MATH 101: ALGEBRA I WORKSHEET, DAY #1. We review the prerequisites for the course in set theory and beginning a first pass on group. 1.


 Angela Wilkerson
 3 years ago
 Views:
Transcription
1 MATH 101: ALGEBRA I WORKSHEET, DAY #1 We review the prerequisites for the course in set theory and beginning a first pass on group theory. Fill in the blanks as we go along. 1. Sets A set is a collection of objects. (Our set theory is naive, and we do not go into super important foundational issues. Please take a logic class, it is amazingly cool!) Basic sets:, the empty set containing no elements; Z = {..., 1, 0, 1,... }, the integers; Z 0 = {x Z : x 0}, the nonnegative integers; similarly, positive integers, etc.; N =, the natural numbers; Q, the rational numbers; R, the real numbers; C, the complex numbers. A set X is a subset of a set Y if x X implies x Y, and we write X Y. (Some write X Y.) Two sets are equal, and we write X = Y, if they contain precisely the same elements, which can also be written. Operations on two sets X, Y : X Y, union: we have x X Y if and only if x X or x Y ; Date: Monday, 12 September
2 X Y, intersection: we have x X Y if and only if ; X Y, set minus: we have x X Y if and only if ; X Y, disjoint union: we write disjoint union instead of union when. X Y = {(x, y) : x X, y Y }, the Cartesian product. A relation R on a set X is. For example, equality is a relation on any set, defined by. An equivalence relation is a relation that is: reflexive,,,, and,. An equivalence relation partitions X into a disjoint union of equivalence classes, where the equivalence class of x X is. The set of equivalence classes X/ is the quotient of X by, and we have a projection map π : X X/ x [x] Let n Z >0. We define an equivalence relation on Z by x y (mod n) if n (x y). The set of equivalence classes is denoted Z/nZ. 2
3 2. Functions A function or map from a set X to Y is denoted f : X Y : the precise definition is via its graph {(x, f(x)) : x X} X Y. The collection of all functions from X to Y is denoted Y X, and this is sensible notation because. Let f : X Y be a function. Then X is the domain and Y is the. We write f(x) = img f for the image of f. The identity map on X is denoted id X : X X and defined by. Given another function g : Y Z, we can compose to get g f : X Z defined by (g f)(x) = g(f(x)). Sometimes we will have more elaborate diagrams: X f h Y Z g We say a diagram like the above is commutative if we start from one set and travel to any other, we get the same answer regardless of the path chosen: in the above example, this reads. Similarly, the diagram X f Y g X f Y is commutative if and only if. We say that f factors through a map g : X Z if there exists a map h : Z Y such that g 3, i.e. the diagram
4 commutes. The function f is: injective (or onetoone) if, and if so we write X Y ; surjective (or onto) if, and if so we write X Y ; and bijective (or a onetoone correspondence), if f is both injective and surjective, and we write X Y. Lemma. Define the relation on X by x x if f(x) = f(x ). Then the following hold. (a) is an equivalence relation. (b) f factors uniquely through the projection π : X X/. If f is surjective, then the map (X/ ) Y is bijective. In a picture: Proof. First, part (a). Next, part (b). 4
5 Example. If I is a set, and for each i I we have a set X i, we can form the product X I = i I X i. The set X i has projection maps π i : X I X i for i I. The product X I is uniquely determined up to bijection by the following property: for any set Y and maps f i : Y X i, there is a unique map f : Y i I X i such that π i f = f i. In a diagram: A left inverse to f is a function g : Y X such that g f = id X, and similarly a right inverse. The function f has a left inverse if and only if. In a picture: Similarly, f has a right inverse if and only if. If y Y, we will write f 1 (y) = {x X : f(x) = y} for the fiber of y, and if this fiber consists of one element, we will abuse notation and also write this for the single element. An inverse to f is a common left and right inverse. The function f has an inverse if and only if in line with the above. ; if this inverse exists, it is unique, denoted f 1 : Y X 5
