Microwave plasma modeling with COMSOL MULTIPHYSICS

Size: px
Start display at page:

Download "Microwave plasma modeling with COMSOL MULTIPHYSICS"

Transcription

1 Microwave plasma modeling with COMSOL MULTIPHYSICS O. Geoffroy*, H. Rouch, INOPRO Telespace Vercors - 118, chemin des Breux F Villard de Lans * olivier.geoffroy@inopro.com Abstract: A microwave plasma simulation has been tested, and will be fitted and validated. Two types of assumptions were compared: in the first approach the plasma density depends directly from the electric field and some characteristic values of it; in the second approach plasma density and temperature conservation equations are solved. The last one was used for Nitrogen plasma. In case of SF6 and H2O plasma simulation quite simple kinetics models will be used, and fitted by comparison with experimental observations. The last part of this work is under progress. Keywords: plasma, process, industrial applications. 1. Introduction One of the most interesting simulation objective is to give predictive results showing geometrical or scale effects for industrial processes. This is commonly done taking in account neutral and non reactive CFD. This is also quite common but with less precision in combustion fields. This is also possible taking in account reactive effects even in case of lacking data [1], for example for MOCVD processes. In case of a research work, the main objective is usually to validate a kinetic model by comparison of simulation results with measurable experimental data. This is usually done for research reactor with simple geometry and by direct comparison of the unknown, for example gas composition or electronic density in case of plasma. We often Work on industrial application so we have to simulate real geometry and have no access to direct comparison but may validate the model by indirect comparison: growth rate, light emission for example. The main reason is the objectives we address which are usually not the physical processes knowledge (typically a research objective) but to improve productivity by studying all is around the process. The proposed methodology ( 2) follow this industrial goal and is apply to microwave plasma processes. After a description of the whole methodology, the solved equation are presented ( 3) and then the physical and chemical assumption for Hydrogen and Oxygen plasma, and then our results for these two cases ( 4). 2. Methodology Our general methodology to study real industrial equipments involving complex physical and chemical phenomenon consist of mixing predictive simulations and experience plan with experimental comparison. But doing simulation with unreliable data induce bad precision. That's why a great research effort to characterize physical and kinetics data is an important goal. Unfortunately industry usually don't want to pay it because of the too long return on investment. In the other hand the usual experience plan are specific to each process and doesn't include enough science knowledge. Because simulation is at the corner between these two job (research and industrial development), we propose to mix both. So we use all available models to simulate real equipment even if some data are missing. For these data we plan experimental comparisons to settle open parameters of the specific model. Of course the chosen model should not include too many uncertain parameters. This methodology has to be adapted to the industrial goal to give a good return on investment: that's why predictive is between comma at the beginning of this chapter. The precision and the predictive ability of simulations are themselves parameter of the project. The presented study is the first part of the application of this methodology to plasma processes. In the case of neutral chemistry the conservative equations and their boundary conditions are well known and have not to be adapted. The work is only on kinetics models which depend on expected precision and data which may be adapted from bibliography. In the plasma case, the physics itself is more complex and some choices have to be done on the conservation equation themselves. In this study we tested two possibilities for microwave plasma simulation corresponding to different simplification level.

2 The next step will be to use these models to simulate more complex chemistries, after choosing and adapting simplified kinetic models. Of course the interpretation of the results may be an hard challenge, but at this stage we have to include an experience plan methodology in the project, and the comparison with experimental results will be helpful. Even electron density measurements are difficult, so we plan to use relative data from more simple measurement to settle and validate the kinetic models. 3. Models 3.1 Geometry As mentioned in introduction the goal of this study is to validate the feasibility of microwave plasma modeling in a powerful way for industrial applications. The simulated geometry are very simple. The presented results for hydrogen were calculated on the same geometry than Funer [3]. The presented results for nitrogen plasma correspond to simple geometry (figure 1). From bottom to top of the figure 1 we can see the coaxial connection, the antenna zone, the plasma zone, the gas inlet and pumping. inlet pumping and temperature. The thermal equation are linked with the plasma model, in order to compute Joule heating in the reactor with: Q= 1 2 E2 The electromagnetic equation also relie on plasma model from its conductivity and permittivity, which are: =. 2 0 pe. en 2 i pe and en r =1 en 2 pe en 2. en 2 i. pe 2 2 en 2 where w are the excitation frequency, and Ven the electron-neutre collision frequency estimated with the Bohm velocity. 3. Plasma Models Two kind of models were used: A simple model from Füner, which relies only on the electromagnetic field to estimate the electron density. D e n e =. E E M n emin where E M is the necessary field for maintaining a discharge, and gamma has to be set by adjusting the modeling results to experimental observations. antenna A more common model based on Maxwellian distribution, with the hypothesis of drift-diffusion for the electronic density and temperature. For the electronic density, we use: Coaxial Figure 1. Axi symmetrical geometry used for plasma simulation. Axis is on the left, plasma inlet and pumping are on top boundary, 3.2 general Models Since the data relies on neutral density and temperature, we used a set of laminar Navier- Stokes and thermal equation for neutral velocity n e t = J e S e where the electron flux is Je = n e e E De ne and the source term is: S e = ij n e. n nj. K ij depending on the chemical reaction involved.

3 For convenience, we used the ambipolar diffusion approach, which neglect the convective term: n e t =S e D a n e We make some simplification in the energy continuum equation, in order to solve: t 3 2 n ek B T e Q e=p Joule P coll where the total energy flux is: Q e = 5 2 k B T e J e 5 2 k B D e n e T e with the Joule term source: Dirichlet conditions have show better stability for convergence. For the electronic temperature, Te was assumed to be constant at 0.5 ev, except on the axis where Neumann conditions are used. For electromagnetic field, perfect electric conductor where assumed everywhere, except for the power inlet, where port condition are used. 4. Results 4.1 Hydrogen plasma simulated by Funer model Here are presented the results of the model describe by Funer et al. [3] for Hydrogen plasma. The electric field (figure 2) and electron density (figure 3) are very similar to Funer results. P Joule =q e J e E and the loss term: P coll =n e.n n. H j K j 3 m e m n k B T e n n e The loss term need some data of the involved chemical reaction. The last term correspond to elastic collision and is negligible for Hydrogen plasma [3]. The results we present for Hydrogen use this assumption. The simulation for Oxygen and Nitrogen were done with this term, but we still have some convergence problem. then the presented results were obtain for an assumed electronic temperature field. 3.4 Properties The plate between antenna and plasma cavity is made of quartz, and we simulate a cupper antenna. The gaseous properties are from kinetic theory of gases [1], and the kinetics models for Hydrogen, Oxygen and Nitrogen from bibliography [2-7]. 3.5 Boundary Conditions For the electronic density, Dirichlet condition where used in the plasma domain on dielectric, and Neumann on the axis boundary. Some flux condition were tested on metal boundary, but Figure 2. Electric field at 5kW. The advantage of this model is the good convergence ability. One disadvantaged is the

