Generalized Geometric Series, The Ratio Comparison Test and Raabe s Test

Size: px
Start display at page:

Download "Generalized Geometric Series, The Ratio Comparison Test and Raabe s Test"

Transcription

1 Generalized Geometric Series The Ratio Comparison Test and Raae s Test William M. Faucette Decemer 2003 The goal of this paper is to examine the convergence of a type of infinite series in which the summands are products of numers in arithmetic progression a type of infinite series we will call a generalized geometric series. These series are studied in order to state and to prove Raae s Test an application of a littleknown test for infinite series known as the Ratio Comparison Test which we will also state and prove. Statements and proofs of these little-known results are taken from []. This paper assumes the reader is familiar with the standard tests for convergence of infinite series specifically the Ratio Test the Comparison Test and the Integral Test. Let s egin y recalling a standard result from the topic of infinite series: Theorem (Geometric Series). Consider an infinite series of the form a 0 + a 0 r + a 0 r 2 + a 0 r 3 a 0 r n +... This series converges if and only if r <. If this series converges its sum is a 0 r. We would like to consider what I will call generalized geometric series: Definition. A generalized geometric series is an infinite series of the form a a (a + d) a (a + d) (a + 2d) a (a + d) (a + nd) + + ( + e) ( + e) ( + 2e) ( + e) ( + ne) Notice that if d e 0 we get an ordinary geometric series with a 0 r a. In particular for d e 0 this series converges if and only if a <. At this point let s recall (one version of) the Ratio Test: Theorem 2 (Ratio Test). Suppose > 0 for all n and suppose L lim n exists. Then n converges if L < and diverges if L >. If L no conclusion can e reached aout the ehavior of n.

2 If we apply the Ratio Test to a generalized geometric series we have a + (n + )d lim lim n n + (n + )e d e. By the Ratio Test if d < e the generalized geometric series series converges asolutely and if d > e the generalized geometric series diverges. Now we ask what happens if d e > 0. Let s egin y investigating a particular example: Prolem: Consider the infinite series (2n ) (2n + 2) Does this infinite series converge or diverge? We notice that this is a generalized geometric series with a 4 and d e 2. Since d e we already know the Ratio Test fails. We might tackle this prolem y writing the products in the numerator and denominator in terms of factorials according to the following lemma: Lemma. Let n e atural numer. Then (2n) 2 n n! 3 5 (2n ) (2n)! 2 n n!. Proof. Let n e atural numer. We prove (i) y factoring 2 from each of the n factors and regrouping: (2n) (2 ) (2 2) (2 3) (2 n) 2 n ( 2 3 n) 2 n n!. To prove (ii) set P 3 5 (2n ). Multiplying this equation y equation (i) we have 2 n n!p [ 3 5 (2n )] [2 4 6 (2n)] Solving for P yields the desired result. 2 3 (2n ) (2n) (2n)! Returning to the series in question we can use the preceding lemma to write the series in closed form: n (2n)!/(2 n n!) 2 n (n + )! n (2n)! 4 n (n + )!n!. This form has the virtue of expressing the infinite series as a sum of terms where the terms themselves are in closed form i.e. not written as products. However I don t think this closed form renders this series any more accessile! 2

3 In order to tackle this prolem we need a modifcation of the Ratio Test which is slightly more sensitve a little-known test which I happened to run across in my random readings: The Ratio Comparison Test. Theorem 3 (Ratio Comparison Test). If n > 0 for all n and n converges and if for all sufficiently large n then converges. n+ n Proof. Let and n e series having positive terms and satisfying for all sufficiently large n. If we rewrite this inequality as n+ n n+ n we see that the sequence { / n } is monotone decreasing. Since n 0 this sequence is ounded elow and it follows that { / n } converges y the completeness of the real numers. In particular { / n } is ounded aove y some positive numer M so M n for all n sufficiently large. Since n converges so does M n and y the Comparison Test converges. As I tell my own students you only have two friends when it comes to infinite series: geometric series p-series We have already recalled our first friend the geometric series. Our second friend the p-series derives its usefullness as a corollary of the Integral Test: Theorem 4 (Integral Test). If f is positive on the interval x < and monotonic decreasing with lim x f(x) 0 then the series f(n) and the improper integral f(x) dx are either oth convergent or oth divergent. Corollary (p-series). The series 0 /np converges when p > and diverges when p. We wish to use the Ratio Comparison Test using a p-series as the series known to e convergence. If we implement this approach utilizing the following lemma we get Raae s Test. Lemma 2. If p > and 0 < x < then px ( x) p. 3

4 Proof. Set g(x) px + ( x) p. Then g (x) p p( x) p p [ ( x) p ] 0 for 0 < x < so g is increasing on this interval. Since g is continuous on [0] and g(0) we have g(x) for 0 < x <. Sustituting g(x) into this inequality we have px ( x) p as desired. Theorem 5 (Raae s Test). Let e a series with positive terms and let p > and suppose p for all sufficiently large n. Then the series n an converges. Proof. Let e a series with positive terms and let p > and suppose p for all sufficiently large n. Setting x /n in Lemma 2 we have n p n ( n) p ( n n ) p n+ n where n+ n p. Since the series n is a p-series with p > the series n converges. Applying the Ratio Comparison Test also converges. Solution to our Prolem: Consider the series (2n ) (2n + 2) If we apply Raae s Theorem we have so p 3 2 converges. and the series 2n (2n + 2) 3 3/2 2n + 2 2n + 2 n (2n ) (2n + 2) +... Returning to an aritrary generalized geometric series (with d e > 0) we apply Raae s Test a + (n + )d + (n + )d + (n + )d + (a ) + (n + )d a + (n + )d ( a)/d (/d) + (n + ) 4

