 N)(50.0

More information

Potential Energy & Conservation of Energy

Potential Energy & Conservation of Energy PHYS 101 Previous Exam Problems CHAPTER 8 Potential Energy & Conservation of Energy Potential energy Conservation of energy conservative forces Conservation of energy friction Conservation of energy external

More information

Physics 111 Lecture 6 Work-Energy -Power Dr.Ali ÖVGÜN

Physics 111 Lecture 6 Work-Energy -Power Dr.Ali ÖVGÜN Physics 111 Lecture 6 Work-Energy -Power Dr.Ali ÖVGÜN EMU Physics Department www.aovgun.com Why Energy? q Why do we need a concept o energy? q The energy approach to describing motion is particularly useul

More information

Classical Mechanics Lecture 7

Classical Mechanics Lecture 7 Classical Mechanics Lecture 7 Today s Concepts: Work & Kine6c Energy Mechanics Lecture 7, Slide 1 Notices Midterm Exam Friday Feb 8 will cover stuff we do un6l today. 10 mul6ple choice + 2 problems, 2

More information

NEWTONS LAWS OF MOTION AND FRICTIONS STRAIGHT LINES

NEWTONS LAWS OF MOTION AND FRICTIONS STRAIGHT LINES EWTOS LAWS O OTIO AD RICTIOS STRAIGHT LIES ITRODUCTIO In this chapter, we shall study the motion o bodies along with the causes o their motion assuming that mass is constant. In addition, we are going

More information

Physics 2211 ABC Quiz #4 Solutions Spring 2017

Physics 2211 ABC Quiz #4 Solutions Spring 2017 Physics 22 ABC Quiz #4 Solutions Spring 207 I. (6 points) Corentine is driving her car of mass m around a curve when suddenly, all systems fail! The engine quits, she can t brake, she can t steer, and

More information

W = F x W = Fx cosθ W = Fx. Work

W = F x W = Fx cosθ W = Fx. Work Ch 7 Energy & Work Work Work is a quantity that is useful in describing how objects interact with other objects. Work done by an agent exerting a constant force on an object is the product of the component

More information

Slide 1 / 76. Work & Energy Multiple Choice Problems

Slide 1 / 76. Work & Energy Multiple Choice Problems Slide 1 / 76 Work & Energy Multiple Choice Problems Slide 2 / 76 1 A driver in a 2000 kg Porsche wishes to pass a slow moving school bus on a 4 lane road. What is the average power in watts required to

More information

Ground Rules. PC1221 Fundamentals of Physics I. Introduction to Energy. Energy Approach to Problems. Lectures 13 and 14. Energy and Energy Transfer

Ground Rules. PC1221 Fundamentals of Physics I. Introduction to Energy. Energy Approach to Problems. Lectures 13 and 14. Energy and Energy Transfer PC1221 Fundamentals o Physics I Lectures 13 and 14 Energy and Energy Transer Dr Tay Seng Chuan 1 Ground Rules Switch o your handphone and pager Switch o your laptop computer and keep it No talking while

More information

AP Physics C: Work, Energy, and Power Practice

AP Physics C: Work, Energy, and Power Practice AP Physics C: Work, Energy, and Power Practice 1981M2. A swing seat of mass M is connected to a fixed point P by a massless cord of length L. A child also of mass M sits on the seat and begins to swing

More information

Physics 231 Lecture 12

Physics 231 Lecture 12 Physics 31 Lecture 1 Work energy theorem W Potential energy o gravity: ΔPE total = = PE KE PE KE 0 mg Conservation o energy ( y ) 0 y 0 E = KE + PE = KE 0 + PE 0 Potential energy o a spring = PE = 1 kx

More information

Review. Kinetic Energy Work Hooke s s Law Potential Energy Conservation of Energy Power 1/91

Review. Kinetic Energy Work Hooke s s Law Potential Energy Conservation of Energy Power 1/91 Review Kinetic Energy Work Hooke s s Law Potential Energy Conservation of Energy Power 1/91 The unit of work is the A. Newton B. Watt C. Joule D. Meter E. Second 2/91 The unit of work is the A. Newton

