Modeling plasma-based CO 2 conversion: From chemistry to plasma design

Size: px
Start display at page:

Download "Modeling plasma-based CO 2 conversion: From chemistry to plasma design"

Transcription

1 Modeling plasma-based CO 2 conversion: From chemistry to plasma design Annemie Bogaerts T. Kozak, R. Snoeckx, G. Trenchev, K. Van Laer Research group PLASMANT, University of Antwerp, Belgium CO 2 + CH 4 Catalyst H 2 /CO, CH 3 OH, QDB Workshop, London, Sept 15, 2017

2 PLASMA for CO 2 conversion? Non-equilibrium plasma: - Energetic electrons: Dissociate inert molecules (thermodynamically unfavorable reactions can take place) - Role of vibrational excitation!! (~ energy efficiency) Possibly energy efficient alternative to classical processes Plasma = flexible: Easily switched on/off CO 2 + CH 4 Possible solution for 3 important problems - global warming - dependence fossil fuels - storage renewable energy However: more research needed to better understand underlying mechanisms CO/H 2, CH 3 OH, Computer modeling

3 DBD: Plasma types often used for research on CO 2 conversion - Atmospheric pressure, Simple design, Upscaling possible (O 3 ) - Limited E-efficiency (~ 10%), improved in packed bed DBD - Plasma catalysis (~ selectivity) Microwave plasma: - Highest E-efficiency (up to 90%), but at supersonic flow + reduced pressure (~ 100 Torr) (USSR, 1983) - More recent results (DIFFER): - up to 55% (supersonic flow + reduced pressure) (2013) - up to 50% (reverse vortex flow, atm.pressure) (2015) Gliding arc plasma: - Rather high E-efficiency (~ 43%) - Atmospheric pressure - Classical GA reverse vortex flow GA

4 CO 2 research within PLASMANT 1) Computer simulations: - Plasma chemistry: - Pure CO 2 (focus vibrational levels) - CO 2 /CH 4, CH 4 /O 2, CO 2 /H 2 O, CO 2 /N 2 - Plasma reactors: DBD, packed bed DBD, MW, GA - Plasma-catalyst interactions 2) Experiments: - DBD, Packed bed DBD, Plasma catalysis - Reverse vortex flow GA (GAP)

5 Modeling tools (1) 0D model: plasma chemistry Boltzmann solver EEDF Species kinetics Gas temperature: energy conservation equation EEDF, T e : BOLSIG+ 1 E.g. Global_kin 2 or ZDPlaskin 3 1 Hagelaar and Pitchford, Plasma Sources Sci. Technol. 14, 722 (2005) 2 A. C. Gentile and M. J. Kushner, J. Appl. Phys., 78 (1995) Pancheshnyi et al, 2008 (

6 Modeling tools (2) 2D/3D fluid models (Comsol): plasma reactors: - Species densities: Conservation equations: - Chemical source + loss terms - Transport by diffusion, migration, convection - Average electron energy: - Heating by electric field, loss by collisions - EM field distributions: Maxwell equations - Gas temperature + gas flow: Navier-Stokes equations 3D problems, but start with 2D Start with argon or helium chemistry

7 Plasma chemistry: CO 2 Molecules Charged species Radicals Excited species CO 2, CO CO 2+, CO 4+, CO +, C 2 O 2+, C 2 O 3+, C 2 O 4+, C 2+, C +, CO 3-, CO 4 - O 2, O 3 O +, O 2+, O 4+, O -, O 2-, O 3-, O 4 - electrons Vibrational levels of CO 2, CO and O 2 - CO 2 : 4 lowest symmetric mode levels, 21 asymmetric mode levels (up to dissociation limit) - CO: 10 vibrational levels - O 2 : 3 effective vibrational levels C 2 O, C, C 2 CO 2 (Va, Vb, Vc, Vd), CO 2 (V1 - V21), CO 2 (E1, E2), CO (V1 - V10), CO (E1 - E4) O O 2 (V1 - V3), O 2 (E1 - E2) Details: - Aerts, Martens, Bogaerts, J. Phys. Chem. C 116, (2012). - Kozák, Bogaerts, Plasma Sources Sci. Technol. 23, (2014). - Berthelot, Bogaerts, Plasma Sources Sci. Technol. 25, (2016). - Berthelot, Bogaerts, J. Phys. Chem. C 121, (2017).

8 Plasma chemistry: CO 2 /CH 4 (idem for CO 2 /H 2 O and CH 4 /O 2 ) Molecules CH 4, C 2 H 6, C 2 H 4, C 2 H 2, C 3 H 8, C 3 H 6, C 4 H 2, H 2, O 2, CO 2, CO, H 2 O, H 2 O 2, CH 2 O, CH 3 OH, CH 3 CHO, CH 2 CO Charged species CH 5+, CH 4+, CH 3+, CH 2+, CH +, C 2 H 6+, C 2 H 5+, C 2 H 4+, C 2 H 3+, C 2 H 2+, O 2+, O -, H 3 O +, OH -, electrons Radicals CH 3, CH 2, CH, C, C 2 H 5, C 2 H 3, C 2 H, C 3 H 7, H, O, OH, HO 2, CHO, CH 2 OH, CH 3 O, C 2 HO, CH 3 CO, CH 2 CHO, C 2 H 5 O 2 Excited species H 2 *, O*, CO 2 *, CO*, H 2 O* 17 molecules, 14 ions, 19 radicals, 5 excited species, electrons 121 electron impact reactions, 87 ion reactions, 290 neutral reactions Details: - Snoeckx, Aerts, Tu, Bogaerts, J. Phys. Chem. C 117, (2013). - De Bie, van Dijk, Bogaerts, J. Phys. Chem. C 119, (2015).

9 This talk 1) Plasma chemistry: pure CO 2 : (a) DBD (b) Comparison DBD MW, GA (~ role vibrational levels) 2) Plasma chemistry: CO 2 /CH 4 (DBD) 3) Plasma reactor modeling (a) Packed bed DBD, (b) GA

10 This talk 1) Plasma chemistry: pure CO 2 : (a) DBD (b) Comparison DBD MW, GA (~ role vibrational levels) 2) Plasma chemistry: CO 2 /CH 4 (DBD) 3) Plasma reactor modeling (a) Packed bed DBD, (b) GA

11 1(a) Pure CO 2 : DBD DBD: filamentary character: How treated in 0D model? Reactor length + gas flow residence time (spatial ~ temporal behavior) Filaments = Microdischarge pulses as f(time) 1(a) Pure CO 2 : DBD

12 1(a) Pure CO 2 : DBD 1 pulse + afterglow: 5 consecutive pulses: - During pulse: densities (except CO 2 ) - During afterglow: constant ( accumulation) or (if long afterglows) Aerts et al., J. Phys. Chem. C 116, (2012). 1(a) Pure CO 2 : DBD