4 sensibility to the gamma parameter. All the chemistry is in this parameter, then this approach is difficult to use for more complex chemistry. adapted to nitrogen. The velocity and neutral temperature field are firstly presented on figure 4 and 5. They are very similar for both the cases presented below. Figure 3. Electronic density in plasma cavity at 5kW. 4.2 Model comparison for Nitrogen plasma Figure 5. Neutral temperature field (K) for both models Figure 4. Velocity field (m/s) for both models Figure 6. Electric field (V/m) In the case of Nitrogen plasma we compare results from an am bipolar model with the results obtain by simulation with the Funer model Same remark can be done for the electric field presented on figure 6.

5 In the case of ambipolar model we still have some convergence problem due to energy equation, then we present results obtain with the assumed electronic temperature field of figure 7. parameters of Funer model. An evident conclusion is that all results are possible by using settling method on simple models. But another conclusion may be that this simple model may be use as an engineering tool despite it is uninteresting for research. Figure 7. Assumed electronic temperature field for ambipolar model simulation Figure 9. Electronic density from Funer model simulation for nitrogen plasma 5. Conclusions Our results show that simulation of microwave plasma are possible in a reasonable time. This may be apply in the same way on real geometries. In the case of the ambipolar model, the convergence is very sensitive to detail kinetic data, then the use of such model in 3D may be done carefully after a validation of the kinetic data and test of the convergence in 2D. Next step will be to apply this methodology to more complex chemistry, and validate simplified kinetic model derived from bibliography by comparisons with measurements. 8. References Figure 8. Electronic density from ambipolar model simulation for nitrogen plasma The electronic density obtain by ambipolar model (figure 8) and Funer model (figure 9) are similar, but this is the results of the settling of the 1. H. Rouch, MOCVD Research Reactor simulation, Comsol Conference P. Rummel, and T.A. Grotjohn, Method for modeling microwave plasma system stability, J. Vac. Sci. Technol., A 20(2), March / april (2002) 3. M. Füner, C. Wild, P. Koidl, Simulation and development of optimized microwave plasma

6 reactors for diamond deposition, Surface and Coatings Technology (1999) A.M. Gorbachev, V.A. Koldanov, A.L. Vikharev, Numerical modeling of a microwave plasma CVD reactor, Diamond and Related Materials 10 (2001) P. Mahalingam, D.S. Dandy, A plasma discharge model of a microwave plasma diamond CVD reactor, Dept. of Chemical Engineering (1999) 6. L. Latrasse, PhD thesis, Conception, caractérisation et applications des plasma microonde en configuration matricielle (2006)

Plasma Modeling with COMSOL Multiphysics

Plasma Modeling with COMSOL Multiphysics Plasma Modeling with COMSOL Multiphysics Copyright 2014 COMSOL. Any of the images, text, and equations here may be copied and modified for your own internal use. All trademarks are the property of their

More information

Numerical simulation of Vibrationally Active Ar-H2 Microwave Plasma

Numerical simulation of Vibrationally Active Ar-H2 Microwave Plasma Numerical simulation of Vibrationally Active Ar-H2 Microwave Plasma F. Bosi 1, M. Magarotto 2, P. de Carlo 2, M. Manente 2, F. Trezzolani 2, D. Pavarin 2, D. Melazzi 2, P. Alotto 1, R. Bertani 1 1 Department

More information

Effect of Gas Flow Rate and Gas Composition in Ar/CH 4 Inductively Coupled Plasmas

Effect of Gas Flow Rate and Gas Composition in Ar/CH 4 Inductively Coupled Plasmas COMSOL CONFERENCE BOSTON 2011 Effect of Gas Flow Rate and Gas Composition in Ar/CH 4 Inductively Coupled Plasmas Keisoku Engineering System Co., Ltd., JAPAN Dr. Lizhu Tong October 14, 2011 1 Contents 1.

More information

Physique des plasmas radiofréquence Pascal Chabert

Physique des plasmas radiofréquence Pascal Chabert Physique des plasmas radiofréquence Pascal Chabert LPP, Ecole Polytechnique pascal.chabert@lpp.polytechnique.fr Planning trois cours : Lundi 30 Janvier: Rappels de physique des plasmas froids Lundi 6 Février:

More information

COMSOL Multiphysics Simulations of the Electric Field and Gas Flow in a Microwave Axial Injection Torch

COMSOL Multiphysics Simulations of the Electric Field and Gas Flow in a Microwave Axial Injection Torch COMSOL Multiphysics Simulations of the Electric Field and Gas Flow in a Microwave Axial Injection Torch A. Obrusník, P. Synek, L. Zajíčková Faculty of Science/CEITEC, Masaryk University, Kotlářská 2, 611

More information

A Magnetohydrodynamic study af a inductive MHD generator

A Magnetohydrodynamic study af a inductive MHD generator Excerpt from the Proceedings of the COMSOL Conference 2009 Milan A Magnetohydrodynamic study af a inductive MHD generator Augusto Montisci, Roberto Pintus University of Cagliari, Department of Electrical

More information

JPM. 1. Introduction. Excerpt from the Proceedings of the 2016 COMSOL Conference in Munich. requirement is the. through. efficient design of

JPM. 1. Introduction. Excerpt from the Proceedings of the 2016 COMSOL Conference in Munich. requirement is the. through. efficient design of Multiphysics Modelling of a Microwave Furnace for Efficient Silicon Production N. Rezaii 1, J.P. Mai 2 JPM Silicon GmbH, n.rezaii@ @jpmsilicon.com, j-p.mai@jpmsilicon.com Abstract: Silicon must be extremely

More information

GEC ICP Reactor, Argon/Oxygen Chemistry

GEC ICP Reactor, Argon/Oxygen Chemistry GEC ICP Reactor, Argon/Oxygen Chemistry Introduction Electronegative discharges exhibit very different characteristics to electropositive discharges due to the presence of negative ions. Examples of electronegative

More information

Electron Density and Ion Flux in Diffusion Chamber of Low Pressure RF Helicon Reactor