6 The cardinality of a set X is either: finite, if there is a bijection X {1,..., n} for some n Z 0, and in this case we write #X = n; countable, if there is a bijection X Z; or uncountable, otherwise. If X is finite, we sometimes write #X < and in the latter two cases, we write #X =. (This is just the beginning of a more advanced theory of cardinal numbers.) 6
7 3. Groups Let X be a set. A binary operation on X is. Let be a binary operation on X. The definition is still too general, and some binary operations are better than others! is associative if. has an identity if. Lemma. A binary operation can have at most one identity element. Proof. Definition. A monoid is a set X equipped with an associative binary operation that has an identity. (We will never use them, but a semigroup is a nonempty set with an associative binary operation.) Example. The set of positive integers Z >0 is a monoid under multiplication. The set of nonnegative integers Z 0 is a monoid under addition. Monoids exist everywhere in mathematics, but they are still too general to study: their structure theory combines all the complications of combinatorics with algebra. Let X be a monoid. An element x X is invertible if there exists y X such that ; the element y is unique if it exists because so it is denoted x 1 and is called the inverse of x. Definition. A group is a monoid in which every element is invertible. 7
8 The group axioms for a group G can be recovered from the requirement that a x = b has a unique solution x G for every a, b G. Example. The smallest group is, with the binary operation. Examples of groups include: Example. My favorite group is the quaternion group of order 8, defined by Example. Let n Z >0. The dihedral group of order 2n, denoted D 2n (or sometimes D n ) is In a group, the (left or right) cancellation law holds: A group is: abelian (or commutative) if. finite if. dihedral if. From now on, let G be a group. Lemma. If x 2 = 1 for all x G, then G is abelian. 8
9 Proof. The order of an element x G is., and is denoted. Example. Important examples are matrix groups. Let F be a field, a set with. We write F = F {0}. For n Z 1, let GL n (F ) = {A M n (F ) : det(a) 0} be the general linear group (of rank n) over F. Then GL n (F ) is a group. A homomorphism of groups φ : G G is a map such that. Let φ : G G be a group homomorphism. Then we say φ is a(n): isomorphism if ; automorphism if ; endomorphism if ; monomorphism if ; epimorphism if. A subgroup H G is a subset that is a group under the binary operation of G (closed under the binary operation and inverses). 9
MATH 215 Sets (S) Definition 1 A set is a collection of objects. The objects in a set X are called elements of X.
MATH 215 Sets (S) Definition 1 A set is a collection of objects. The objects in a set X are called elements of X. Notation 2 A set can be described using setbuilder notation. That is, a set can be described
More informationSets and Functions. MATH 464/506, Real Analysis. J. Robert Buchanan. Summer Department of Mathematics. J. Robert Buchanan Sets and Functions
Sets and Functions MATH 464/506, Real Analysis J. Robert Buchanan Department of Mathematics Summer 2007 Notation x A means that element x is a member of set A. x / A means that x is not a member of A.
More informationChapter 1 : The language of mathematics.
MAT 200, Logic, Language and Proof, Fall 2015 Summary Chapter 1 : The language of mathematics. Definition. A proposition is a sentence which is either true or false. Truth table for the connective or :
More informationChapter 1. Sets and Mappings
Chapter 1. Sets and Mappings 1. Sets A set is considered to be a collection of objects (elements). If A is a set and x is an element of the set A, we say x is a member of A or x belongs to A, and we write
More information2.1 Sets. Definition 1 A set is an unordered collection of objects. Important sets: N, Z, Z +, Q, R.
2. Basic Structures 2.1 Sets Definition 1 A set is an unordered collection of objects. Important sets: N, Z, Z +, Q, R. Definition 2 Objects in a set are called elements or members of the set. A set is
More informationDiscrete Mathematics. Benny George K. September 22, 2011
Discrete Mathematics Benny George K Department of Computer Science and Engineering Indian Institute of Technology Guwahati ben@iitg.ernet.in September 22, 2011 Set Theory Elementary Concepts Let A and
More informationMATH 101: ALGEBRA I WORKSHEET, DAY #3. Fill in the blanks as we finish our first pass on prerequisites of group theory.
