Groups St Andrews 5th August 2013

Size: px
Start display at page:

Download "Groups St Andrews 5th August 2013"

Transcription

1 Generators and Relations for a discrete subgroup of SL 2 (C) SL 2 (C) joint work with A. del Río and E. Jespers Ann Kiefer Groups St Andrews 5th August 2013

2 Goal: Generators and Relations for a subgroup of the Hilbert Modular Group K = Q( d) with d a square-free positive integer { ω = 1+ d 1, if d 1 mod 4; d 0, with d 0 = 2, if d 1 mod 4. O = Z[ω] Goal of this work Finding generators and relations for SL 2 (O). 2 / 19

3 Motivation: Units in Group Rings 3 / 19

4 Motivation: Units in Group Rings G finite group. 3 / 19

5 Motivation: Units in Group Rings G finite group. Open Problem: Finding generators and relations for a subgroup of finite index of U(ZG). 3 / 19

6 Motivation: Units in Group Rings G finite group. Open Problem: Finding generators and relations for a subgroup of finite index of U(ZG). QG = n i=1 M n i (D i ), D i a division algebra, let O i be an order in D i for every 1 i n. 3 / 19

7 Motivation: Units in Group Rings G finite group. Open Problem: Finding generators and relations for a subgroup of finite index of U(ZG). QG = n i=1 M n i (D i ), D i a division algebra, let O i be an order in D i for every 1 i n. Finding generators and relations for U(ZG), up to commensurability, reduces to finding generators and relations for SL ni (O i ) for every 1 i n. 3 / 19

8 Exceptional Components An exceptional component is a component which is equal to a non-commutative division ring different from a totally definite quaternion algebra, M 2 (D) with D equal to Q or Q( d) with d > 0, M 2 (D) with D a totally definite rational quaternion algebra H(a, b, Q). 4 / 19

9 Exceptional Components An exceptional component is a component which is equal to a non-commutative division ring different from a totally definite quaternion algebra, M 2 (D) with D equal to Q or Q( d) with d > 0, M 2 (D) with D a totally definite rational quaternion algebra H(a, b, Q). Idea for some of these cases Discontinuous actions on hyperbolic spaces. 4 / 19

10 Discontinuous Actions and Fundamental Domains based on groups acting discontinuously on hyperbolic space H n 5 / 19

11 Discontinuous Actions and Fundamental Domains based on groups acting discontinuously on hyperbolic space H n Theorem Let X be a finitely compact metric space. A group Γ of isometries of X acts discontinuously on X if and only if it is discrete. 5 / 19

12 Discontinuous Actions and Fundamental Domains based on groups acting discontinuously on hyperbolic space H n Theorem Let X be a finitely compact metric space. A group Γ of isometries of X acts discontinuously on X if and only if it is discrete. Definition A fundamental domain of the discontinuous group Γ < Iso(X ) is a closed subset F X satisfying the following conditions: the boundary of F has Lebesgue measure 0, the members of {g(f ) g Γ} are mutually disjoint, and X = g Γ g(f). 5 / 19

13 Example: Action of SL 2 (Z) on H 2 SL 2 (Z) discrete in SL 2 (R) 6 / 19

14 Example: Action of SL 2 (Z) on H 2 SL 2 (Z) discrete in SL 2 (R) SL 2 (R) = group of isometries of H 2 6 / 19

15 Example: Action of SL 2 (Z) on H 2 SL 2 (Z) discrete in SL 2 (R) SL 2 (R) = group of isometries of H 2 H 2 = {Z = x + yi x, y R, y > 0} 6 / 19

16 Example: Action of SL 2 (Z) on H 2 SL 2 (Z) discrete in SL 2 (R) SL 2 (R) = group of isometries of H 2 H 2 = {Z = x + yi x, y R, y > 0} Action of SL 2 (Z) on H 2 ( ) a b Z = az + b c d cz + d H2 6 / 19

17 Fundamental Domain of SL 2 (Z) Fundamental Domain of SL 2 (Z) acting on H 2 7 / 19

18 The Poincaré Theorem Theorem (Poincaré) Let F be an exact, convex fundamental domain, which is a polyhedron, for a discrete group Γ of H n. Then Γ is generated by {g Γ F g(f) is a side of F}. Relations There are two kinds of relations pairing relations: established based on the sides of the polyhedron, cycle relations: established based on the edges of the polyhedron. 8 / 19

19 Example of SL 2 (Z) side parings: 9 / 19

20 Example of SL 2 (Z) side parings: ( ) 1 1, / 19

21 Example of SL 2 (Z) side parings: ( ) 1 1, 0 1 ( ) 1 1, / 19

22 Example of SL 2 (Z) side parings: ( ) 1 1, 0 1 ( ) 1 1, 0 1 ( ) / 19

23 Example of SL 2 (Z) side parings: ( ) 1 1, 0 1 ( ) 1 1, 0 1 ( ) SL 2 (Z) = ( ) ( ) , / 19

24 Link to U(ZG) Exceptional Components where this may be applied: H ( a, b, Q( d) ) for d a square-free positive integer, M 2 (Q( d)) for d a square-free positive integer. 10 / 19

25 Link to U(ZG) Exceptional Components where this may be applied: Idea H ( a, b, Q( d) ) for d a square-free positive integer, M 2 (Q( d)) for d a square-free positive integer. these groups act as isometries via Möbius action on H 3 orders in these groups are discrete in SL 2 (C) discontinuous action on H 3 generators and relations via Poincaré theorem Has been done in joint work with E. Jespers, S. O. Juriaans, A. De A. E Silva, A. C. Souza Filho. 10 / 19

26 Fundamental Domain of H ( 1, 1, Z [ ]) ( [ ]) Fundamental Domain of H 1, 1, Z acting on H 3 11 / 19

27 More Difficult Context Other example of exceptional component D = H ( 1, 1, Z[ξ n ]) where ξ n is a n-th primitve root of unity. 12 / 19

28 More Difficult Context Other example of exceptional component D = H ( 1, 1, Z[ξ n ]) where ξ n is a n-th primitve root of unity. most easiest case U(Z(Q 8 C 7 )) U(H(Z[ξ 7 ])) 12 / 19

