About the Gamma Function

Size: px
Start display at page:

Download "About the Gamma Function"

Transcription

1 About the Gamma Function Notes for Honors Calculus II, Originally Prepared in Spring 995 Basic Facts about the Gamma Function The Gamma function is defined by the improper integral Γ) = The integral is absolutely convergent for since t t dt e t t e t e t/2, t and e t/2 dt is convergent The preceding inequality is valid, in fact, for all But for < the integrand becomes infinitely large as t approaches through positive values Nonetheless, the limit lim r + t e t dt eists for > since r t e t t for t >, and, therefore, the limiting value of the preceding integral is no larger than that of lim r + t dt = Hence, Γ) is defined by the first formula above for all values > If one integrates by parts the integral writing r Γ + ) = t e t dt, udv = u )v ) u)v) with dv = e t dt and u = t, one obtains the functional equation Γ + ) = Γ), > vdu, Obviously, Γ) = e t dt =, and, therefore, Γ2) = Γ) =, Γ3) = 2 Γ2) = 2!, Γ4) = 3Γ3) = 3!,, and, finally, Γn + ) = n!

2 for each integer n > Thus, the gamma function provides a way of giving a meaning to the factorial of any positive real number Another reason for interest in the gamma function is its relation to integrals that arise in the study of probability The graph of the function ϕ defined by ϕ) = e 2 is the famous bell-shaped curve of probability theory It can be shown that the anti-derivatives of ϕ are not epressible in terms of elementary functions On the other hand, Φ) = ϕt)dt is, by the fundamental theorem of calculus, an anti-derivative of ϕ, and information about its values is useful One finds that by observing that Φ ) = e t2 dt = 2 e t2 dt = Γ/2) e t2 dt, and that upon maing the substitution t = u /2 in the latter integral, one obtains Γ/2) To have some idea of the size of Γ/2), it will be useful to consider the qualitative nature of the graph of Γ) For that one wants to now the derivative of Γ By definition Γ) is an integral a definite integral with respect to the dummy variable t) of a function of and t Intuition suggests that one ought to be able to find the derivative of Γ) by taing the integral with respect to t) of the derivative with respect to of the integrand Unfortunately, there are eamples where this fails to be correct; on the other hand, it is correct in most situations where one is inclined to do it The methods required to justify differentiation under the integral sign will be regarded as slightly beyond the scope of this course A similar stance will be adopted also for differentiation of the sum of a convergent infinite series Since one finds and, differentiating again, d d Γ) = d d t = t log t), t t dt log t)e t, d 2 d 2 Γ) = t log t) 2 t dt e t One observes that in the integrals for both Γ and the second derivative Γ the integrand is always positive Consequently, one has Γ) > and Γ ) > for all > This means that the derivative Γ of Γ is a strictly increasing function; one would lie to now where it becomes positive 2

3 If one differentiates the functional equation Γ + ) = Γ), >, one finds ψ + ) = + ψ), >, where and, consequently, ψ) = d d log Γ) = Γ ) Γ), ψn + ) = ψ) + Since the harmonic series diverges, its partial sum in the foregoing line approaches as Inasmuch as Γ ) = ψ)γ), it is clear that Γ approaches as since Γ is steadily increasing and its integer values n )!ψn) approach Because 2 = Γ3) > = Γ2), it follows that Γ cannot be negative everywhere in the interval 2 3, and, therefore, since Γ is increasing, Γ must be always positive for 3 As a result, Γ must be increasing for 3, and, since Γn + ) = n!, one sees that Γ) approaches as It is also the case that Γ) approaches as To see the convergence one observes that the integral from to defining Γ) is greater than the integral from to of the same integrand Since e t /e for t, one has Γ) > n = [ t /e)t dt = /e) ] t = t= = e It then follows from the mean value theorem combined with the fact that Γ always increases that Γ ) approaches as Hence, there is a unique number c > for which Γ c) =, and Γ decreases steadily from to the minimum value Γc) as varies from to c and then increases to as varies from c to Since Γ) = = Γ2), the number c must lie in the interval from to 2 and the minimum value Γc) must be less than Y X Figure : Graph of the Gamma Function Thus, the graph of Γ see Figure ) is concave upward and lies entirely in the first quadrant of the plane It has the y-ais as a vertical asymptote It falls steadily for < < c to a postive minimum value Γc) < For > c the graph rises rapidly 3

4 2 Product Formulas It will be recalled, as one may show using l Hôpital s Rule, that e t = lim t n n) From the original formula for Γ), using an interchange of limits that in a more careful eposition would receive further comment, one has Γ) = lim Γ, n), where Γ, n) is defined by Γ, n) = n t t n) n dt, n The substitution in which t is replaced by nt leads to the formula Γ, n) = n t t) n dt This integral for Γ, n) is amenable to integration by parts One finds thereby: Γ, n) = ) + n Γ +, n ), n 2 n For the smallest value of n, n =, integration by parts yields: Γ, ) = + ) Iterating n times, one obtains: Thus, one arrives at the formula Γ, n) = n n! + ) + 2) + n), n Γ) = n! lim n + ) + 2) + n) This last formula is not eactly in the form of an infinite product p = lim n p But a simple tric enables one to maneuver it into such an infinite product One writes n as a collapsing product : n + = n + n n n