Electron Density and Ion Flux in Diffusion Chamber of Low Pressure RF Helicon Reactor WDS'06 Proceedings of Contributed Papers, Part II, 150 155, 2006. ISBN 80-86732-85-1 MATFYZPRESS Electron Density and Ion Flux in Diffusion Chamber of Low Pressure RF Helicon Reactor R. Šmíd Masaryk University,

More information

Simulation of Low Pressure Plasma Processing Reactors: Kinetics of Electrons and Neutrals

Simulation of Low Pressure Plasma Processing Reactors: Kinetics of Electrons and Neutrals Simulation of Low Pressure Plasma Processing Reactors: Kinetics of Electrons and Neutrals R. R. Arslanbekov and V. I. Kolobov CFD Research Corporation, Huntsville, AL, USA Abstract. In this paper, we illustrate

More information

6.5 Optical-Coating-Deposition Technologies

6.5 Optical-Coating-Deposition Technologies 92 Chapter 6 6.5 Optical-Coating-Deposition Technologies The coating process takes place in an evaporation chamber with a fully controlled system for the specified requirements. Typical systems are depicted

More information

Hong Young Chang Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Republic of Korea

Hong Young Chang Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Republic of Korea Hong Young Chang Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Republic of Korea Index 1. Introduction 2. Some plasma sources 3. Related issues 4. Summary -2 Why is

More information

Numerical Simulation: Effects of Gas Flow and Rf Current Direction on Plasma Uniformity in an ICP Dry Etcher

Numerical Simulation: Effects of Gas Flow and Rf Current Direction on Plasma Uniformity in an ICP Dry Etcher Appl. Sci. Converg. Technol. 26(6): 189-194 (2017) http://dx.doi.org/10.5757/asct.2017.26.6.189 Research Paper Numerical Simulation: Effects of Gas Flow and Rf Current Direction on Plasma Uniformity in

More information

Multi-fluid Simulation Models for Inductively Coupled Plasma Sources

Multi-fluid Simulation Models for Inductively Coupled Plasma Sources Multi-fluid Simulation Models for Inductively Coupled Plasma Sources Madhusudhan Kundrapu, Seth A. Veitzer, Peter H. Stoltz, Kristian R.C. Beckwith Tech-X Corporation, Boulder, CO, USA and Jonathan Smith

More information

Copyright 1996, by the author(s). All rights reserved.

Copyright 1996, by the author(s). All rights reserved. Copyright 1996, by the author(s). All rights reserved. Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are

More information

The fast model for ionic wind simulation

The fast model for ionic wind simulation Andrey Samusenko, Yury Stishkov, Polina Zhidkova The fast model for ionic wind simulation Research and Educational Center Electrophysics Saint Petersburg State University Faculty of Physics Ionic wind

More information

SIMULATIONS OF ECR PROCESSING SYSTEMS SUSTAINED BY AZIMUTHAL MICROWAVE TE(0,n) MODES*

SIMULATIONS OF ECR PROCESSING SYSTEMS SUSTAINED BY AZIMUTHAL MICROWAVE TE(0,n) MODES* 25th IEEE International Conference on Plasma Science Raleigh, North Carolina June 1-4, 1998 SIMULATIONS OF ECR PROCESSING SYSTEMS SUSTAINED BY AZIMUTHAL MICROWAVE TE(,n) MODES* Ron L. Kinder and Mark J.

More information

SCALING OF PLASMA SOURCES FOR O 2 ( 1 ) GENERATION FOR CHEMICAL OXYGEN-IODINE LASERS

SCALING OF PLASMA SOURCES FOR O 2 ( 1 ) GENERATION FOR CHEMICAL OXYGEN-IODINE LASERS SCALING OF PLASMA SOURCES FOR O 2 ( 1 ) GENERATION FOR CHEMICAL OXYGEN-IODINE LASERS D. Shane Stafford and Mark J. Kushner Department of Electrical and Computer Engineering Urbana, IL 61801 http://uigelz.ece.uiuc.edu

More information

FINITE ELEMENT METHOD MODELLING OF A HIGH TEMPERATURE PEM FUEL CELL

FINITE ELEMENT METHOD MODELLING OF A HIGH TEMPERATURE PEM FUEL CELL CONDENSED MATTER FINITE ELEMENT METHOD MODELLING OF A HIGH TEMPERATURE PEM FUEL CELL V. IONESCU 1 1 Department of Physics and Electronics, Ovidius University, Constanta, 900527, Romania, E-mail: ionescu.vio@gmail.com

More information

Two-dimensional simulation of a miniaturized inductively coupled plasma reactor

Two-dimensional simulation of a miniaturized inductively coupled plasma reactor JOURNAL OF APPLIED PHYSICS VOLUME 95, NUMBER 5 1 MARCH 2004 Two-dimensional simulation of a miniaturized inductively coupled plasma reactor Sang Ki Nam and Demetre J. Economou a) Plasma Processing Laboratory,

More information

Studying Target Erosion in Planar Sputtering Magnetrons Using a Discrete Model for Energetic Electrons

Studying Target Erosion in Planar Sputtering Magnetrons Using a Discrete Model for Energetic Electrons Studying Target Erosion in Planar Sputtering Magnetrons Using a Discrete Model for Energetic Electrons C. Feist *1, A. Plankensteiner 2, and J. Winkler 2 1 CENUMERICS, 2 PLANSEE SE *Corresponding author:

More information

SPUTTER-WIND HEATING IN IONIZED METAL PVD+

SPUTTER-WIND HEATING IN IONIZED METAL PVD+ SPUTTER-WIND HEATING IN IONIZED METAL PVD+ Junqing Lu* and Mark Kushner** *Department of Mechanical and Industrial Engineering **Department of Electrical and Computer Engineering University of Illinois

More information

Simulation of Inductively Coupled Plasma of Ar/C2H2/CH4/H2 gas mixture in PECVD reactor and calculating the reactor efficiency

Simulation of Inductively Coupled Plasma of Ar/C2H2/CH4/H2 gas mixture in PECVD reactor and calculating the reactor efficiency Simulation of Inductively Coupled Plasma of Ar/C2H2/CH4/H2 gas mixture in PECVD reactor and calculating the reactor efficiency Manish Kumar 1, Sagar Khanna 2, Suresh C Sharma 3 1,2M.Tech Student, Dept.