29 More Difficult Context Other example of exceptional component D = H ( 1, 1, Z[ξ n ]) where ξ n is a n-th primitve root of unity. most easiest case U(Z(Q 8 C 7 )) U(H(Z[ξ 7 ])) problem: U(H(Z[ξ 7 ])) SL 2 (Z[ξ 7 ]) 12 / 19

30 More Difficult Context Other example of exceptional component D = H ( 1, 1, Z[ξ n ]) where ξ n is a n-th primitve root of unity. most easiest case U(Z(Q 8 C 7 )) U(H(Z[ξ 7 ])) problem: U(H(Z[ξ 7 ])) SL 2 (Z[ξ 7 ]) SL 2 (Z[ξ 7 ]) not discrete in SL 2 (C), but 12 / 19

31 More Difficult Context Other example of exceptional component D = H ( 1, 1, Z[ξ n ]) where ξ n is a n-th primitve root of unity. most easiest case U(Z(Q 8 C 7 )) U(H(Z[ξ 7 ])) problem: U(H(Z[ξ 7 ])) SL 2 (Z[ξ 7 ]) SL 2 (Z[ξ 7 ]) not discrete in SL 2 (C), but we have discreteness in SL 2 (C) SL 2 (C) SL 2 (C) hence: discontinuous action on H 3 H 3 H 3 Question: Does the Poincaré Theory still work in this case? 12 / 19

32 Test Case K = Q( d) with d a square-free positive integer { ω = 1+ d 1, if d 1 mod 4; d 0, with d 0 = 2, if d 1 mod 4. O = Z[ω] If a O, a denotes its algebraic conjugate. We consider the group SL 2 (O). 13 / 19

33 Test Case K = Q( d) with d a square-free positive integer { ω = 1+ d 1, if d 1 mod 4; d 0, with d 0 = 2, if d 1 mod 4. O = Z[ω] If a O, a denotes its algebraic conjugate. We consider the group SL 2 (O). Embedding of SL 2 (O) in SL 2 (R) SL 2 (R) A SL 2 (O) ( A, A ) SL 2 (R) SL 2 (R) 13 / 19

34 Test Case K = Q( d) with d a square-free positive integer { ω = 1+ d 1, if d 1 mod 4; d 0, with d 0 = 2, if d 1 mod 4. O = Z[ω] If a O, a denotes its algebraic conjugate. We consider the group SL 2 (O). Embedding of SL 2 (O) in SL 2 (R) SL 2 (R) Lemma A SL 2 (O) ( A, A ) SL 2 (R) SL 2 (R) SL 2 (O) is discrete in SL 2 (R) SL 2 (R) and has thus a discontinuous action on H 2 H / 19

35 Action of SL 2 (O) on H 2 H 2 H 2 H 2 = {(Z 1, Z 2 ) Z i = x i + y i i, x i, y i R, y i > 0}. 14 / 19

36 Action of SL 2 (O) on H 2 H 2 H 2 H 2 = {(Z 1, Z 2 ) Z i = x i + y i i, x i, y i R, y i > 0}. ( ) (( ) ( a b a b a b A =, )) c d c d c d. 14 / 19

37 Action of SL 2 (O) on H 2 H 2 H 2 H 2 = {(Z 1, Z 2 ) Z i = x i + y i i, x i, y i R, y i > 0}. ( ) (( ) ( a b a b a b A =, )) c d c d c d. A(Z 1, Z 2 ) = ( az1 + b cz 1 + d, a Z 2 + b ) c Z 2 + d H 2 H 2 14 / 19

38 Problems 15 / 19

39 Problems Construction of a fundamental domain F? 15 / 19

40 Problems Construction of a fundamental domain F? possible constructions but no longer a polyhedron 15 / 19

41 Problems Construction of a fundamental domain F? possible constructions but no longer a polyhedron Concerning generators: find an adequate definition for a side of F. 15 / 19

42 Problems Construction of a fundamental domain F? possible constructions but no longer a polyhedron Concerning generators: find an adequate definition for a side of F. Concerning relations: find an adequate definition for an edge of F. 15 / 19

43 Problems Construction of a fundamental domain F? possible constructions but no longer a polyhedron Concerning generators: find an adequate definition for a side of F. Concerning relations: find an adequate definition for an edge of F. F has finitely many sides. 15 / 19

44 Problems Construction of a fundamental domain F? possible constructions but no longer a polyhedron Concerning generators: find an adequate definition for a side of F. Concerning relations: find an adequate definition for an edge of F. F has finitely many sides. Generalize the proof of the Poincaré theorem to this case. 15 / 19

45 Generators of SL 2 (O) ( ) 1 1 P 1 =, 0 1 ( ) 1 ω P 2 =, 0 1 ( ) ɛ0 0 P 3 = 0 ɛ 1, where ɛ 0 is the smallest unit of O greater 0 than / 19

46 Generators of SL 2 (O) ( ) 1 1 P 1 =, 0 1 ( ) 1 ω P 2 =, 0 1 ( ) ɛ0 0 P 3 = 0 ɛ 1, where ɛ 0 is the smallest unit of O greater 0 than 1. Theorem If O is a PID, there exists a finite set X 1, such that, SL 2 (O) = P 1, P 2, P 3, P c,d (c, d) X 1, where P c,d is constructed in the following ( way: ) for each a b (c, d) X 1 choose (a, b) so that P c,d = SL c d 2 (O). 16 / 19

47 Relations for SL 2 (O) Theorem Let F be the fundamental domain of SL 2 (O) as defined before. Then the following is a presentation of SL 2 (O): Generators: the side-pairing transformations of F, Relations: the pairing relations and the cycle relations. 17 / 19

48 Further Work Projects: 18 / 19

49 Further Work Projects: generalize the theory to K = Q( d) with O not PID, 18 / 19

50 Further Work Projects: generalize the theory to K = Q( d) with O not PID, no finite set X 1 any more 18 / 19

51 Further Work Projects: generalize the theory to K = Q( d) with O not PID, no finite set X 1 any more generalize the theory to more copies of hyperbolic (3 )space, 18 / 19

52 Further Work Projects: generalize the theory to K = Q( d) with O not PID, no finite set X 1 any more generalize the theory to more copies of hyperbolic (3 )space, more symmetries showing up 18 / 19