5 Now so + n + for some constant K d d + n + d + n + ( a)/d d + n + ( a)/d d + n + ( a)/d ( a)/d Hence ( a)/d (/d) + (n + ) ( a)/d This is sufficient to show that the generalized geometric series converges if ( a)/d > that is if > a + d. Notice that if d e 0 so that the generalized geometric series degenerates to an ordinary geometric series we get the result we already know: The geometric series converges if > a that is if the common ratio r is less than one. We state our result as a Theorem: Consider the generalized geometric series a a (a + d) a (a + d) (a + 2d) a (a + d) (a + nd) + + ( + e) ( + e) ( + 2e) ( + e) ( + ne) converges asolutely if d < e and diverges if d > e. Further if d e > 0 this series converges if > a + d. References [] R. Creighton Buck. Advanced Calculus Third Edition. McGraw-Hill Inc

Chapter 8. Infinite Series

Chapter 8. Infinite Series 8.4 Series of Nonnegative Terms Chapter 8. Infinite Series 8.4 Series of Nonnegative Terms Note. Given a series we have two questions:. Does the series converge? 2. If it converges, what is its sum? Corollary

More information

1 + lim. n n+1. f(x) = x + 1, x 1. and we check that f is increasing, instead. Using the quotient rule, we easily find that. 1 (x + 1) 1 x (x + 1) 2 =

1 + lim. n n+1. f(x) = x + 1, x 1. and we check that f is increasing, instead. Using the quotient rule, we easily find that. 1 (x + 1) 1 x (x + 1) 2 = Chapter 5 Sequences and series 5. Sequences Definition 5. (Sequence). A sequence is a function which is defined on the set N of natural numbers. Since such a function is uniquely determined by its values

More information

MATH 1231 MATHEMATICS 1B CALCULUS. Section 4: - Convergence of Series.

MATH 1231 MATHEMATICS 1B CALCULUS. Section 4: - Convergence of Series. MATH 23 MATHEMATICS B CALCULUS. Section 4: - Convergence of Series. The objective of this section is to get acquainted with the theory and application of series. By the end of this section students will

More information

8.1 Sequences. Example: A sequence is a function f(n) whose domain is a subset of the integers. Notation: *Note: n = 0 vs. n = 1.

8.1 Sequences. Example: A sequence is a function f(n) whose domain is a subset of the integers. Notation: *Note: n = 0 vs. n = 1. 8. Sequences Example: A sequence is a function f(n) whose domain is a subset of the integers. Notation: *Note: n = 0 vs. n = Examples: 6. Find a formula for the general term a n of the sequence, assuming

More information

Introduction to Series and Sequences Math 121 Calculus II Spring 2015

Introduction to Series and Sequences Math 121 Calculus II Spring 2015 Introduction to Series and Sequences Math Calculus II Spring 05 The goal. The main purpose of our study of series and sequences is to understand power series. A power series is like a polynomial of infinite

More information

10.1 Sequences. Example: A sequence is a function f(n) whose domain is a subset of the integers. Notation: *Note: n = 0 vs. n = 1.

10.1 Sequences. Example: A sequence is a function f(n) whose domain is a subset of the integers. Notation: *Note: n = 0 vs. n = 1. 10.1 Sequences Example: A sequence is a function f(n) whose domain is a subset of the integers. Notation: *Note: n = 0 vs. n = 1 Examples: EX1: Find a formula for the general term a n of the sequence,

More information

Preliminary check: are the terms that we are adding up go to zero or not? If not, proceed! If the terms a n are going to zero, pick another test.

Preliminary check: are the terms that we are adding up go to zero or not? If not, proceed! If the terms a n are going to zero, pick another test. Throughout these templates, let series. be a series. We hope to determine the convergence of this Divergence Test: If lim is not zero or does not exist, then the series diverges. Preliminary check: are

More information

Homework 3 Solutions(Part 2) Due Friday Sept. 8

Homework 3 Solutions(Part 2) Due Friday Sept. 8 MATH 315 Differential Equations (Fall 017) Homework 3 Solutions(Part ) Due Frida Sept. 8 Part : These will e graded in detail. Be sure to start each of these prolems on a new sheet of paper, summarize

More information

Chapter 11 - Sequences and Series

Chapter 11 - Sequences and Series Calculus and Analytic Geometry II Chapter - Sequences and Series. Sequences Definition. A sequence is a list of numbers written in a definite order, We call a n the general term of the sequence. {a, a

More information

Solutions to Exam 2, Math 10560

Solutions to Exam 2, Math 10560 Solutions to Exam, Math 6. Which of the following expressions gives the partial fraction decomposition of the function x + x + f(x = (x (x (x +? Solution: Notice that (x is not an irreducile factor. If

