Steel Framing Components Catalog

Size: px
Start display at page:

Download "Steel Framing Components Catalog"

Transcription

1 Certified Manufacturer of Drywall & Structural Framing & Accessories Steel Framing Components Catalog Toll Free: Fax: Schmeman Warren, MI 8089

2 State Building Products, Inc. PRODUCT SPECS & CERTIFICATIONS General Product Information... - Accessories LEED Certification Drywall & Structural Framing Material Certifications NON-STRUCTURAL SECTION PROPERTIES ProSTUD Section Properties ProStud Web Crippling and Screw Connection Data ProTrak Section Properties Non-Structural Stud and Track Section Properties NON-STRUCTURAL WALL HEIGHTS ProStud Non-Composite Wall Heights ProStud Composite Wall Heights ProStud Ceiling Spans Non-Structural Wall Heights STRUCTURAL SECTION PROPERTIES Structural Stud Section Properties... - Structural Track Properties... - STRUCTURAL WALL HEIGHTS Structural Wall Heights STRUCTURAL ALLOWABLE LOAD TABLES Allowable Combined Bending & Axial Load FLOOR JOISTS Allowable Floor Joist Spans HAT AND U-CHANNELS Furring Channel Section Properties & Ceiling Spans U-Channel Section Properties & Ceiling Spans WEB CRIPPLING Web Crippling TABLE NOTES Table Notes MSDS

3 General Product Info PRODUCT IDENTIFICATION: State Building Products includes a four part identification code. This identifies the size (flange width, web depth), type and material thickness of each member. EXAMPLE: 00S-5 00 S 5 MEMBER DEPTH: TYPE: FLANGE/LEG: MATERIAL THICKNESS: (Example: = 00 x /00 inches) (Example: Stud or Joist section = S) (Example: ⅝ =.5 x /00 inches) (Example: 0.05 in. = 5 mils; mil = /000 inch) All member depths are taken in /00 inches. See Page 8 Note for track depth calculation method. The four alpha characters utilized by the identification code are: Sections S = Stud or Joist T = Track Sections PDS = ProSTUD PTS = ProTRAK All flange widths are taken in /00 inches. Material thickness is the minimum base metal thickness in mils. Minimum base metal thickness represents 95% of the design thickness. NOTE: For those sections where two different yield strengths ( ksi and 50 ksi) are shown, the yield strength used in the design, if greater than ksi, needs to be identified on the design and ordering of steel. ( i.e., 00S-5 (50 ksi) ) The data provided in this brochure is intended to serve as a guideline to the Architect or Engineer of record. Neither State Building Products nor their consultants shall be liable for incidental and consequential damages sustained by the owner, or the contractor. The Architect and Engineer of record should verify the accuracy of the properties and load tables. Our liability is expressly limited to replacement of defective goods. Any claim shall be deemed waived unless made in writing to us within thirty (0) days from date it was or reasonably should have been discovered.

4 General Product Info THICKNESS STEEL COMPONENTS Minimum Thickness (Mils) Design Thickness (In.) Inside Corner Radius (In.) DESIGN STIFFENING LIP LENGTH Reference Only Gauge No Drywall Structural Section Flange Width Design Stiffening Lip Length S5 ¼" 0.88 S ⅜" 0.5 S ⅝" S00 " 0.5 S50 ½" 0.5 S00 " 0.50 Y lx: Rx: ly: Ry: lx: Sx: Ma: Vag: Vanet: DEFINITION OF STRUCTURAL PROPERTY SYMBOLS GROSS PROPERTIES Moment of inertia of the gross section about the X-X axis (strong axis). Radius of gyration of the gross section about the X-X axis. Moment of inertia of the gross section about the Y-Y axis (weak axis). Radius of gyration of the gross section about the Y-Y axis. EFFECTIVE PROPERTIES Moment of inertia for deflection calculations based on "Procedure for Deflection Determination" of the NASPEC. Effective section modulus about X-X axis (strong axis) Stress = Fy. Allowable Bending Moment-Based on the effective section modulus including the strength increase from cold-work of forming (NASPEC A.) where applicable. Allowable shear of gross section away from punch outs. Allowable shear of net section at punchouts. x Y NASPEC: AISI "North American Specification for the Design of Cold-Formed Steel Structural Members 00 edition with 00 Supplement." x TORSIONAL PROPERTIES J: St. Venant Torsional Constant. Cw: Torsional warping constant. Xo: Distance from the shear center to the centroid along the principal X-axis. m: Distance from the shear center to mid-plane of the web. Ro: Polar radius of gyration about centroidal principal axis. ß: -(Xo/Ro) GENERAL NOTES FOR TABLES :. The strength increase due to cold-work of forming was incorporated for flexual strength as applicable per NASPEC A... The moment of inertia for deflection is calculated at a stress which results in an effective section modulus such that the stress times that section modulus is equal to the allowable moment. This follows Procedure of the NASPEC.. The yield stress ( ksi or 50 ksi) used to calculate the tabulated values are indicated in the tables.. When provided, factory punch outs will be located along the centerline of the webs of the members and will have a minimum center-to-center spacing of ". Calculations based on ¾" width punchouts for ½" and smaller members, ½" width for deeper members, and a maximum length = ½". The minimum distance between the end of the member and near edge of the web punch out = 0". 5. For those steels that have both and 50 ksi listings, if the design is based upon 50 ksi, the 50 ksi steel needs to be specified by the contractor/purchasers. (i.e., S-5 (50 ksi)).