13 1(a) Pure CO 2 : DBD Extended to many filaments Real residence time of gas in reactor Compare CO 2 conversion with experiments: reasonable agreement: Aerts, Somers, Bogaerts, ChemSusChem 8, 702 (2015). 1(a) DBD: pure CO 2

14 1(a) Pure CO 2 : DBD Because CO 2 model ~ experiments: Can be used to elucidate most important splitting mechanisms Reaction scheme : e - CO 2 e - O CO CO 2 + O 2 - O 2 O 3 O - e - e - In DBD: mostly electron impact - Dissociation ( CO + O) (O recombines to O 2, O 3 ) - Ionization ( CO 2+ ) (CO 2+ + e - CO + O) - Dissociative attachment ( CO + O - ) (O - O 2, O 3 ) 1(a) DBD: pure CO 2

15 1(b) Pure CO 2 : Comparison DBD MW, GA Conversion: Energy efficiency ~ 35% ~ 25% ~ 15% ~ 5% ~ 25% (max) ~ 5% MW >> DBD MW: T g,calc (~1000 K) < MW (300 K) Aim: keep T g in MW low (~ reduced pressure, fast gas flow ) Kozák, Bogaerts, PSST 23, (2014). 1(b) CO 2 : Comparison DBD - MW, GA

16 1(b) Pure CO 2 : Comparison DBD MW, GA Reason for higher E-efficiency in MW, GA: Vibrational kinetics! - CO 2 : efficiently excited to vibrational levels - Vibrational levels: efficient dissociation pathway Energy required for vibration-induced dissociation bond energy: 5.5 ev 5.5 ev Energy required for electron impact dissociation (~ 7-10 ev) > bond energy 1(b) CO 2 : Comparison DBD - MW, GA

17 This talk 1) Plasma chemistry: pure CO 2 : (a) DBD (b) Comparison DBD MW, GA (~ role vibrational levels) 2) Plasma chemistry: CO 2 /CH 4 (DBD) 3) Plasma reactor modeling (a) Packed bed DBD, (b) GA

18 2) CO 2 /CH 4 : Conversion + E-efficiency CO 2 + CH 4 conversion + E-efficiency, as f(sei): (exp: Tu et al., Univ. Liverpool) Snoeckx, Aerts, Tu, Bogaerts, J. Phys. Chem. C 117, 4957 (2013). Trade-off: conversion + E-efficiency Also calculated: Selectivities of formed products: At 50/50 CO 2 /CH 4 : - H 2 : 55% - CO: 48% - C 2, C 3 : 6%, 30% - Formaldehyde: 13% - Methanol: 3% Future: plasma catalysis 2) DBD: CO 2 /CH 4

19 Species densities 2) CO 2 /CH 4 : Reaction pathways C x H y, CH 2 O, CH 3 CHO, CH 3 OH Pathways: De Bie, van Dijk, Bogaerts, J. Phys. Chem. C 119, (2015). 2) DBD: CO 2 /CH 4

20 This talk 1) Plasma chemistry: pure CO 2 : (a) DBD (b) Comparison DBD MW, GA (~ role vibrational levels) 2) Plasma chemistry: CO 2 /CH 4 (DBD) 3) Plasma reactor modeling (a) Packed bed DBD, (b) GA

21 3) Plasma reactor modeling (a) Packed bed DBD (b) Gliding arc plasma 3) Plasma reactors

22 3(a) Packed bed DBD COMSOL (2D, He): - Enhanced electric field near contact points (~ polarization of dielectric material) - Higher T e (8 ev vs 2-3 ev): power more efficiently used for electron heating more e-impact ionization + excitation-dissociation of CO 2 E-efficiency Van Laer and Bogaerts, PSST, 25, (2016). 3(a) Packed bed DBD

23 3(b) GA plasma: GAP: reverse vortex flow COMSOL (3D, Ar) Gas flow pattern: - Outer vortex ( ) ~400 K - Inner vortex (smaller velocity, ) Arc movement 1.2 ev (constant) Arc stabilized within 1 ms Plasma confined by flow Efficient gas conversion. Trenchev, Kolev and Bogaerts, PSST, 25, (2016). 3(b) GA

24 Conclusion Plasma modeling for CO 2 conversion: - Plasma chemistry (~ conversion, E-efficiency, products): 0D modeling - Plasma reactors (packed bed DBD, MW, GA): 2D or 3D fluid modeling CO 2 : DBD: electron impact (ground state) MW, GA: vibrational kinetics MW, GA: better E-efficiency CO 2 /CH 4 : formation value-added chemicals But selectivity low Combine with catalysts: Plasma catalysis Plasma reactors: Packed bed DBD, GAP: improved E-efficiency General: Modeling useful for better insights To improve applications Conclusion

25 Thanks Thanks

This item is the archived peer-reviewed author-version of:

This item is the archived peer-reviewed author-version of: This item is the archived peer-reviewed author-version of: conversion in a microwave plasma reactor in the presence of : elucidating the role of vibrational levels Reference: Heijkers Stijn, Snoeckx Ramses,

More information

Methane conversion using a dielectric barrier discharge reactor at atmospheric pressure for hydrogen production

Methane conversion using a dielectric barrier discharge reactor at atmospheric pressure for hydrogen production 2017 Hefei Institutes of Physical Science, Chinese Academy of Sciences and IOP Publishing Printed in China and the UK Plasma Science and Technology Plasma Sci. Technol. 19 (2017) 095502 (10pp) https://doi.org/10.1088/2058-6272/aa6d6d

More information

This item is the archived peer-reviewed author-version of:

This item is the archived peer-reviewed author-version of: This item is the archived peer-reviewed author-version of: Fluid modelling of a packed bed dielectric barrier discharge plasma reactor Reference: Van Laer Koen, Bogaerts Annemie.- Fluid modelling of a

More information

Plasma Modeling I: Modeling of plasmas. Annemie Bogaerts

Plasma Modeling I: Modeling of plasmas. Annemie Bogaerts Plasma Modeling I: Modeling of plasmas Annemie Bogaerts Department of Chemistry, University of Antwerp (UA), Research group PLASMANT Belgium Annemie.Bogaerts@uantwerpen.be www.uantwerpen.be/plasmant 2

More information

This item is the archived peer-reviewed author-version of:

This item is the archived peer-reviewed author-version of: This item is the archived peer-reviewed author-version of: Evaluation of the energy efficiency of conversion in microwave discharges using a reaction kinetics model Reference: Kozák Tomáš, Bogaerts Annemie.-

More information

TX 78741, 2 Tokyo Electron *Corresponding author: Tokyo Electron U.S. Holdings, Inc., 2400 Grove Blvd., Austin, TX 78741,

