Guide to the Expression of Uncertainty in Measurement (GUM)- An Overview

Size: px
Start display at page:

Download "Guide to the Expression of Uncertainty in Measurement (GUM)- An Overview"

Transcription

1 Estimation of Uncertainties in Chemical Measurement Guide to the Expression of Uncertainty in Measurement (GUM)- An Overview Angelique Botha

2 Method of evaluation: Analytical measurement Step 1: Specification and modeling Step 2: Identify the uncertainty sources Step 3: Quantify the uncertainty sources Step 4: Calculate the total uncertainty (combined standard uncertainty) Step 5: Calculate the expanded uncertainty Step 6: Reporting the uncertainty

3 Step 1: Specification and modeling A clear and unambiguous statement of what is being measured. Measurand Matrix Method: Rational methods, empirical methods Model: A quantitative expression relating the value of the measurand to the parameters on which it depends (SOP).

4 Modeling Derive a functional relationship between the measurand and input quantities from the method and procedure of the measurement It may be an analytical expression ( X X ) Y = f 1,,..., 2 X N Should include every quantity, including all corrections/correction factors that contribute to the uncertainty

5 Modeling (cont.) Or a simple expression plus corrections/correction factors for systematic effects Y = Ystd + ( corrections) Y determined directly by comparison with the value of a standard Or determined experimentally or exist only as a computer algorithm that must be evaluated numerically Or a combination of all of these

6 Step 2: Identify uncertainty sources Incomplete definition of the measurand Imperfect realisation of the definition Imperfect mathematical model Sampling method Uncertainties in values of measurement standards and reference materials Uncertainties in constant or other parameters obtained from other sources Environmental factors Random variation in repeated observations Instrument resolution, etc.

7 Step 2: Identifying uncertainty sources Sampling Storage conditions Instrument effects Reagent purity Measurement conditions Sample effects Computational effects Blank correction Operator effects Random effects

8 Cause and effect analysis The strategy has two stages: Identify the effects on a result using a cause and effect diagram i.e. Ishikawa or fishbone diagram. Simplify and resolve duplication.

9 Cause and effect analysis (cont.) Step 1: Write the complete equation for the result.

10 Cause and effect analysis (example) ( EtOH ) = d = M gross M tare V

11 Initial list d(etoh)

12 Cause and effect analysis (cont.) Step 1: Write the complete equation for the result. Step 2: Consider each step of the method or parameter in the equation and add additional main branches.

13 Initial list: Main branches M(gross) M(tare) d(etoh) Volume

14 Cause and effect analysis (cont.) Step 1: Write the complete equation for the result. Step 2: Consider each step of the method and add additional main branches. Step 3: For each branch, add factors until their effect on the result becomes negligible.

15 Initial list Temperature Precision M(gross) Linearity Bias Temperature Calibration Precision M(tare) Linearity Bias Calibration d(etoh) Precision Calibration Volume

16 Cause and effect analysis (cont.) Step 1: Write the complete equation for the result. Step 2: Consider each step of the method and add additional main branches. Step 3: For each branch, add factors until their effect on the result becomes negligible. Step 4: Resolve duplications, re-arrange, group related causes.

17 Cause and effect analysis (cont.) RULE 1: Cancelling effects: remove both. RULE 2: Similar effects, same time: combine into a single input. RULE 3: Different instances: re-label.

18 Combination of similar effects Temperature M(gross) Linearity Bias Temperature M(tare) Linearity Bias Calibration Calibration Precision Precision d(etoh) Precision Calibration Volume Temperature Precision

19 Cancellation M(gross) Linearity Bias Calibration M(tare) Linearity Bias Calibration d(etoh) Calibration Volume Same balance: bias cancels Temperature Precision

20 Step 3: Quantifying uncertainty Two categories Those whose estimate and associated uncertainty are directly determined by the current measurement Those whose estimate and associated sources uncertainty are brought into the measurement from external sources Their uncertainties require different ways of evaluation

21 Step 3: Quantifying uncertainty sources (cont.) Classification of uncertainty components according to the method of evaluation Type A components: those that are evaluated by statistical analysis of a series of observations Type B components: those that are evaluated by other means Both are based on probability distributions Standard uncertainty of each input estimate is obtained from a distribution of possible values for the input quantity: based on the state or our knowledge Type A founded on frequency distributions Type B founded on a priori distributions

22 Type A evaluation For component of uncertainty arising from random effect Applied when multiple independent observations are made under the same (repeatability) conditions Data can be from repeated measurements, control charts, curve fit by least-squares method, etc. Obtained from a probability density function derived from an observed frequency distribution (usually Gaussian)

23 Type A evaluation (cont.) Best estimate of the expected value of an input quantity arithmetic mean q = 1 n n k = 1 q k Distribution of the quantity experimental standard deviation Spread of the distribution of the means experimental standard deviation of the mean Type A standard uncertainty Degrees of freedom s 1 n 1 n ( ) ( ) 2 q = q q k s ( q ) = k = 1 s k ( q ) k n ( x ) s( q ) u i = ν i = n 1

24 Type B evaluation Evaluated by scientific/professional judgment Based on all available information Previous measurement data Experience of the behaviour of instruments or materials Calibration certificates Manufacturer s specifications Reference data from textbooks Can be as reliable as type A components Can sometimes be verified by experiment

25 Type B evaluation If the value is obtained from a calibration certificate, a normal distribution is assumed and the standard uncertainty and degrees of freedom must be retrieved from the certificate Standard uncertainty : ( x ) u i = Degrees of freedom from the Student s t- distribution tables U k

26 Type B evaluation It may be stated that the quoted uncertainty defines an interval having a 90, 95 or 99% level of confidence (normal distribution) Level of confidence Coverage factor k 90 1, , ,58

27 Type B evaluation If the quoted uncertainty is stated to be a particular multiple of a standard deviation the standard uncertainty is simply the quoted value divided by the multiplier.