MATH 101: ALGEBRA I WORKSHEET, DAY #3 Fill in the blanks as we finish our first pass on prerequisites of group theory 1 Subgroups, cosets Let G be a group Recall that a subgroup H G is a subset that is
More informationBASIC GROUP THEORY : G G G,
BASIC GROUP THEORY 18.904 1. Definitions Definition 1.1. A group (G, ) is a set G with a binary operation : G G G, and a unit e G, possessing the following properties. (1) Unital: for g G, we have g e
More informationIntroduction to Groups
Introduction to Groups HongJian Lai August 2000 1. Basic Concepts and Facts (1.1) A semigroup is an ordered pair (G, ) where G is a nonempty set and is a binary operation on G satisfying: (G1) a (b c)
More informationDefinitions. Notations. Injective, Surjective and Bijective. Divides. Cartesian Product. Relations. Equivalence Relations
Page 1 Definitions Tuesday, May 8, 2018 12:23 AM Notations " " means "equals, by definition" the set of all real numbers the set of integers Denote a function from a set to a set by Denote the image of
More information1.4 Cardinality. Tom Lewis. Fall Term Tom Lewis () 1.4 Cardinality Fall Term / 9
1.4 Cardinality Tom Lewis Fall Term 2006 Tom Lewis () 1.4 Cardinality Fall Term 2006 1 / 9 Outline 1 Functions 2 Cardinality 3 Cantor s theorem Tom Lewis () 1.4 Cardinality Fall Term 2006 2 / 9 Functions
More information0 Sets and Induction. Sets
0 Sets and Induction Sets A set is an unordered collection of objects, called elements or members of the set. A set is said to contain its elements. We write a A to denote that a is an element of the set
More informationMATH 3300 Test 1. Name: Student Id:
Name: Student Id: There are nine problems (check that you have 9 pages). Solutions are expected to be short. In the case of proofs, one or two short paragraphs should be the average length. Write your
More informationa + b = b + a and a b = b a. (a + b) + c = a + (b + c) and (a b) c = a (b c). a (b + c) = a b + a c and (a + b) c = a c + b c.
Properties of the Integers The set of all integers is the set and the subset of Z given by Z = {, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, }, N = {0, 1, 2, 3, 4, }, is the set of nonnegative integers (also called
More informationProperties of the Integers
Properties of the Integers The set of all integers is the set and the subset of Z given by Z = {, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, }, N = {0, 1, 2, 3, 4, }, is the set of nonnegative integers (also called
More information1.1 Definition. A monoid is a set M together with a map. 1.3 Definition. A monoid is commutative if x y = y x for all x, y M.
1 Monoids and groups 1.1 Definition. A monoid is a set M together with a map M M M, (x, y) x y such that (i) (x y) z = x (y z) x, y, z M (associativity); (ii) e M such that x e = e x = x for all x M (e
More informationLecture Note of Week 2
Lecture Note of Week 2 2. Homomorphisms and Subgroups (2.1) Let G and H be groups. A map f : G H is a homomorphism if for all x, y G, f(xy) = f(x)f(y). f is an isomorphism if it is bijective. If f : G
More informationSupplement. Dr. Bob s Modern Algebra Glossary Based on Fraleigh s A First Course on Abstract Algebra, 7th Edition, Sections 0 through IV.
Glossary 1 Supplement. Dr. Bob s Modern Algebra Glossary Based on Fraleigh s A First Course on Abstract Algebra, 7th Edition, Sections 0 through IV.23 Abelian Group. A group G, (or just G for short) is
More informationNote that a unit is unique: 1 = 11 = 1. Examples: Nonnegative integers under addition; all integers under multiplication.
Algebra fact sheet An algebraic structure (such as group, ring, field, etc.) is a set with some operations and distinguished elements (such as 0, 1) satisfying some axioms. This is a fact sheet with definitions
More informationSection 0. Sets and Relations
0. Sets and Relations 1 Section 0. Sets and Relations NOTE. Mathematics is the study of ideas, not of numbers!!! The idea from modern algebra which is the focus of most of this class is that of a group
More informationA Little Beyond: Linear Algebra
A Little Beyond: Linear Algebra Akshay Tiwary March 6, 2016 Any suggestions, questions and remarks are welcome! 1 A little extra Linear Algebra 1. Show that any set of nonzero polynomials in [x], no two
More informationMATH 433 Applied Algebra Lecture 14: Functions. Relations.
MATH 433 Applied Algebra Lecture 14: Functions. Relations. Cartesian product Definition. The Cartesian product X Y of two sets X and Y is the set of all ordered pairs (x,y) such that x X and y Y. The Cartesian
More informationRohit Garg Roll no Dr. Deepak Gumber
FINITE GROUPS IN WHICH EACH CENTRAL AUTOMORPHISM FIXES THE CENTER ELEMENTWISE Thesis submitted in partial fulfillment of the requirement for the award of the degree of Masters of Science In Mathematics
More informationFunctions. Definition 1 Let A and B be sets. A relation between A and B is any subset of A B.