More information

Chapter 11: Sequences; Indeterminate Forms; Improper Integrals

Chapter 11: Sequences; Indeterminate Forms; Improper Integrals Chapter 11: Sequences; Indeterminate Forms; Improper Integrals Section 11.1 The Least Upper Bound Axiom a. Least Upper Bound Axiom b. Examples c. Theorem 11.1.2 d. Example e. Greatest Lower Bound f. Theorem

More information

AP Calculus Chapter 9: Infinite Series

AP Calculus Chapter 9: Infinite Series AP Calculus Chapter 9: Infinite Series 9. Sequences a, a 2, a 3, a 4, a 5,... Sequence: A function whose domain is the set of positive integers n = 2 3 4 a n = a a 2 a 3 a 4 terms of the sequence Begin

More information

INFINITE SEQUENCES AND SERIES

INFINITE SEQUENCES AND SERIES 11 INFINITE SEQUENCES AND SERIES INFINITE SEQUENCES AND SERIES Infinite sequences and series were introduced briefly in A Preview of Calculus in connection with Zeno s paradoxes and the decimal representation

More information

Math 0230 Calculus 2 Lectures

Math 0230 Calculus 2 Lectures Math 00 Calculus Lectures Chapter 8 Series Numeration of sections corresponds to the text James Stewart, Essential Calculus, Early Transcendentals, Second edition. Section 8. Sequences A sequence is a

More information

Math 115 Spring 11 Written Homework 10 Solutions

Math 115 Spring 11 Written Homework 10 Solutions Math 5 Spring Written Homework 0 Solutions. For following its, state what indeterminate form the its are in and evaluate the its. (a) 3x 4x 4 x x 8 Solution: This is in indeterminate form 0. Algebraically,

More information

C.7. Numerical series. Pag. 147 Proof of the converging criteria for series. Theorem 5.29 (Comparison test) Let a k and b k be positive-term series

C.7. Numerical series. Pag. 147 Proof of the converging criteria for series. Theorem 5.29 (Comparison test) Let a k and b k be positive-term series C.7 Numerical series Pag. 147 Proof of the converging criteria for series Theorem 5.29 (Comparison test) Let and be positive-term series such that 0, for any k 0. i) If the series converges, then also

More information

Math 1b Sequences and series summary

Math 1b Sequences and series summary Math b Sequences and series summary December 22, 2005 Sequences (Stewart p. 557) Notations for a sequence: or a, a 2, a 3,..., a n,... {a n }. The numbers a n are called the terms of the sequence.. Limit

More information

Sequences and infinite series

Sequences and infinite series Sequences and infinite series D. DeTurck University of Pennsylvania March 29, 208 D. DeTurck Math 04 002 208A: Sequence and series / 54 Sequences The lists of numbers you generate using a numerical method

More information

Let s Get Series(ous)

Let s Get Series(ous) Department of Mathematics, Computer Science, and Statistics Bloomsburg University Bloomsburg, Pennsylvania 785 Let s Get Series(ous) Summary Presenting infinite series can be (used to be) a tedious and

More information

Math 5a Reading Assignments for Sections

Math 5a Reading Assignments for Sections Math 5a Reading Assignments for Sections 4.1 4.5 Due Dates for Reading Assignments Note: There will be a very short online reading quiz (WebWork) on each reading assignment due one hour before class on

More information

Lesson Objectives: we will learn:

Lesson Objectives: we will learn: Lesson Objectives: Setting the Stage: Lesson 66 Improper Integrals HL Math - Santowski we will learn: How to solve definite integrals where the interval is infinite and where the function has an infinite

More information

Infinite series, improper integrals, and Taylor series

Infinite series, improper integrals, and Taylor series Chapter 2 Infinite series, improper integrals, and Taylor series 2. Introduction to series In studying calculus, we have explored a variety of functions. Among the most basic are polynomials, i.e. functions

More information

Review Sheet on Convergence of Series MATH 141H

Review Sheet on Convergence of Series MATH 141H Review Sheet on Convergence of Series MATH 4H Jonathan Rosenberg November 27, 2006 There are many tests for convergence of series, and frequently it can been confusing. How do you tell what test to use?

More information

7.8 Improper Integrals

7.8 Improper Integrals CHAPTER 7. TECHNIQUES OF INTEGRATION 67 7.8 Improper Integrals Eample. Find Solution. Z e d. Z e d = = e e!! e = (e ) = Z Eample. Find d. Solution. We do this prolem twice: once the WRONG way, and once

More information

5.9 Representations of Functions as a Power Series

5.9 Representations of Functions as a Power Series 5.9 Representations of Functions as a Power Series Example 5.58. The following geometric series x n + x + x 2 + x 3 + x 4 +... will converge when < x

More information

AP Calculus BC. Sample Student Responses and Scoring Commentary. Inside: Free Response Question 5. Scoring Guideline.

AP Calculus BC. Sample Student Responses and Scoring Commentary. Inside: Free Response Question 5. Scoring Guideline. 017 AP Calculus BC Sample Student Responses and Scoring Commentary Inside: RR Free Response Question RR Scoring Guideline RR Student Samples RR Scoring Commentary 017 The College Board. College Board,

More information

The integral test and estimates of sums

The integral test and estimates of sums The integral test Suppose f is a continuous, positive, decreasing function on [, ) and let a n = f (n). Then the series n= a n is convergent if and only if the improper integral f (x)dx is convergent.