5 or n + = and, taing the th power, one has n + ) = n n + ), + ) Since lim n n + ) =, one may replace the factor n by n + ) in the last epression above for Γ) to obtain or Γ) = n + lim ) +, Γ) = ) + ) + ) The convergence of this infinite product for Γ) when > is a consequence, through the various maneuvers performed, of the convergence of the original improper integral defining Γ) for > It is now possible to represent log Γ) as the sum of an infinite series by taing the logarithm of the infinite product formula But first it must be noted that + t) r + rt > for t >, r > Hence, the logarithm of each term in the preceding infinite product is defined when > Taing the logarithm of the infinite product one finds: log Γ) = log + u ), where u ) = log + ) log + ) It is, in fact, almost true that this series converges absolutely for all real values of The only problem with non-positive values of lies in the fact that log) is meaningful only for >, and, therefore, log + /) is meaningful only for > For fied, if one ecludes the finite set of terms u ) for which, then the remaining tail of the series is meaningful and is absolutely convergent To see this one applies the ratio comparison test which says that an infinite series converges absolutely if the ratio of the absolute value of its general term to the general term of a convergent positive series eists and is finite For this one may tae as the test series, the series 2 5

6 Now as approaches, t = / approaches, and so u ) log + t) log + t) lim / 2 = lim t t 2 +t = lim +t t 2t [ + t) + t)] = lim t 2t + t) + t) ) = 2 Hence, the limit of u )/ 2 is )/2, and the series u ) is absolutely convergent for all real The absolute convergence of this series foreshadows the possibility of defining Γ) for all real values of other than non-positive integers This may be done, for eample, by using the functional equation Γ + ) = Γ) or Γ) = Γ + ) to define Γ) for < < and from there to 2 < <, etc Taing the derivative of the series for log Γ) term-by-term once again a step that would receive justification in a more careful treatment and recalling the previous notation ψ) for the derivative of log Γ), one obtains ψ) + = = lim log n + ) ) + log + + = lim logn + ) = lim logn + ) = lim = γ + where γ denotes Euler s constant γ = logn + ) lim + ), n n + n n + ) + n n + + ) ) log n When = one has ψ) = γ + + ), 6

7 and since + ) = +, this series collapses and, therefore, is easily seen to sum to Hence, Since Γ ) = ψ)γ), one finds: ψ) = γ, ψ2) = ψ) + / = γ Γ ) = γ, and Γ 2) = γ These course notes were prepared while consulting standard references in the subject, which included those that follow References [] R Courant, Differential and Integral Calculus 2 volumes), English translation by E J McShane, Interscience Publishers, New Yor, 96 [2] E T Whittaer & G N Watson, A Course of Modern Analysis, 4th edition, Cambridge University Press, 969 [3] David Widder, Advanced Calculus, 2nd edition, Prentice Hall, 96 7

= 1 2 x (x 1) + 1 {x} (1 {x}). [t] dt = 1 x (x 1) + O (1), [t] dt = 1 2 x2 + O (x), (where the error is not now zero when x is an integer.

= 1 2 x (x 1) + 1 {x} (1 {x}). [t] dt = 1 x (x 1) + O (1), [t] dt = 1 2 x2 + O (x), (where the error is not now zero when x is an integer. Problem Sheet,. i) Draw the graphs for [] and {}. ii) Show that for α R, α+ α [t] dt = α and α+ α {t} dt =. Hint Split these integrals at the integer which must lie in any interval of length, such as [α,

More information

AP Calculus BC Chapter 8: Integration Techniques, L Hopital s Rule and Improper Integrals

AP Calculus BC Chapter 8: Integration Techniques, L Hopital s Rule and Improper Integrals AP Calculus BC Chapter 8: Integration Techniques, L Hopital s Rule and Improper Integrals 8. Basic Integration Rules In this section we will review various integration strategies. Strategies: I. Separate

More information

Taylor Series and Asymptotic Expansions

Taylor Series and Asymptotic Expansions Taylor Series and Asymptotic Epansions The importance of power series as a convenient representation, as an approimation tool, as a tool for solving differential equations and so on, is pretty obvious.

More information

Mathematics 132 Calculus for Physical and Life Sciences 2 Exam 3 Review Sheet April 15, 2008

Mathematics 132 Calculus for Physical and Life Sciences 2 Exam 3 Review Sheet April 15, 2008 Mathematics 32 Calculus for Physical and Life Sciences 2 Eam 3 Review Sheet April 5, 2008 Sample Eam Questions - Solutions This list is much longer than the actual eam will be (to give you some idea of

More information

Taylor Series and Series Convergence (Online)

Taylor Series and Series Convergence (Online) 7in 0in Felder c02_online.te V3 - February 9, 205 9:5 A.M. Page CHAPTER 2 Taylor Series and Series Convergence (Online) 2.8 Asymptotic Epansions In introductory calculus classes the statement this series

More information

Answer Key 1973 BC 1969 BC 24. A 14. A 24. C 25. A 26. C 27. C 28. D 29. C 30. D 31. C 13. C 12. D 12. E 3. A 32. B 27. E 34. C 14. D 25. B 26.

Answer Key 1973 BC 1969 BC 24. A 14. A 24. C 25. A 26. C 27. C 28. D 29. C 30. D 31. C 13. C 12. D 12. E 3. A 32. B 27. E 34. C 14. D 25. B 26. Answer Key 969 BC 97 BC. C. E. B. D 5. E 6. B 7. D 8. C 9. D. A. B. E. C. D 5. B 6. B 7. B 8. E 9. C. A. B. E. D. C 5. A 6. C 7. C 8. D 9. C. D. C. B. A. D 5. A 6. B 7. D 8. A 9. D. E. D. B. E. E 5. E.

More information

Math 1105: Calculus II (Math/Sci majors) MWF 11am / 12pm, Campion 235 Written homework 10

Math 1105: Calculus II (Math/Sci majors) MWF 11am / 12pm, Campion 235 Written homework 10 Math 05: Calculus II Math/Sci majors) MWF am / pm, Campion 35 Written homewor 0 8556,6,68,73,80,8,84), 86,58), Chapter 8 Review60,7) Problem 56, 85 Use a test of your choice to determine whether = ) Solution

More information

The incomplete gamma functions. Notes by G.J.O. Jameson. These notes incorporate the Math. Gazette article [Jam1], with some extra material.