Chapter 4 Functions Definition 1 Let A and B be sets. A relation between A and B is any subset of A B. Definition 2 Let A and B be sets. A function from A to B is a relation f between A and B such that
More informationFoundations Revision Notes
oundations Revision Notes hese notes are designed as an aid not a substitute for revision. A lot of proofs have not been included because you should have them in your notes, should you need them. Also,
More informationSETS AND FUNCTIONS JOSHUA BALLEW
SETS AND FUNCTIONS JOSHUA BALLEW 1. Sets As a review, we begin by considering a naive look at set theory. For our purposes, we define a set as a collection of objects. Except for certain sets like N, Z,
More information(a) We need to prove that is reflexive, symmetric and transitive. 2b + a = 3a + 3b (2a + b) = 3a + 3b 3k = 3(a + b k)
MATH 111 Optional Exam 3 lutions 1. (0 pts) We define a relation on Z as follows: a b if a + b is divisible by 3. (a) (1 pts) Prove that is an equivalence relation. (b) (8 pts) Determine all equivalence
More information3. Prove or disprove: If a space X is second countable, then every open covering of X contains a countable subcollection covering X.
Department of Mathematics and Statistics University of South Florida TOPOLOGY QUALIFYING EXAM January 24, 2015 Examiners: Dr. M. Elhamdadi, Dr. M. Saito Instructions: For Ph.D. level, complete at least
More informationMonoids. Definition: A binary operation on a set M is a function : M M M. Examples:
Monoids Definition: A binary operation on a set M is a function : M M M. If : M M M, we say that is well defined on M or equivalently, that M is closed under the operation. Examples: Definition: A monoid
More informationFoundations of Mathematics
Foundations of Mathematics L. Pedro Poitevin 1. Preliminaries 1.1. Sets We will naively think of a set as a collection of mathematical objects, called its elements or members. To indicate that an object
More informationAlgebraic Structures. Thomas Markwig Fachbereich Mathematik Technische Universität Kaiserslautern. Lecture Notes
Algebraic Structures Thomas Markwig Fachbereich Mathematik Technische Universität Kaiserslautern Lecture Notes February 2009 Inhaltsverzeichnis Introduction 1 1. Groups and Homomorphisms 2 2. Equivalence
More informationLecture 7 Cyclic groups and subgroups
Lecture 7 Cyclic groups and subgroups Review Types of groups we know Numbers: Z, Q, R, C, Q, R, C Matrices: (M n (F ), +), GL n (F ), where F = Q, R, or C. Modular groups: Z/nZ and (Z/nZ) Dihedral groups:
More informationMATH 220 (all sections) Homework #12 not to be turned in posted Friday, November 24, 2017
MATH 220 (all sections) Homework #12 not to be turned in posted Friday, November 24, 2017 Definition: A set A is finite if there exists a nonnegative integer c such that there exists a bijection from A
More informationPart IA Numbers and Sets
Part IA Numbers and Sets Definitions Based on lectures by A. G. Thomason Notes taken by Dexter Chua Michaelmas 2014 These notes are not endorsed by the lecturers, and I have modified them (often significantly)
More informationGROUPS AND THEIR REPRESENTATIONS. 1. introduction
GROUPS AND THEIR REPRESENTATIONS KAREN E. SMITH 1. introduction Representation theory is the study of the concrete ways in which abstract groups can be realized as groups of rigid transformations of R
More informationMath 3121, A Summary of Sections 0,1,2,4,5,6,7,8,9
Math 3121, A Summary of Sections 0,1,2,4,5,6,7,8,9 Section 0. Sets and Relations Subset of a set, B A, B A (Definition 0.1). Cartesian product of sets A B ( Defintion 0.4). Relation (Defintion 0.7). Function,
More informationLecture Notes Math 371: Algebra (Fall 2006) by Nathanael Leedom Ackerman
Lecture Notes Math 371: Algebra (Fall 2006) by Nathanael Leedom Ackerman October 17, 2006 TALK SLOWLY AND WRITE NEATLY!! 1 0.1 Integral Domains and Fraction Fields 0.1.1 Theorems Now what we are going
More informationAutomata and Languages
Automata and Languages Prof. Mohamed Hamada Software Engineering Lab. The University of Aizu Japan Mathematical Background Mathematical Background Sets Relations Functions Graphs Proof techniques Sets
More informationIntroduction to abstract algebra: definitions, examples, and exercises
Introduction to abstract algebra: definitions, examples, and exercises Travis Schedler January 21, 2015 1 Definitions and some exercises Definition 1. A binary operation on a set X is a map X X X, (x,
More informationMATH 433 Applied Algebra Lecture 22: Semigroups. Rings.