28 Type B evaluation Rectangular a a Triangular a a U-shaped a a a - Ч a + a - Ч a + a - Ч a + Best estimate µ = a a Standard uncertainty of the best estimate a u( x i ) = u( x i ) = ( x ) 3 a 6 u i = a 2 Degrees of freedom = infinity if the reliability is 100%

29 Step 4: Calculating the combined uncertainty Before combining, convert all uncertainty contributions to standard uncertainties. Rules: Standard deviations from repeated observations in an experiment. For results and data from previous studies use the standard deviation or calculate the standard deviation from the probability distribution that applies.

30 Step 4: Calculating the combined uncertainty All uncertainty components must be converted to be in the same unit of measurement (speak the same language ). To combine standard uncertainties, they must all be converted to standard variances (squared). They can then be combined linearly (summed). To obtain a combined standard uncertainty, the resulting variance must be converted to a deviation (positive square root).

31 Step 4: Calculating the combined uncertainty Sensitivity coefficients are used to rewrite standard uncertainties in the same unit of measurement Found by obtaining partial derivatives, or a numerical estimation method can be used For simple mathematical models, these sensitivity coefficients are normally 1

32 Step 4: Calculating the combined uncertainty The combined standard uncertainty is the positive square root of the combined variance, given by u 2 c ( y) = 2 n f u 2 ( x = x 1 i i where f is the function describing the estimation of the measurand (First order Taylor series) i )

33 Step 4: Calculating the combined uncertainty These partial derivatives are often called sensitivity coefficients c i c i = f xx i It describes how the output estimate y vary with changes in the input quantities x 1, x 2,, x N The change in y produced by a small change in x i is given by ( y) = ( x ) i f x i i

34 Step 4: Calculating the combined uncertainty The combined variance can now be written as u 2 c ( y) = n [ c u( x )] i i i = 1 2 n i = 1 u 2 i ( y) where u i (y) is called the uncertainty contribution The sensitivity coefficients can be evaluated numerically by changing the value of an input quantity by a small amount and determining the effect it has on the estimate of the measurand.

35 Step 5: Determine the expanded uncertainty U = k u c ( y) k = coverage factor chosen from the t-distribution table, depending on the desired level of confidence and the effective degrees of freedom

36 Expanded uncertainty Issues to consider when choosing a coverage factor k: The level of confidence required Knowledge of the sample distribution Knowledge of the number of values used to estimate random effects Most cal labs adopt an approx. 95% level of confidence with k=2 for effective degrees of freedom > 30.

37 Calculating the expanded uncertainty Obtain the measurement result y and the combined standard uncertainty u c (y) ν Compute eff from the Welch-Satterthwaite formula: 4 uc ( y) ν eff = N 4 u i i= 1 ν i ( y) Obtain the coverage factor for the desired level of confidence from the t-distribution tables. Calculate the expanded uncertainty

38 Degrees of freedom Uncertainty Type A repeated observations Type A linear least square regression Type A: least-squares fit of m parameters to n data points Type B: 100% reliability Degrees of freedom n 1 n 2 n m Type B: reliability < 100% ν R 2

39 Should include Result of measurement Reporting Expanded uncertainty with coverage factor and level of confidence Example of uncertainty statement The expanded uncertainty of measurement is ±.., estimated at a level of confidence of approximately 95% with a coverage factor k =..

40 Concluding remarks GUM: provides a framework for assessing uncertainty, it cannot substitute for critical thinking, intellectual honesty and professional skill Correct practice of the GUM helps to identify possible uncertainty sources and quantify their contribution to the total uncertainty The GUM cannot eliminate any unknown significant systematic errors in the measurement.

Uncertainty of Measurement (Analytical) Maré Linsky 14 October 2015

Uncertainty of Measurement (Analytical) Maré Linsky 14 October 2015 Uncertainty of Measurement (Analytical) Maré Linsky 14 October 015 Introduction Uncertainty of Measurement GUM (Guide to the Expression of Uncertainty in Measurement ) (Analytical) Method Validation and

More information

y, x k estimates of Y, X k.

y, x k estimates of Y, X k. The uncertainty of a measurement is a parameter associated with the result of the measurement, that characterises the dispersion of the values that could reasonably be attributed to the quantity being

More information

CALCULATION OF UNCERTAINTY IN CHEMICAL ANALYSIS. A.Gnanavelu

CALCULATION OF UNCERTAINTY IN CHEMICAL ANALYSIS. A.Gnanavelu CALCULATION OF UNCERTAINTY IN CHEMICAL ANALYSIS A.Gnanavelu UNCERTAINTY (U) Every measurement has error which is unknown and unknowable. This unknown error is called measurement uncertainty. Types of Error

More information

Introduction to the evaluation of uncertainty

Introduction to the evaluation of uncertainty Manual of Codes of Practice for the Determination of Uncertainties in Mechanical Tests on Metallic Materials SECTION 1 Introduction to the evaluation of uncertainty F A Kandil National Physical Laboratory

More information

Measurement And Uncertainty

Measurement And Uncertainty Measurement And Uncertainty Based on Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results, NIST Technical Note 1297, 1994 Edition PHYS 407 1 Measurement approximates or

More information

Essentials of expressing measurement uncertainty

Essentials of expressing measurement uncertainty Essentials of expressing measurement uncertainty This is a brief summary of the method of evaluating and expressing uncertainty in measurement adopted widely by U.S. industry, companies in other countries,

More information

What is measurement uncertainty?

What is measurement uncertainty? What is measurement uncertainty? What is measurement uncertainty? Introduction Whenever a measurement is made, the result obtained is only an estimate of the true value of the property being measured.