More information

reported that the available simple contact conductance model was expressed as [5][6]: h sum = h solid + h fluid (1) Where h sum, h solid and h fluid a

reported that the available simple contact conductance model was expressed as [5][6]: h sum = h solid + h fluid (1) Where h sum, h solid and h fluid a Multiphysics Simulation of Conjugated Heat Transfer and Electric Field on Application of Electrostatic Chucks (ESCs) Using 3D-2D Model Coupling Kuo-Chan Hsu 1, Chih-Hung Li 1, Jaw-Yen Yang 1,2*, Jian-Zhang

More information

PRINCIPLES OF PLASMA DISCHARGES AND MATERIALS PROCESSING

PRINCIPLES OF PLASMA DISCHARGES AND MATERIALS PROCESSING PRINCIPLES OF PLASMA DISCHARGES AND MATERIALS PROCESSING Second Edition MICHAEL A. LIEBERMAN ALLAN J, LICHTENBERG WILEY- INTERSCIENCE A JOHN WILEY & SONS, INC PUBLICATION CONTENTS PREFACE xrrii PREFACE

More information

Exploration COMSOL in Modeling RLSA TM CVD Processes

Exploration COMSOL in Modeling RLSA TM CVD Processes Exploration COMSOL in Modeling RLSA TM CVD Processes Ar+H 2 +SiH 4 +C 2 H 6 and Dopant Gas Jozef Brcka 1 *, Sundar Gandhi 2, Raymond Joe 2 1 Tokyo Electron U.S. Holdings, Inc., U.S. Technology Development

More information

MODELING OF AN ECR SOURCE FOR MATERIALS PROCESSING USING A TWO DIMENSIONAL HYBRID PLASMA EQUIPMENT MODEL. Ron L. Kinder and Mark J.

MODELING OF AN ECR SOURCE FOR MATERIALS PROCESSING USING A TWO DIMENSIONAL HYBRID PLASMA EQUIPMENT MODEL. Ron L. Kinder and Mark J. TECHCON 98 Las Vegas, Nevada September 9-11, 1998 MODELING OF AN ECR SOURCE FOR MATERIALS PROCESSING USING A TWO DIMENSIONAL HYBRID PLASMA EQUIPMENT MODEL Ron L. Kinder and Mark J. Kushner Department of

More information

Chapiter VII: Ionization chamber

Chapiter VII: Ionization chamber Chapiter VII: Ionization chamber 1 Types of ionization chambers Sensitive volume: gas (most often air direct measurement of exposure) ionization chamber Sensitive volume: semiconductor (silicon, germanium,

More information

Matti Laan Gas Discharge Laboratory University of Tartu ESTONIA

Matti Laan Gas Discharge Laboratory University of Tartu ESTONIA Matti Laan Gas Discharge Laboratory University of Tartu ESTONIA Outline 1. Ionisation 2. Plasma definition 3. Plasma properties 4. Plasma classification 5. Energy transfer in non-equilibrium plasma 6.

More information

Thermal Energy Final Exam Fall 2002

Thermal Energy Final Exam Fall 2002 16.050 Thermal Energy Final Exam Fall 2002 Do all eight problems. All problems count the same. 1. A system undergoes a reversible cycle while exchanging heat with three thermal reservoirs, as shown below.

More information

Application of Rarefied Flow & Plasma Simulation Software

Application of Rarefied Flow & Plasma Simulation Software 2016/5/18 Application of Rarefied Flow & Plasma Simulation Software Yokohama City in Japan Profile of Wave Front Co., Ltd. Name : Wave Front Co., Ltd. Incorporation : March 1990 Head Office : Yokohama

More information

Inplane Microwave Plasma

Inplane Microwave Plasma Inplane Microwave Plasma Introduction Wave heated discharges may be very simple where a plane wave is guided into a reactor using a waveguide or very complicated as in the case with ECR (electron cyclotron

More information

OPTIMIZATION OF PLASMA UNIFORMITY USING HOLLOW-CATHODE STRUCTURE IN RF DISCHARGES*

OPTIMIZATION OF PLASMA UNIFORMITY USING HOLLOW-CATHODE STRUCTURE IN RF DISCHARGES* 51th Gaseous Electronics Conference & 4th International Conference on Reactive Plasmas Maui, Hawai i 19-23 October 1998 OPTIMIZATION OF PLASMA UNIFORMITY USING HOLLOW-CATHODE STRUCTURE IN RF DISCHARGES*

More information

Global Energy Transfer Model of Microwave Induced Plasma in a Microwave Electrothermal Thruster Resonant Cavity

Global Energy Transfer Model of Microwave Induced Plasma in a Microwave Electrothermal Thruster Resonant Cavity Global Energy Transfer Model of Microwave Induced Plasma in a Microwave Electrothermal Thruster Resonant Cavity IEPC-2015-266/ISTS-2015-b-266 Presented at Joint Conference of 30th International Symposium

More information

Plasma properties determined with induction loop probes in a planar inductively coupled plasma source

Plasma properties determined with induction loop probes in a planar inductively coupled plasma source Plasma properties determined with induction loop probes in a planar inductively coupled plasma source J. A. Meyer, a) R. Mau, and A. E. Wendt b) Engineering Research Center for Plasma-Aided Manufacturing,

More information

One dimensional hybrid Maxwell-Boltzmann model of shearth evolution

One dimensional hybrid Maxwell-Boltzmann model of shearth evolution Technical collection One dimensional hybrid Maxwell-Boltzmann model of shearth evolution 27 - Conferences publications P. Sarrailh L. Garrigues G. J. M. Hagelaar J. P. Boeuf G. Sandolache S. Rowe B. Jusselin

More information

Electromagnetics in COMSOL Multiphysics is extended by add-on Modules

Electromagnetics in COMSOL Multiphysics is extended by add-on Modules AC/DC Module Electromagnetics in COMSOL Multiphysics is extended by add-on Modules 1) Start Here 2) Add Modules based upon your needs 3) Additional Modules extend the physics you can address 4) Interface

More information

Modeling the Effect of Headspace Steam on Microwave Heating Performance of Mashed Potato

Modeling the Effect of Headspace Steam on Microwave Heating Performance of Mashed Potato Modeling the Effect of Headspace Steam on Microwave Heating Performance of Mashed Potato J. Chen, K. Pitchai, D. Jones, J. Subbiah University of Nebraska Lincoln October 9 th, 2014 Session : Electromagnetic

More information

TMT4320 Nanomaterials November 10 th, Thin films by physical/chemical methods (From chapter 24 and 25)