The incomplete gamma functions. Notes by G.J.O. Jameson. These notes incorporate the Math. Gazette article [Jam1], with some extra material. The incomplete gamma functions Notes by G.J.O. Jameson These notes incorporate the Math. Gazette article [Jam], with some etra material. Definitions and elementary properties functions: Recall the integral

More information

Properties of Derivatives

Properties of Derivatives 6 CHAPTER Properties of Derivatives To investigate derivatives using first principles, we will look at the slope of f ( ) = at the point P (,9 ). Let Q1, Q, Q, Q4, be a sequence of points on the curve

More information

An Introduction to the Gamma Function

An Introduction to the Gamma Function UNIVERSITY OF WARWICK Second Year Essay An Introduction to the Gamma Function Tutor: Dr. Stefan Adams April 4, 29 Contents 1 Introduction 2 2 Conve Functions 3 3 The Gamma Function 7 4 The Bohr-Möllerup

More information

Math 2414 Activity 1 (Due by end of class Jan. 26) Precalculus Problems: 3,0 and are tangent to the parabola axis. Find the other line.

Math 2414 Activity 1 (Due by end of class Jan. 26) Precalculus Problems: 3,0 and are tangent to the parabola axis. Find the other line. Math Activity (Due by end of class Jan. 6) Precalculus Problems: 3, and are tangent to the parabola ais. Find the other line.. One of the two lines that pass through y is the - {Hint: For a line through

More information

Daily Lessons and Assessments for AP* Calculus AB, A Complete Course Page 584 Mark Sparks 2012

Daily Lessons and Assessments for AP* Calculus AB, A Complete Course Page 584 Mark Sparks 2012 The Second Fundamental Theorem of Calculus Functions Defined by Integrals Given the functions, f(t), below, use F( ) f ( t) dt to find F() and F () in terms of.. f(t) = 4t t. f(t) = cos t Given the functions,

More information

November 13, 2018 MAT186 Week 8 Justin Ko

November 13, 2018 MAT186 Week 8 Justin Ko 1 Mean Value Theorem Theorem 1 (Mean Value Theorem). Let f be a continuous on [a, b] and differentiable on (a, b). There eists a c (a, b) such that f f(b) f(a) (c) =. b a Eample 1: The Mean Value Theorem

More information

Math 2414 Activity 1 (Due by end of class July 23) Precalculus Problems: 3,0 and are tangent to the parabola axis. Find the other line.

Math 2414 Activity 1 (Due by end of class July 23) Precalculus Problems: 3,0 and are tangent to the parabola axis. Find the other line. Math 44 Activity (Due by end of class July 3) Precalculus Problems: 3, and are tangent to the parabola ais. Find the other line.. One of the two lines that pass through y is the - {Hint: For a line through

More information

1993 AP Calculus AB: Section I

1993 AP Calculus AB: Section I 99 AP Calculus AB: Section I 90 Minutes Scientific Calculator Notes: () The eact numerical value of the correct answer does not always appear among the choices given. When this happens, select from among

More information

Calculus Problem Sheet Prof Paul Sutcliffe. 2. State the domain and range of each of the following functions

Calculus Problem Sheet Prof Paul Sutcliffe. 2. State the domain and range of each of the following functions f() 8 6 4 8 6-3 - - 3 4 5 6 f().9.8.7.6.5.4.3.. -4-3 - - 3 f() 7 6 5 4 3-3 - - Calculus Problem Sheet Prof Paul Sutcliffe. By applying the vertical line test, or otherwise, determine whether each of the

More information

PROBLEMS In each of Problems 1 through 12:

PROBLEMS In each of Problems 1 through 12: 6.5 Impulse Functions 33 which is the formal solution of the given problem. It is also possible to write y in the form 0, t < 5, y = 5 e (t 5/ sin 5 (t 5, t 5. ( The graph of Eq. ( is shown in Figure 6.5.3.

More information

MATH 1325 Business Calculus Guided Notes

MATH 1325 Business Calculus Guided Notes MATH 135 Business Calculus Guided Notes LSC North Harris By Isabella Fisher Section.1 Functions and Theirs Graphs A is a rule that assigns to each element in one and only one element in. Set A Set B Set

More information

1. Sets A set is any collection of elements. Examples: - the set of even numbers between zero and the set of colors on the national flag.

1. Sets A set is any collection of elements. Examples: - the set of even numbers between zero and the set of colors on the national flag. San Francisco State University Math Review Notes Michael Bar Sets A set is any collection of elements Eamples: a A {,,4,6,8,} - the set of even numbers between zero and b B { red, white, bule} - the set

More information

10.4: WORKING WITH TAYLOR SERIES

10.4: WORKING WITH TAYLOR SERIES 04: WORKING WITH TAYLOR SERIES Contributed by OpenSta Mathematics at OpenSta CNX In the preceding section we defined Taylor series and showed how to find the Taylor series for several common functions

More information

SJÄLVSTÄNDIGA ARBETEN I MATEMATIK

SJÄLVSTÄNDIGA ARBETEN I MATEMATIK SJÄLVSTÄNDIGA ARBETEN I MATEMATIK MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET Gamma function related to Pic functions av Saad Abed 25 - No 4 MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET, 6 9

More information

The Laplace Transform

The Laplace Transform C H A P T E R 6 The Laplace Transform Many practical engineering problems involve mechanical or electrical systems acted on by discontinuous or impulsive forcing terms. For such problems the methods described