More information

Introduction to Uncertainty. Asma Khalid and Muhammad Sabieh Anwar

Introduction to Uncertainty. Asma Khalid and Muhammad Sabieh Anwar Introduction to Uncertainty Asma Khalid and Muhammad Sabieh Anwar 1 Measurements and uncertainties Uncertainty Types of uncertainty Standard uncertainty Confidence Intervals Expanded Uncertainty Examples

More information

Investigation of Uncertainty Sources in the Determination of Gamma Emitting Radionuclides in the UAL

Investigation of Uncertainty Sources in the Determination of Gamma Emitting Radionuclides in the UAL Investigation of Uncertainty Sources in the Determination of Gamma Emitting Radionuclides in the UAL A. Specification Gamma-spectrometry method is used to identify and determine the activity concentration

More information

MEASUREMENT UNCERTAINTY PREPARED FOR ENAO ASSESSOR CALIBRATION COURSE OCTOBER/NOVEMBER Prepared by MJ Mc Nerney for ENAO Assessor Calibration

MEASUREMENT UNCERTAINTY PREPARED FOR ENAO ASSESSOR CALIBRATION COURSE OCTOBER/NOVEMBER Prepared by MJ Mc Nerney for ENAO Assessor Calibration MEASUREMENT PREPARED FOR ENAO ASSESSOR CALIBRATION COURSE UNCERTAINTY OCTOBER/NOVEMBER 2012 Prepared by for ENAO Assessor Calibration B SCOPE Introduction House Rules Overview 17025 & 15189 MU Approaches

More information

VAM Project Development and Harmonisation of Measurement Uncertainty Principles

VAM Project Development and Harmonisation of Measurement Uncertainty Principles VAM Project 3.2.1 Development and Harmonisation of Measurement Uncertainty Principles Part (d): Protocol for uncertainty evaluation from validation data V J Barwick and S L R Ellison January 2000 LGC/VAM/1998/088

More information

EA 4/02. Expression of the Uncertainty of Measurement in Calibration. Publication Reference

EA 4/02. Expression of the Uncertainty of Measurement in Calibration. Publication Reference EAEA Publication Reference EA 4/0 Expression of the Uncertainty of Measurement in Calibration PURPOSE The purpose of this document is to harmonise evaluation of uncertainty of measurement within EA, to

More information

Uncertainty sources of reference measurement procedures for enzymes

Uncertainty sources of reference measurement procedures for enzymes Medical School Hannover Institute for Clinical Chemistry Director: Prof. Dr. K. Brand Uncertainty sources of reference measurement procedures for enzymes R. Klauke and G. Schumann Renate Strache Rainer

More information

GUIDE TO THE EXPRESSION OF UNCERTAINTY IN MEASUREMENT

GUIDE TO THE EXPRESSION OF UNCERTAINTY IN MEASUREMENT KINGDOM OF SAUDI ARABIA SASO.../006 SAUDI STANDARD DRAFT NO. 13/000 GUIDE TO THE EXPRESSION OF UNCERTAINTY IN MEASUREMENT SAUDI ARABIAN STANDARDS ORGANIZATION -----------------------------------------------------------------------------------------------

More information

2.4 The ASME measurement-uncertainty formulation

2.4 The ASME measurement-uncertainty formulation Friday, May 14, 1999 2.5 Propagation of uncertainty estimates Page: 1 next up previous contents Next: 2.5 Propagation of uncertainty Up: 2. Measurement Uncertainty Previous: 2.3 More terminology 2.4 The

More information

HOW TO ASSESS THE MEASUREMENT UNCERTAINTY

HOW TO ASSESS THE MEASUREMENT UNCERTAINTY 15th EFLM Continuing Postgraduate Course in Clinical Chemistry and Laboratory Medicine How to assess the quality of your method? Zagreb, 24-25 October 2015 HOW TO ASSESS THE MEASUREMENT UNCERTAINTY Centre

More information

The bias component in measurement uncertainty

The bias component in measurement uncertainty Eurachem Workshop - Validation, May 01 The bias component in measurement uncertainty EURACHEM Workshop on Validation/Traceability/Measurement Uncertainty Challenges for the 1st Century s analysis Bertil

More information

Harris: Quantitative Chemical Analysis, Eight Edition CHAPTER 03: EXPERIMENTAL ERROR

Harris: Quantitative Chemical Analysis, Eight Edition CHAPTER 03: EXPERIMENTAL ERROR Harris: Quantitative Chemical Analysis, Eight Edition CHAPTER 03: EXPERIMENTAL ERROR Chapter 3. Experimental Error -There is error associated with every measurement. -There is no way to measure the true

More information

I used college textbooks because they were the only resource available to evaluate measurement uncertainty calculations.

I used college textbooks because they were the only resource available to evaluate measurement uncertainty calculations. Introduction to Statistics By Rick Hogan Estimating uncertainty in measurement requires a good understanding of Statistics and statistical analysis. While there are many free statistics resources online,

More information

Analytical Measurement Uncertainty APHL Quality Management System (QMS) Competency Guidelines

Analytical Measurement Uncertainty APHL Quality Management System (QMS) Competency Guidelines QMS Quick Learning Activity Analytical Measurement Uncertainty APHL Quality Management System (QMS) Competency Guidelines This course will help staff recognize what measurement uncertainty is and its importance

More information

Measurement Uncertainty Principles and Implementation in QC

Measurement Uncertainty Principles and Implementation in QC Measurement Uncertainty Principles and Implementation in QC Dr. Michael Haustein CURRENTA GmbH & Co. OHG Analytics 41538 Dormagen, Germany www.analytik.currenta.de A company of Bayer and LANXESS About