MATH 433 Applied Algebra Lecture 22: Semigroups. Rings. Groups Definition. A group is a set G, together with a binary operation, that satisfies the following axioms: (G1: closure) for all elements g and
More informationRings and Fields Theorems
Rings and Fields Theorems Rajesh Kumar PMATH 334 Intro to Rings and Fields Fall 2009 October 25, 2009 12 Rings and Fields 12.1 Definition Groups and Abelian Groups Let R be a nonempty set. Let + and (multiplication)
More informationIn N we can do addition, but in order to do subtraction we need to extend N to the integers
Chapter The Real Numbers.. Some Preliminaries Discussion: The Irrationality of 2. We begin with the natural numbers N = {, 2, 3, }. In N we can do addition, but in order to do subtraction we need to extend
More informationPrinciples of Real Analysis I Fall I. The Real Number System
21355 Principles of Real Analysis I Fall 2004 I. The Real Number System The main goal of this course is to develop the theory of realvalued functions of one real variable in a systematic and rigorous
More informationINTRODUCTION TO THE GROUP THEORY
Lecture Notes on Structure of Algebra INTRODUCTION TO THE GROUP THEORY By : Drs. Antonius Cahya Prihandoko, M.App.Sc email: antoniuscp.fkip@unej.ac.id Mathematics Education Study Program Faculty of Teacher
More informationEconomics 204 Summer/Fall 2017 Lecture 1 Monday July 17, 2017
Economics 04 Summer/Fall 07 Lecture Monday July 7, 07 Section.. Methods of Proof We begin by looking at the notion of proof. What is a proof? Proof has a formal definition in mathematical logic, and a
More informationREVIEW FOR THIRD 3200 MIDTERM
REVIEW FOR THIRD 3200 MIDTERM PETE L. CLARK 1) Show that for all integers n 2 we have 1 3 +... + (n 1) 3 < 1 n < 1 3 +... + n 3. Solution: We go by induction on n. Base Case (n = 2): We have (2 1) 3 =
More informationLecture Notes 1 Basic Concepts of Mathematics MATH 352
Lecture Notes 1 Basic Concepts of Mathematics MATH 352 Ivan Avramidi New Mexico Institute of Mining and Technology Socorro, NM 87801 June 3, 2004 Author: Ivan Avramidi; File: absmath.tex; Date: June 11,
More informationMath Fall 2014 Final Exam Solutions
Math 2001003 Fall 2014 Final Exam Solutions Wednesday, December 17, 2014 Definition 1. The union of two sets X and Y is the set X Y consisting of all objects that are elements of X or of Y. The intersection
More informationExercises for Unit VI (Infinite constructions in set theory)
Exercises for Unit VI (Infinite constructions in set theory) VI.1 : Indexed families and set theoretic operations (Halmos, 4, 8 9; Lipschutz, 5.3 5.4) Lipschutz : 5.3 5.6, 5.29 5.32, 9.14 1. Generalize
More information1. Let r, s, t, v be the homogeneous relations defined on the set M = {2, 3, 4, 5, 6} by
Seminar 1 1. Which ones of the usual symbols of addition, subtraction, multiplication and division define an operation (composition law) on the numerical sets N, Z, Q, R, C? 2. Let A = {a 1, a 2, a 3 }.
More informationAxioms for Set Theory
Axioms for Set Theory The following is a subset of the ZermeloFraenkel axioms for set theory. In this setting, all objects are sets which are denoted by letters, e.g. x, y, X, Y. Equality is logical identity:
More informationEquational Logic. Chapter Syntax Terms and Term Algebras
Chapter 2 Equational Logic 2.1 Syntax 2.1.1 Terms and Term Algebras The natural logic of algebra is equational logic, whose propositions are universally quantified identities between terms built up from
More informationHigher Algebra Lecture Notes
Higher Algebra Lecture Notes October 2010 Gerald Höhn Department of Mathematics Kansas State University 138 Cardwell Hall Manhattan, KS 665062602 USA gerald@math.ksu.edu This are the notes for my lecture
More informationUniversal Algebra for Logics
Universal Algebra for Logics Joanna GRYGIEL University of Czestochowa Poland j.grygiel@ajd.czest.pl 2005 These notes form Lecture Notes of a short course which I will give at 1st School on Universal Logic
More informationBasic Concepts of Group Theory
Chapter 1 Basic Concepts of Group Theory The theory of groups and vector spaces has many important applications in a number of branches of modern theoretical physics. These include the formal theory of
More informationSets, Functions and Relations
Chapter 2 Sets, Functions and Relations A set is any collection of distinct objects. Here is some notation for some special sets of numbers: Z denotes the set of integers (whole numbers), that is, Z =
More informationAbstract Algebra II Groups ( )
Abstract Algebra II Groups ( ) Melchior Grützmann / melchiorgfreehostingcom/algebra October 15, 2012 Outline Group homomorphisms Free groups, free products, and presentations Free products ( ) Definition
More informationCATEGORICAL GROTHENDIECK RINGS AND PICARD GROUPS. Contents. 1. The ring K(R) and the group Pic(R)
CATEGORICAL GROTHENDIECK RINGS AND PICARD GROUPS J. P. MAY Contents 1. The ring K(R) and the group Pic(R) 1 2. Symmetric monoidal categories, K(C), and Pic(C) 2 3. The unit endomorphism ring R(C ) 5 4.