More information

Power: Sources of Energy

Power: Sources of Energy Chapter 5 Energy Power: Sources of Energy Tidal Power SF Bay Tidal Power Project Main Ideas (Encyclopedia of Physics) Energy is an abstract quantity that an object is said to possess. It is not something

More information

PHYSICS FORMULAS. A. B = A x B x + A y B y + A z B z = A B cos (A,B)

PHYSICS FORMULAS. A. B = A x B x + A y B y + A z B z = A B cos (A,B) PHYSICS FORMULAS A = A x i + A y j Φ = tan 1 A y A x A + B = (A x +B x )i + (A y +B y )j A. B = A x B x + A y B y + A z B z = A B cos (A,B) linear motion v = v 0 + at x - x 0 = v 0 t + ½ at 2 2a(x - x

More information

Chapter 8 Conservation of Energy and Potential Energy

Chapter 8 Conservation of Energy and Potential Energy Chapter 8 Conservation o Energy and Potential Energy So ar we have analyzed the motion o point-like bodies under the action o orces using Newton s Laws o Motion. We shall now use the Principle o Conservation

More information

Family Name: Given Name: Student number:

Family Name: Given Name: Student number: Family Name: Given Name: Student number: Academic Honesty: In accordance with the Academic Honesty Policy (T0.02), academic dishonesty in any form will not be tolerated. Prohibited acts include, but are

More information

PHYSICS - CLUTCH CH 07: WORK & ENERGY.

PHYSICS - CLUTCH CH 07: WORK & ENERGY. !! www.clutchprep.com INTRO TO ENERGY & ENERGY FORMS ENERGY: A physical quantity without a precise definition. We don't know exactly WHAT it is, but we know HOW it works. - Energy "exists" in many forms;

More information

B C = B 2 + C 2 2BC cosθ = (5.6)(4.8)cos79 = ) The components of vectors B and C are given as follows: B x. = 6.

B C = B 2 + C 2 2BC cosθ = (5.6)(4.8)cos79 = ) The components of vectors B and C are given as follows: B x. = 6. 1) The components of vectors B and C are given as follows: B x = 6.1 C x = 9.8 B y = 5.8 C y = +4.6 The angle between vectors B and C, in degrees, is closest to: A) 162 B) 111 C) 69 D) 18 E) 80 B C = (

More information

If you have a conflict, you should have already requested and received permission from Prof. Shapiro to take the make-up exam.

If you have a conflict, you should have already requested and received permission from Prof. Shapiro to take the make-up exam. Reminder: Exam this Sunday Nov. 9. Chapters 5. 5.4, 3.4,.0, 6, 7. Time: 6:0 7:30 PM Look up locations online. Bring calculator and formula sheet. If you have a conflict, you should have already requested

More information

CHAPTER 6 1. Because there is no acceleration, the contact force must have the same magnitude as the weight. The displacement in the direction of this force is the vertical displacement. Thus, W = F Æy

More information

Solutions PHYS 250 Exam 2 Practice Test

Solutions PHYS 250 Exam 2 Practice Test Solutions PHYS 250 Exam 2 Practice Test 1C This questions really deals with conservation of energy, ΔK +ΔU = 0. The main problem is determining the initial height, h, of the man just as he starts to swing.

More information

Mechanics and Heat. Chapter 5: Work and Energy. Dr. Rashid Hamdan

Mechanics and Heat. Chapter 5: Work and Energy. Dr. Rashid Hamdan Mechanics and Heat Chapter 5: Work and Energy Dr. Rashid Hamdan 5.1 Work Done by a Constant Force Work Done by a Constant Force A force is said to do work if, when acting on a body, there is a displacement

More information

Kinematics and Dynamics

Kinematics and Dynamics AP PHYS 1 Test Review Kinematics and Dynamics Name: Other Useful Site: http://www.aplusphysics.com/ap1/ap1- supp.html 2015-16 AP Physics: Kinematics Study Guide The study guide will help you review all

More information