More information

Measurement Uncertainty, March 2009, F. Cordeiro 1

Measurement Uncertainty, March 2009, F. Cordeiro 1 Measurement Uncertainty, March 2009, F. Cordeiro 1 Uncertainty Estimation on the Quantification of Major Proteins in Milk by Liquid Chromatography Contribution to a Chemical Reference Measurement System

More information

And how to do them. Denise L Seman City of Youngstown

And how to do them. Denise L Seman City of Youngstown And how to do them Denise L Seman City of Youngstown Quality Control (QC) is defined as the process of detecting analytical errors to ensure both reliability and accuracy of the data generated QC can be

More information

An improved procedure for combining Type A and Type B components of measurement uncertainty

An improved procedure for combining Type A and Type B components of measurement uncertainty Int. J. Metrol. Qual. Eng. 4, 55 62 (2013) c EDP Sciences 2013 DOI: 10.1051/ijmqe/2012038 An improved procedure for combining Type A and Type B components of measurement uncertainty R. Willink Received:

More information

Practical Statistics for the Analytical Scientist Table of Contents

Practical Statistics for the Analytical Scientist Table of Contents Practical Statistics for the Analytical Scientist Table of Contents Chapter 1 Introduction - Choosing the Correct Statistics 1.1 Introduction 1.2 Choosing the Right Statistical Procedures 1.2.1 Planning

More information

Document No: TR 12 Issue No: 1

Document No: TR 12 Issue No: 1 ESTIMATION OF THE UNCERTAINTY OF MEASUREMENT BY CALIBRATION LABORATORIES AND SPECIFICATION OF CALIBRATION AND MEASUREMENT CAPABILITY ON SCHEDULES OF ACCREDITATION Prepared by: SADCAS Technical Manage Approved

More information

IMPORTANT FEATURES OF ESTIMATION & INTERPRETATION OF MEASUREMENT UNCERTAINTY. B. Bhattacharya, K. Ramani, P.H. Bhave

IMPORTANT FEATURES OF ESTIMATION & INTERPRETATION OF MEASUREMENT UNCERTAINTY. B. Bhattacharya, K. Ramani, P.H. Bhave IMPORTANT FEATURES OF ESTIMATION & INTERPRETATION OF MEASUREMENT UNCERTAINTY By B. Bhattacharya, K. Ramani, P.H. Bhave 1. INTRODUCTION In the last few years a lot of awareness has been created regarding

More information

Harris: Quantitative Chemical Analysis, Eight Edition CHAPTER 03: EXPERIMENTAL ERROR

Harris: Quantitative Chemical Analysis, Eight Edition CHAPTER 03: EXPERIMENTAL ERROR Harris: Quantitative Chemical Analysis, Eight Edition CHAPTER 03: EXPERIMENTAL ERROR Chapter 3. Experimental Error -There is error associated with every measurement. -There is no way to measure the true

More information

Calculating and Expressing Uncertainty in Measurement

Calculating and Expressing Uncertainty in Measurement Calculating and Expressing Uncertainty in Measurement Les Kirkup, Department of Applied Physics, Faculty of Science, University of Technology, Sydney, New South Wales 007, Australia. email: Les.Kirkup@uts.edu.au

More information

Specific Accreditation Guidance. Infrastructure and Asset Integrity. Measurement Uncertainty in Geotechnical Testing

Specific Accreditation Guidance. Infrastructure and Asset Integrity. Measurement Uncertainty in Geotechnical Testing Specific Accreditation Guidance Infrastructure and Asset Integrity Measurement Uncertainty in Geotechnical Testing January 2018 Copyright National Association of Testing Authorities, Australia 2018 This

More information

Decimal Scientific Decimal Scientific

Decimal Scientific Decimal Scientific Experiment 00 - Numerical Review Name: 1. Scientific Notation Describing the universe requires some very big (and some very small) numbers. Such numbers are tough to write in long decimal notation, so

More information

INSTRUMENT TEST REPORT 679

INSTRUMENT TEST REPORT 679 INSTRUMENT TEST REPORT 679 The Uncertainty of the Hydrological Services Field Calibration Device Authorisation J.D. Gorman Regional Instrument Centre 11 October 2004 Bruce W Forgan Superintendent Atmosphere

More information

Doubt-Free Uncertainty In Measurement

Doubt-Free Uncertainty In Measurement Doubt-Free Uncertainty In Measurement Colin Ratcliffe Bridget Ratcliffe Doubt-Free Uncertainty In Measurement An Introduction for Engineers and Students Colin Ratcliffe United States Naval Academy Annapolis

More information

Reproducibility within the Laboratory R w Control Sample Covering the Whole Analytical Process

Reproducibility within the Laboratory R w Control Sample Covering the Whole Analytical Process Flowchart for Nordtest Method (a) Specify measurand Quantify components for within lab reproducibility A control samples B possible steps, not covered by the control sample Quantify bias components Convert

More information

Measurement Uncertainty: A practical guide to understanding what your results really mean.

Measurement Uncertainty: A practical guide to understanding what your results really mean. Measurement Uncertainty: A practical guide to understanding what your results really mean. Overview General Factors Influencing Data Variability Measurement Uncertainty as an Indicator of Data Variability

More information

M3003 EDITION 2 JANUARY 2007

M3003 EDITION 2 JANUARY 2007 M3003 EDITION 2 JANUARY 2007 The Expression of Uncertainty and Confidence in Measurement JH 2007 CONTENTS SECTION PAGE 1 Introduction 2 2 Overview 4 3 More detail 10 4 Type A evaluation of standard uncertainty

More information

ASSESSMENT MEASUREMENT. for calibration & testing laboratories

ASSESSMENT MEASUREMENT. for calibration & testing laboratories ASSESSMENT OF UNCERTAINTIES OF MEASUREMENT for calibration & testing laboratories R R Cook 2nd Edition 2002 for Calibration and Testing Laboratories Second Edition c R R Cook 2002 Published by National