53 Further Work Projects: generalize the theory to K = Q( d) with O not PID, no finite set X 1 any more generalize the theory to more copies of hyperbolic (3 )space, more symmetries showing up attack the concrete problem of U(Z(Q 8 C 7 )). 18 / 19

54 Thank you for your attention. 19 / 19

Poincaré Bisectors and Application to Units

Poincaré Bisectors and Application to Units Poincaré Bisectors and Application to Units joint work with E. Jespers, S. O. Juriaans, A. De A. E Silva, A. C. Souza Filho Ann Kiefer July 15, 2011 Motivation Motivation Open Problem: Finding generators

More information

Units of Integral Group Rings, Banff, Eric Jespers. Vrije Universiteit Brussel Belgium

Units of Integral Group Rings, Banff, Eric Jespers. Vrije Universiteit Brussel Belgium Units of Integral Group Rings, Banff, 2014 Eric Jespers Vrije Universiteit Brussel Belgium G a finite group ZG integral group ring U(ZG) group of invertible elements, a finitely presented group PROBLEM

More information

THE FUNDAMENTAL GROUP OF THE DOUBLE OF THE FIGURE-EIGHT KNOT EXTERIOR IS GFERF

THE FUNDAMENTAL GROUP OF THE DOUBLE OF THE FIGURE-EIGHT KNOT EXTERIOR IS GFERF THE FUNDAMENTAL GROUP OF THE DOUBLE OF THE FIGURE-EIGHT KNOT EXTERIOR IS GFERF D. D. LONG and A. W. REID Abstract We prove that the fundamental group of the double of the figure-eight knot exterior admits

More information

Groups of units of integral group rings of Kleinian type

Groups of units of integral group rings of Kleinian type Groups of units of integral group rings of Kleinian type Antonio Pita, Ángel del Río and Manuel Ruiz May, 004 Abstract We explore a method to obtain presentations of the group of units of an integral group

More information

Part II. Geometry and Groups. Year

Part II. Geometry and Groups. Year Part II Year 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2014 Paper 4, Section I 3F 49 Define the limit set Λ(G) of a Kleinian group G. Assuming that G has no finite orbit in H 3 S 2, and that Λ(G),

More information

Group rings of finite strongly monomial groups: central units and primitive idempotents

Group rings of finite strongly monomial groups: central units and primitive idempotents Group rings of finite strongly monomial groups: central units and primitive idempotents joint work with E. Jespers, G. Olteanu and Á. del Río Inneke Van Gelder Vrije Universiteit Brussel Recend Trends

More information

Equations for Hilbert modular surfaces

Equations for Hilbert modular surfaces Equations for Hilbert modular surfaces Abhinav Kumar MIT April 24, 2013 Introduction Outline of talk Elliptic curves, moduli spaces, abelian varieties 2/31 Introduction Outline of talk Elliptic curves,

More information

Tomáš Madaras Congruence classes

Tomáš Madaras Congruence classes Congruence classes For given integer m 2, the congruence relation modulo m at the set Z is the equivalence relation, thus, it provides a corresponding partition of Z into mutually disjoint sets. Definition

More information

Hyperbolic volumes and zeta values An introduction

Hyperbolic volumes and zeta values An introduction Hyperbolic volumes and zeta values An introduction Matilde N. Laĺın University of Alberta mlalin@math.ulberta.ca http://www.math.ualberta.ca/~mlalin Annual North/South Dialogue in Mathematics University

More information

1 Hermitian symmetric spaces: examples and basic properties

1 Hermitian symmetric spaces: examples and basic properties Contents 1 Hermitian symmetric spaces: examples and basic properties 1 1.1 Almost complex manifolds............................................ 1 1.2 Hermitian manifolds................................................

More information

Polylogarithms and Hyperbolic volumes Matilde N. Laĺın

Polylogarithms and Hyperbolic volumes Matilde N. Laĺın Polylogarithms and Hyperbolic volumes Matilde N. Laĺın University of British Columbia and PIMS, Max-Planck-Institut für Mathematik, University of Alberta mlalin@math.ubc.ca http://www.math.ubc.ca/~mlalin

More information

Revisiting Poincaré's Theorem on presentations of discontinuous groups via fundamental polyhedra

Revisiting Poincaré's Theorem on presentations of discontinuous groups via fundamental polyhedra Revisiting Poincaré's Theorem on presentations of discontinuous groups via fundamental polyhedra E. Jespers a, A. Kiefer a, Á. del Río b a Department of Mathematics, Vrije Universiteit Brussel, Pleinlaan

More information

Ideals: Definitions & Examples

Ideals: Definitions & Examples Ideals: Definitions & Examples Defn: An ideal I of a commutative ring R is a subset of R such that for a, b I and r R we have a + b, a b, ra I Examples: All ideals of Z have form nz = (n) = {..., n, 0,

More information

RUTGERS UNIVERSITY GRADUATE PROGRAM IN MATHEMATICS Written Qualifying Examination August, Session 1. Algebra

RUTGERS UNIVERSITY GRADUATE PROGRAM IN MATHEMATICS Written Qualifying Examination August, Session 1. Algebra RUTGERS UNIVERSITY GRADUATE PROGRAM IN MATHEMATICS Written Qualifying Examination August, 2014 Session 1. Algebra The Qualifying Examination consists of three two-hour sessions. This is the first session.

More information

Möbius transformations Möbius transformations are simply the degree one rational maps of C: cz + d : C C. ad bc 0. a b. A = c d

Möbius transformations Möbius transformations are simply the degree one rational maps of C: cz + d : C C. ad bc 0. a b. A = c d Möbius transformations Möbius transformations are simply the degree one rational maps of C: where and Then σ A : z az + b cz + d : C C ad bc 0 ( ) a b A = c d A σ A : GL(2C) {Mobius transformations } is

More information

QUALIFYING EXAMINATION Harvard University Department of Mathematics Tuesday 10 February 2004 (Day 1)

QUALIFYING EXAMINATION Harvard University Department of Mathematics Tuesday 10 February 2004 (Day 1) Tuesday 10 February 2004 (Day 1) 1a. Prove the following theorem of Banach and Saks: Theorem. Given in L 2 a sequence {f n } which weakly converges to 0, we can select a subsequence {f nk } such that the