TMT4320 Nanomaterials November 10 th, Thin films by physical/chemical methods (From chapter 24 and 25) 1 TMT4320 Nanomaterials November 10 th, 2015 Thin films by physical/chemical methods (From chapter 24 and 25) 2 Thin films by physical/chemical methods Vapor-phase growth (compared to liquid-phase growth)

More information

Modeling and Simulation of Plasma Based Applications in the Microwave and RF Frequency Range

Modeling and Simulation of Plasma Based Applications in the Microwave and RF Frequency Range Modeling and Simulation of Plasma Based Applications in the Microwave and RF Frequency Range Dr.-Ing. Frank H. Scharf CST of America What is a plasma? What is a plasma? Often referred to as The fourth

More information

Plasmas rf haute densité Pascal Chabert LPTP, Ecole Polytechnique

Plasmas rf haute densité Pascal Chabert LPTP, Ecole Polytechnique Plasmas rf haute densité Pascal Chabert LPTP, Ecole Polytechnique chabert@lptp.polytechnique.fr Pascal Chabert, 2006, All rights reserved Programme Introduction Généralité sur les plasmas Plasmas Capacitifs

More information

4 Modeling of a capacitive RF discharge

4 Modeling of a capacitive RF discharge 4 Modeling of a capacitive discharge 4.1 PIC MCC model for capacitive discharge Capacitive radio frequency () discharges are very popular, both in laboratory research for the production of low-temperature

More information

Providing an Entry Length in Heterogeneous Catalytic Reactors with Fast Diffusion

Providing an Entry Length in Heterogeneous Catalytic Reactors with Fast Diffusion Presented at the COMSOL Conference 2009 Milan Providing an Entry Length in Heterogeneous Catalytic Reactors with Fast Diffusion D. Dalle Nogare, P. Canu University of Padova, Italy From the PFR to the

More information

MONOCHROMATIZATION AND POLARIZATION OF THE NEON SPECTRAL LINES IN CONSTANT/VARIABLE MAGNETIC FIELD

MONOCHROMATIZATION AND POLARIZATION OF THE NEON SPECTRAL LINES IN CONSTANT/VARIABLE MAGNETIC FIELD Romanian Reports in Physics 69, 49 (217) MONOCHROMATIZATION AND POLARIZATION OF THE NEON SPECTRAL LINES IN CONSTANT/VARIABLE MAGNETIC FIELD I. GRUIA, L.C. CIOBOTARU* University of Bucharest, Faculty of

More information

Modeling of a DBD Reactor for the Treatment of VOC

Modeling of a DBD Reactor for the Treatment of VOC Excerpt from the Proceedings of the COMSOL Conference 2009 Milan Modeling of a DBD Reactor for the Treatment of VOC Lamia Braci, Stephanie Ognier, and Simeon Cavadias* Laboratoire de Génie des Procédés

More information

MODELING PLASMA PROCESSING DISCHARGES

MODELING PLASMA PROCESSING DISCHARGES MODELING PROCESSING DISCHARGES M.A. Lieberman Department of Electrical Engineering and Computer Sciences University of California Berkeley, CA 94720 Collaborators: E. Kawamura, D.B. Graves, and A.J. Lichtenberg,

More information

Lecture 6 Plasmas. Chapters 10 &16 Wolf and Tauber. ECE611 / CHE611 Electronic Materials Processing Fall John Labram 1/68

Lecture 6 Plasmas. Chapters 10 &16 Wolf and Tauber. ECE611 / CHE611 Electronic Materials Processing Fall John Labram 1/68 Lecture 6 Plasmas Chapters 10 &16 Wolf and Tauber 1/68 Announcements Homework: Homework will be returned to you on Thursday (12 th October). Solutions will be also posted online on Thursday (12 th October)

More information

Multicomponent diffusion in gases and plasma mixtures

Multicomponent diffusion in gases and plasma mixtures High Temperatures ^ High Pressures, 2002, volume 34, pages 109 ^ 116 15 ECTP Proceedings pages 1337 ^ 1344 DOI:10.1068/htwu73 Multicomponent diffusion in gases and plasma mixtures Irina A Sokolova Institute

More information

Simulation of a two-dimensional sheath over a flat wall with an insulatorõconductor interface exposed to a high density plasma

Simulation of a two-dimensional sheath over a flat wall with an insulatorõconductor interface exposed to a high density plasma JOURNAL OF APPLIED PHYSICS VOLUME 94, NUMBER 5 1 SEPTEMBER 2003 Simulation of a two-dimensional sheath over a flat wall with an insulatorõconductor interface exposed to a high density plasma Doosik Kim

More information

Plasma Physics Prof. Vijayshri School of Sciences, IGNOU. Lecture No. # 38 Diffusion in Plasmas

Plasma Physics Prof. Vijayshri School of Sciences, IGNOU. Lecture No. # 38 Diffusion in Plasmas Plasma Physics Prof. Vijayshri School of Sciences, IGNOU Lecture No. # 38 Diffusion in Plasmas In today s lecture, we will be taking up the topic diffusion in plasmas. Diffusion, why do you need to study

More information

Multidimensional Numerical Simulation of Glow Discharge by Using the N-BEE-Time Splitting Method

Multidimensional Numerical Simulation of Glow Discharge by Using the N-BEE-Time Splitting Method Plasma Science and Technology, Vol.14, No.9, Sep. 2012 Multidimensional Numerical Simulation of Glow Discharge by Using the N-BEE-Time Splitting Method Benyssaad KRALOUA, Ali HENNAD Electrical Engineering

More information

Similarities and differences:

Similarities and differences: How does the system reach equilibrium? I./9 Chemical equilibrium I./ Equilibrium electrochemistry III./ Molecules in motion physical processes, non-reactive systems III./5-7 Reaction rate, mechanism, molecular

More information

CONVECTIVE HEAT TRANSFER

CONVECTIVE HEAT TRANSFER CONVECTIVE HEAT TRANSFER Mohammad Goharkhah Department of Mechanical Engineering, Sahand Unversity of Technology, Tabriz, Iran CHAPTER 3 LAMINAR BOUNDARY LAYER FLOW LAMINAR BOUNDARY LAYER FLOW Boundary

More information

L UNAM Université, ONIRIS, CNRS, GEPEA, UMR6144, Nantes, F-44322, France.