More information

Precision Correcting for Random Error

Precision Correcting for Random Error Precision Correcting for Random Error The following material should be read thoroughly before your 1 st Lab. The Statistical Handling of Data Our experimental inquiries into the workings of physical reality

More information

A basic introduction to reference materials. POPs Strategy

A basic introduction to reference materials. POPs Strategy A basic introduction to reference materials POPs Strategy 2009-2010+ A tutorial 16 September 2009 Angelique Botha R&D metrologist Contents Why do we need reference materials? comparability of results metrological

More information

Measurement uncertainty revisited Alternative approaches to uncertainty evaluation

Measurement uncertainty revisited Alternative approaches to uncertainty evaluation Measurement uncertainty revisited Alternative approaches to uncertainty evaluation based on EUROLAB Technical Report No. 1/007 Dr.-Ing. Michael Koch Institute for Sanitary Engineering, Water Quality and

More information

OA03 UNCERTAINTY OF MEASUREMENT IN CHEMICAL TESTING IN ACCORDANCE WITH THE STANDARD SIST EN ISO/IEC Table of contents

OA03 UNCERTAINTY OF MEASUREMENT IN CHEMICAL TESTING IN ACCORDANCE WITH THE STANDARD SIST EN ISO/IEC Table of contents UNCERTAINTY OF MEASUREMENT IN CHEMICAL TESTING IN ACCORDANCE WITH THE STANDARD SIST EN ISO/IEC 17025 Table of contents 1 GENERAL... 2 2 THE STANDARD SIST EN ISO/IEC 17025... 2 3 SA'S POLICY IN IMPLEMENTING

More information

ISO 376 Calibration Uncertainty C. Ferrero

ISO 376 Calibration Uncertainty C. Ferrero ISO 376 Calibration Uncertainty C. Ferrero For instruments classified for interpolation, the calibration uncertainty is the uncertainty associated with using the interpolation equation to calculate a single

More information

A-G Algebra 1. Gorman Learning Center (052344) Basic Course Information

A-G Algebra 1. Gorman Learning Center (052344) Basic Course Information A-G Algebra 1 Gorman Learning Center (052344) Basic Course Information Title: A-G Algebra 1 Transcript abbreviations: A-G Algebra 1a / 5R1001, A-G Algebra 1b / 5R1006 Length of course: Full Year Subject

More information

Measurement of fluid flow Procedures for the evaluation of uncertainties

Measurement of fluid flow Procedures for the evaluation of uncertainties BRITISH STANDARD BS ISO 5168:005 Measurement of fluid flow Procedures for the evaluation of uncertainties ICS 17.10.10 National foreword This British Standard reproduces verbatim ISO 5168:005 and implements

More information

Example A1: Preparation of a Calibration Standard

Example A1: Preparation of a Calibration Standard Suary Goal A calibration standard is prepared fro a high purity etal (cadiu) with a concentration of ca.1000 g l -1. Measureent procedure The surface of the high purity etal is cleaned to reove any etal-oxide

More information

A Statistical Approach to Reporting Uncertainty

A Statistical Approach to Reporting Uncertainty A Statistical Approach to Reporting Uncertainty on Certified Values of Chemical Reference Materials for Trace Metal Analysis Nimi Kocherlakota, Ralph Obenauf, and Robert Thomas This article discusses an

More information

Uncertainty of Measurement

Uncertainty of Measurement Uncertainty of Measurement Contents Uncertainty of Measurement.... 3 Uncertainty of Measurement and Measurement Error.... 4 Measuring Uncertainty.... 5 Coverage factor k...6 Factors Affecting Uncertainty....

More information

UNDERESTIMATING UNCERTAINTY

UNDERESTIMATING UNCERTAINTY UNDERESTIMATING UNCERTAINTY Bertil Magnusson, Cyprus, May 017 Eurachem Workshop - Uncertainty in Qualitative and Quantitative Analyses Research Institutes of Sweden Bioscience and Material Chemistry Measure

More information

R SANAS Page 1 of 7

R SANAS Page 1 of 7 ESTIMATION OF THE UNCERTAINTY OF MEASUREMENT BY CALIBRATION LABORATORIES AND SPECIFICATION OF CALIBRATION AND MEASUREMENT CAPABILITY ON SCHEDULES OF ACCREDITATION Approved By: Chief Executive Officer:

More information

Index. Cambridge University Press Data Analysis for Physical Scientists: Featuring Excel Les Kirkup Index More information

Index. Cambridge University Press Data Analysis for Physical Scientists: Featuring Excel Les Kirkup Index More information χ 2 distribution, 410 χ 2 test, 410, 412 degrees of freedom, 414 accuracy, 176 adjusted coefficient of multiple determination, 323 AIC, 324 Akaike s Information Criterion, 324 correction for small data

More information

Revision of the Guide to the expression of uncertainty in measurement impact on national metrology institutes and industry

Revision of the Guide to the expression of uncertainty in measurement impact on national metrology institutes and industry Revision of the Guide to the expression of uncertainty in measurement impact on national metrology institutes and industry Maurice Cox/Peter Harris National Physical Laboratory, Teddington, UK CCRI BIPM,

More information

JAB NOTE4. ESTIMATION OF MEASUREMENT UNCERTAINTY (Electrical Testing / High Power Testing) Japan Accreditation Board (JAB)

JAB NOTE4. ESTIMATION OF MEASUREMENT UNCERTAINTY (Electrical Testing / High Power Testing) Japan Accreditation Board (JAB) JAB NOTE4 ESTIMATION OF MEASUREMENT UNCERTAINTY (Electrical Testing / High Power Testing) nd edition: January 5 01 1 st edition: March 5 00 Japan Accreditation Board (JAB) Initial edition: 00-0-5 1/ nd