TX 78741, 2 Tokyo Electron *Corresponding author: Tokyo Electron U.S. Holdings, Inc., 2400 Grove Blvd., Austin, TX 78741, Plasma Scaling Leads Transition from 2D to true 3D Models J. Brcka *1 1 Tokyo Electron U.S. Holdings, Inc., U.S. Technology Development Center, 2400 Grove Blvd., Austin, TX 78741, 2 Tokyo Electron *Corresponding

More information

MODELING AND SIMULATION OF LOW TEMPERATURE PLASMA DISCHARGES

MODELING AND SIMULATION OF LOW TEMPERATURE PLASMA DISCHARGES MODELING AND SIMULATION OF LOW TEMPERATURE PLASMA DISCHARGES Michael A. Lieberman University of California, Berkeley lieber@eecs.berkeley.edu DOE Center on Annual Meeting May 2015 Download this talk: http://www.eecs.berkeley.edu/~lieber

More information

Numerical simulation of Vibrationally Active Ar-H2 Microwave Plasma

Numerical simulation of Vibrationally Active Ar-H2 Microwave Plasma Numerical simulation of Vibrationally Active Ar-H2 Microwave Plasma F. Bosi 1, M. Magarotto 2, P. de Carlo 2, M. Manente 2, F. Trezzolani 2, D. Pavarin 2, D. Melazzi 2, P. Alotto 1, R. Bertani 1 1 Department

More information

Effect of Gas Flow Rate and Gas Composition in Ar/CH 4 Inductively Coupled Plasmas

Effect of Gas Flow Rate and Gas Composition in Ar/CH 4 Inductively Coupled Plasmas COMSOL CONFERENCE BOSTON 2011 Effect of Gas Flow Rate and Gas Composition in Ar/CH 4 Inductively Coupled Plasmas Keisoku Engineering System Co., Ltd., JAPAN Dr. Lizhu Tong October 14, 2011 1 Contents 1.

More information

This item is the archived peer-reviewed author-version of:

This item is the archived peer-reviewed author-version of: This item is the archived peer-reviewed author-version of: Can plasma be formed in catalyst pores? A modeling investigation Reference: Zhang Yu-Ru, Van Laer Koen, Neyts Erik, Bogaerts Annemie.- Can plasma

More information

Modelling of low-temperature plasmas: kinetic and transport mechanisms. L.L. Alves

Modelling of low-temperature plasmas: kinetic and transport mechanisms. L.L. Alves Modelling of low-temperature plasmas: kinetic and transport mechanisms L.L. Alves llalves@tecnico.ulisboa.pt Instituto de Plasmas e Fusão Nuclear Instituto Superior Técnico, Universidade de Lisboa Lisboa,

More information

Electric Field Measurements in Atmospheric Pressure Electric Discharges

Electric Field Measurements in Atmospheric Pressure Electric Discharges 70 th Gaseous Electronics Conference Pittsburgh, PA, November 6-10, 2017 Electric Field Measurements in Atmospheric Pressure Electric Discharges M. Simeni Simeni, B.M. Goldberg, E. Baratte, C. Zhang, K.

More information

Effect of small amounts of hydrogen added to argon glow discharges: Hybrid Monte Carlo fluid model

Effect of small amounts of hydrogen added to argon glow discharges: Hybrid Monte Carlo fluid model PHYSICAL REVIEW E, VOLUME 65, 056402 Effect of small amounts of hydrogen added to argon glow discharges: Hybrid Monte Carlo fluid model Annemie Bogaerts* and Renaat Gijbels Department of Chemistry, University

More information

SCALING OF PLASMA SOURCES FOR O 2 ( 1 ) GENERATION FOR CHEMICAL OXYGEN-IODINE LASERS

SCALING OF PLASMA SOURCES FOR O 2 ( 1 ) GENERATION FOR CHEMICAL OXYGEN-IODINE LASERS SCALING OF PLASMA SOURCES FOR O 2 ( 1 ) GENERATION FOR CHEMICAL OXYGEN-IODINE LASERS D. Shane Stafford and Mark J. Kushner Department of Electrical and Computer Engineering Urbana, IL 61801 http://uigelz.ece.uiuc.edu

More information

Modeling and Simulation of Plasma-Assisted Ignition and Combustion

Modeling and Simulation of Plasma-Assisted Ignition and Combustion Modeling and Simulation of Plasma-Assisted Ignition and Combustion Vigor Yang and Sharath Nagaraja Georgia Institute of Technology Atlanta, GA AFOSR MURI Fundamental Mechanisms, Predictive Modeling, and

More information

Energy conversion in transient molecular plasmas:

Energy conversion in transient molecular plasmas: Plenary lecture, 13 th International Conference on Flow Dynamics October 10-12, 2016, Sendai, Japan Energy conversion in transient molecular plasmas: Implications for plasma flow control and plasma assisted

More information

Two-dimensional Numerical Simulation of a Planar Radio-frequency Atmospheric Pressure Plasma Source

Two-dimensional Numerical Simulation of a Planar Radio-frequency Atmospheric Pressure Plasma Source Two-dimensional Numerical Simulation of a Planar Radio-frequency Atmospheric Pressure Plasma Source Lei Wang 1*, Gheorghe Dscu, Eusebiu-Rosini Ionita, Christophe Leys 1, Anton Yu Nikiforov 1 1 Department

More information

Ion-Molecule Reactions in a Nitrogen-Benzene Plasma: Implications for the Destruction of Aromatic Compounds

Ion-Molecule Reactions in a Nitrogen-Benzene Plasma: Implications for the Destruction of Aromatic Compounds Ion-Molecule eactions in a Nitrogen-Benzene Plasma: Implications for the Destruction of Aromatic Compounds S. Williams, S. Arnold, A. Viggiano, and. Morris Air Force esearch Laboratory / Space Vehicles

More information

PIC-MCC simulations for complex plasmas

PIC-MCC simulations for complex plasmas GRADUATE SUMMER INSTITUTE "Complex Plasmas August 4, 008 PIC-MCC simulations for complex plasmas Irina Schweigert Institute of Theoretical and Applied Mechanics, SB RAS, Novosibirsk Outline GRADUATE SUMMER

More information

Influence of water vapour on acetaldehyde removal efficiency by DBD

Influence of water vapour on acetaldehyde removal efficiency by DBD JOURNAL OF OTPOELECTRONICS AND ADVANCED MATERIALS Vol. 8, No. 1, February 6, p. 28-211 Influence of water vapour on acetaldehyde removal efficiency by DBD A. S. CHIPER a*, N. B.-SIMIAND b, F. JORAND b,

More information

Modeling of the plasma chemistry and plasma surface interactions in reactive plasmas*