More information

1. Prove the following properties satisfied by the gamma function: 4 n n!

1. Prove the following properties satisfied by the gamma function: 4 n n! Math 205A: Complex Analysis, Winter 208 Homework Problem Set #6 February 20, 208. Prove the following properties satisfied by the gamma function: (a) Values at half-integers: Γ ( n + 2 (b) The duplication

More information

Topic 13 Notes Jeremy Orloff

Topic 13 Notes Jeremy Orloff Topic 13 Notes Jeremy Orloff 13 Analytic continuation and the Gamma function 13.1 Introduction In this topic we will look at the Gamma function. This is an important and fascinating function that generalizes

More information

Elementary properties of the gamma function

Elementary properties of the gamma function Appendi G Elementary properties of the gamma function G.1 Introduction The elementary definition of the gamma function is Euler s integral: 1 Γ(z) = 0 t z 1 e t. (G.1) For the sake of convergence of the

More information

MATH 1431-Precalculus I

MATH 1431-Precalculus I MATH 43-Precalculus I Chapter 4- (Composition, Inverse), Eponential, Logarithmic Functions I. Composition of a Function/Composite Function A. Definition: Combining of functions that output of one function

More information

Lesson 53 Integration by Parts

Lesson 53 Integration by Parts 5/0/05 Lesson 53 Integration by Parts Lesson Objectives Use the method of integration by parts to integrate simple power, eponential, and trigonometric functions both in a mathematical contet and in a

More information

Continuous functions. Limits of non-rational functions. Squeeze Theorem. Calculator issues. Applications of limits

Continuous functions. Limits of non-rational functions. Squeeze Theorem. Calculator issues. Applications of limits Calculus Lia Vas Continuous functions. Limits of non-rational functions. Squeeze Theorem. Calculator issues. Applications of limits Continuous Functions. Recall that we referred to a function f() as a

More information

Solutions to Problem Sheet for Week 6

Solutions to Problem Sheet for Week 6 THE UNIVERSITY OF SYDNEY SCHOOL OF MATHEMATICS AND STATISTICS Solutions to Problem Sheet for Week 6 MATH90: Differential Calculus (Advanced) Semester, 07 Web Page: sydney.edu.au/science/maths/u/ug/jm/math90/

More information

Section 7.4 #1, 5, 6, 8, 12, 13, 44, 53; Section 7.5 #7, 10, 11, 20, 22; Section 7.7 #1, 4, 10, 15, 22, 44

Section 7.4 #1, 5, 6, 8, 12, 13, 44, 53; Section 7.5 #7, 10, 11, 20, 22; Section 7.7 #1, 4, 10, 15, 22, 44 Math B Prof. Audrey Terras HW #4 Solutions Due Tuesday, Oct. 9 Section 7.4 #, 5, 6, 8,, 3, 44, 53; Section 7.5 #7,,,, ; Section 7.7 #, 4,, 5,, 44 7.4. Since 5 = 5 )5 + ), start with So, 5 = A 5 + B 5 +.

More information

AP CALCULUS BC 2015 SCORING GUIDELINES

AP CALCULUS BC 2015 SCORING GUIDELINES 05 SCORING GUIDELINES Question 5 Consider the function f =, where k is a nonzero constant. The derivative of f is given by k f = k ( k). (a) Let k =, so that f =. Write an equation for the line tangent

More information

Chapter 1. Introduction to prime number theory. 1.1 The Prime Number Theorem

Chapter 1. Introduction to prime number theory. 1.1 The Prime Number Theorem Chapter 1 Introduction to prime number theory 1.1 The Prime Number Theorem In the first part of this course, we focus on the theory of prime numbers. We use the following notation: we write f( g( as if

More information

Contents PART II. Foreword

Contents PART II. Foreword Contents PART II Foreword v Preface vii 7. Integrals 87 7. Introduction 88 7. Integration as an Inverse Process of Differentiation 88 7. Methods of Integration 00 7.4 Integrals of some Particular Functions

More information

A PROBABILISTIC PROOF OF WALLIS S FORMULA FOR π. ( 1) n 2n + 1. The proof uses the fact that the derivative of arctan x is 1/(1 + x 2 ), so π/4 =

A PROBABILISTIC PROOF OF WALLIS S FORMULA FOR π. ( 1) n 2n + 1. The proof uses the fact that the derivative of arctan x is 1/(1 + x 2 ), so π/4 = A PROBABILISTIC PROOF OF WALLIS S FORMULA FOR π STEVEN J. MILLER There are many beautiful formulas for π see for example [4]). The purpose of this note is to introduce an alternate derivation of Wallis

More information

Solutions to Math 41 Final Exam December 9, 2013

Solutions to Math 41 Final Exam December 9, 2013 Solutions to Math 4 Final Eam December 9,. points In each part below, use the method of your choice, but show the steps in your computations. a Find f if: f = arctane csc 5 + log 5 points Using the Chain

More information

Chapter (AB/BC, non-calculator) (a) Find the critical numbers of g. (b) For what values of x is g increasing? Justify your answer.