More informationMATH 13 SAMPLE FINAL EXAM SOLUTIONS
MATH 13 SAMPLE FINAL EXAM SOLUTIONS WINTER 2014 Problem 1 (15 points). For each statement below, circle T or F according to whether the statement is true or false. You do NOT need to justify your answers.
More informationLecture 4.1: Homomorphisms and isomorphisms
Lecture 4.: Homomorphisms and isomorphisms Matthew Macauley Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/ Math 4, Modern Algebra M. Macauley (Clemson) Lecture
More informationTheorems and Definitions in Group Theory
Theorems and Definitions in Group Theory Shunan Zhao Contents 1 Basics of a group 3 1.1 Basic Properties of Groups.......................... 3 1.2 Properties of Inverses............................. 3
More informationRELATIONS AND FUNCTIONS
For more important questions visit : www.4ono.com CHAPTER 1 RELATIONS AND FUNCTIONS IMPORTANT POINTS TO REMEMBER Relation R from a set A to a set B is subset of A B. A B = {(a, b) : a A, b B}. If n(a)
More informationABSTRACT ALGEBRA 1, LECTURE NOTES 5: HOMOMORPHISMS, ISOMORPHISMS, SUBGROUPS, QUOTIENT ( FACTOR ) GROUPS. ANDREW SALCH
ABSTRACT ALGEBRA 1, LECTURE NOTES 5: HOMOMORPHISMS, ISOMORPHISMS, SUBGROUPS, QUOTIENT ( FACTOR ) GROUPS. ANDREW SALCH 1. Homomorphisms and isomorphisms between groups. Definition 1.1. Let G, H be groups.
More informationEXAMPLES AND EXERCISES IN BASIC CATEGORY THEORY
EXAMPLES AND EXERCISES IN BASIC CATEGORY THEORY 1. Categories 1.1. Generalities. I ve tried to be as consistent as possible. In particular, throughout the text below, categories will be denoted by capital
More informationAlgebra Review. Instructor: Laszlo Babai Notes by Vincent Lucarelli and the instructor. June 15, 2001
Algebra Review Instructor: Laszlo Babai Notes by Vincent Lucarelli and the instructor June 15, 2001 1 Groups Definition 1.1 A semigroup (G, ) is a set G with a binary operation such that: Axiom 1 ( a,
More information* 8 Groups, with Appendix containing Rings and Fields.
* 8 Groups, with Appendix containing Rings and Fields Binary Operations Definition We say that is a binary operation on a set S if, and only if, a, b, a b S Implicit in this definition is the idea that
More informationNAME: Mathematics 205A, Fall 2008, Final Examination. Answer Key
NAME: Mathematics 205A, Fall 2008, Final Examination Answer Key 1 1. [25 points] Let X be a set with 2 or more elements. Show that there are topologies U and V on X such that the identity map J : (X, U)
More informationABOUT THE CLASS AND NOTES ON SET THEORY
ABOUT THE CLASS AND NOTES ON SET THEORY About the Class Evaluation. Final grade will be based 25%, 25%, 25%, 25%, on homework, midterm 1, midterm 2, final exam. Exam dates. Midterm 1: Oct 4. Midterm 2:
More informationNotes for Math 290 using Introduction to Mathematical Proofs by Charles E. Roberts, Jr.
Notes for Math 290 using Introduction to Mathematical Proofs by Charles E. Roberts, Jr. Chapter : Logic Topics:. Statements, Negation, and Compound Statements.2 Truth Tables and Logical Equivalences.3
More informationHandout 2 (Correction of Handout 1 plus continued discussion/hw) Comments and Homework in Chapter 1
22M:132 Fall 07 J. Simon Handout 2 (Correction of Handout 1 plus continued discussion/hw) Comments and Homework in Chapter 1 Chapter 1 contains material on sets, functions, relations, and cardinality that
More informationLinear Algebra Prof. Dilip P Patil Department of Mathematics Indian Institute of Science, Bangalore
Linear Algebra Prof. Dilip P Patil Department of Mathematics Indian Institute of Science, Bangalore Lecture 01 Introduction to Algebraic Structures  Rings and Fields Welcome to this course on Linear Algebra.