Modeling of the plasma chemistry and plasma surface interactions in reactive plasmas* Pure Appl. Chem., Vol. 82, No. 6, pp. 1283 1299, 2010. doi:10.1351/pac-con-09-09-20 2010 IUPAC, Publication date (Web): 20 April 2010 Modeling of the plasma chemistry and plasma surface interactions in

More information

Modeling and Simulation of Plasma-Assisted Ignition and Combustion

Modeling and Simulation of Plasma-Assisted Ignition and Combustion Modeling and Simulation of Plasma-Assisted Ignition and Combustion Sharath Nagaraja and Vigor Yang Georgia Institute of Technology Atlanta, GA 30332-0150 AFOSR MURI Fundamental Mechanisms, Predictive Modeling,

More information

Modeling of a DBD Reactor for the Treatment of VOC

Modeling of a DBD Reactor for the Treatment of VOC Excerpt from the Proceedings of the COMSOL Conference 2009 Milan Modeling of a DBD Reactor for the Treatment of VOC Lamia Braci, Stephanie Ognier, and Simeon Cavadias* Laboratoire de Génie des Procédés

More information

Is plasma important? Influence molecule formation?

Is plasma important? Influence molecule formation? Is plasma important? Influence molecule formation? Plasma Structure (space & time) Influence? Daan Schram Eindhoven University of Technology d.c.schram@tue.nl http://www.tue.nl/en/employee/ep/e/d/ep-uid/19780797/?no_cache=1&chash=e23e831cf0c6bebeac6023f04dd3c4b6

More information

MICRODISCHARGES AS SOURCES OF PHOTONS, RADICALS AND THRUST*

MICRODISCHARGES AS SOURCES OF PHOTONS, RADICALS AND THRUST* MICRODISCHARGES AS SOURCES OF PHOTONS, RADICALS AND THRUST* Ramesh Arakoni a) and Mark J. Kushner b) a) Dept. Aerospace Engineering b) Dept. Electrical and Computer Engineering Urbana, IL 61801 USA mjk@uiuc.edu

More information

Two-dimensional Fluid Simulation of an RF Capacitively Coupled Ar/H 2 Discharge

Two-dimensional Fluid Simulation of an RF Capacitively Coupled Ar/H 2 Discharge Two-dimensional Fluid Simulation of an RF Capacitively Coupled Ar/H 2 Discharge Lizhu Tong Keisoku Engineering System Co., Ltd., Japan September 18, 2014 Keisoku Engineering System Co., Ltd., 1-9-5 Uchikanda,

More information

Center (CCRC), Physical Science and Engineering Division (PSE), Thuwal 23955, Saudi

Center (CCRC), Physical Science and Engineering Division (PSE), Thuwal 23955, Saudi Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is The Royal Society of Chemistry 2019 Electronic Supplementary Information: Suppressing the formation of NOx and N2O

More information

Introduction to Theoretical and Applied Plasma Chemistry

Introduction to Theoretical and Applied Plasma Chemistry 1 Introduction to Theoretical and Applied Plasma Chemistry 1.1. PLASMA AS THE FOURTH STATE OF MATTER Although the term chemistry in the title of the book does not require a special introduction, the term

More information

A global (volume averaged) model of a chlorine discharge

A global (volume averaged) model of a chlorine discharge A global (volume averaged) model of a chlorine discharge Eyþór Gísli Þorsteinsson and Jón Tómas Guðmundsson Science Institute, University of Iceland, Iceland Department of Electrical and Computer Engineering,

More information

ARGON EXCIMER LAMP. A. Sobottka, L. Prager, L. Drößler, M. Lenk. Leibniz Institute of Surface Modification

ARGON EXCIMER LAMP. A. Sobottka, L. Prager, L. Drößler, M. Lenk. Leibniz Institute of Surface Modification ARGON EXCIMER LAMP A. Sobottka, L. Prager, L. Drößler, M. Lenk 1 Introduction Ar-Zufuhr Excimer-Plasma Inertisierung Polymerfolie Sintermetall Inertisierung Post curing [1] EP 1050395 A2 2 Introduction

More information

Fundamental Mechanisms, Predictive Modeling, and Novel Aerospace Applications of Plasma Assisted Combustion. Andrey Starikovskiy Princeton University

Fundamental Mechanisms, Predictive Modeling, and Novel Aerospace Applications of Plasma Assisted Combustion. Andrey Starikovskiy Princeton University Fundamental Mechanisms, Predictive Modeling, and Novel Aerospace Applications of Plasma Assisted Combustion AFOSR MURI Review Meeting Andrey Starikovskiy Princeton University October 22, 2013 Report Documentation

More information

Characteristics and classification of plasmas

Characteristics and classification of plasmas Characteristics and classification of plasmas PlasTEP trainings course and Summer school 2011 Warsaw/Szczecin Indrek Jõgi, University of Tartu Partfinanced by the European Union (European Regional Development

More information

PIC-MCC/Fluid Hybrid Model for Low Pressure Capacitively Coupled O 2 Plasma

PIC-MCC/Fluid Hybrid Model for Low Pressure Capacitively Coupled O 2 Plasma PIC-MCC/Fluid Hybrid Model for Low Pressure Capacitively Coupled O 2 Plasma Kallol Bera a, Shahid Rauf a and Ken Collins a a Applied Materials, Inc. 974 E. Arques Ave., M/S 81517, Sunnyvale, CA 9485, USA

More information

Influence of vibrational kinetics in a low pressure capacitively coupled hydrogen discharge

Influence of vibrational kinetics in a low pressure capacitively coupled hydrogen discharge Influence of vibrational kinetics in a low pressure capacitively coupled hydrogen discharge L. Marques 1, A. Salabas 1, G. Gousset 2, L. L. Alves 1 1 Centro de Física dos Plasmas, Instituto Superior Técnico,

More information

A Brief Catalyst Study on Direct Methane Conversion Using a Dielectric Barrier Discharge

A Brief Catalyst Study on Direct Methane Conversion Using a Dielectric Barrier Discharge Journal of the Chinese Chemical Society, 2007, 54, 823-828 823 Communication A Brief Catalyst Study on Direct Methane Conversion Using a Dielectric Barrier Discharge Antonius Indarto, a,b * Jae-Wook Choi,

More information

Modeling and Simulation of Plasma Based Applications in the Microwave and RF Frequency Range

Modeling and Simulation of Plasma Based Applications in the Microwave and RF Frequency Range Modeling and Simulation of Plasma Based Applications in the Microwave and RF Frequency Range Dr.-Ing. Frank H. Scharf CST of America What is a plasma? What is a plasma? Often referred to as The fourth

More information

Analysis of recombination and relaxation of non-equilibrium air plasma generated by short time energetic electron and photon beams