Chapter (AB/BC, non-calculator) (a) Find the critical numbers of g. (b) For what values of x is g increasing? Justify your answer. Chapter 3 1. (AB/BC, non-calculator) Given g ( ) 2 4 3 6 : (a) Find the critical numbers of g. (b) For what values of is g increasing? Justify your answer. (c) Identify the -coordinate of the critical

More information

Mat104 Fall 2002, Improper Integrals From Old Exams

Mat104 Fall 2002, Improper Integrals From Old Exams Mat4 Fall 22, Improper Integrals From Old Eams For the following integrals, state whether they are convergent or divergent, and give your reasons. () (2) (3) (4) (5) converges. Break it up as 3 + 2 3 +

More information

Academic Content Standard MATHEMATICS. MA 51 Advanced Placement Calculus BC

Academic Content Standard MATHEMATICS. MA 51 Advanced Placement Calculus BC Academic Content Standard MATHEMATICS MA 51 Advanced Placement Calculus BC Course #: MA 51 Grade Level: High School Course Name: Advanced Placement Calculus BC Level of Difficulty: High Prerequisites:

More information

AP Calculus BC Scope & Sequence

AP Calculus BC Scope & Sequence AP Calculus BC Scope & Sequence Grading Period Unit Title Learning Targets Throughout the School Year First Grading Period *Apply mathematics to problems in everyday life *Use a problem-solving model that

More information

3 Applications of Derivatives Instantaneous Rates of Change Optimization Related Rates... 13

3 Applications of Derivatives Instantaneous Rates of Change Optimization Related Rates... 13 Contents Limits Derivatives 3. Difference Quotients......................................... 3. Average Rate of Change...................................... 4.3 Derivative Rules...........................................

More information

Lesson 50 Integration by Parts

Lesson 50 Integration by Parts 5/3/07 Lesson 50 Integration by Parts Lesson Objectives Use the method of integration by parts to integrate simple power, eponential, and trigonometric functions both in a mathematical contet and in a

More information

AMB111F Notes 3 Quadratic Equations, Inequalities and their Graphs

AMB111F Notes 3 Quadratic Equations, Inequalities and their Graphs AMB111F Notes 3 Quadratic Equations, Inequalities and their Graphs The eqn y = a +b+c is a quadratic eqn and its graph is called a parabola. If a > 0, the parabola is concave up, while if a < 0, the parabola

More information

Abel Summation MOP 2007, Black Group

Abel Summation MOP 2007, Black Group Abel Summation MOP 007, Blac Group Zachary Abel June 5, 007 This lecture focuses on the Abel Summation formula, which is most often useful as a way to tae advantage of unusual given conditions such as

More information

Examples of the Accumulation Function (ANSWERS) dy dx. This new function now passes through (0,2). Make a sketch of your new shifted graph.

Examples of the Accumulation Function (ANSWERS) dy dx. This new function now passes through (0,2). Make a sketch of your new shifted graph. Eamples of the Accumulation Function (ANSWERS) Eample. Find a function y=f() whose derivative is that f()=. dy d tan that satisfies the condition We can use the Fundamental Theorem to write a function

More information

MATH section 3.4 Curve Sketching Page 1 of 29

MATH section 3.4 Curve Sketching Page 1 of 29 MATH section. Curve Sketching Page of 9 The step by step procedure below is for regular rational and polynomial functions. If a function contains radical or trigonometric term, then proceed carefully because

More information

arxiv:math/ v2 [math.ca] 19 Apr 2005

arxiv:math/ v2 [math.ca] 19 Apr 2005 On hypergeometric functions and -Pochhammer symbol arxiv:math/45596v2 [mathca] 9 Apr 25 Rafael Díaz and Eddy Pariguan February, 28 Abstract We introduce the -generalized gamma function Γ, beta function

More information

Section: I. u 4 du. (9x + 1) + C, 3

Section: I. u 4 du. (9x + 1) + C, 3 EXAM 3 MAT 168 Calculus II Fall 18 Name: Section: I All answers must include either supporting work or an eplanation of your reasoning. MPORTANT: These elements are considered main part of the answer and

More information

Chapter 11: Sequences; Indeterminate Forms; Improper Integrals

Chapter 11: Sequences; Indeterminate Forms; Improper Integrals Chapter 11: Sequences; Indeterminate Forms; Improper Integrals Section 11.1 The Least Upper Bound Axiom a. Least Upper Bound Axiom b. Examples c. Theorem 11.1.2 d. Example e. Greatest Lower Bound f. Theorem

More information

1. Introduction Interest in this project began with curiosity about the Laplace transform of the Digamma function, e as ψ(s + 1)ds,

1. Introduction Interest in this project began with curiosity about the Laplace transform of the Digamma function, e as ψ(s + 1)ds, ON THE LAPLACE TRANSFORM OF THE PSI FUNCTION M. LAWRENCE GLASSER AND DANTE MANNA Abstract. Guided by numerical experimentation, we have been able to prove that Z 8 / x x + ln dx = γ + ln) [cosx)] and to

More information

APPM 1360 Final Exam Spring 2016

APPM 1360 Final Exam Spring 2016 APPM 36 Final Eam Spring 6. 8 points) State whether each of the following quantities converge or diverge. Eplain your reasoning. a) The sequence a, a, a 3,... where a n ln8n) lnn + ) n!) b) ln d c) arctan

More information

Some commonly encountered sets and their notations

Some commonly encountered sets and their notations NATIONAL UNIVERSITY OF SINGAPORE DEPARTMENT OF MATHEMATICS (This notes are based on the book Introductory Mathematics by Ng Wee Seng ) LECTURE SETS & FUNCTIONS Some commonly encountered sets and their

More information

lim Bounded above by M Converges to L M

lim Bounded above by M Converges to L M Calculus 2 MONOTONE SEQUENCES If for all we say is nondecreasing. If for all we say is increasing. Similarly for nonincreasing decreasing. A sequence is said to be monotonic if it is either nondecreasing

More information

MA 114 Worksheet #01: Integration by parts

MA 114 Worksheet #01: Integration by parts Fall 8 MA 4 Worksheet Thursday, 3 August 8 MA 4 Worksheet #: Integration by parts. For each of the following integrals, determine if it is best evaluated by integration by parts or by substitution. If

More information

Indeterminate Forms and L Hospital s Rule

Indeterminate Forms and L Hospital s Rule APPLICATIONS OF DIFFERENTIATION Indeterminate Forms and L Hospital s Rule In this section, we will learn: How to evaluate functions whose values cannot be found at certain points. INDETERMINATE FORM TYPE

More information

Calculus. Central role in much of modern science Physics, especially kinematics and electrodynamics Economics, engineering, medicine, chemistry, etc.