More information

Rational Functions. Elementary Functions. Algebra with mixed fractions. Algebra with mixed fractions

Rational Functions. Elementary Functions. Algebra with mixed fractions. Algebra with mixed fractions Rational Functions A rational function f (x) is a function which is the ratio of two polynomials, that is, Part 2, Polynomials Lecture 26a, Rational Functions f (x) = where and are polynomials Dr Ken W

More information

16.4. Power Series. Introduction. Prerequisites. Learning Outcomes

16.4. Power Series. Introduction. Prerequisites. Learning Outcomes Power Series 6.4 Introduction In this Section we consider power series. These are examples of infinite series where each term contains a variable, x, raised to a positive integer power. We use the ratio

More information

Solving Systems of Linear Equations Symbolically

Solving Systems of Linear Equations Symbolically " Solving Systems of Linear Equations Symolically Every day of the year, thousands of airline flights crisscross the United States to connect large and small cities. Each flight follows a plan filed with

More information

Upper Bounds for Stern s Diatomic Sequence and Related Sequences

Upper Bounds for Stern s Diatomic Sequence and Related Sequences Upper Bounds for Stern s Diatomic Sequence and Related Sequences Colin Defant Department of Mathematics University of Florida, U.S.A. cdefant@ufl.edu Sumitted: Jun 18, 01; Accepted: Oct, 016; Pulished:

More information

3.4 Introduction to power series

3.4 Introduction to power series 3.4 Introduction to power series Definition 3.4.. A polynomial in the variable x is an expression of the form n a i x i = a 0 + a x + a 2 x 2 + + a n x n + a n x n i=0 or a n x n + a n x n + + a 2 x 2

More information

Polynomial Approximations and Power Series

Polynomial Approximations and Power Series Polynomial Approximations and Power Series June 24, 206 Tangent Lines One of the first uses of the derivatives is the determination of the tangent as a linear approximation of a differentiable function

More information

MATH 1231 MATHEMATICS 1B CALCULUS. Section 5: - Power Series and Taylor Series.

MATH 1231 MATHEMATICS 1B CALCULUS. Section 5: - Power Series and Taylor Series. MATH 1231 MATHEMATICS 1B CALCULUS. Section 5: - Power Series and Taylor Series. The objective of this section is to become familiar with the theory and application of power series and Taylor series. By

More information

Lesson 23: The Defining Equation of a Line

Lesson 23: The Defining Equation of a Line Student Outomes Students know that two equations in the form of ax + y = and a x + y = graph as the same line when a = = and at least one of a or is nonzero. a Students know that the graph of a linear

More information

An Outline of Some Basic Theorems on Infinite Series

An Outline of Some Basic Theorems on Infinite Series An Outline of Some Basic Theorems on Infinite Series I. Introduction In class, we will be discussing the fact that well-behaved functions can be expressed as infinite sums or infinite polynomials. For

More information

a j x j. j=0 The number R (possibly infinite) which Theorem 1 guarantees is called the radius of convergence of the power series.

a j x j. j=0 The number R (possibly infinite) which Theorem 1 guarantees is called the radius of convergence of the power series. Lecture 6 Power series A very important class of series to study are the power series. They are interesting in part because they represent functions and in part because they encode their coefficients which

More information

Math 113 (Calculus 2) Exam 4

Math 113 (Calculus 2) Exam 4 Math 3 (Calculus ) Exam 4 November 0 November, 009 Sections 0, 3 7 Name Student ID Section Instructor In some cases a series may be seen to converge or diverge for more than one reason. For such problems

More information

Polynomial Degree and Finite Differences

Polynomial Degree and Finite Differences CONDENSED LESSON 7.1 Polynomial Degree and Finite Differences In this lesson, you Learn the terminology associated with polynomials Use the finite differences method to determine the degree of a polynomial

More information

Ma 530 Power Series II

Ma 530 Power Series II Ma 530 Power Series II Please note that there is material on power series at Visual Calculus. Some of this material was used as part of the presentation of the topics that follow. Operations on Power Series

More information

11.6: Ratio and Root Tests Page 1. absolutely convergent, conditionally convergent, or divergent?

11.6: Ratio and Root Tests Page 1. absolutely convergent, conditionally convergent, or divergent? .6: Ratio and Root Tests Page Questions ( 3) n n 3 ( 3) n ( ) n 5 + n ( ) n e n ( ) n+ n2 2 n Example Show that ( ) n n ln n ( n 2 ) n + 2n 2 + converges for all x. Deduce that = 0 for all x. Solutions

More information

Sequences & Functions

Sequences & Functions Ch. 5 Sec. 1 Sequences & Functions Skip Counting to Arithmetic Sequences When you skipped counted as a child, you were introduced to arithmetic sequences. Example 1: 2, 4, 6, 8, adding 2 Example 2: 10,

More information

Power Series. Part 2 Differentiation & Integration; Multiplication of Power Series. J. Gonzalez-Zugasti, University of Massachusetts - Lowell

Power Series. Part 2 Differentiation & Integration; Multiplication of Power Series. J. Gonzalez-Zugasti, University of Massachusetts - Lowell Power Series Part 2 Differentiation & Integration; Multiplication of Power Series 1 Theorem 1 If a n x n converges absolutely for x < R, then a n f x n converges absolutely for any continuous function

More information

Definition (The carefully thought-out calculus version based on limits).