Analysis of recombination and relaxation of non-equilibrium air plasma generated by short time energetic electron and photon beams 22 nd International Symposium on Plasma Chemistry July 5-10, 2015; Antwerp, Belgium Analysis of recombination and relaxation of non-equilibrium air plasma generated by short time energetic electron and

More information

Fluid Modeling of the Plasma-Assisted Conversion of Greenhouse Gases to Value-Added Chemicals in a Dielectric Barrier Discharge

Fluid Modeling of the Plasma-Assisted Conversion of Greenhouse Gases to Value-Added Chemicals in a Dielectric Barrier Discharge Faculteit Wetenschappen Departement Chemie Fluid Modeling of the Plasma-Assisted Conversion of Greenhouse Gases to Value-Added Chemicals in a Dielectric Barrier Discharge Fluid Modellering van de plasma-geassisteerde

More information

This item is the archived peer-reviewed author-version of:

This item is the archived peer-reviewed author-version of: This item is the archived peer-reviewed author-version of: Appearance of a conductive carbonaceous coating in a dielectric barrier discharge and its influence on the electrical properties and the conversion

More information

Exploration COMSOL in Modeling RLSA TM CVD Processes

Exploration COMSOL in Modeling RLSA TM CVD Processes Exploration COMSOL in Modeling RLSA TM CVD Processes Ar+H 2 +SiH 4 +C 2 H 6 and Dopant Gas Jozef Brcka 1 *, Sundar Gandhi 2, Raymond Joe 2 1 Tokyo Electron U.S. Holdings, Inc., U.S. Technology Development

More information

Measuring the electron temperature by optical emission spectroscopy in two temperature plasmas at atmospheric pressure: A critical approach

Measuring the electron temperature by optical emission spectroscopy in two temperature plasmas at atmospheric pressure: A critical approach JOURNAL OF APPLIED PHYSICS 99, 033104 2006 Measuring the electron temperature by optical emission spectroscopy in two temperature plasmas at atmospheric pressure: A critical approach A. Yanguas-Gil, a

More information

Understanding the synergistic effect of plasma-catalysis

Understanding the synergistic effect of plasma-catalysis Plasma-photocatalytic conversion of CO2 at low temperatures: Understanding the synergistic effect of plasma-catalysis Danhua Mei a, Xinbo Zhu a, Chunfei Wu b,c, Bryony Ashford a, Paul T. Williams b, Xin

More information

Extremely far from equilibrium: the multiscale dynamics of streamer discharges

Extremely far from equilibrium: the multiscale dynamics of streamer discharges Extremely far from equilibrium: the multiscale dynamics of streamer discharges Ute Ebert 1,2 1 Centrum Wiskunde & Informatica Amsterdam 2 Eindhoven University of Technology http://www.cwi.nl/~ebert www.cwi.nl/~ebert

More information

Plasma Modeling with COMSOL Multiphysics

Plasma Modeling with COMSOL Multiphysics Plasma Modeling with COMSOL Multiphysics Copyright 2014 COMSOL. Any of the images, text, and equations here may be copied and modified for your own internal use. All trademarks are the property of their

More information

Plasma Spectroscopy Inferences from Line Emission

Plasma Spectroscopy Inferences from Line Emission Plasma Spectroscopy Inferences from Line Emission Ø From line λ, can determine element, ionization state, and energy levels involved Ø From line shape, can determine bulk and thermal velocity and often

More information

Nonequilibrium discharges in air and nitrogen plasmas at atmospheric pressure*

Nonequilibrium discharges in air and nitrogen plasmas at atmospheric pressure* Pure Appl. Chem., Vol. 74, No. 3, pp. 337 347, 2002. 2002 IUPAC Nonequilibrium discharges in air and nitrogen plasmas at atmospheric pressure* Charles H. Kruger, Christophe O. Laux, Lan Yu, Denis M. Packan,

More information

Numerical Simulation of Atmospheric-pressure Non-equilibrium Plasmas: Status and Prospects

Numerical Simulation of Atmospheric-pressure Non-equilibrium Plasmas: Status and Prospects 104 International Journal of Plasma Environmental Science & Technology, Vol.7, No.2, JULY 2013 Numerical Simulation of Atmospheric-pressure Non-equilibrium Plasmas: Status and Prospects W. S. Kang 1, M.

More information

Quasi-Neutral Modeling of Gliding Arc Plasmas

Quasi-Neutral Modeling of Gliding Arc Plasmas Early View Publication; these are NOT the final page numbers, use DOI for citation!! Full Paper Quasi-Neutral Modeling of Gliding Arc Plasmas Stanimir Kolev,* Surong Sun, Georgi Trenchev, Weizong Wang,

More information

PIC-MCC/Fluid Hybrid Model for Low Pressure Capacitively Coupled O 2 Plasma

PIC-MCC/Fluid Hybrid Model for Low Pressure Capacitively Coupled O 2 Plasma PIC-MCC/Fluid Hybrid Model for Low Pressure Capacitively Coupled O 2 Plasma Kallol Bera a, Shahid Rauf a and Ken Collins a a Applied Materials, Inc. 974 E. Arques Ave., M/S 81517, Sunnyvale, CA 9485, USA

More information

Department of Physics, University Abou Bekr Belkaid, Tlemcen, Algeria

Department of Physics, University Abou Bekr Belkaid, Tlemcen, Algeria Chemical Analysis of NO x Removal Under Different Reduced Electric Fields A. HADDOUCHE, M. LEMERINI Department of Physics, University Abou Bekr Belkaid, Tlemcen, Algeria Abstract This work presents a chemical

More information

EFFECTS OF PROPENE ON THE REMEDIATION OF NOx FROM DIESEL EXHAUSTS*

EFFECTS OF PROPENE ON THE REMEDIATION OF NOx FROM DIESEL EXHAUSTS* EFFECTS OF PROPENE ON THE REMEDIATION OF NOx FROM DIESEL EXHAUSTS* Rajesh Dorai and Mark J. Kushner University of Illinois Department of Electrical and Computer Engineering Urbana, IL 6181 Email : Mark

More information

A KINETIC MODEL FOR EXCIMER UV AND VUV RADIATION IN DIELECTRIC BARRIER DISCHARGES*

A KINETIC MODEL FOR EXCIMER UV AND VUV RADIATION IN DIELECTRIC BARRIER DISCHARGES* A KINETIC MODEL FOR EXCIMER UV AND VUV RADIATION IN DIELECTRIC BARRIER DISCHARGES* Xudong Peter Xu and Mark J. Kushner University of Illinois Department of Electrical and Computer Engineering Urbana, IL

More information

A new methodology for the reduction of vibrational kinetics in non-equilibrium microwave plasma Application to CO2 dissociation