L UNAM Université, ONIRIS, CNRS, GEPEA, UMR6144, Nantes, F-44322, France. ing Heating During Batch Processing of Liquid Sample in a Single Mode Cavity S. Curet 1, F. Bellincanta Begnini, O. Rouaud 1, L. Boillereau 1 1 L UNAM Université, ONIRIS, CNRS, GEPEA, UMR6144, Nantes,

More information

Numerical Study of Power Deposition, Transport and Acceleration Phenomena in Helicon Plasma Thrusters

Numerical Study of Power Deposition, Transport and Acceleration Phenomena in Helicon Plasma Thrusters Numerical Study of Power Deposition, Transport and Acceleration Phenomena in Helicon Plasma Thrusters M. Magarotto, M. Manente, P. de Calro, F. Trezzolani, D. Pavarin, and D. Melazzi CISAS, Padova, Italy

More information

Low Temperature Plasma Technology Laboratory

Low Temperature Plasma Technology Laboratory Low Temperature Plasma Technology Laboratory Equilibrium theory for plasma discharges of finite length Francis F. Chen and Davide Curreli LTP-6 June, Electrical Engineering Department Los Angeles, California

More information

Modelling of low-temperature plasmas: kinetic and transport mechanisms. L.L. Alves

Modelling of low-temperature plasmas: kinetic and transport mechanisms. L.L. Alves Modelling of low-temperature plasmas: kinetic and transport mechanisms L.L. Alves llalves@tecnico.ulisboa.pt Instituto de Plasmas e Fusão Nuclear Instituto Superior Técnico, Universidade de Lisboa Lisboa,

More information

Electrostatic measurements around a cryo-jet

Electrostatic measurements around a cryo-jet Electrostatic measurements around a cryo-jet KIT, 2018-04-19 Pre-normative REsearch for Safe use of Liquid HYdrogen 1 PRESLHY Kick-off Meeting, April 16-20, 2018, KIT, Karlsruhe, Germany Content I. Intro

More information

Modern Methods in Heterogeneous Catalysis Research: Preparation of Model Systems by Physical Methods

Modern Methods in Heterogeneous Catalysis Research: Preparation of Model Systems by Physical Methods Modern Methods in Heterogeneous Catalysis Research: Preparation of Model Systems by Physical Methods Methods for catalyst preparation Methods discussed in this lecture Physical vapour deposition - PLD

More information

Physics and Modelling of a Negative Ion Source Prototype for the ITER Neutral Beam Injection

Physics and Modelling of a Negative Ion Source Prototype for the ITER Neutral Beam Injection 1 ITR/P1-37 Physics and Modelling of a Negative Ion Source Prototype for the ITER Neutral Beam Injection J.P. Boeuf a, G. Fubiani a, G. Hagelaar a, N. Kohen a, L. Pitchford a, P. Sarrailh a, and A. Simonin

More information

Photoionization Modelling of H II Region for Oxygen Ions

Photoionization Modelling of H II Region for Oxygen Ions Journal of Materials Science and Chemical Engineering, 2015, 3, 7-16 Published Online April 2015 in SciRes. http://www.scirp.org/journal/msce http://dx.doi.org/10.4236/msce.2015.34002 Photoionization Modelling

More information

Plasma Astrophysics Chapter 1: Basic Concepts of Plasma. Yosuke Mizuno Institute of Astronomy National Tsing-Hua University

Plasma Astrophysics Chapter 1: Basic Concepts of Plasma. Yosuke Mizuno Institute of Astronomy National Tsing-Hua University Plasma Astrophysics Chapter 1: Basic Concepts of Plasma Yosuke Mizuno Institute of Astronomy National Tsing-Hua University What is a Plasma? A plasma is a quasi-neutral gas consisting of positive and negative

More information

Nonlinear Diffusion in Magnetized Discharges. Francis F. Chen. Electrical Engineering Department

Nonlinear Diffusion in Magnetized Discharges. Francis F. Chen. Electrical Engineering Department Nonlinear Diffusion in Magnetized Discharges Francis F. Chen Electrical Engineering Department PPG-1579 January, 1998 Revised April, 1998 Nonlinear Diffusion in Magnetized Discharges Francis F. Chen Electrical

More information

Repetition: Practical Aspects

Repetition: Practical Aspects Repetition: Practical Aspects Reduction of the Cathode Dark Space! E x 0 Geometric limit of the extension of a sputter plant. Lowest distance between target and substrate V Cathode (Target/Source) - +

More information

Modeling Ion Motion in a Miniaturized Ion Mobility Spectrometer

Modeling Ion Motion in a Miniaturized Ion Mobility Spectrometer Excerpt from the Proceedings of the COMSOL Conference 2008 Hannover Modeling Ion Motion in a Miniaturized Ion Mobility Spectrometer Sebastian Barth and Stefan Zimmermann Research Unit, Drägerwerk AG &

More information

Theory of Gas Discharge

Theory of Gas Discharge Boris M. Smirnov Theory of Gas Discharge Plasma l Springer Contents 1 Introduction 1 Part I Processes in Gas Discharge Plasma 2 Properties of Gas Discharge Plasma 13 2.1 Equilibria and Distributions of

More information

Mathematical Model for Definition of Thermal Conditions in Desublimation Process of Volatile Metal Fluorides

Mathematical Model for Definition of Thermal Conditions in Desublimation Process of Volatile Metal Fluorides Research Article International Journal of Current Engineering and Technology ISSN 2277-4106 2013 INPRESSCO. All Rights Reserved. Available at http://inpressco.com/category/ijcet Mathematical Model for

More information

Biological Process Engineering An Analogical Approach to Fluid Flow, Heat Transfer, and Mass Transfer Applied to Biological Systems

Biological Process Engineering An Analogical Approach to Fluid Flow, Heat Transfer, and Mass Transfer Applied to Biological Systems Biological Process Engineering An Analogical Approach to Fluid Flow, Heat Transfer, and Mass Transfer Applied to Biological Systems Arthur T. Johnson, PhD, PE Biological Resources Engineering Department

More information

Surface Chemistry Tutorial

Surface Chemistry Tutorial Surface Chemistry Tutorial Introduction Surface chemistry is often the most important and most overlooked aspect of reacting flow modeling. Surface rate expressions can be hard to find or not even exist

More information

Modelling of JT-60U Detached Divertor Plasma using SONIC code

Modelling of JT-60U Detached Divertor Plasma using SONIC code J. Plasma Fusion Res. SERIES, Vol. 9 (2010) Modelling of JT-60U Detached Divertor Plasma using SONIC code Kazuo HOSHINO, Katsuhiro SHIMIZU, Tomonori TAKIZUKA, Nobuyuki ASAKURA and Tomohide NAKANO Japan