Definition (The carefully thought-out calculus version based on limits). 4.1. Continuity and Graphs Definition 4.1.1 (Intuitive idea used in algebra based on graphing). A function, f, is continuous on the interval (a, b) if the graph of y = f(x) can be drawn over the interval

More information

From Calculus II: An infinite series is an expression of the form

From Calculus II: An infinite series is an expression of the form MATH 3333 INTERMEDIATE ANALYSIS BLECHER NOTES 75 8. Infinite series of numbers From Calculus II: An infinite series is an expression of the form = a m + a m+ + a m+2 + ( ) Let us call this expression (*).

More information

Sequence. A list of numbers written in a definite order.

Sequence. A list of numbers written in a definite order. Sequence A list of numbers written in a definite order. Terms of a Sequence a n = 2 n 2 1, 2 2, 2 3, 2 4, 2 n, 2, 4, 8, 16, 2 n We are going to be mainly concerned with infinite sequences. This means we

More information

The Comparison Test & Limit Comparison Test

The Comparison Test & Limit Comparison Test The Comparison Test & Limit Comparison Test Math4 Department of Mathematics, University of Kentucky February 5, 207 Math4 Lecture 3 / 3 Summary of (some of) what we have learned about series... Math4 Lecture

More information

Review (11.1) 1. A sequence is an infinite list of numbers {a n } n=1 = a 1, a 2, a 3, The sequence is said to converge if lim

Review (11.1) 1. A sequence is an infinite list of numbers {a n } n=1 = a 1, a 2, a 3, The sequence is said to converge if lim Announcements: Note that we have taking the sections of Chapter, out of order, doing section. first, and then the rest. Section. is motivation for the rest of the chapter. Do the homework questions from

More information

e x = 1 + x + x2 2! + x3 If the function f(x) can be written as a power series on an interval I, then the power series is of the form

e x = 1 + x + x2 2! + x3 If the function f(x) can be written as a power series on an interval I, then the power series is of the form Taylor Series Given a function f(x), we would like to be able to find a power series that represents the function. For example, in the last section we noted that we can represent e x by the power series

More information

LIMITS AT INFINITY MR. VELAZQUEZ AP CALCULUS

LIMITS AT INFINITY MR. VELAZQUEZ AP CALCULUS LIMITS AT INFINITY MR. VELAZQUEZ AP CALCULUS RECALL: VERTICAL ASYMPTOTES Remember that for a rational function, vertical asymptotes occur at values of x = a which have infinite its (either positive or

More information

Math 117: Infinite Sequences

Math 117: Infinite Sequences Math 7: Infinite Sequences John Douglas Moore November, 008 The three main theorems in the theory of infinite sequences are the Monotone Convergence Theorem, the Cauchy Sequence Theorem and the Subsequence

More information

MA257: INTRODUCTION TO NUMBER THEORY LECTURE NOTES

MA257: INTRODUCTION TO NUMBER THEORY LECTURE NOTES MA257: INTRODUCTION TO NUMBER THEORY LECTURE NOTES 2018 57 5. p-adic Numbers 5.1. Motivating examples. We all know that 2 is irrational, so that 2 is not a square in the rational field Q, but that we can

More information

Math 163: Lecture notes

Math 163: Lecture notes Math 63: Lecture notes Professor Monika Nitsche March 2, 2 Special functions that are inverses of known functions. Inverse functions (Day ) Go over: early exam, hw, quizzes, grading scheme, attendance

More information

Section 9.8. First let s get some practice with determining the interval of convergence of power series.

Section 9.8. First let s get some practice with determining the interval of convergence of power series. First let s get some practice with determining the interval of convergence of power series. First let s get some practice with determining the interval of convergence of power series. Example (1) Determine

More information

Jim Lambers MAT 169 Fall Semester Lecture 6 Notes. a n. n=1. S = lim s k = lim. n=1. n=1

Jim Lambers MAT 169 Fall Semester Lecture 6 Notes. a n. n=1. S = lim s k = lim. n=1. n=1 Jim Lambers MAT 69 Fall Semester 2009-0 Lecture 6 Notes These notes correspond to Section 8.3 in the text. The Integral Test Previously, we have defined the sum of a convergent infinite series to be the

More information

L p Functions. Given a measure space (X, µ) and a real number p [1, ), recall that the L p -norm of a measurable function f : X R is defined by

L p Functions. Given a measure space (X, µ) and a real number p [1, ), recall that the L p -norm of a measurable function f : X R is defined by L p Functions Given a measure space (, µ) and a real number p [, ), recall that the L p -norm of a measurable function f : R is defined by f p = ( ) /p f p dµ Note that the L p -norm of a function f may

More information

AP Calculus (BC) Chapter 9 Test No Calculator Section Name: Date: Period:

AP Calculus (BC) Chapter 9 Test No Calculator Section Name: Date: Period: WORKSHEET: Series, Taylor Series AP Calculus (BC) Chapter 9 Test No Calculator Section Name: Date: Period: 1 Part I. Multiple-Choice Questions (5 points each; please circle the correct answer.) 1. The