A new methodology for the reduction of vibrational kinetics in non-equilibrium microwave plasma Application to CO2 dissociation Delft University of Technology A new methodology for the reduction of vibrational kinetics in non-equilibrium microwave plasma Application to CO2 dissociation Fernandez de la Fuente, Javier; Moreno Wandurraga,

More information

Oxygen Reduction Reaction

Oxygen Reduction Reaction Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2016 Oxygen Reduction Reaction Oxygen is the most common oxidant for most fuel cell cathodes simply

More information

A study of flame enhancement by microwave induced plasma: the role of dilution inert

A study of flame enhancement by microwave induced plasma: the role of dilution inert 25 th ICDERS August 2 7, 2015 Leeds, UK A study of flame enhancement by microwave induced plasma: the role of dilution inert Hong-Yuan Li, Po-Hsien Huang, Yei-Chin Chao Institute of Aeronautics and Astronautics,

More information

GEC ICP Reactor, Argon/Oxygen Chemistry

GEC ICP Reactor, Argon/Oxygen Chemistry GEC ICP Reactor, Argon/Oxygen Chemistry Introduction Electronegative discharges exhibit very different characteristics to electropositive discharges due to the presence of negative ions. Examples of electronegative

More information

Co-generation of synthesis gas and C2C hydrocarbons from methane and carbon dioxide in a hybrid catalytic-plasma reactor: A review

Co-generation of synthesis gas and C2C hydrocarbons from methane and carbon dioxide in a hybrid catalytic-plasma reactor: A review Diponegoro University From the SelectedWorks of Istadi August, 2006 Co-generation of synthesis gas and C2C hydrocarbons from methane and carbon dioxide in a hybrid catalytic-plasma reactor: A review Istadi,

More information

EFFECT OF PRESSURE AND ELECTRODE SEPARATION ON PLASMA UNIFORMITY IN DUAL FREQUENCY CAPACITIVELY COUPLED PLASMA TOOLS *

EFFECT OF PRESSURE AND ELECTRODE SEPARATION ON PLASMA UNIFORMITY IN DUAL FREQUENCY CAPACITIVELY COUPLED PLASMA TOOLS * EFFECT OF PRESSURE AND ELECTRODE SEPARATION ON PLASMA UNIFORMITY IN DUAL FREQUENCY CAPACITIVELY COUPLED PLASMA TOOLS * Yang Yang a) and Mark J. Kushner b) a) Department of Electrical and Computer Engineering

More information

Effect of propene on the remediation of NO x from engine exhausts

Effect of propene on the remediation of NO x from engine exhausts 99FL-472 Effect of propene on the remediation of x from engine exhausts Rajesh Dorai Department of Chemical Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 6181 Mark J. Kushner Department

More information

Matti Laan Gas Discharge Laboratory University of Tartu ESTONIA

Matti Laan Gas Discharge Laboratory University of Tartu ESTONIA Matti Laan Gas Discharge Laboratory University of Tartu ESTONIA Outline 1. Ionisation 2. Plasma definition 3. Plasma properties 4. Plasma classification 5. Energy transfer in non-equilibrium plasma 6.

More information

Theoretical analysis of ion kinetic energies and DLC film deposition by CH 4 +Ar (He) dielectric barrier discharge plasmas

Theoretical analysis of ion kinetic energies and DLC film deposition by CH 4 +Ar (He) dielectric barrier discharge plasmas Vol 16 No 9, September 2007 c 2007 Chin. Phys. Soc. 1009-1963/2007/16(09)/2809-05 Chinese Physics and IOP Publishing Ltd Theoretical analysis of ion kinetic energies and DLC film deposition by CH 4 +Ar

More information

Electron Current Extraction and Interaction of RF mdbd Arrays

Electron Current Extraction and Interaction of RF mdbd Arrays Electron Current Extraction and Interaction of RF mdbd Arrays Jun-Chieh Wang a), Napoleon Leoni b), Henryk Birecki b), Omer Gila b), and Mark J. Kushner a) a), Ann Arbor, MI 48109 USA mkush@umich.edu,

More information

Comparison of Townsend dielectric barrier discharge in N2, N2/O2 and N2/N2O: behavior and density of radicals

Comparison of Townsend dielectric barrier discharge in N2, N2/O2 and N2/N2O: behavior and density of radicals Paul Scherrer Institut From the SelectedWorks of Dr. Et-touhami Es-sebbar June 9, 2008 Comparison of Townsend dielectric barrier discharge in N2, N2/O2 and N2/N2O: behavior and density of radicals F. Massines

More information

II: The role of hydrogen chemistry in present experiments and in ITER edge plasmas. D. Reiter

II: The role of hydrogen chemistry in present experiments and in ITER edge plasmas. D. Reiter II: The role of hydrogen chemistry in present experiments and in ITER edge plasmas D. Reiter Institut für Plasmaphysik, FZ-Jülich, Trilateral Euregio Cluster Atomic and Molecular Data for Fusion Energy

More information

Theory of Gas Discharge

Theory of Gas Discharge Boris M. Smirnov Theory of Gas Discharge Plasma l Springer Contents 1 Introduction 1 Part I Processes in Gas Discharge Plasma 2 Properties of Gas Discharge Plasma 13 2.1 Equilibria and Distributions of

More information

Multiple microdischarge dynamics in dielectric barrier discharges

Multiple microdischarge dynamics in dielectric barrier discharges JOURNAL OF APPLIED PHYSICS VOLUME 84, NUMBER 8 15 OCTOBER 1998 Multiple microdischarge dynamics in dielectric barrier discharges Xudong Peter Xu a) and Mark J. Kushner b) University of Illinois, Department

More information

Mechanisms of H- and OH-assisted CO activation as well as C-C coupling on the flat Co(0001) surface Revisited

Mechanisms of H- and OH-assisted CO activation as well as C-C coupling on the flat Co(0001) surface Revisited Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is The Royal Society of Chemistry 2016 Mechanisms of H- and OH-assisted CO activation as well as C-C coupling on

More information

Hiden EQP Applications

Hiden EQP Applications Hiden EQP Applications Mass/Energy Analyser for Plasma Diagnostics and Characterisation EQP Overview The Hiden EQP System is an advanced plasma diagnostic tool with combined high transmission ion energy

More information

ME 262A - Physical Gas Dynamics 1996 Final Exam: Open Book Portion. h = 6.62 x J s Energy conversion factor: 1 calorie = 4.