More information

1 Rings 1 RINGS 1. Theorem 1.1 (Substitution Principle). Let ϕ : R R be a ring homomorphism

1 Rings 1 RINGS 1. Theorem 1.1 (Substitution Principle). Let ϕ : R R be a ring homomorphism 1 RINGS 1 1 Rings Theorem 1.1 (Substitution Principle). Let ϕ : R R be a ring homomorphism (a) Given an element α R there is a unique homomorphism Φ : R[x] R which agrees with the map ϕ on constant polynomials

More information

274 Curves on Surfaces, Lecture 4

274 Curves on Surfaces, Lecture 4 274 Curves on Surfaces, Lecture 4 Dylan Thurston Notes by Qiaochu Yuan Fall 2012 4 Hyperbolic geometry Last time there was an exercise asking for braids giving the torsion elements in PSL 2 (Z). A 3-torsion

More information

Class Numbers, Continued Fractions, and the Hilbert Modular Group

Class Numbers, Continued Fractions, and the Hilbert Modular Group Class Numbers, Continued Fractions, and the Hilbert Modular Group Jordan Schettler University of California, Santa Barbara 11/8/2013 Outline 1 Motivation 2 The Hilbert Modular Group 3 Resolution of the

More information

THE REAL NUMBERS Chapter #4

THE REAL NUMBERS Chapter #4 FOUNDATIONS OF ANALYSIS FALL 2008 TRUE/FALSE QUESTIONS THE REAL NUMBERS Chapter #4 (1) Every element in a field has a multiplicative inverse. (2) In a field the additive inverse of 1 is 0. (3) In a field

More information

THE UNIT GROUP OF A REAL QUADRATIC FIELD

THE UNIT GROUP OF A REAL QUADRATIC FIELD THE UNIT GROUP OF A REAL QUADRATIC FIELD While the unit group of an imaginary quadratic field is very simple the unit group of a real quadratic field has nontrivial structure Its study involves some geometry

More information

MCMULLEN S ROOT-FINDING ALGORITHM FOR CUBIC POLYNOMIALS

MCMULLEN S ROOT-FINDING ALGORITHM FOR CUBIC POLYNOMIALS PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 130, Number 9, Pages 2583 2592 S 0002-9939(02)06659-5 Article electronically published on April 22, 2002 MCMULLEN S ROOT-FINDING ALGORITHM FOR CUBIC

More information

Profinite Groups. Hendrik Lenstra. 1. Introduction

Profinite Groups. Hendrik Lenstra. 1. Introduction Profinite Groups Hendrik Lenstra 1. Introduction We begin informally with a motivation, relating profinite groups to the p-adic numbers. Let p be a prime number, and let Z p denote the ring of p-adic integers,

More information

LINK COMPLEMENTS AND THE BIANCHI MODULAR GROUPS

LINK COMPLEMENTS AND THE BIANCHI MODULAR GROUPS TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 5, Number 8, Pages 9 46 S 000-9947(01)0555-7 Article electronically published on April 9, 001 LINK COMPLEMENTS AND THE BIANCHI MODULAR GROUPS MARK

More information

1. If 1, ω, ω 2, -----, ω 9 are the 10 th roots of unity, then (1 + ω) (1 + ω 2 ) (1 + ω 9 ) is A) 1 B) 1 C) 10 D) 0

1. If 1, ω, ω 2, -----, ω 9 are the 10 th roots of unity, then (1 + ω) (1 + ω 2 ) (1 + ω 9 ) is A) 1 B) 1 C) 10 D) 0 4 INUTES. If, ω, ω, -----, ω 9 are the th roots of unity, then ( + ω) ( + ω ) ----- ( + ω 9 ) is B) D) 5. i If - i = a + ib, then a =, b = B) a =, b = a =, b = D) a =, b= 3. Find the integral values for

More information

Hyperbolic Graphs of Surface Groups

Hyperbolic Graphs of Surface Groups Hyperbolic Graphs of Surface Groups Honglin Min Rutgers University - Newark May 2, 2008 Notations Let S be a closed hyperbolic surface. Let T (S) be the Teichmuller space of S. Let PML be the projective

More information

Top Ehrhart coefficients of integer partition problems

Top Ehrhart coefficients of integer partition problems Top Ehrhart coefficients of integer partition problems Jesús A. De Loera Department of Mathematics University of California, Davis Joint Math Meetings San Diego January 2013 Goal: Count the solutions

More information

6 6 DISCRETE GROUPS. 6.1 Discontinuous Group Actions

6 6 DISCRETE GROUPS. 6.1 Discontinuous Group Actions 6 6 DISCRETE GROUPS 6.1 Discontinuous Group Actions Let G be a subgroup of Möb(D). This group acts discontinuously on D if, for every compact subset K of D, the set {T G : T (K) K } is finite. Proposition

More information

MATH 131B: ALGEBRA II PART B: COMMUTATIVE ALGEBRA

MATH 131B: ALGEBRA II PART B: COMMUTATIVE ALGEBRA MATH 131B: ALGEBRA II PART B: COMMUTATIVE ALGEBRA I want to cover Chapters VIII,IX,X,XII. But it is a lot of material. Here is a list of some of the particular topics that I will try to cover. Maybe I

More information

Hyperbolic Component Boundaries

Hyperbolic Component Boundaries Hyperbolic Component Boundaries John Milnor Stony Brook University Gyeongju, August 23, 2014 Revised version. The conjectures on page 16 were problematic, and have been corrected. The Problem Hyperbolic

More information

COURSE SUMMARY FOR MATH 504, FALL QUARTER : MODERN ALGEBRA

COURSE SUMMARY FOR MATH 504, FALL QUARTER : MODERN ALGEBRA COURSE SUMMARY FOR MATH 504, FALL QUARTER 2017-8: MODERN ALGEBRA JAROD ALPER Week 1, Sept 27, 29: Introduction to Groups Lecture 1: Introduction to groups. Defined a group and discussed basic properties

More information

Math Subject GRE Questions

Math Subject GRE Questions Math Subject GRE Questions Calculus and Differential Equations 1. If f() = e e, then [f ()] 2 [f()] 2 equals (a) 4 (b) 4e 2 (c) 2e (d) 2 (e) 2e 2. An integrating factor for the ordinary differential equation