5 Accessories RESILIENT CHANNEL RC- RC- Resilient channel is one of the most efficient low-cost methods developed to reduce transmission of airborne sound through partition and ceiling assemblies. Single (RC-) and double leg (RC-) channels are available in 5 Ga. Standard length is. Standard Gauges & Design Thickness 5 Ga = COLD ROLLED CHANNEL U CHANNEL CRC is a traditional bridging system that provides rigidity, prevents twisting and gives lateral support to constructed framework. CRC or U Channel is available in gauge corrosion resistant galvanized steel. The product is available in widths ¾ and ½. For bridging, ½ channel is utilized as the predominant size in bracing applications. Standard length is. Custom lengths are available upon request. See page 0 for properties & ceiling spans. Standard Gauge & Design Thickness 5U050-5 Ga = U050-5 Ga =

6 Accessories ANGLES Standard leg sizes are, ½", ", ½" &. Standard length is 0 but is also available in custom lengths. Angles are available in larger sizes, long and uneven legs and clip angles. Angles can also be made in varying degrees. Most custom applications require a detailed drawing at time of order. Standard Gauges & Design Thickness 5 Ga = Ga = Ga = 0.05 Ga = 0.05 Ga = 0.0 Ga = 0.0

7 Accessories FURRING CHANNEL /8" ½" ⅞" ½" Furring channel provides non combustible furring for interior and exterior walls. It is also used to level uneven surfaces. It is available in ⅞ and ½" depths, 5, 0, 8 and gauge. Standard length is. Other lengths are available. See page 8 & 9 for properties & ceiling spans. Standard Gauges & Design Thickness 5 Ga = Ga = Ga = Ga = 0.05 Ga = 0.05 Z FURRING Z-furring easily accommodates rigid insulation and provides for the attachment of gypsum wallboard, veneer or plaster to the interior of masonry walls. ¼ wide flange for easy screw attachment. Available in, ½", and ½" depth. Standard length 0. Custom sizes and lengths are available upon request. Standard Gauges & Design Thickness 5 Ga = Ga = Ga = 0.05

8 Accessories FLAT STRAP Flat Strap is a general multipurpose product that is used for backer plate to support shelves, cabinets, fixtures or handrails when applied to metal framing. Floor and ceiling runners must also be anchored securely to the structure. Flat Strap is also used for horizontal bracing, to utilize the stud s load carrying capacity, it must be installed at proper intervals. Standard sizes are,,,, 8, 0 and, standard length is 0. Custom sizes and lengths are available upon request. Note: Lateral bracing consists of a field-cut stud or track for solid blocking and steel strap bracing on both flanges of the studs. Standard Gauges & Design Thickness 0 Ga = Ga = 0.05 Ga = 0.05 Ga = 0.0 Ga = 0.0 8

9 LEED CERTIFICATION LEED is Leadership in Energy & Environmental Design. The LEED Green Building Rating System, as promulgated by the U.S. Green Building Council, aims to improve occupant well-being, environmental performance and economic returns of buildings using established and innovative practices, standards and technologies. State Building Products nonstructural and cold-formed metal framing products and accessories are manufactured from steel coil (00% by weight), a readily recyclable product containing a high percentage of recycled content.. % ost-consumer recycled content. % ost-industrial/ re-consumer recycled content. These calculations are based upon information provided by the Steel Recycling Institute. The methods for calculating the recycled content of steel produced by basic oxygen furnace and electric arc furnace were applied to our steel purchasing patterns. Using products manufactured by State Building Products can contribute to LEED points under the Materials & Resources category. Materials and Resources: LEED MR Credit Construction Waste Management (Possible points) LEED MR Credit Recycled Content (Possible points) LEED MR Credit 5 Regional Materials (Possible Points) For more information on your State Building Products project you can use our online form at or fax your LEED project information to Please call to speak with a representative. 9