ME 262A - Physical Gas Dynamics 1996 Final Exam: Open Book Portion. h = 6.62 x J s Energy conversion factor: 1 calorie = 4. Name: ME 262A - Physical Gas Dynamics 1996 Final Exam: Open Book Portion Useful data and information: k = 1.38 x 10-23 J/K h = 6.62 x 10-34 J s Energy conversion factor: 1 calorie = 4.2 J 1. (40 points)

More information

DEPOSITION AND COMPOSITION OF POLYMER FILMS IN FLUOROCARBON PLASMAS*

DEPOSITION AND COMPOSITION OF POLYMER FILMS IN FLUOROCARBON PLASMAS* DEPOSITION AND COMPOSITION OF POLYMER FILMS IN FLUOROCARBON PLASMAS* Kapil Rajaraman and Mark J. Kushner 1406 W. Green St. Urbana, IL 61801 rajaramn@uiuc.edu mjk@uiuc.edu http://uigelz.ece.uiuc.edu November

More information

Physics and Modelling of a Negative Ion Source Prototype for the ITER Neutral Beam Injection

Physics and Modelling of a Negative Ion Source Prototype for the ITER Neutral Beam Injection 1 ITR/P1-37 Physics and Modelling of a Negative Ion Source Prototype for the ITER Neutral Beam Injection J.P. Boeuf a, G. Fubiani a, G. Hagelaar a, N. Kohen a, L. Pitchford a, P. Sarrailh a, and A. Simonin

More information

Plasma and catalysts. Part-financed by the European Union (European Regional Development Fund

Plasma and catalysts. Part-financed by the European Union (European Regional Development Fund Plasma and catalysts David Cameron Professor of Material Technology Advanced Surface technology Research Laboratory (ASTRaL) University of Lappeenranta Finland Part-financed by the European Union (European

More information

Rajesh Dorai and Mark J. Kushner University of Illinois Deparment of Electrical and Computer Engineering Urbana, IL 61801

Rajesh Dorai and Mark J. Kushner University of Illinois Deparment of Electrical and Computer Engineering Urbana, IL 61801 EFFECT OF MULTIPLE PULSES ON THE HETEROGENEOUS AND HOMOGENEOUS CHEMISTRY DURING THE PLASMA REMEDIATION OF X AND OXIDATION OF SOOT USING DIELECTRIC BARRIER DISCHARGES * Rajesh Dorai and Mark J. Kushner

More information

Simulation of Inductively Coupled Plasma of Ar/C2H2/CH4/H2 gas mixture in PECVD reactor and calculating the reactor efficiency

Simulation of Inductively Coupled Plasma of Ar/C2H2/CH4/H2 gas mixture in PECVD reactor and calculating the reactor efficiency Simulation of Inductively Coupled Plasma of Ar/C2H2/CH4/H2 gas mixture in PECVD reactor and calculating the reactor efficiency Manish Kumar 1, Sagar Khanna 2, Suresh C Sharma 3 1,2M.Tech Student, Dept.

More information

Supplementary Information

Supplementary Information 1 Supplementary Information 3 Supplementary Figures 4 5 6 7 8 9 10 11 Supplementary Figure 1. Absorbing material placed between two dielectric media The incident electromagnetic wave propagates in stratified

More information

Catalytic materials for plasma-based VOC removal

Catalytic materials for plasma-based VOC removal Catalytic materials for plasma-based VOC removal David Cameron, Tatyana Ivanova, Marja-Leena Kääriäinen Advanced Surface Technology Research Laboratory (ASTRaL) Lappeenranta University of Technology Finland

More information

Formation of white-eye pattern with microdischarge in an air. dielectric barrier discharge system

Formation of white-eye pattern with microdischarge in an air. dielectric barrier discharge system Formation of white-eye pattern with microdischarge in an air dielectric barrier discharge system Yafeng He, Lifang Dong*, Weili Liu, Hongfang Wang, Zengchao Zhao, and Weili Fan College of Physics Science

More information

Solution of Time-dependent Boltzmann Equation

Solution of Time-dependent Boltzmann Equation WDS'5 Proceedings of Contributed Papers, Part III, 613 619, 5. ISBN 8-8673-59- MATFYZPRESS Solution of Time-dependent Boltzmann Equation Z. Bonaventura, D. Trunec, and D. Nečas Masaryk University, Faculty

More information

Numerical Solution of a Vibrational Diffusion. Equation

Numerical Solution of a Vibrational Diffusion. Equation Insight into CO2 Dissociation in Plasmas from Numerical Solution of a Vibrational Diffusion Equation Paola Diomede 1,*, Mauritius C. M. van de Sanden 1, Savino Longo 2 1 DIFFER Dutch Institute for Fundamental

More information

CALCULATION OF SHOCK STAND-OFF DISTANCE FOR A SPHERE

CALCULATION OF SHOCK STAND-OFF DISTANCE FOR A SPHERE J. Comput. Fluids Eng. Vol.17, No.4, pp.69-74, 2012. 12 / 69 CALCULATION OF SHOCK STAND-OFF DISTANCE FOR A SPHERE IN NONEQUILIBRIUM HYPERSONIC FLOW M. Ahn Furudate * Dept. of Mechatronics Engineering,

More information

PIC/MCC Simulation of Radio Frequency Hollow Cathode Discharge in Nitrogen

PIC/MCC Simulation of Radio Frequency Hollow Cathode Discharge in Nitrogen PIC/MCC Simulation of Radio Frequency Hollow Cathode Discharge in Nitrogen HAN Qing ( ), WANG Jing ( ), ZHANG Lianzhu ( ) College of Physics Science and Information Engineering, Hebei Normal University,

More information

ESTIMATION OF ELECTRON TEMPERATURE IN ATMOSPHERIC PRESSURE DIELECTRIC BARRIER DISCHARGE USING LINE INTENSITY RATIO METHOD

ESTIMATION OF ELECTRON TEMPERATURE IN ATMOSPHERIC PRESSURE DIELECTRIC BARRIER DISCHARGE USING LINE INTENSITY RATIO METHOD KATHMANDU UNIVERSITY JOURNAL OF SCIENCE, ENGINEERING AND TECHNOLOGY ESTIMATION OF ELECTRON TEMPERATURE IN ATMOSPHERIC PRESSURE DIELECTRIC BARRIER DISCHARGE USING LINE INTENSITY RATIO METHOD 1, 2 R. Shrestha,

More information

Modeling of Packed Bed Reactors: Hydrogen Production By the Steam Reforming of Methane and Glycerol

Modeling of Packed Bed Reactors: Hydrogen Production By the Steam Reforming of Methane and Glycerol Modeling of Packed Bed Reactors: Hydrogen Production By the Steam Reforming of Methane and Glycerol A. Dixon 1, B. MacDonald 1, A. Olm 1 1 Department of Chemical Engineering, Worcester Polytechnic Institute,

More information

COMBUSTION CHEMISTRY COMBUSTION AND FUELS

COMBUSTION CHEMISTRY COMBUSTION AND FUELS COMBUSTION CHEMISTRY CHEMICAL REACTION AND THE RATE OF REACTION General chemical reaction αa + βb = γc + δd A and B are substracts and C and are products, α, β, γ and δ are stoichiometric coefficients.