More information

Calculus (Real Analysis I)

Calculus (Real Analysis I) Calculus (Real Analysis I) (MAT122β) Department of Mathematics University of Ruhuna A.W.L. Pubudu Thilan Department of Mathematics University of Ruhuna Calculus (Real Analysis I)(MAT122β) 1/172 Chapter

More information

ERRATA for Calculus: The Language of Change

ERRATA for Calculus: The Language of Change 1 ERRATA for Calculus: The Language of Change SECTION 1.1 Derivatives P877 Exercise 9b: The answer should be c (d) = 0.5 cups per day for 9 d 0. SECTION 1.2 Integrals P8 Exercise 9d: change to B (11) P9

More information

Infinite Series. Copyright Cengage Learning. All rights reserved.

Infinite Series. Copyright Cengage Learning. All rights reserved. Infinite Series Copyright Cengage Learning. All rights reserved. Sequences Copyright Cengage Learning. All rights reserved. Objectives List the terms of a sequence. Determine whether a sequence converges

More information

Sequences. Chapter 3. n + 1 3n + 2 sin n n. 3. lim (ln(n + 1) ln n) 1. lim. 2. lim. 4. lim (1 + n)1/n. Answers: 1. 1/3; 2. 0; 3. 0; 4. 1.

Sequences. Chapter 3. n + 1 3n + 2 sin n n. 3. lim (ln(n + 1) ln n) 1. lim. 2. lim. 4. lim (1 + n)1/n. Answers: 1. 1/3; 2. 0; 3. 0; 4. 1. Chapter 3 Sequences Both the main elements of calculus (differentiation and integration) require the notion of a limit. Sequences will play a central role when we work with limits. Definition 3.. A Sequence

More information

MATH 1080: Calculus of One Variable II Fall 2017 Textbook: Single Variable Calculus: Early Transcendentals, 7e, by James Stewart.

MATH 1080: Calculus of One Variable II Fall 2017 Textbook: Single Variable Calculus: Early Transcendentals, 7e, by James Stewart. MATH 1080: Clculus of One Vrile II Fll 2017 Textook: Single Vrile Clculus: Erly Trnscendentls, 7e, y Jmes Stewrt Unit 2 Skill Set Importnt: Students should expect test questions tht require synthesis of

More information

8.6 Partial Fraction Decomposition

8.6 Partial Fraction Decomposition 628 Systems of Equations and Matrices 8.6 Partial Fraction Decomposition This section uses systems of linear equations to rewrite rational functions in a form more palatable to Calculus students. In College

More information

Math 231E, Lecture 25. Integral Test and Estimating Sums

Math 231E, Lecture 25. Integral Test and Estimating Sums Math 23E, Lecture 25. Integral Test and Estimating Sums Integral Test The definition of determining whether the sum n= a n converges is:. Compute the partial sums s n = a k, k= 2. Check that s n is a convergent

More information

Expansion formula using properties of dot product (analogous to FOIL in algebra): u v 2 u v u v u u 2u v v v u 2 2u v v 2

Expansion formula using properties of dot product (analogous to FOIL in algebra): u v 2 u v u v u u 2u v v v u 2 2u v v 2 Least squares: Mathematical theory Below we provide the "vector space" formulation, and solution, of the least squares prolem. While not strictly necessary until we ring in the machinery of matrix algera,

More information

Section 11.1 Sequences

Section 11.1 Sequences Math 152 c Lynch 1 of 8 Section 11.1 Sequences A sequence is a list of numbers written in a definite order: a 1, a 2, a 3,..., a n,... Notation. The sequence {a 1, a 2, a 3,...} can also be written {a

More information

MATH 6B Spring 2017 Vector Calculus II Study Guide Final Exam Chapters 8, 9, and Sections 11.1, 11.2, 11.7, 12.2, 12.3.

MATH 6B Spring 2017 Vector Calculus II Study Guide Final Exam Chapters 8, 9, and Sections 11.1, 11.2, 11.7, 12.2, 12.3. MATH 6B pring 2017 Vector Calculus II tudy Guide Final Exam Chapters 8, 9, and ections 11.1, 11.2, 11.7, 12.2, 12.3. Before starting with the summary of the main concepts covered in the quarter, here there

More information

William R. Wade Fourth Edition

William R. Wade Fourth Edition Introduction to Analysis William R. Wade Fourth Edition Pearson Education Limited Edinburgh Gate Harlow Essex CM20 2JE England and Associated Companies throughout the world Visit us on the World Wide Web

More information

Taylor Series. richard/math230 These notes are taken from Calculus Vol I, by Tom M. Apostol,

Taylor Series.  richard/math230 These notes are taken from Calculus Vol I, by Tom M. Apostol, Taylor Series Professor Richard Blecksmith richard@math.niu.edu Dept. of Mathematical Sciences Northern Illinois University http://math.niu.edu/ richard/math230 These notes are taken from Calculus Vol

More information

Infinite Series Summary

Infinite Series Summary Infinite Series Summary () Special series to remember: Geometric series ar n Here a is the first term and r is the common ratio. When r

More information

Differentiation by taking logarithms

Differentiation by taking logarithms Differentiation by taking logarithms In this unit we look at how we can use logarithms to simplify certain functions before we differentiate them. In order to master the techniques explained here it is

More information

THE GAMMA FUNCTION AND THE ZETA FUNCTION

THE GAMMA FUNCTION AND THE ZETA FUNCTION THE GAMMA FUNCTION AND THE ZETA FUNCTION PAUL DUNCAN Abstract. The Gamma Function and the Riemann Zeta Function are two special functions that are critical to the study of many different fields of mathematics.