More information

The Theorem of Pappus and Commutativity of Multiplication

The Theorem of Pappus and Commutativity of Multiplication The Theorem of Pappus and Commutativity of Multiplication Leroy J Dickey 2012-05-18 Abstract The purpose of this note is to present a proof of the Theorem of Pappus that reveals the role of commutativity

More information

Algebra Review. Instructor: Laszlo Babai Notes by Vincent Lucarelli and the instructor. June 15, 2001

Algebra Review. Instructor: Laszlo Babai Notes by Vincent Lucarelli and the instructor. June 15, 2001 Algebra Review Instructor: Laszlo Babai Notes by Vincent Lucarelli and the instructor June 15, 2001 1 Groups Definition 1.1 A semigroup (G, ) is a set G with a binary operation such that: Axiom 1 ( a,

More information

(1) Consider the space S consisting of all continuous real-valued functions on the closed interval [0, 1]. For f, g S, define

(1) Consider the space S consisting of all continuous real-valued functions on the closed interval [0, 1]. For f, g S, define Homework, Real Analysis I, Fall, 2010. (1) Consider the space S consisting of all continuous real-valued functions on the closed interval [0, 1]. For f, g S, define ρ(f, g) = 1 0 f(x) g(x) dx. Show that

More information

Sample algebra qualifying exam

Sample algebra qualifying exam Sample algebra qualifying exam University of Hawai i at Mānoa Spring 2016 2 Part I 1. Group theory In this section, D n and C n denote, respectively, the symmetry group of the regular n-gon (of order 2n)

More information

Highly complex: Möbius transformations, hyperbolic tessellations and pearl fractals

Highly complex: Möbius transformations, hyperbolic tessellations and pearl fractals Highly complex: Möbius transformations, hyperbolic tessellations and pearl fractals Department of mathematical sciences Aalborg University Cergy-Pontoise 26.5.2011 Möbius transformations Definition Möbius

More information

APPLICATION OF HOARE S THEOREM TO SYMMETRIES OF RIEMANN SURFACES

APPLICATION OF HOARE S THEOREM TO SYMMETRIES OF RIEMANN SURFACES Annales Academiæ Scientiarum Fennicæ Series A. I. Mathematica Volumen 18, 1993, 307 3 APPLICATION OF HOARE S THEOREM TO SYMMETRIES OF RIEMANN SURFACES E. Bujalance, A.F. Costa, and D. Singerman Universidad

More information

Lecture 4: Examples of automorphic forms on the unitary group U(3)

Lecture 4: Examples of automorphic forms on the unitary group U(3) Lecture 4: Examples of automorphic forms on the unitary group U(3) Lassina Dembélé Department of Mathematics University of Calgary August 9, 2006 Motivation The main goal of this talk is to show how one

More information

Introduction to Shimura Curves

Introduction to Shimura Curves Introduction to Shimura Curves Alyson Deines Today 1 Motivation In class this quarter we spent a considerable amount of time studying the curves X(N = Γ(N \ H, X 0 (N = Γ 0 (N \ H, X 1 (NΓ 1 (N \ H, where

More information

TEST CODE: PMB SYLLABUS

TEST CODE: PMB SYLLABUS TEST CODE: PMB SYLLABUS Convergence and divergence of sequence and series; Cauchy sequence and completeness; Bolzano-Weierstrass theorem; continuity, uniform continuity, differentiability; directional

More information

Abstract Algebra Study Sheet

Abstract Algebra Study Sheet Abstract Algebra Study Sheet This study sheet should serve as a guide to which sections of Artin will be most relevant to the final exam. When you study, you may find it productive to prioritize the definitions,

More information

Fuchsian groups. 2.1 Definitions and discreteness

Fuchsian groups. 2.1 Definitions and discreteness 2 Fuchsian groups In the previous chapter we introduced and studied the elements of Mob(H), which are the real Moebius transformations. In this chapter we focus the attention of special subgroups of this

More information

Z n -free groups are CAT(0)

Z n -free groups are CAT(0) Z n -free groups are CAT(0) Inna Bumagin joint work with Olga Kharlampovich to appear in the Journal of the LMS February 6, 2014 Introduction Lyndon Length Function Let G be a group and let Λ be a totally

More information

SOME SPECIAL KLEINIAN GROUPS AND THEIR ORBIFOLDS

SOME SPECIAL KLEINIAN GROUPS AND THEIR ORBIFOLDS Proyecciones Vol. 21, N o 1, pp. 21-50, May 2002. Universidad Católica del Norte Antofagasta - Chile SOME SPECIAL KLEINIAN GROUPS AND THEIR ORBIFOLDS RUBÉN HIDALGO Universidad Técnica Federico Santa María

More information

Sylow structure of finite groups

Sylow structure of finite groups Sylow structure of finite groups Jack Schmidt University of Kentucky September 2, 2009 Abstract: Probably the most powerful results in the theory of finite groups are the Sylow theorems. Those who have

More information

OSTROWSKI S THEOREM. Contents

OSTROWSKI S THEOREM. Contents OSTROWSKI S THEOREM GEUNHO GIM Contents. Ostrowski s theorem for Q 2. Ostrowski s theorem for number fields 2 3. Ostrowski s theorem for F T ) 4 References 5. Ostrowski s theorem for Q Definition.. A valuation

More information

Limits of cubes E1 4NS, U.K.

Limits of cubes E1 4NS, U.K. Limits of cubes Peter J. Cameron a Sam Tarzi a a School of Mathematical Sciences, Queen Mary, University of London, London E1 4NS, U.K. Abstract The celebrated Urysohn space is the completion of a countable

More information

Algebraic Structures Exam File Fall 2013 Exam #1

Algebraic Structures Exam File Fall 2013 Exam #1 Algebraic Structures Exam File Fall 2013 Exam #1 1.) Find all four solutions to the equation x 4 + 16 = 0. Give your answers as complex numbers in standard form, a + bi. 2.) Do the following. a.) Write

More information

Part II. Algebraic Topology. Year

Part II. Algebraic Topology. Year Part II Year 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2017 Paper 3, Section II 18I The n-torus is the product of n circles: 5 T n = } S 1. {{.. S } 1. n times For all n 1 and 0

More information

IDEAL CLASSES AND SL 2

IDEAL CLASSES AND SL 2 IDEAL CLASSES AND SL 2 KEITH CONRAD Introduction A standard group action in complex analysis is the action of GL 2 C on the Riemann sphere C { } by linear fractional transformations Möbius transformations:

More information

The j-function, the golden ratio, and rigid meromorphic cocycles

The j-function, the golden ratio, and rigid meromorphic cocycles The j-function, the golden ratio, and rigid meromorphic cocycles Henri Darmon, McGill University CNTA XV, July 2018 Reminiscences of CNTA 0 The 1987 CNTA in Quebec City was an exciting one for me personally,

More information

1.3 Group Actions. Exercise Prove that a CAT(1) piecewise spherical simplicial complex is metrically flag.

1.3 Group Actions. Exercise Prove that a CAT(1) piecewise spherical simplicial complex is metrically flag. Exercise 1.2.6. Prove that a CAT(1) piecewise spherical simplicial complex is metrically flag. 1.3 Group Actions Definition 1.3.1. Let X be a metric space, and let λ : X X be an isometry. The displacement

More information

Introduction to Modern Quantum Field Theory

Introduction to Modern Quantum Field Theory Department of Mathematics University of Texas at Arlington Arlington, TX USA Febuary, 2016 Recall Einstein s famous equation, E 2 = (Mc 2 ) 2 + (c p) 2, where c is the speed of light, M is the classical

More information

Group actions and identities for the simple Lie algebra sl 2 (C)

Group actions and identities for the simple Lie algebra sl 2 (C) Group actions and identities for the simple Lie algebra sl 2 (C IMECC - Unicamp September 02, 2011 Beginning: A. Giambruno, A. Regev, Wreath products and PI algebras, J. Pure Appl. Algebra 35 (1985 133-145.

More information

Ergodic Theory and Topological Groups

Ergodic Theory and Topological Groups Ergodic Theory and Topological Groups Christopher White November 15, 2012 Throughout this talk (G, B, µ) will denote a measure space. We call the space a probability space if µ(g) = 1. We will also assume

More information

On the local connectivity of limit sets of Kleinian groups

On the local connectivity of limit sets of Kleinian groups On the local connectivity of limit sets of Kleinian groups James W. Anderson and Bernard Maskit Department of Mathematics, Rice University, Houston, TX 77251 Department of Mathematics, SUNY at Stony Brook,

More information

Trace fields of knots

Trace fields of knots JT Lyczak, February 2016 Trace fields of knots These are the knotes from the seminar on knot theory in Leiden in the spring of 2016 The website and all the knotes for this seminar can be found at http://pubmathleidenunivnl/

More information

z, w = z 1 w 1 + z 2 w 2 z, w 2 z 2 w 2. d([z], [w]) = 2 φ : P(C 2 ) \ [1 : 0] C ; [z 1 : z 2 ] z 1 z 2 ψ : P(C 2 ) \ [0 : 1] C ; [z 1 : z 2 ] z 2 z 1

z, w = z 1 w 1 + z 2 w 2 z, w 2 z 2 w 2. d([z], [w]) = 2 φ : P(C 2 ) \ [1 : 0] C ; [z 1 : z 2 ] z 1 z 2 ψ : P(C 2 ) \ [0 : 1] C ; [z 1 : z 2 ] z 2 z 1 3 3 THE RIEMANN SPHERE 31 Models for the Riemann Sphere One dimensional projective complex space P(C ) is the set of all one-dimensional subspaces of C If z = (z 1, z ) C \ 0 then we will denote by [z]

More information

QUALIFYING EXAM IN ALGEBRA August 2011

QUALIFYING EXAM IN ALGEBRA August 2011 QUALIFYING EXAM IN ALGEBRA August 2011 1. There are 18 problems on the exam. Work and turn in 10 problems, in the following categories. I. Linear Algebra 1 problem II. Group Theory 3 problems III. Ring

More information

Material covered: Class numbers of quadratic fields, Valuations, Completions of fields.

Material covered: Class numbers of quadratic fields, Valuations, Completions of fields. ALGEBRAIC NUMBER THEORY LECTURE 6 NOTES Material covered: Class numbers of quadratic fields, Valuations, Completions of fields. 1. Ideal class groups of quadratic fields These are the ideal class groups

More information

Continued fractions and geodesics on the modular surface

Continued fractions and geodesics on the modular surface Continued fractions and geodesics on the modular surface Chris Johnson Clemson University September 8, 203 Outline The modular surface Continued fractions Symbolic coding References Some hyperbolic geometry

More information

Exercises on chapter 1

Exercises on chapter 1 Exercises on chapter 1 1. Let G be a group and H and K be subgroups. Let HK = {hk h H, k K}. (i) Prove that HK is a subgroup of G if and only if HK = KH. (ii) If either H or K is a normal subgroup of G

More information

DISCRETE SUBGROUPS, LATTICES, AND UNITS.

DISCRETE SUBGROUPS, LATTICES, AND UNITS. DISCRETE SUBGROUPS, LATTICES, AND UNITS. IAN KIMING 1. Discrete subgroups of real vector spaces and lattices. Definitions: A lattice in a real vector space V of dimension d is a subgroup of form: Zv 1

More information

MATH 101: ALGEBRA I WORKSHEET, DAY #1. We review the prerequisites for the course in set theory and beginning a first pass on group. 1.

MATH 101: ALGEBRA I WORKSHEET, DAY #1. We review the prerequisites for the course in set theory and beginning a first pass on group. 1. MATH 101: ALGEBRA I WORKSHEET, DAY #1 We review the prerequisites for the course in set theory and beginning a first pass on group theory. Fill in the blanks as we go along. 1. Sets A set is a collection

More information

Graduate Preliminary Examination

Graduate Preliminary Examination Graduate Preliminary Examination Algebra II 18.2.2005: 3 hours Problem 1. Prove or give a counter-example to the following statement: If M/L and L/K are algebraic extensions of fields, then M/K is algebraic.

More information

Chapter 0: Preliminaries

Chapter 0: Preliminaries Chapter 0: Preliminaries Adam Sheffer March 28, 2016 1 Notation This chapter briefly surveys some basic concepts and tools that we will use in this class. Graduate students and some undergrads would probably

More information

MODEL ANSWERS TO HWK #7. 1. Suppose that F is a field and that a and b are in F. Suppose that. Thus a = 0. It follows that F is an integral domain.