More information

Modeling plasma-based CO 2 conversion: From chemistry to plasma design

Modeling plasma-based CO 2 conversion: From chemistry to plasma design Modeling plasma-based CO 2 conversion: From chemistry to plasma design Annemie Bogaerts T. Kozak, R. Snoeckx, G. Trenchev, K. Van Laer Research group PLASMANT, University of Antwerp, Belgium CO 2 + CH

More information

BOUNDARY LAYER MODELLING OF THE HEAT TRANSFER PROCESSES FROM IGNITERS TO ENERGETIC MATERIALS Clive Woodley, Mike Taylor, Henrietta Wheal

BOUNDARY LAYER MODELLING OF THE HEAT TRANSFER PROCESSES FROM IGNITERS TO ENERGETIC MATERIALS Clive Woodley, Mike Taylor, Henrietta Wheal 23 RD INTERNATIONAL SYMPOSIUM ON BALLISTICS TARRAGONA, SPAIN 16-20 APRIL 2007 BOUNDARY LAYER MODELLING OF THE HEAT TRANSFER PROCESSES FROM IGNITERS TO ENERGETIC MATERIALS Clive Woodley, Mike Taylor, Henrietta

More information

Notes 4: Differential Form of the Conservation Equations

Notes 4: Differential Form of the Conservation Equations Low Speed Aerodynamics Notes 4: Differential Form of the Conservation Equations Deriving Conservation Equations From the Laws of Physics Physical Laws Fluids, being matter, must obey the laws of Physics.

More information

A Plasma Torch Model. 1. Introduction

A Plasma Torch Model. 1. Introduction A Plasma Torch Model B. Chinè School of Materials Science and Engineering, Costa Rica Institute of Technology, Cartago, Costa Rica P.O. Box 159-7050, Cartago, Costa Rica, bchine@itcr.ac.cr Abstract: Plasma

More information

Application of COMSOL Multiphysics in Transport Phenomena Educational Processes

Application of COMSOL Multiphysics in Transport Phenomena Educational Processes Application of COMSOL Multiphysics in Transport Phenomena Educational Processes M. Vasilev, P. Sharma and P. L. Mills * Department of Chemical and Natural Gas Engineering, Texas A&M University-Kingsville,

More information

Slowing down the neutrons

Slowing down the neutrons Slowing down the neutrons Clearly, an obvious way to make a reactor work, and to make use of this characteristic of the 3 U(n,f) cross-section, is to slow down the fast, fission neutrons. This can be accomplished,

More information

Simulations of Electrical Arcs: Algorithms, Physical Scales, and Coupling. Henrik Nordborg HSR University of Applied Sciences Rapperswil

Simulations of Electrical Arcs: Algorithms, Physical Scales, and Coupling. Henrik Nordborg HSR University of Applied Sciences Rapperswil Simulations of Electrical Arcs: Algorithms, Physical Scales, and Coupling Henrik Nordborg HSR University of Applied Sciences Rapperswil What is an electrical arc? 2 Technical applications of arcs and industrial

More information

Redacted for Privacy (Major pro ssor)

Redacted for Privacy (Major pro ssor) AN ABSTRACT OF THE THESIS OF Electrical and Electronics EDWIN KARL FREYTAG for the M.S. in Engineering (Name) (Degree) (Major) Date thesis is presented September 1, 1966 Title GAS RATIO AND PRESSURE EFFECTS

More information

Consequences of asymmetric pumping in low pressure plasma processing reactors: A three-dimensional modeling study

Consequences of asymmetric pumping in low pressure plasma processing reactors: A three-dimensional modeling study Consequences of asymmetric pumping in low pressure plasma processing reactors: A three-dimensional modeling study Mark J. Kushner a) University of Illinois, Department of Electrical and Computer Engineering,

More information

B. Lax A. D. MacDonald M. A. Biondi D. J. Rose D. E. Kerr L. J. Varnerin, Jr.

B. Lax A. D. MacDonald M. A. Biondi D. J. Rose D. E. Kerr L. J. Varnerin, Jr. II. MICROWAVE GASEOUS DISCHARGES Prof. S. C. Brown Prof. W. P. Allis B. Lax A. D. MacDonald M. A. Biondi D. J. Rose D. E. Kerr L. J. Varnerin, Jr. A. MICROWAVE BREAKDOWN IN HYDROGEN The distribution function

More information

Lecture 2. Introduction to plasma physics. Dr. Ashutosh Sharma

Lecture 2. Introduction to plasma physics. Dr. Ashutosh Sharma Preparation of the concerned sectors for educational and R&D activities related to the Hungarian ELI project Ion acceleration in plasmas Lecture 2. Introduction to plasma physics Dr. Ashutosh Sharma Zoltán

More information

1P22/1P92 Exam Review Problems 2013 Friday, January 14, :03 AM. Chapter 20

1P22/1P92 Exam Review Problems 2013 Friday, January 14, :03 AM. Chapter 20 Exam Review Problems 2011 Page 1 1P22/1P92 Exam Review Problems 2013 Friday, January 14, 2011 10:03 AM Chapter 20 True or false? 1 It's impossible to place a charge on an insulator, because no current

More information

ADVANCED DES SIMULATIONS OF OXY-GAS BURNER LOCATED INTO MODEL OF REAL MELTING CHAMBER

ADVANCED DES SIMULATIONS OF OXY-GAS BURNER LOCATED INTO MODEL OF REAL MELTING CHAMBER ADVANCED DES SIMULATIONS OF OXY-GAS BURNER LOCATED INTO MODEL OF REAL MELTING CHAMBER Ing. Vojtech Betak Ph.D. Aerospace Research and Test Establishment Department of Engines Prague, Czech Republic Abstract

More information

05/04/2011 Tarik Al-Shemmeri 2

05/04/2011 Tarik Al-Shemmeri 2 05/04/2011 Tarik Al-Shemmeri 1 05/04/2011 Tarik Al-Shemmeri 2 05/04/2011 Tarik Al-Shemmeri 3 05/04/2011 Tarik Al-Shemmeri 4 05/04/2011 Tarik Al-Shemmeri 5 05/04/2011 Tarik Al-Shemmeri 6 05/04/2011 Tarik

More information

Investigation of the DSMC Approach for Ion/neutral Species in Modeling Low Pressure Plasma Reactor