More information

ERASMUS UNIVERSITY ROTTERDAM Information concerning the Entrance examination Mathematics level 2 for International Business Administration (IBA)

ERASMUS UNIVERSITY ROTTERDAM Information concerning the Entrance examination Mathematics level 2 for International Business Administration (IBA) ERASMUS UNIVERSITY ROTTERDAM Information concerning the Entrance examination Mathematics level 2 for International Business Administration (IBA) General information Availale time: 2.5 hours (150 minutes).

More information

Numerical Methods. Equations and Partial Fractions. Jaesung Lee

Numerical Methods. Equations and Partial Fractions. Jaesung Lee Numerical Methods Equations and Partial Fractions Jaesung Lee Solving linear equations Solving linear equations Introduction Many problems in engineering reduce to the solution of an equation or a set

More information

8. Limit Laws. lim(f g)(x) = lim f(x) lim g(x), (x) = lim x a f(x) g lim x a g(x)

8. Limit Laws. lim(f g)(x) = lim f(x) lim g(x), (x) = lim x a f(x) g lim x a g(x) 8. Limit Laws 8.1. Basic Limit Laws. If f and g are two functions and we know the it of each of them at a given point a, then we can easily compute the it at a of their sum, difference, product, constant

More information

Sequences of Real Numbers

Sequences of Real Numbers Chapter 8 Sequences of Real Numbers In this chapter, we assume the existence of the ordered field of real numbers, though we do not yet discuss or use the completeness of the real numbers. In the next

More information

Chapter Generating Functions

Chapter Generating Functions Chapter 8.1.1-8.1.2. Generating Functions Prof. Tesler Math 184A Fall 2017 Prof. Tesler Ch. 8. Generating Functions Math 184A / Fall 2017 1 / 63 Ordinary Generating Functions (OGF) Let a n (n = 0, 1,...)

More information

The Integral Test. P. Sam Johnson. September 29, P. Sam Johnson (NIT Karnataka) The Integral Test September 29, / 39

The Integral Test. P. Sam Johnson. September 29, P. Sam Johnson (NIT Karnataka) The Integral Test September 29, / 39 The Integral Test P. Sam Johnson September 29, 207 P. Sam Johnson (NIT Karnataka) The Integral Test September 29, 207 / 39 Overview Given a series a n, we have two questions:. Does the series converge?

More information

MATH 1231 MATHEMATICS 1B Calculus Section 4.4: Taylor & Power series.

MATH 1231 MATHEMATICS 1B Calculus Section 4.4: Taylor & Power series. MATH 1231 MATHEMATICS 1B 2010. For use in Dr Chris Tisdell s lectures. Calculus Section 4.4: Taylor & Power series. 1. What is a Taylor series? 2. Convergence of Taylor series 3. Common Maclaurin series

More information

Remark: Do not treat as ordinary numbers. These symbols do not obey the usual rules of arithmetic, for instance, + 1 =, - 1 =, 2, etc.

Remark: Do not treat as ordinary numbers. These symbols do not obey the usual rules of arithmetic, for instance, + 1 =, - 1 =, 2, etc. Limits and Infinity One of the mysteries of Mathematics seems to be the concept of "infinity", usually denoted by the symbol. So what is? It is simply a symbol that represents large numbers. Indeed, numbers

More information

Math Review for Exam Answer each of the following questions as either True or False. Circle the correct answer.

Math Review for Exam Answer each of the following questions as either True or False. Circle the correct answer. Math 22 - Review for Exam 3. Answer each of the following questions as either True or False. Circle the correct answer. (a) True/False: If a n > 0 and a n 0, the series a n converges. Soln: False: Let

More information

Taylor series. Chapter Introduction From geometric series to Taylor polynomials

Taylor series. Chapter Introduction From geometric series to Taylor polynomials Chapter 2 Taylor series 2. Introduction The topic of this chapter is find approximations of functions in terms of power series, also called Taylor series. Such series can be described informally as infinite

More information

Sequences. We know that the functions can be defined on any subsets of R. As the set of positive integers

Sequences. We know that the functions can be defined on any subsets of R. As the set of positive integers Sequences We know that the functions can be defined on any subsets of R. As the set of positive integers Z + is a subset of R, we can define a function on it in the following manner. f: Z + R f(n) = a

More information

Math Bootcamp 2012 Miscellaneous

Math Bootcamp 2012 Miscellaneous Math Bootcamp 202 Miscellaneous Factorial, combination and permutation The factorial of a positive integer n denoted by n!, is the product of all positive integers less than or equal to n. Define 0! =.

More information

Ex. Here's another one. We want to prove that the sum of the cubes of the first n natural numbers is. n = n 2 (n+1) 2 /4.