MODEL ANSWERS TO HWK #7. 1. Suppose that F is a field and that a and b are in F. Suppose that. Thus a = 0. It follows that F is an integral domain. MODEL ANSWERS TO HWK #7 1. Suppose that F is a field and that a and b are in F. Suppose that a b = 0, and that b 0. Let c be the inverse of b. Multiplying the equation above by c on the left, we get 0

More information

Abstract Algebra II Groups ( )

Abstract Algebra II Groups ( ) Abstract Algebra II Groups ( ) Melchior Grützmann / melchiorgfreehostingcom/algebra October 15, 2012 Outline Group homomorphisms Free groups, free products, and presentations Free products ( ) Definition

More information

MATH 3030, Abstract Algebra FALL 2012 Toby Kenney Midyear Examination Friday 7th December: 7:00-10:00 PM

MATH 3030, Abstract Algebra FALL 2012 Toby Kenney Midyear Examination Friday 7th December: 7:00-10:00 PM MATH 3030, Abstract Algebra FALL 2012 Toby Kenney Midyear Examination Friday 7th December: 7:00-10:00 PM Basic Questions 1. Compute the factor group Z 3 Z 9 / (1, 6). The subgroup generated by (1, 6) is

More information

Properties of the Integers

Properties of the Integers Properties of the Integers The set of all integers is the set and the subset of Z given by Z = {, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, }, N = {0, 1, 2, 3, 4, }, is the set of nonnegative integers (also called

More information

THE SELBERG TRACE FORMULA OF COMPACT RIEMANN SURFACES

THE SELBERG TRACE FORMULA OF COMPACT RIEMANN SURFACES THE SELBERG TRACE FORMULA OF COMPACT RIEMANN SURFACES IGOR PROKHORENKOV 1. Introduction to the Selberg Trace Formula This is a talk about the paper H. P. McKean: Selberg s Trace Formula as applied to a

More information

a + b = b + a and a b = b a. (a + b) + c = a + (b + c) and (a b) c = a (b c). a (b + c) = a b + a c and (a + b) c = a c + b c.

a + b = b + a and a b = b a. (a + b) + c = a + (b + c) and (a b) c = a (b c). a (b + c) = a b + a c and (a + b) c = a c + b c. Properties of the Integers The set of all integers is the set and the subset of Z given by Z = {, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, }, N = {0, 1, 2, 3, 4, }, is the set of nonnegative integers (also called

More information

Definitions. Notations. Injective, Surjective and Bijective. Divides. Cartesian Product. Relations. Equivalence Relations

Definitions. Notations. Injective, Surjective and Bijective. Divides. Cartesian Product. Relations. Equivalence Relations Page 1 Definitions Tuesday, May 8, 2018 12:23 AM Notations " " means "equals, by definition" the set of all real numbers the set of integers Denote a function from a set to a set by Denote the image of

More information

MINKOWSKI THEORY AND THE CLASS NUMBER

MINKOWSKI THEORY AND THE CLASS NUMBER MINKOWSKI THEORY AND THE CLASS NUMBER BROOKE ULLERY Abstract. This paper gives a basic introduction to Minkowski Theory and the class group, leading up to a proof that the class number (the order of the

More information

MODEL ANSWERS TO THE FIRST HOMEWORK

MODEL ANSWERS TO THE FIRST HOMEWORK MODEL ANSWERS TO THE FIRST HOMEWORK 1. Chapter 4, 1: 2. Suppose that F is a field and that a and b are in F. Suppose that a b = 0, and that b 0. Let c be the inverse of b. Multiplying the equation above

More information

Quantum Ergodicity and Benjamini-Schramm convergence of hyperbolic surfaces

Quantum Ergodicity and Benjamini-Schramm convergence of hyperbolic surfaces Quantum Ergodicity and Benjamini-Schramm convergence of hyperbolic surfaces Etienne Le Masson (Joint work with Tuomas Sahlsten) School of Mathematics University of Bristol, UK August 26, 2016 Hyperbolic

More information

The geometrical semantics of algebraic quantum mechanics

The geometrical semantics of algebraic quantum mechanics The geometrical semantics of algebraic quantum mechanics B. Zilber University of Oxford November 29, 2016 B.Zilber, The semantics of the canonical commutation relations arxiv.org/abs/1604.07745 The geometrical

More information

Bredon finiteness properties of groups acting on CAT(0)-spaces

Bredon finiteness properties of groups acting on CAT(0)-spaces Bredon finiteness properties of groups acting on CAT(0)-spaces Nansen Petrosyan KU Leuven Durham 2013 1 Goal: Discuss finiteness properties for E FIN G and E VC G when G acts isometrically and discretely

More information

GROUPS. Chapter-1 EXAMPLES 1.1. INTRODUCTION 1.2. BINARY OPERATION

GROUPS. Chapter-1 EXAMPLES 1.1. INTRODUCTION 1.2. BINARY OPERATION Chapter-1 GROUPS 1.1. INTRODUCTION The theory of groups arose from the theory of equations, during the nineteenth century. Originally, groups consisted only of transformations. The group of transformations

More information

VOL3 AND OTHER EXCEPTIONAL HYPERBOLIC 3-MANIFOLDS

VOL3 AND OTHER EXCEPTIONAL HYPERBOLIC 3-MANIFOLDS PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 129, Number 7, Pages 2175 2185 S 0002-9939(00)05775-0 Article electronically published on December 4, 2000 VOL3 AND OTHER EXCEPTIONAL HYPERBOLIC

More information

Möbius Transformation

Möbius Transformation Möbius Transformation 1 1 June 15th, 2010 Mathematics Science Center Tsinghua University Philosophy Rigidity Conformal mappings have rigidity. The diffeomorphism group is of infinite dimension in general.