More information

AN EXPLANATION OF THE DG-1000 ACCURACY SPECIFICATIONS

AN EXPLANATION OF THE DG-1000 ACCURACY SPECIFICATIONS WHITE PAPER AN EXPLANATION OF THE DG-1000 ACCURACY SPECIFICATIONS The Energy Conservatory Minneapolis, MN Introduction: The purpose of this document is to explain the details of the accuracy specifications

More information

Measurement Good Practice Guide

Measurement Good Practice Guide No. 36 Measurement Good Practice Guide Estimating Uncertainties in Testing Keith Birch The National Measurement Partnership is a DTI programme managed by the National Physical Laboratory to promote good

More information

Good Practice Guide No. 130

Good Practice Guide No. 130 Good Practice Guide No. 130 Co-ordinate measuring machine task-specific measurement uncertainties David Flack Measurement Good Practice Guide No. 130 Co-ordinate measuring machine task-specific measurement

More information

WGFF Guidelines for CMC Uncertainty and Calibration Report Uncertainty

WGFF Guidelines for CMC Uncertainty and Calibration Report Uncertainty WGFF Guidelines for CMC Uncertainty and Calibration Report Uncertainty October 21, 2013 Summary The Working Group for Fluid Flow (WGFF) defines Calibration and Measurement Capability (CMC) uncertainty

More information

Statistics: Error (Chpt. 5)

Statistics: Error (Chpt. 5) Statistics: Error (Chpt. 5) Always some amount of error in every analysis (How much can you tolerate?) We examine error in our measurements to know reliably that a given amount of analyte is in the sample

More information

Draft EURACHEM/CITAC Guide Quantifying Uncertainty in Analytical Measurement. Second Edition. Draft: June 1999

Draft EURACHEM/CITAC Guide Quantifying Uncertainty in Analytical Measurement. Second Edition. Draft: June 1999 Draft EURACHEM/CITAC Guide Quantifying Uncertainty in Analytical Measurement Second Edition Draft: June 1999 Prepared by the EURACHEM Measurement Uncertainty Working Group in collaboration with members

More information

ROLE AND SIGNIFICANCE OF UNCERTAINTY IN HV MEASUREMENT OF PORCELAIN INSULATORS A CASE STUDY

ROLE AND SIGNIFICANCE OF UNCERTAINTY IN HV MEASUREMENT OF PORCELAIN INSULATORS A CASE STUDY International Conference on Ceramics, Bikaner, India International Journal of Modern Physics: Conference Series Vol. (01) 8 5 World Scientific Publishing Company DOI: 10.11/S010195101019 ROLE AND SIGNIFICANCE

More information

Resval. Practical tool for the validation of an analytical method and the quantification of the uncertainty of measurement.

Resval. Practical tool for the validation of an analytical method and the quantification of the uncertainty of measurement. Workshop... Resval. Practical tool for the validation of an analytical method and the quantification of the uncertainty of measurement. Henk Herbold Marco Blokland Saskia Sterk General topics. *What s

More information

Measurement and Uncertainty

Measurement and Uncertainty Measurement and Uncertainty Michael Gold Physics 307L September 16, 2006 Michael Gold (Physics 307L) Measurement and Uncertainty September 16, 2006 1 / 9 Goal of Experiment Measure a parameter: statistical

More information

The Determination of Uncertainties in Bend Tests on Metallic Materials

The Determination of Uncertainties in Bend Tests on Metallic Materials Manual of Codes of Practice for the Determination of Uncertainties in Mechanical Tests on Metallic Materials Code of Practice No. 09 The Determination of Uncertainties in end Tests on Metallic Materials

More information

APPENDIX G EVALUATION OF MEASUREMENT UNCERTAINTY

APPENDIX G EVALUATION OF MEASUREMENT UNCERTAINTY APPENDIX G EVALUATION OF MEASUREMENT UNCERTAINTY Table of Contents 1. SCOPE... 2 2. REFERENCES... 2 3. TERMS AND DEFINITIONS... 2 4. BACKGROUND... 4 5. EVALUATION OF MEASUREMENT UNCERTAINTY POLICY... 5

More information

-However, this definition can be expanded to include: biology (biometrics), environmental science (environmetrics), economics (econometrics).

-However, this definition can be expanded to include: biology (biometrics), environmental science (environmetrics), economics (econometrics). Chemometrics Application of mathematical, statistical, graphical or symbolic methods to maximize chemical information. -However, this definition can be expanded to include: biology (biometrics), environmental

More information

Chapter 2. Theory of Errors and Basic Adjustment Principles

Chapter 2. Theory of Errors and Basic Adjustment Principles Chapter 2 Theory of Errors and Basic Adjustment Principles 2.1. Introduction Measurement is an observation carried out to determine the values of quantities (distances, angles, directions, temperature

More information

A Unified Approach to Uncertainty for Quality Improvement

A Unified Approach to Uncertainty for Quality Improvement A Unified Approach to Uncertainty for Quality Improvement J E Muelaner 1, M Chappell 2, P S Keogh 1 1 Department of Mechanical Engineering, University of Bath, UK 2 MCS, Cam, Gloucester, UK Abstract To

More information

Source: Chapter 5: Errors in Chemical Analyses

Source: Chapter 5: Errors in Chemical Analyses Source: Chapter 5: Errors in Chemical Analyses Measurements invariably involve errors and uncertainties. it is impossible to perform a chemical analysis that is totally free of errors or uncertainties

More information

NATIONAL ASSOCIATION OF TESTING AUTHORITIES (NATA) REQUIREMENTS FOR ACCREDITATION OF ICP-MS TECHNIQUES

NATIONAL ASSOCIATION OF TESTING AUTHORITIES (NATA) REQUIREMENTS FOR ACCREDITATION OF ICP-MS TECHNIQUES NATIONAL ASSOCIATION OF TESTING AUTHORITIES (NATA) REQUIREMENTS FOR ACCREDITATION OF ICP-MS TECHNIQUES The National Association of Testing Authorities (NATA) requirements for accreditation have undergone

More information

Algebra II Assessment. Eligible Texas Essential Knowledge and Skills

Algebra II Assessment. Eligible Texas Essential Knowledge and Skills Algebra II Assessment Eligible Texas Essential Knowledge and Skills STAAR Algebra II Assessment Mathematical Process Standards These student expectations will not be listed under a separate reporting category.