Ex. Here's another one. We want to prove that the sum of the cubes of the first n natural numbers is. n = n 2 (n+1) 2 /4. Lecture One type of mathematical proof that goes everywhere is mathematical induction (tb 147). Induction is essentially used to show something is true for all iterations, i, of a sequence, where i N.

More information

THE STONE-WEIERSTRASS THEOREM AND ITS APPLICATIONS TO L 2 SPACES

THE STONE-WEIERSTRASS THEOREM AND ITS APPLICATIONS TO L 2 SPACES THE STONE-WEIERSTRASS THEOREM AND ITS APPLICATIONS TO L 2 SPACES PHILIP GADDY Abstract. Throughout the course of this paper, we will first prove the Stone- Weierstrass Theroem, after providing some initial

More information

Chaos and Dynamical Systems

Chaos and Dynamical Systems Chaos and Dynamical Systems y Megan Richards Astract: In this paper, we will discuss the notion of chaos. We will start y introducing certain mathematical concepts needed in the understanding of chaos,

More information

(Infinite) Series Series a n = a 1 + a 2 + a a n +...

(Infinite) Series Series a n = a 1 + a 2 + a a n +... (Infinite) Series Series a n = a 1 + a 2 + a 3 +... + a n +... What does it mean to add infinitely many terms? The sequence of partial sums S 1, S 2, S 3, S 4,...,S n,...,where nx S n = a i = a 1 + a 2

More information

PROBLEM SET 1 SOLUTIONS 1287 = , 403 = , 78 = 13 6.

PROBLEM SET 1 SOLUTIONS 1287 = , 403 = , 78 = 13 6. Math 7 Spring 06 PROBLEM SET SOLUTIONS. (a) ( pts) Use the Euclidean algorithm to find gcd(87, 0). Solution. The Euclidean algorithm is performed as follows: 87 = 0 + 78, 0 = 78 +, 78 = 6. Hence we have

More information

c n (x a) n c 0 c 1 (x a) c 2 (x a) 2...

c n (x a) n c 0 c 1 (x a) c 2 (x a) 2... 3 CHAPTER 6 SERIES SOLUTIONS OF LINEAR EQUATIONS 6. REVIEW OF POWER SERIES REVIEW MATERIAL Infinite series of constants, p-series, harmonic series, alternating harmonic series, geometric series, tests

More information

Mathematics Background

Mathematics Background UNIT OVERVIEW GOALS AND STANDARDS MATHEMATICS BACKGROUND UNIT INTRODUCTION Patterns of Change and Relationships The introduction to this Unit points out to students that throughout their study of Connected

More information

5.5 Special Rights. A Solidify Understanding Task

5.5 Special Rights. A Solidify Understanding Task SECONDARY MATH III // MODULE 5 MODELING WITH GEOMETRY 5.5 In previous courses you have studied the Pythagorean theorem and right triangle trigonometry. Both of these mathematical tools are useful when

More information

We begin by considering the following three sequences:

We begin by considering the following three sequences: STUDENT S COMPANIONS IN BASIC MATH: THE TWELFTH The Concept of Limits for Sequences and Series In calculus, the concept of limits is of paramount importance, in view of the fact that many basic objects

More information

Sequences: Limit Theorems

Sequences: Limit Theorems Sequences: Limit Theorems Limit Theorems Philippe B. Laval KSU Today Philippe B. Laval (KSU) Limit Theorems Today 1 / 20 Introduction These limit theorems fall in two categories. 1 The first category deals

More information

16.4. Power Series. Introduction. Prerequisites. Learning Outcomes

16.4. Power Series. Introduction. Prerequisites. Learning Outcomes Power Series 6.4 Introduction In this section we consider power series. These are examples of infinite series where each term contains a variable, x, raised to a positive integer power. We use the ratio

More information

Measure and integration

Measure and integration Chapter 5 Measure and integration In calculus you have learned how to calculate the size of different kinds of sets: the length of a curve, the area of a region or a surface, the volume or mass of a solid.

More information

Math 111, Introduction to the Calculus, Fall 2011 Midterm I Practice Exam 1 Solutions

Math 111, Introduction to the Calculus, Fall 2011 Midterm I Practice Exam 1 Solutions Math 111, Introduction to the Calculus, Fall 2011 Midterm I Practice Exam 1 Solutions For each question, there is a model solution (showing you the level of detail I expect on the exam) and then below

More information

MATH 118, LECTURES 27 & 28: TAYLOR SERIES

MATH 118, LECTURES 27 & 28: TAYLOR SERIES MATH 8, LECTURES 7 & 8: TAYLOR SERIES Taylor Series Suppose we know that the power series a n (x c) n converges on some interval c R < x < c + R to the function f(x). That is to say, we have f(x) = a 0

More information

3. Infinite Series. The Sum of a Series. A series is an infinite sum of numbers:

3. Infinite Series. The Sum of a Series. A series is an infinite sum of numbers: 3. Infinite Series A series is an infinite sum of numbers: The individual numbers are called the terms of the series. In the above series, the first term is, the second term is, and so on. The th term

More information

Chapter 4. The dominated convergence theorem and applications

Chapter 4. The dominated convergence theorem and applications Chapter 4. The dominated convergence theorem and applications The Monotone Covergence theorem is one of a number of key theorems alllowing one to exchange limits and [Lebesgue] integrals (or derivatives

More information