More informationIn N we can do addition, but in order to do subtraction we need to extend N to the integers
Chapter 1 The Real Numbers 1.1. Some Preliminaries Discussion: The Irrationality of 2. We begin with the natural numbers N = {1, 2, 3, }. In N we can do addition, but in order to do subtraction we need
More informationPRELIMINARIES FOR GENERAL TOPOLOGY. Contents
PRELIMINARIES FOR GENERAL TOPOLOGY DAVID G.L. WANG Contents 1. Sets 2 2. Operations on sets 3 3. Maps 5 4. Countability of sets 7 5. Others a mathematician knows 8 6. Remarks 9 Date: April 26, 2018. 2
More informationDefinition List Modern Algebra, Fall 2011 Anders O.F. Hendrickson
Definition List Modern Algebra, Fall 2011 Anders O.F. Hendrickson On almost every Friday of the semester, we will have a brief quiz to make sure you have memorized the definitions encountered in our studies.
More informationCourse 311: Abstract Algebra Academic year
Course 311: Abstract Algebra Academic year 200708 D. R. Wilkins Copyright c David R. Wilkins 1997 2007 Contents 1 Topics in Group Theory 1 1.1 Groups............................... 1 1.2 Examples of Groups.......................
More informationPermutation Groups and Transformation Semigroups Lecture 2: Semigroups
Permutation Groups and Transformation Semigroups Lecture 2: Semigroups Peter J. Cameron Permutation Groups summer school, Marienheide 18 22 September 2017 I am assuming that you know what a group is, but
More informationMath 3140 Fall 2012 Assignment #3
Math 3140 Fall 2012 Assignment #3 Due Fri., Sept. 21. Remember to cite your sources, including the people you talk to. My solutions will repeatedly use the following proposition from class: Proposition
More informationMath 210B: Algebra, Homework 4
Math 210B: Algebra, Homework 4 Ian Coley February 5, 2014 Problem 1. Let S be a multiplicative subset in a commutative ring R. Show that the localisation functor RMod S 1 RMod, M S 1 M, is exact. First,
More informationChapter 0. Introduction: Prerequisites and Preliminaries
Chapter 0. Sections 0.1 to 0.5 1 Chapter 0. Introduction: Prerequisites and Preliminaries Note. The content of Sections 0.1 through 0.6 should be very familiar to you. However, in order to keep these notes
More informationGroups. Groups. 1.Introduction. 1.Introduction. TS.NguyễnViết Đông. 1. Introduction 2.Normal subgroups, quotien groups. 3. Homomorphism.
Groups Groups 1. Introduction 2.Normal sub, quotien. 3. Homomorphism. TS.NguyễnViết Đông 1 2 1.1. Binary Operations 1.2.Definition of Groups 1.3.Examples of Groups 1.4.Sub 1.1. Binary Operations 1.2.Definition
More informationA Short Review of Cardinality
Christopher Heil A Short Review of Cardinality November 14, 2017 c 2017 Christopher Heil Chapter 1 Cardinality We will give a short review of the definition of cardinality and prove some facts about the
More informationIntroduction to Proofs
Introduction to Proofs Notes by Dr. Lynne H. Walling and Dr. Steffi Zegowitz September 018 The Introduction to Proofs course is organised into the following nine sections. 1. Introduction: sets and functions
More informationCATEGORY THEORY. Cats have been around for 70 years. Eilenberg + Mac Lane =. Cats are about building bridges between different parts of maths.
CATEGORY THEORY PROFESSOR PETER JOHNSTONE Cats have been around for 70 years. Eilenberg + Mac Lane =. Cats are about building bridges between different parts of maths. Definition 1.1. A category C consists
More information1 Takehome exam and final exam study guide
Math 215  Introduction to Advanced Mathematics Fall 2013 1 Takehome exam and final exam study guide 1.1 Problems The following are some problems, some of which will appear on the final exam. 1.1.1 Number
More informationMath 451, 01, Exam #2 Answer Key
Math 451, 01, Exam #2 Answer Key 1. (25 points): If the statement is always true, circle True and prove it. If the statement is never true, circle False and prove that it can never be true. If the statement
More informationFoundations of Mathematics
Foundations of Mathematics L. Brian Lawrence Department of Mathematics George Mason University Fairfax, VA 22030 4444 U.S.A. e mail: blawrenc@mail.gmu.edu January 1, 2007 Preface This set of notes is an
More informationits image and kernel. A subgroup of a group G is a nonempty subset K of G such that k 1 k 1
10 Chapter 1 Groups 1.1 Isomorphism theorems Throughout the chapter, we ll be studying the category of groups. Let G, H be groups. Recall that a homomorphism f : G H means a function such that f(g 1 g
More informationMathematics Review for Business PhD Students
Mathematics Review for Business PhD Students Anthony M. Marino Department of Finance and Business Economics Marshall School of Business Lecture 1: Introductory Material Sets The Real Number System Functions,
More informationGRE Subject test preparation Spring 2016 Topic: Abstract Algebra, Linear Algebra, Number Theory.