More information

Laboratory Techniques 100: Back To Basics. Carol Injasoulian Lab Manager City of Bay City April 29,2015

Laboratory Techniques 100: Back To Basics. Carol Injasoulian Lab Manager City of Bay City April 29,2015 Laboratory Techniques 100: Back To Basics Carol Injasoulian Lab Manager City of Bay City April 29,2015 QA/QC for Environmental Measurement What is quality assurance (QA)? Broad plan to maintain quality

More information

Establishing traceability and estimating measurement uncertainty in physical, chemical and biological measurements

Establishing traceability and estimating measurement uncertainty in physical, chemical and biological measurements Establishing traceability and estimating measurement uncertainty in physical, chemical and biological measurements Experimental Design 8.2.2013 Doc. Martti Heinonen etunimi.sukunimi@mikes.fi Outline 1.

More information

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists 4,000 116,000 120M Open access books available International authors and editors Downloads Our

More information

Measurement & Uncertainty - Basic concept and its application

Measurement & Uncertainty - Basic concept and its application Measurement & Uncertainty - Basic concept and its application Feb. 7. 2012 JongOh CHOI (choijongoh@kriss.re.kr) Knowledge and measurement When you can measure what you are speaking about, and express it

More information

Measurement Uncertainty Knowing the Unknown

Measurement Uncertainty Knowing the Unknown Measurement Uncertainty Knowing the Unknown Anish Shah FOUNDER and Chief Metrology Officer at Metrologized, LLC, a company founded in 2014 to further the metrology knowledge-base within the manufacturing

More information

57:020 Mechanics of Fluids and Transfer Processes OVERVIEW OF UNCERTAINTY ANALYSIS

57:020 Mechanics of Fluids and Transfer Processes OVERVIEW OF UNCERTAINTY ANALYSIS 57:020 Mechanics of Fluids and Transfer Processes OVERVIEW OF UNCERTAINTY ANALYSIS INTRODUCTION Measurement is the act of assigning a value to some physical variable. In the ideal measurement, the value

More information

This term refers to the physical quantity that is the result of the measurement activity.

This term refers to the physical quantity that is the result of the measurement activity. Metrology is the science of measurement and involves what types of measurements are possible, standards, how to properly represent a number and how to represent the uncertainty in measurement. In 1993

More information

APPENDIX G ESTIMATION OF UNCERTAINTY OF MEASUREMENT

APPENDIX G ESTIMATION OF UNCERTAINTY OF MEASUREMENT APPENDIX G ESTIMATION OF UNCERTAINTY OF MEASUREMENT Table of Contents 1. SCOPE... 2 2. REFERENCES... 2 3. TERMS AND DEFINITIONS... 2 4. BACKGROUND... 4 5. ESTIMATION OF UNCERTAINTY OF MEASUREMENT POLICY...

More information

Larry A. DeWerd, PhD, FAAPM UW ADCL & Dept. Medical Physics University of Wisconsin

Larry A. DeWerd, PhD, FAAPM UW ADCL & Dept. Medical Physics University of Wisconsin Larry A. DeWerd, PhD, FAAPM UW ADCL & Dept. Medical Physics University of Wisconsin NCCAAPM meeting April 17, 2015 Larry DeWerd has partial interest in Standard Imaging Inc. Determination of your uncertainty

More information

Determination of Cadmium Release from Ceramic Ware by Atomic Absorption Spectrometry

Determination of Cadmium Release from Ceramic Ware by Atomic Absorption Spectrometry This is the example A5 of the EURACHEM / CITAC Guide "Quantifying in Analytical Measurement", Second Edition. The amount of released cadmium from ceramic ware is determined using atomic absorption spectrometry.

More information

Treatment of Error in Experimental Measurements

Treatment of Error in Experimental Measurements in Experimental Measurements All measurements contain error. An experiment is truly incomplete without an evaluation of the amount of error in the results. In this course, you will learn to use some common

More information

Topic 16 Interval Estimation

Topic 16 Interval Estimation Topic 16 Interval Estimation Confidence Intervals for 1 / 14 Outline Overview z intervals t intervals Two Sample t intervals 2 / 14 Overview The quality of an estimator can be evaluated using its bias

More information

Since the publication of the ISO Guide to the Expression

Since the publication of the ISO Guide to the Expression DE SILVA: JOURNAL OF AOAC INTERNATIONAL VOL. 86, NO. 5, 003 1077 SPECIAL GUEST EDITOR SECTION Uncertainty of Analytical Determinations GALAPPATTI M.S. DE SILVA 4, PB Alwis Perera Mawatha, Katubedda, Sri

More information

IE 361 Module 18. Reading: Section 2.5 Statistical Methods for Quality Assurance. ISU and Analytics Iowa LLC

IE 361 Module 18. Reading: Section 2.5 Statistical Methods for Quality Assurance. ISU and Analytics Iowa LLC IE 361 Module 18 Calibration Studies and Inference Based on Simple Linear Regression Reading: Section 2.5 Statistical Methods for Quality Assurance ISU and Analytics Iowa LLC (ISU and Analytics Iowa LLC)

More information

IE 361 EXAM #3 FALL 2013 Show your work: Partial credit can only be given for incorrect answers if there is enough information to clearly see what you were trying to do. There are two additional blank