Calculus. Central role in much of modern science Physics, especially kinematics and electrodynamics Economics, engineering, medicine, chemistry, etc. Calculus Calculus - the study of change, as related to functions Formally co-developed around the 1660 s by Newton and Leibniz Two main branches - differential and integral Central role in much of modern

More information

All work must be shown in this course for full credit. Unsupported answers may receive NO credit.

All work must be shown in this course for full credit. Unsupported answers may receive NO credit. AP Calculus.1 Worksheet Day 1 All work must be shown in this course for full credit. Unsupported answers may receive NO credit. 1. The only way to guarantee the eistence of a it is to algebraically prove

More information

The Continuing Story of Zeta

The Continuing Story of Zeta The Continuing Story of Zeta Graham Everest, Christian Röttger and Tom Ward November 3, 2006. EULER S GHOST. We can only guess at the number of careers in mathematics which have been launched by the sheer

More information

Integration Techniques and Differential Equations. Differential Equations

Integration Techniques and Differential Equations. Differential Equations 30434_ch06_p434-529.qd /7/03 8:5 AM Page 434 Integration Techniques and Differential Equations 6. Integration by Parts 6.2 Integration Using Tables 6.3 Improper Integrals 6.4 Numerical Integration 6.5

More information

2 Generating Functions

2 Generating Functions 2 Generating Functions In this part of the course, we re going to introduce algebraic methods for counting and proving combinatorial identities. This is often greatly advantageous over the method of finding

More information

Integration by Parts

Integration by Parts Calculus 2 Lia Vas Integration by Parts Using integration by parts one transforms an integral of a product of two functions into a simpler integral. Divide the initial function into two parts called u

More information

Math 259: Introduction to Analytic Number Theory More about the Gamma function

Math 259: Introduction to Analytic Number Theory More about the Gamma function Math 59: Introduction to Analytic Number Theory More about the Gamma function We collect some more facts about Γs as a function of a complex variable that will figure in our treatment of ζs and Ls, χ.

More information

1. State the definition of the integral. Be certain to include all of the appropriate words and symbols. tan(t 2 ) dt, find f (x).

1. State the definition of the integral. Be certain to include all of the appropriate words and symbols. tan(t 2 ) dt, find f (x). Math 26 First Eam Spring 2 Write neat, concise, and accurate solutions to each of the problems below I will not give partial credit for steps I cannot follow Include all relevant steps, use correct notation,

More information

7.8 Improper Integrals

7.8 Improper Integrals CHAPTER 7. TECHNIQUES OF INTEGRATION 65 7.8 Improper Integrals Eample. Find Solution. Z Z e d. e d = lim F () F (), where F () = e! = lim e! = (e ) = Eample. Find the volume of the shape known as Gabriel

More information

Nonlinear Equations. Chapter The Bisection Method

Nonlinear Equations. Chapter The Bisection Method Chapter 6 Nonlinear Equations Given a nonlinear function f(), a value r such that f(r) = 0, is called a root or a zero of f() For eample, for f() = e 016064, Fig?? gives the set of points satisfying y

More information

It s Your Turn Problems I. Functions, Graphs, and Limits 1. Here s the graph of the function f on the interval [ 4,4]

It s Your Turn Problems I. Functions, Graphs, and Limits 1. Here s the graph of the function f on the interval [ 4,4] It s Your Turn Problems I. Functions, Graphs, and Limits. Here s the graph of the function f on the interval [ 4,4] f ( ) =.. It has a vertical asymptote at =, a) What are the critical numbers of f? b)

More information

All work must be shown in this course for full credit. Unsupported answers may receive NO credit.

All work must be shown in this course for full credit. Unsupported answers may receive NO credit. AP Calculus.4 Worksheet All work must be shown in this course for full credit. Unsupported answers may receive NO credit.. What is a difference quotient?. How do you find the slope of a curve (aka slope

More information

1 Exponential Functions Limit Derivative Integral... 5

1 Exponential Functions Limit Derivative Integral... 5 Contents Eponential Functions 3. Limit................................................. 3. Derivative.............................................. 4.3 Integral................................................

More information

The Integral Test. P. Sam Johnson. September 29, P. Sam Johnson (NIT Karnataka) The Integral Test September 29, / 39

The Integral Test. P. Sam Johnson. September 29, P. Sam Johnson (NIT Karnataka) The Integral Test September 29, / 39 The Integral Test P. Sam Johnson September 29, 207 P. Sam Johnson (NIT Karnataka) The Integral Test September 29, 207 / 39 Overview Given a series a n, we have two questions:. Does the series converge?

More information

Topics Covered in Calculus BC

Topics Covered in Calculus BC Topics Covered in Calculus BC Calculus BC Correlation 5 A Functions, Graphs, and Limits 1. Analysis of graphs 2. Limits or functions (including one sides limits) a. An intuitive understanding of the limiting

More information

Solved problems: (Power) series 1. Sum up the series (if it converges) 3 k+1 a) 2 2k+5 ; b) 1. k(k + 1).