10 Certification of Material CODE APPROVALS AND PERFORMANCE STANDARDS AISI North American Speci on for the Design of Cold-formed Steel Structural Members, 00 edi on with 00 supplement. Structura Framin Stan a s C955 Speci ca on for Load-Bearing Steel Studs, Runners (Tracks), and Bracing or Bridging for Screw Applica on of Gypsum Panel Products and Metal Plaster Bases C00 Standard Speci on for Installa on of Load Bearing Steel Studs and Related Accessories A00 Drywa Framin Stan a s A00 C5 C5 C00 E9 E E90 Standard Speci on for Steel Sheet, Carbon, Metallic and Nonmetallic-coated for Cold- Formed Framing Members such as but not limited to, studs, joists, purlins, girts and track. Standard Speci on for Nonstructural Steel Framing Members Standard Speci on for Installa on of Steel Framing Members to Receive Screw- ached Gypsum Panel Products Standard Speci on for Steel Self Piercing Tapping Screw for the Applica on of Gypsum Panel Products or Metal Plaster Bases to Wood Studs or Steel Studs Standard Test Methods for Fire Tests of Building Constru on and Materials Standard Test Methods of Condu ng Strength Tests of Panels for Building Constru on Standard Test Method for Laboratory Measurement of Airborne Sound Transmission Loss of Building Pa ons and Elements Protec ve Co n a s A9 A5 A Speci ca on for General Requirements for Steel Sheet, Metallic-Coated by the Hot-Dip Process Standard Speci on for Steel Sheet, Zinc Coated (Galvanized) or Zinc-Iron Alloy-Coated (Galvannealed) by the Hot-Dip Process Standard Speci on for Steel Sheet, Aluminum-Coated, by the Hot-Dip Process A59 ALL PRODUCTS Zinc coated, MANUFACTURED light coa ng mass BY applica ons STATE BUILDING PRODUCTS MEET OR EXCEED THE APPLICABLE ASTM STANDARDS FOR OUR INDUSTRY AS LISTED ABOVE. MILL CERTIFICATIONS ARE AVAILABLE UPON REQUEST. 0

11 TRADITIONAL DRYWALL FRAMING Studs & Track Lead End STUD x WEB: ⅝, ½", ½" ⅝,, 5½", " y FB FB: Studs ¼ Track, ¼ ", ½" & " First Hole O / C ⅜ Gauges ¾ ½ DWo TRACK DWi x 5 (8 mils) ( mils) 0 (0 mils) 0-S ( mils) ksi: Yield Strength Custom sizes and lengths available. ⅜ ¾ / / / / ½" wide knockout in ½" and wider studs O / C / y FB ½" for flat steel only ¾" wide knockout in ⅝" studs only Custom hole placement available O / C STRUCTURAL FRAMING Lead End First Hole O / C WEB: ½", ½" ⅝,, 5½",, ¼", 8", 9¼",0", ", & " Flange : Studs: ⅜",⅝ ", ½" & " Track: ¼", ", ½", & " ½ J E JW FB y CS CN CSJ JW JWE JWEX x Wo ½ FLANGES TRACK Wi O / C x O / C Custom hole placement available. Fy: & 50 ksi Yield Strengths ksi is standard 50 ksi must be specified G0 Galvanized coatings standard G90 must be specified Custom sizes, lengths, and coatings available. y Gauges 0 ( mils) 8 ( mils) (5 mils) (8 mils) (9 mils) FB