Investigation of the DSMC Approach for Ion/neutral Species in Modeling Low Pressure Plasma Reactor Investigation of the DSMC Approach for Ion/neutral Species in Modeling Low Pressure Plasma Reactor Hao Deng, Z. Li, D. Levin, and L. Gochberg Department of Aerospace Engineering The Pennsylvania State

More information

Etching Issues - Anisotropy. Dry Etching. Dry Etching Overview. Etching Issues - Selectivity

Etching Issues - Anisotropy. Dry Etching. Dry Etching Overview. Etching Issues - Selectivity Etching Issues - Anisotropy Dry Etching Dr. Bruce K. Gale Fundamentals of Micromachining BIOEN 6421 EL EN 5221 and 6221 ME EN 5960 and 6960 Isotropic etchants etch at the same rate in every direction mask

More information

Energy Dependence of Neutron Flux

Energy Dependence of Neutron Flux Energy Dependence of Neutron Flux B. Rouben McMaster University Course EP 4D03/6D03 Nuclear Reactor Analysis (Reactor Physics) 2015 Sept.-Dec. 2015 September 1 Contents We start the discussion of the energy

More information

PARTICLE CONTROL AT 100 nm NODE STATUS WORKSHOP: PARTICLES IN PLASMAS

PARTICLE CONTROL AT 100 nm NODE STATUS WORKSHOP: PARTICLES IN PLASMAS PARTICLE CONTROL AT 100 nm NODE STATUS WORKSHOP: PARTICLES IN PLASMAS Mark J. Kushner University of Illinois Department of Electrical and Computer Engineering Urbana, IL 61801 mjk@uiuc.edu December 1998

More information

INTRODUCTION TO THE HYBRID PLASMA EQUIPMENT MODEL

INTRODUCTION TO THE HYBRID PLASMA EQUIPMENT MODEL INTRODUCTION TO THE HYBRID PLASMA EQUIPMENT MODEL Prof. Mark J. Kushner Department of Electrical and Computer Engineering 1406 W. Green St. Urbana, IL 61801 217-144-5137 mjk@uiuc.edu http://uigelz.ece.uiuc.edu

More information

Comsol Multiphysics 在低溫電漿模擬之應用 ~My Little Journal with Simulation

Comsol Multiphysics 在低溫電漿模擬之應用 ~My Little Journal with Simulation Comsol Multiphysics 在低溫電漿模擬之應用 ~My Little Journal with Simulation 多重物理 CAE 分析軟體 COMSOL Multiphysics CONFERENCE 用戶研討會 Nov 9, 2012 台灣大學化工系徐振哲 Start of Plasma Plasma: ionized gas with equal amount of positive

More information

Anti Compton effect (1). A.M.shehada. Division of physics, Sciences college, Damascus university, Syria

Anti Compton effect (1). A.M.shehada.   Division of physics, Sciences college, Damascus university, Syria Anti Compton effect (1). A.M.shehada. E-mail : abdullahsh137@yahoo.com Division of physics, Sciences college, Damascus university, Syria Introduction : In the usual Compton effect, coming photon ( have

More information

Low Temperature Plasma Technology Laboratory

Low Temperature Plasma Technology Laboratory Low Temperature Plasma Technology Laboratory CENTRAL PEAKING OF MAGNETIZED GAS DISCHARGES Francis F. Chen and Davide Curreli LTP-1210 Oct. 2012 Electrical Engineering Department Los Angeles, California

More information

Diamond deposition by atmospheric pressure induction plasma: effects of impinging jet fluid mechanics on film formation

Diamond deposition by atmospheric pressure induction plasma: effects of impinging jet fluid mechanics on film formation 19 Diamond and Related Materials, 2 (1993) 19-195 Diamond deposition by atmospheric pressure induction plasma: effects of impinging jet fluid mechanics on film formation S. L. Girshick, B. W. Yu, C. Li

More information

Plasma Deposition (Overview) Lecture 1

Plasma Deposition (Overview) Lecture 1 Plasma Deposition (Overview) Lecture 1 Material Processes Plasma Processing Plasma-assisted Deposition Implantation Surface Modification Development of Plasma-based processing Microelectronics needs (fabrication

More information

Development of LH wave fullwave simulation based on FEM

Development of LH wave fullwave simulation based on FEM Development of LH wave fullwave simulation based on FEM S. Shiraiwa and O. Meneghini on behalf of LHCD group of Alacator C-Mod PSFC, MIT 2010/03/10 San-Diego, CA Special acknowledgements : R. Parker, P.

More information

ATOMIC STRUCTURE, ELECTRONS, AND PERIODICITY

ATOMIC STRUCTURE, ELECTRONS, AND PERIODICITY ATOMIC STRUCTURE, ELECTRONS, AND PERIODICITY All matter is made of atoms. There are a limited number of types of atoms; these are the elements. (EU 1.A) Development of Atomic Theory Atoms are so small

More information

A COMPUTATIONAL STUDY OF SINGLE AND DOUBLE STAGE HALL THRUSTERS

A COMPUTATIONAL STUDY OF SINGLE AND DOUBLE STAGE HALL THRUSTERS A COMPUTATIONAL STUDY OF SINGLE AND DOUBLE STAGE HALL THRUSTERS Kay Sullivan, Manuel Martínez-Sánchez, Oleg Batishchev and James Szabo Massachusetts Institue of Technology 77 Massachusetts Avenue Cambridge,

More information

9.5 The Kinetic-Molecular Theory

9.5 The Kinetic-Molecular Theory 502 Chapter 9 Gases Figure 9.30 In a diffuser, gaseous UF 6 is pumped through a porous barrier, which partially separates 235 UF 6 from 238 UF 6 The UF 6 must pass through many large diffuser units to

More information

Application of Computational Fluid Dynamics (CFD) Based Technology to Computational Electromagnetics Ramesh K. Agarwal

Application of Computational Fluid Dynamics (CFD) Based Technology to Computational Electromagnetics Ramesh K. Agarwal Application of Computational Fluid Dynamics (CFD) Based Technology to Computational Electromagnetics Ramesh K. Agarwal IEEE Distinguished Lecturer The William Palm Professor of Engineering Washington University

More information

Electric Potential Energy & Voltage. Tesla Envy =jlzeqz4efqa&feature=related

Electric Potential Energy & Voltage. Tesla Envy  =jlzeqz4efqa&feature=related Electric Potential Energy & Voltage Tesla Envy http://www.youtube.com/watch?v =jlzeqz4efqa&feature=related Ch 23 & 24: Electric Force and Field F qq k r 1 2rˆ 12 2 F qe kq Electric Field E due to q : E

More information