Solved problems: (Power) series 1. Sum up the series (if it converges) 3 k+1 a) 2 2k+5 ; b) 1. k(k + 1). Power series: Solved problems c phabala 00 3 Solved problems: Power series. Sum up the series if it converges 3 + a +5 ; b +.. Investigate convergence of the series a e ; c ; b 3 +! ; d a, where a 3. Investigate

More information

1985 AP Calculus AB: Section I

1985 AP Calculus AB: Section I 985 AP Calculus AB: Section I 9 Minutes No Calculator Notes: () In this eamination, ln denotes the natural logarithm of (that is, logarithm to the base e). () Unless otherwise specified, the domain of

More information

HOMEWORK 3 MA1132: ADVANCED CALCULUS, HILARY 2017

HOMEWORK 3 MA1132: ADVANCED CALCULUS, HILARY 2017 HOMEWORK MA112: ADVANCED CALCULUS, HILARY 2017 (1) A particle moves along a curve in R with position function given by r(t) = (e t, t 2 + 1, t). Find the velocity v(t), the acceleration a(t), the speed

More information

Continuity. The Continuity Equation The equation that defines continuity at a point is called the Continuity Equation.

Continuity. The Continuity Equation The equation that defines continuity at a point is called the Continuity Equation. Continuity A function is continuous at a particular x location when you can draw it through that location without picking up your pencil. To describe this mathematically, we have to use limits. Recall

More information

1969 AP Calculus BC: Section I

1969 AP Calculus BC: Section I 969 AP Calculus BC: Section I 9 Minutes No Calculator Note: In this eamination, ln denotes the natural logarithm of (that is, logarithm to the base e).. t The asymptotes of the graph of the parametric

More information

Math 1B Final Exam, Solution. Prof. Mina Aganagic Lecture 2, Spring (6 points) Use substitution and integration by parts to find:

Math 1B Final Exam, Solution. Prof. Mina Aganagic Lecture 2, Spring (6 points) Use substitution and integration by parts to find: Math B Final Eam, Solution Prof. Mina Aganagic Lecture 2, Spring 20 The eam is closed book, apart from a sheet of notes 8. Calculators are not allowed. It is your responsibility to write your answers clearly..

More information

Review of elements of Calculus (functions in one variable)

Review of elements of Calculus (functions in one variable) Review of elements of Calculus (functions in one variable) Mainly adapted from the lectures of prof Greg Kelly Hanford High School, Richland Washington http://online.math.uh.edu/houstonact/ https://sites.google.com/site/gkellymath/home/calculuspowerpoints

More information

Sharp inequalities and complete monotonicity for the Wallis ratio

Sharp inequalities and complete monotonicity for the Wallis ratio Sharp inequalities and complete monotonicity for the Wallis ratio Cristinel Mortici Abstract The aim of this paper is to prove the complete monotonicity of a class of functions arising from Kazarinoff

More information

Chapter XX: 1: Functions. XXXXXXXXXXXXXXX <CT>Chapter 1: Data representation</ct> 1.1 Mappings

Chapter XX: 1: Functions. XXXXXXXXXXXXXXX <CT>Chapter 1: Data representation</ct> 1.1 Mappings 978--08-8-8 Cambridge IGCSE and O Level Additional Mathematics Practice Book Ecerpt Chapter XX: : Functions XXXXXXXXXXXXXXX Chapter : Data representation This section will show you how to: understand

More information

Things to remember: x n a 1. x + a 0. x n + a n-1. P(x) = a n. Therefore, lim g(x) = 1. EXERCISE 3-2

Things to remember: x n a 1. x + a 0. x n + a n-1. P(x) = a n. Therefore, lim g(x) = 1. EXERCISE 3-2 lim f() = lim (0.8-0.08) = 0, " "!10!10 lim f() = lim 0 = 0.!10!10 Therefore, lim f() = 0.!10 lim g() = lim (0.8 - "!10!10 0.042-3) = 1, " lim g() = lim 1 = 1.!10!0 Therefore, lim g() = 1.!10 EXERCISE

More information

Prentice Hall. Calculus: Graphical, Numerical, Algebraic National Advanced Placement Course Descriptions for Calculus BC.

Prentice Hall. Calculus: Graphical, Numerical, Algebraic National Advanced Placement Course Descriptions for Calculus BC. Prentice Hall Grades 9-12 Calculus: Graphical, Numerical, Algebraic 2007 C O R R E L A T E D T O National Advanced Placement Course Descriptions for Calculus BC Grades 9-12 I Functions, Graphs, and Limits

More information

1. Find A and B so that f x Axe Bx. has a local minimum of 6 when. x 2.

1. Find A and B so that f x Axe Bx. has a local minimum of 6 when. x 2. . Find A and B so that f Ae B has a local minimum of 6 when.. The graph below is the graph of f, the derivative of f; The domain of the derivative is 5 6. Note there is a cusp when =, a horizontal tangent

More information

8-1 Exploring Exponential Models

8-1 Exploring Exponential Models 8- Eploring Eponential Models Eponential Function A function with the general form, where is a real number, a 0, b > 0 and b. Eample: y = 4() Growth Factor When b >, b is the growth factor Eample: y =

More information

Harmonic sets and the harmonic prime number theorem

Harmonic sets and the harmonic prime number theorem Harmonic sets and the harmonic prime number theorem Version: 9th September 2004 Kevin A. Broughan and Rory J. Casey University of Waikato, Hamilton, New Zealand E-mail: kab@waikato.ac.nz We restrict primes

More information

1. Find the area enclosed by the curve y = arctan x, the x-axis and the line x = 3. (Total 6 marks)

1. Find the area enclosed by the curve y = arctan x, the x-axis and the line x = 3. (Total 6 marks) 1. Find the area enclosed by the curve y = arctan, the -ais and the line = 3. (Total 6 marks). Show that the points (0, 0) and ( π, π) on the curve e ( + y) = cos (y) have a common tangent. 3. Consider

More information

Lecture 7: Indeterminate forms; L Hôpitals rule; Relative rates of growth. If we try to simply substitute x = 1 into the expression, we get

Lecture 7: Indeterminate forms; L Hôpitals rule; Relative rates of growth. If we try to simply substitute x = 1 into the expression, we get Lecture 7: Indeterminate forms; L Hôpitals rule; Relative rates of growth 1. Indeterminate Forms. Eample 1: Consider the it 1 1 1. If we try to simply substitute = 1 into the epression, we get. This is

More information

EXAM 3 MAT 167 Calculus I Spring is a composite function of two functions y = e u and u = 4 x + x 2. By the. dy dx = dy du = e u x + 2x.