GRE Subject test preparation Spring 2016 Topic: Abstract Algebra, Linear Algebra, Number Theory. Linear Algebra Standard matrix manipulation to compute the kernel, intersection of subspaces, column spaces,
More informationMath 105A HW 1 Solutions
Sect. 1.1.3: # 2, 3 (Page 78 Math 105A HW 1 Solutions 2(a ( Statement: Each positive integers has a unique prime factorization. n N: n = 1 or ( R N, p 1,..., p R P such that n = p 1 p R and ( n, R, S
More informationCommutative Algebra MAS439 Lecture 3: Subrings
Commutative Algebra MAS439 Lecture 3: Subrings Paul Johnson paul.johnson@sheffield.ac.uk Hicks J06b October 4th Plan: slow down a little Last week  Didn t finish Course policies + philosophy Sections
More informationChapter 2  Basics Structures MATH 213. Chapter 2: Basic Structures. Dr. Eric Bancroft. Fall Dr. Eric Bancroft MATH 213 Fall / 60
MATH 213 Chapter 2: Basic Structures Dr. Eric Bancroft Fall 2013 Dr. Eric Bancroft MATH 213 Fall 2013 1 / 60 Chapter 2  Basics Structures 2.1  Sets 2.2  Set Operations 2.3  Functions 2.4  Sequences
More informationDiscussion Summary 10/16/2018
Discussion Summary 10/16/018 1 Quiz 4 1.1 Q1 Let r R and r > 1. Prove the following by induction for every n N, assuming that 0 N as in the book. r 1 + r + r 3 + + r n = rn+1 r r 1 Proof. Let S n = Σ n
More informationLecture Notes on Discrete Mathematics. October 15, 2018 DRAFT
Lecture Notes on Discrete Mathematics October 15, 2018 2 Contents 1 Basic Set Theory 5 1.1 Basic Set Theory....................................... 5 1.1.1 Union and Intersection of Sets...........................
More informationSeminaar Abstrakte Wiskunde Seminar in Abstract Mathematics Lecture notes in progress (27 March 2010)
http://math.sun.ac.za/amsc/sam Seminaar Abstrakte Wiskunde Seminar in Abstract Mathematics 20092010 Lecture notes in progress (27 March 2010) Contents 2009 Semester I: Elements 5 1. Cartesian product
More informationMath 4603: Advanced Calculus I, Summer 2016 University of Minnesota Notes on Cardinality of Sets
Math 4603: Advanced Calculus I, Summer 2016 University of Minnesota Notes on Cardinality of Sets Introduction In this short article, we will describe some basic notions on cardinality of sets. Given two
More informationChapter Summary. Sets The Language of Sets Set Operations Set Identities Functions Types of Functions Operations on Functions Computability
Chapter 2 1 Chapter Summary Sets The Language of Sets Set Operations Set Identities Functions Types of Functions Operations on Functions Computability Sequences and Summations Types of Sequences Summation
More informationChapter 1. Sets and Numbers
Chapter 1. Sets and Numbers 1. Sets A set is considered to be a collection of objects (elements). If A is a set and x is an element of the set A, we say x is a member of A or x belongs to A, and we write
More informationA Hungerford s Algebra Solutions Manual. James Wilson III. Volume I: Introduction through Chapter IV D 4. 0 = C 0 (G) C 1 (G) C n 1 (G) C n (G) = G
A Hungerford s Algebra Solutions Manual Volume I: Introduction through Chapter IV James Wilson D 4 I a 2, b a a 2, ab b a 2 b a 2 ab a 3 b 0 II 0 = C 0 (G) C 1 (G) C n 1 (G) C n (G) = G 0 = G n G n 1 G
More informationReview Problems for Midterm Exam II MTH 299 Spring n(n + 1) 2. = 1. So assume there is some k 1 for which
Review Problems for Midterm Exam II MTH 99 Spring 014 1. Use induction to prove that for all n N. 1 + 3 + + + n(n + 1) = n(n + 1)(n + ) Solution: This statement is obviously true for n = 1 since 1()(3)
More information