More information

Plasma Optimization in a Multicusp Ion Source by Using a Monte Carlo Simulation

Plasma Optimization in a Multicusp Ion Source by Using a Monte Carlo Simulation Journal of the Korean Physical Society, Vol. 63, No. 7, October 2013, pp. 0 0 Plasma Optimization in a Multicusp Ion Source by Using a Monte Carlo Simulation M. Hosseinzadeh and H. Afarideh Nuclear Engineering

More information

Photochemically Induced Formation of Mars-Relevant Oxygenates and Methane from Carbon Dioxide and Water"

Photochemically Induced Formation of Mars-Relevant Oxygenates and Methane from Carbon Dioxide and Water Photochemically Induced Formation of Mars-Relevant Oxygenates and Methane from Carbon Dioxide and Water" M. Wecks, M. Bartoszek, G. Jakobs, and D. Möhlmann ESA / ESRIN, Frascati, 25. 27.11.2009 (Photo)Chemistry

More information

Numerical studies on the breakdown process in gas discharges

Numerical studies on the breakdown process in gas discharges Eindhoven University of Technology Department of Applied Physics Group of Elementary Processes in Gas Discharges Numerical studies on the breakdown process in gas discharges P. Verhoeven EPG 12-04 March

More information

Electron-Vibrational Energy Exchange in Nitrogen-Containing Plasma: a Comparison Between an Analytical Approach and a Kinetic Model

Electron-Vibrational Energy Exchange in Nitrogen-Containing Plasma: a Comparison Between an Analytical Approach and a Kinetic Model Electron-Vibrational Energy Exchange in Nitrogen-Containing Plasma: a Comparison Between an Analytical Approach and a Kinetic Model YANG Wei ( ) and DONG Zhiwei ( ) Institute of Applied Physics and Computational

More information

Electrical Discharges Characterization of Planar Sputtering System

Electrical Discharges Characterization of Planar Sputtering System International Journal of Recent Research and Review, Vol. V, March 213 ISSN 2277 8322 Electrical Discharges Characterization of Planar Sputtering System Bahaa T. Chaid 1, Nathera Abass Ali Al-Tememee 2,

More information

Multidimensional Numerical Simulation of Glow Discharge by Using the N-BEE-Time Splitting Method

Multidimensional Numerical Simulation of Glow Discharge by Using the N-BEE-Time Splitting Method Plasma Science and Technology, Vol.14, No.9, Sep. 2012 Multidimensional Numerical Simulation of Glow Discharge by Using the N-BEE-Time Splitting Method Benyssaad KRALOUA, Ali HENNAD Electrical Engineering

More information

Study of a Micro Hollow Cathode Discharge at medium argon gas pressure

Study of a Micro Hollow Cathode Discharge at medium argon gas pressure Study of a Micro Hollow Cathode Discharge at medium argon gas pressure Claudia LAZZARONI Antoine ROUSSEAU Pascal CHABERT LPP Ecole Polytechnique, Palaiseau, FRANCE Nader SADEGHI LSP Grenoble, FRANCE I-V

More information

Simulation of the Interaction Between Two Counterflowing Rarefied Jets

Simulation of the Interaction Between Two Counterflowing Rarefied Jets Simulation of the Interaction Between Two Counterflowing Rarefied Jets Cyril Galitzine and Iain D. Boyd Department of Aerospace Engineering, University of Michigan, Ann Arbor, MI 48109 Abstract. A preliminary

More information

The Computational Simulation of the Positive Ion Propagation to Uneven Substrates

The Computational Simulation of the Positive Ion Propagation to Uneven Substrates WDS' Proceedings of Contributed Papers, Part II, 5 9,. ISBN 978-8-778-85-9 MATFYZPRESS The Computational Simulation of the Positive Ion Propagation to Uneven Substrates V. Hrubý and R. Hrach Charles University,

More information

Chemical kinetic and radiating species studies of Titan aerocapture entry

Chemical kinetic and radiating species studies of Titan aerocapture entry 16th Australasian Fluid Mechanics Conference Crown Plaza, Gold Coast, Australia 2-7 December 2007 Chemical kinetic and radiating species studies of Titan aerocapture entry Pénélope Leyland 1, Raffaello

More information

CARBON DIOXIDE SPLITTING INTO CARBON MONOXIDE AND OXYGEN USING ATMOSPHERIC ELECTRODELESS MICROWAVE PLASMA

CARBON DIOXIDE SPLITTING INTO CARBON MONOXIDE AND OXYGEN USING ATMOSPHERIC ELECTRODELESS MICROWAVE PLASMA Proceedings of the Asian Conference on Thermal Sciences 2017, 1st ACTS March 26-30, 2017, Jeju Island, Korea ACTS-P00295 CARBON DIOXIDE SPLITTING INTO CARBON MONOXIDE AND OXYGEN USING ATMOSPHERIC ELECTRODELESS

More information

Multi-fluid Simulation Models for Inductively Coupled Plasma Sources

Multi-fluid Simulation Models for Inductively Coupled Plasma Sources Multi-fluid Simulation Models for Inductively Coupled Plasma Sources Madhusudhan Kundrapu, Seth A. Veitzer, Peter H. Stoltz, Kristian R.C. Beckwith Tech-X Corporation, Boulder, CO, USA and Jonathan Smith

More information

Electron temperature is the temperature that describes, through Maxwell's law, the kinetic energy distribution of the free electrons.

Electron temperature is the temperature that describes, through Maxwell's law, the kinetic energy distribution of the free electrons. 10.3.1.1 Excitation and radiation of spectra 10.3.1.1.1 Plasmas A plasma of the type occurring in spectrochemical radiation sources may be described as a gas which is at least partly ionized and contains

More information

Simulation of a non-equilibrium helium plasma bullet emerging into oxygen at high pressure ( Torr) and interacting with a substrate

Simulation of a non-equilibrium helium plasma bullet emerging into oxygen at high pressure ( Torr) and interacting with a substrate Simulation of a non-equilibrium helium plasma bullet emerging into oxygen at high pressure (250-760 Torr) and interacting with a substrate Wen Yan 1,2 and Demetre J. Economou 2,* 1 School of Physics and

More information

Insight into CO Dissociation in Plasmas from Numerical Solution of a Vibrational Diffusion Equation

Insight into CO Dissociation in Plasmas from Numerical Solution of a Vibrational Diffusion Equation Article Insight into CO Dissociation in Plasmas from Numerical Solution of a Vibrational Diffusion Equation Paola Diomede, Mauritius C.M. van de Sanden, and Savino Longo J. Phys. Chem. C, Just Accepted

More information