EXAM 3 MAT 167 Calculus I Spring is a composite function of two functions y = e u and u = 4 x + x 2. By the. dy dx = dy du = e u x + 2x. EXAM MAT 67 Calculus I Spring 20 Name: Section: I Each answer must include either supporting work or an explanation of your reasoning. These elements are considered to be the main part of each answer and

More information

FOURIER INVERSION. an additive character in each of its arguments. The Fourier transform of f is

FOURIER INVERSION. an additive character in each of its arguments. The Fourier transform of f is FOURIER INVERSION 1. The Fourier Transform and the Inverse Fourier Transform Consider functions f, g : R n C, and consider the bilinear, symmetric function ψ : R n R n C, ψ(, ) = ep(2πi ), an additive

More information

Differential Calculus

Differential Calculus Differential Calculus. Compute the derivatives of the following functions a() = 4 3 7 + 4 + 5 b() = 3 + + c() = 3 + d() = sin cos e() = sin f() = log g() = tan h() = 3 6e 5 4 i() = + tan 3 j() = e k()

More information

CS383, Algorithms Spring 2009 HW1 Solutions

CS383, Algorithms Spring 2009 HW1 Solutions Prof. Sergio A. Alvarez http://www.cs.bc.edu/ alvarez/ 21 Campanella Way, room 569 alvarez@cs.bc.edu Computer Science Department voice: (617) 552-4333 Boston College fax: (617) 552-6790 Chestnut Hill,

More information

On a series of Ramanujan

On a series of Ramanujan On a series of Ramanujan Olivier Oloa To cite this version: Olivier Oloa. On a series of Ramanujan. Gems in Experimental Mathematics, pp.35-3,, . HAL Id: hal-55866 https://hal.archives-ouvertes.fr/hal-55866

More information

Saxon Calculus Scope and Sequence

Saxon Calculus Scope and Sequence hmhco.com Saxon Calculus Scope and Sequence Foundations Real Numbers Identify the subsets of the real numbers Identify the order properties of the real numbers Identify the properties of the real number

More information

Calculus in Gauss Space

Calculus in Gauss Space Calculus in Gauss Space 1. The Gradient Operator The -dimensional Lebesgue space is the measurable space (E (E )) where E =[0 1) or E = R endowed with the Lebesgue measure, and the calculus of functions

More information

Horizontal asymptotes

Horizontal asymptotes Roberto s Notes on Differential Calculus Chapter 1: Limits and continuity Section 5 Limits at infinity and Horizontal asymptotes What you need to know already: The concept, notation and terminology of

More information

C.7. Numerical series. Pag. 147 Proof of the converging criteria for series. Theorem 5.29 (Comparison test) Let a k and b k be positive-term series

C.7. Numerical series. Pag. 147 Proof of the converging criteria for series. Theorem 5.29 (Comparison test) Let a k and b k be positive-term series C.7 Numerical series Pag. 147 Proof of the converging criteria for series Theorem 5.29 (Comparison test) Let and be positive-term series such that 0, for any k 0. i) If the series converges, then also

More information

Example 1: What do you know about the graph of the function

Example 1: What do you know about the graph of the function Section 1.5 Analyzing of Functions In this section, we ll look briefly at four types of functions: polynomial functions, rational functions, eponential functions and logarithmic functions. Eample 1: What

More information

Math 353 Lecture Notes Week 6 Laplace Transform: Fundamentals

Math 353 Lecture Notes Week 6 Laplace Transform: Fundamentals Math 353 Lecture Notes Week 6 Laplace Transform: Fundamentals J. Wong (Fall 217) October 7, 217 What did we cover this week? Introduction to the Laplace transform Basic theory Domain and range of L Key

More information

DIFFERENTIATING UNDER THE INTEGRAL SIGN

DIFFERENTIATING UNDER THE INTEGRAL SIGN DIFFEENTIATING UNDE THE INTEGAL SIGN KEITH CONAD I had learned to do integrals by various methods shown in a book that my high school physics teacher Mr. Bader had given me. [It] showed how to differentiate

More information

AP Calculus AB Free-Response Scoring Guidelines

AP Calculus AB Free-Response Scoring Guidelines Question pt The rate at which raw sewage enters a treatment tank is given by Et 85 75cos 9 gallons per hour for t 4 hours. Treated sewage is removed from the tank at the constant rate of 645 gallons per

More information

On Conditionally Convergent Series

On Conditionally Convergent Series On Conditionally Convergent Series Werner Horn and Madjiguene Ndiaye Abstract We prove conditions of convergence for rearrangements of conditionally convergent series. The main results are a comparison

More information

Intermediate Algebra Section 9.3 Logarithmic Functions

Intermediate Algebra Section 9.3 Logarithmic Functions Intermediate Algebra Section 9.3 Logarithmic Functions We have studied inverse functions, learning when they eist and how to find them. If we look at the graph of the eponential function, f ( ) = a, where

More information