More information

On the first Zassenhaus Conjecture

On the first Zassenhaus Conjecture Leo Margolis Joint work with Mauricio Caicedo and Ángel del Río University of Murcia, University of Stuttgart Darstellungstheorietage, Magdeburg, November 23-2012 Talk Structure 1. The Zassenhaus Conjectures,

More information

1 Fields and vector spaces

1 Fields and vector spaces 1 Fields and vector spaces In this section we revise some algebraic preliminaries and establish notation. 1.1 Division rings and fields A division ring, or skew field, is a structure F with two binary

More information

Kevin James. MTHSC 412 Section 3.4 Cyclic Groups

Kevin James. MTHSC 412 Section 3.4 Cyclic Groups MTHSC 412 Section 3.4 Cyclic Groups Definition If G is a cyclic group and G =< a > then a is a generator of G. Definition If G is a cyclic group and G =< a > then a is a generator of G. Example 1 Z is

More information

One-dimensional families of Riemann surfaces with 4g+4 autom

One-dimensional families of Riemann surfaces with 4g+4 autom One-dimensional families of Riemann surfaces of genus g with 4g+4 automorphisms joint work with A. Costa Automorphisms of Riemann Surfaces and Related Topics AMS Spring Western Sectional Meeting Portland,

More information

φ(a + b) = φ(a) + φ(b) φ(a b) = φ(a) φ(b),

φ(a + b) = φ(a) + φ(b) φ(a b) = φ(a) φ(b), 16. Ring Homomorphisms and Ideals efinition 16.1. Let φ: R S be a function between two rings. We say that φ is a ring homomorphism if for every a and b R, and in addition φ(1) = 1. φ(a + b) = φ(a) + φ(b)

More information

(www.math.uni-bonn.de/people/harder/manuscripts/buch/), files chap2 to chap

(www.math.uni-bonn.de/people/harder/manuscripts/buch/), files chap2 to chap The basic objects in the cohomology theory of arithmetic groups Günter Harder This is an exposition of the basic notions and concepts which are needed to build up the cohomology theory of arithmetic groups

More information

arxiv:math/ v1 [math.nt] 21 Sep 2004

arxiv:math/ v1 [math.nt] 21 Sep 2004 arxiv:math/0409377v1 [math.nt] 21 Sep 2004 ON THE GCD OF AN INFINITE NUMBER OF INTEGERS T. N. VENKATARAMANA Introduction In this paper, we consider the greatest common divisor (to be abbreviated gcd in

More information

Twists and residual modular Galois representations

Twists and residual modular Galois representations Twists and residual modular Galois representations Samuele Anni University of Warwick Building Bridges, Bristol 10 th July 2014 Modular curves and Modular Forms 1 Modular curves and Modular Forms 2 Residual

More information

Coarse geometry of isometry groups of symmetric spaces

Coarse geometry of isometry groups of symmetric spaces Coarse geometry of isometry groups of symmetric spaces Joan Porti (Universitat Autònoma de Barcelona) August 12, 24 joint with Misha Kapovich and Bernhard Leeb, arxiv:1403.7671 Geometry on Groups and Spaces,

More information

The Symmetric Space for SL n (R)

The Symmetric Space for SL n (R) The Symmetric Space for SL n (R) Rich Schwartz November 27, 2013 The purpose of these notes is to discuss the symmetric space X on which SL n (R) acts. Here, as usual, SL n (R) denotes the group of n n

More information

LECTURES ON SHIMURA CURVES: ARITHMETIC FUCHSIAN GROUPS

LECTURES ON SHIMURA CURVES: ARITHMETIC FUCHSIAN GROUPS LECTURES ON SHIMURA CURVES: ARITHMETIC FUCHSIAN GROUPS PETE L. CLARK 1. What is an arithmetic Fuchsian group? The class of Fuchsian groups that we are (by far) most interested in are the arithmetic groups.

More information

Real Analysis Prelim Questions Day 1 August 27, 2013

Real Analysis Prelim Questions Day 1 August 27, 2013 Real Analysis Prelim Questions Day 1 August 27, 2013 are 5 questions. TIME LIMIT: 3 hours Instructions: Measure and measurable refer to Lebesgue measure µ n on R n, and M(R n ) is the collection of measurable

More information

Solutions, Project on p-adic Numbers, Real Analysis I, Fall, 2010.

Solutions, Project on p-adic Numbers, Real Analysis I, Fall, 2010. Solutions, Project on p-adic Numbers, Real Analysis I, Fall, 2010. (24) The p-adic numbers. Let p {2, 3, 5, 7, 11,... } be a prime number. (a) For x Q, define { 0 for x = 0, x p = p n for x = p n (a/b),

More information

SHIMURA CURVES II. Contents. 2. The space X 4 3. The Shimura curve M(G, X) 7 References 11

SHIMURA CURVES II. Contents. 2. The space X 4 3. The Shimura curve M(G, X) 7 References 11 SHIMURA CURVES II STEFAN KUKULIES Abstract. These are the notes of a talk I gave at the number theory seminar at University of Duisburg-Essen in summer 2008. We discuss the adèlic description of quaternionic

More information

Discrete groups and the thick thin decomposition

Discrete groups and the thick thin decomposition CHAPTER 5 Discrete groups and the thick thin decomposition Suppose we have a complete hyperbolic structure on an orientable 3-manifold. Then the developing map D : M H 3 is a covering map, by theorem 3.19.

More information

SOME SPECIAL 2-GENERATOR KLEINIAN GROUPS

SOME SPECIAL 2-GENERATOR KLEINIAN GROUPS PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 106, Number I, May 1989 SOME SPECIAL 2-GENERATOR KLEINIAN GROUPS BERNARD MASKIT (Communicated by Irwin Kra) Abstract. We explore the following question.

More information

FINITE GROUPS AND EQUATIONS OVER FINITE FIELDS A PROBLEM SET FOR ARIZONA WINTER SCHOOL 2016

FINITE GROUPS AND EQUATIONS OVER FINITE FIELDS A PROBLEM SET FOR ARIZONA WINTER SCHOOL 2016 FINITE GROUPS AND EQUATIONS OVER FINITE FIELDS A PROBLEM SET FOR ARIZONA WINTER SCHOOL 2016 PREPARED BY SHABNAM AKHTARI Introduction and Notations The problems in Part I are related to Andrew Sutherland

More information

EXERCISES IN MODULAR FORMS I (MATH 726) (2) Prove that a lattice L is integral if and only if its Gram matrix has integer coefficients.

EXERCISES IN MODULAR FORMS I (MATH 726) (2) Prove that a lattice L is integral if and only if its Gram matrix has integer coefficients. EXERCISES IN MODULAR FORMS I (MATH 726) EYAL GOREN, MCGILL UNIVERSITY, FALL 2007 (1) We define a (full) lattice L in R n to be a discrete subgroup of R n that contains a basis for R n. Prove that L is

More information