More information

Joint Committee for Traceability in Laboratory Medicine Terminology. R. Wielgosz and S. Maniguet

Joint Committee for Traceability in Laboratory Medicine Terminology. R. Wielgosz and S. Maniguet Joint Committee for Traceability in Laboratory Medicine Terminology R. Wielgosz and S. Maniguet Terminology 1. Understanding the words and phrases we are using 2. Terminology in ISO standards 3. Vocabulary

More information

Evaluation. of the Uncertainty. of Measurement. In Calibration

Evaluation. of the Uncertainty. of Measurement. In Calibration Publication Reference EA-4/0 M: 013 Evaluation of the Uncertainty of Measurement In Calibration PURPOE The purpose of this document is to harmonise evaluation of uncertainty of measurement within EA, to

More information

03.1 Experimental Error

03.1 Experimental Error 03.1 Experimental Error Problems: 15, 18, 20 Dr. Fred Omega Garces Chemistry 251 Miramar College 1 Making a measurement In general, the uncertainty of a measurement is determined by the precision of the

More information

Investigation of Uncertainty Sources in the Determination of Gamma Emitting Radionuclides in the WBC

Investigation of Uncertainty Sources in the Determination of Gamma Emitting Radionuclides in the WBC Investigation of Uncertainty Sources in the Determination of Gamma Emitting Radionuclides in the WBC A. Specification Whole body counting method is used to detect the gamma rays emitted by radio nuclides,

More information

Validation and Standardization of (Bio)Analytical Methods

Validation and Standardization of (Bio)Analytical Methods Validation and Standardization of (Bio)Analytical Methods Prof.dr.eng. Gabriel-Lucian RADU 21 March, Bucharest Why method validation is important? The purpose of analytical measurement is to get consistent,

More information

Workshops. Thursday, November 21, 9:00 AM to 11:00 AM: Models of measurement: measuring systems and metrological infrastructure

Workshops. Thursday, November 21, 9:00 AM to 11:00 AM: Models of measurement: measuring systems and metrological infrastructure Workshops Wednesday, November 20, 12:00 PM to 2:00 PM: Models of measurement: the general structure Thursday, November 21, 9:00 AM to 11:00 AM: Models of measurement: measuring systems and metrological

More information

Physics Quantities Reducible to 7 Dimensions

Physics Quantities Reducible to 7 Dimensions Measurement Physics Quantities Reducible to 7 Dimensions Dimension SI Unit Symbol Example Length meter m Mass kilogram kg Time second s Electric Current ampere Temperature kelvin K A Standard door height:

More information

Bayesian Uncertainty: Pluses and Minuses

Bayesian Uncertainty: Pluses and Minuses Bayesian Uncertainty: Pluses and Minuses Rod White Thanks to Rob Willink, Blair Hall, Dave LeBlond Measurement Standards Laboratory New Zealand Outline: A simple statistical experiment (coin toss) Confidence

More information

Provläsningsexemplar / Preview INTERNATIONAL STANDARD ISO Second edition

Provläsningsexemplar / Preview INTERNATIONAL STANDARD ISO Second edition INTERNATIONAL STANDARD ISO 6974-1 Second edition 2012-05-15 Natural gas Determination of composition and associated uncertainty by gas chromatography Part 1: General guidelines and calculation of composition

More information

Analytical Measurement Uncertainty

Analytical Measurement Uncertainty Analytical Measurement Uncertainty ISO/IEC 17025:2005 www.aphl.org Abbreviations and Acronyms Please see the accompanying Analytical Measurement Uncertainty Learning Aid, including Dictionary of Terms

More information

Measurements and Data Analysis

Measurements and Data Analysis Measurements and Data Analysis 1 Introduction The central point in experimental physical science is the measurement of physical quantities. Experience has shown that all measurements, no matter how carefully

More information

Probability & Statistics

Probability & Statistics MECE 330 MECE 330 Measurements & Instrumentation Probability & tatistics Dr. Isaac Choutapalli Department of Mechanical Engineering University of Teas Pan American MECE 330 Introduction uppose we have

More information

Method Validation. Role of Validation. Two levels. Flow of method validation. Method selection

Method Validation. Role of Validation. Two levels. Flow of method validation. Method selection Role of Validation Method Validation An overview Confirms the fitness for purpose of a particular analytical method. ISO definition: Conformation by examination and provision of objective evidence that

More information

Aflatoxin Analysis: Uncertainty Statistical Process Control Sources of Variability. COMESA Session Five: Technical Courses November 18

Aflatoxin Analysis: Uncertainty Statistical Process Control Sources of Variability. COMESA Session Five: Technical Courses November 18 Aflatoxin Analysis: Uncertainty Statistical Process Control Sources of Variability COMESA Session Five: Technical Courses November 18 Uncertainty SOURCES OF VARIABILITY Uncertainty Budget The systematic

More information

UNCERTAINTY ANALYSIS FOR LABORATORY ACCREDITATION. Peter B. Crisp. Fluke Precision Measurement Ltd, 52 Hurricane Way, Norwich, UK

UNCERTAINTY ANALYSIS FOR LABORATORY ACCREDITATION. Peter B. Crisp. Fluke Precision Measurement Ltd, 52 Hurricane Way, Norwich, UK UNCERTAINTY ANALYSIS FOR LABORATORY ACCREDITATION Peter B. Crisp Fluke Precision Measurement Ltd, 5 Hurricane Way, Norwich, UK Introduction NAMAS Accredited laboratories are required to follow recommended

More information

Objective Experiments Glossary of Statistical Terms

Objective Experiments Glossary of Statistical Terms Objective Experiments Glossary of Statistical Terms This glossary is intended to provide friendly definitions for terms used commonly in engineering and science. It is not intended to be absolutely precise.

More information