12 CERTIFICATION OF MATERIAL ProSTUD & ProTRAK CODE APPROVALS AND PERFORMANCE STANDARDS AISI North American Speci on for the Design of Cold-formed Steel Structural Members, S00 00 ASTM American Society for Tes ng and Materials A5 A00 C5 C5 C00 E9 E E90 Standard Speci on for Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy-Coated (Galvannealed) by the Hot-Dip Process Standard Speci on for Steel Sheet, Carbon, Metallic and Nonmetallic-coated for Cold- Formed Framing Members Standard Speci on for Nonstructural Steel Framing Members Standard Speci on for Installa n of Steel Framing Members to Receive Screw-A ached Gypsum Panel Products Standard Speci on for Steel Self Piercing Tapping Screw for the Applica n of Gypsum Panel Products or Metal Plaster Bases to Wood Studs or Steel Studs Standard Test Methods for Fire Tests of Building Construc on and Materials Standard Test Methods of Condu ng Strength Tests of Panels for Building Constru on Standard Test Method for Laboratory Measurement of Airborne Sound Transmission Loss of Building Pa ns and Elements" ALL PRODUCTS MANUFACTURED BY STATE BUILDING PRODUCTS MEET OR EXCEED THE APPLICABLE ASTM STANDARDS FOR OUR INDUSTRY AS LISTED ABOVE. MILL CERTIFICATIONS ARE AVAILABLE UPON REQUEST. For more informa n on your State Building Products project you can use our Online Form at or fax your LEED Project informa n to Please call to speak to a representa ve.

13 ProSTUD & ProTRAK CONSTRUCTION ADVANTAGES DESIGN ADVANTAGES ProSTUD Web Widths: -5/8," -/," -/," -5/8,"," 5-/," and " Flange: -/" Return Lip: varies by stud size Standard Material Thicknesses: ProSTUD 5 / 5mil (5ga EQ ) 50ksi ProSTUD 0 / 9mil (0ga EQ ) 5ksi Non-Standard Material Thicknesses: ProSTUD 0XD / mil (0ga EQ) 5ksi ProSTUD 0MIL ksi ProSTUD MIL ksi All material G0 EQ (CP0 available as special order) ProSTUD Profile Shipping / Stacking Drywall Joint Gauges Return lips vary depending on stud size Low-pro le ange /8" Minimum edge distance ¾ / Diamondembossed web* ange locking of studs Flange grooves spaced at /8" O.C. ¾" wide knockout in Custom hole placement available ProTRAK *Except in -5/8" Web Widths: -5/8," -/," -/," -5/8,"," 5-/," and " Legs:," -/," -/,"," -/," and " Standard Material Thicknesses: ProTRAK 5 / 5mil (5ga EQ ) 50ksi ProTRAK 0 / 9mil (0ga EQ ) 50ksi Non-Standard Material Thicknesses: ProTRAK 0XD / mil (0ga EQ) 50ksi ProTRAK 0MIL ksi ProTRAK MIL ksi All material G0 EQ (CP0 available as special order)

14 ProSTUD ProSTUD Dimensions Member Minimum Thickness Design Thickness F y (ksi) F u (ksi) Web Depth Flange Width Return Lip PDS PDS PDS PDS PDS PDS PDS PDS PDS PDS PDS PDS PDS PDS PDS PDS PDS PDS PDS PDS PDS PDS PDS PDS PDS PDS PDS PDS PDS PDS PDS PDS PDS PDS PDS

15 ProSTUD ProSTUD Section Properties Member PDS5-5 Design Thickness F y (ksi) Gross Section Properties Effective Section Properties at Fy Torsional Properties Area Weight I x R x I y R y A e I x S x M a Va g Va net Jx000 C w X o R o (in ) (lb/ft) (in ) (in ) (in ) (in ) (in ) (in-lbs) (lb) (lb) (in ) (in ) PDS PDS PDS PDS PDS PDS PDS PDS PDS PDS PDS PDS PDS PDS PDS PDS PDS PDS PDS PDS PDS PDS PDS PDS PDS PDS PDS PDS PDS PDS PDS PDS PDS PDS Section Properties Table Notes - Calculated properties are based on AISI S00-0, North American Specification for Design of Cold-Formed Steel Structural Members. β L u - Effective properties incorporate the strength increase from the cold work of forming as applicable per AISI A.. - Tabulated gross properties including torsional properties are based on full-unreduced cross section of the studs, away from punchouts. - For deflection calculations, use the effective moment of inertia. - Allowable moment includes cold-work of forming. - Web depth for track sections is equal to the nominal height plus times the design thickness plus the bend radius. Hems on non-structural rack sections are ignored. - Allowable moment is taken as the lowest value based on local or distortional buckling. Distortional buckling strength is based on a k-phi = 0.. Web-height to thickness ratio exceeds 00.. Web-height to thickness ratio exceeds 0. 5

16 ProSTUD ProSTUD Allowable Web Crippling Loads (ProSTUD Non-Structural Drywall Studs) - Single Members (lbf) Design Yield Condition Condition Condition Condition Punchout Reductions Member Thickness Str Rc (EF) Rc (IF) PDS x <= x <=.0 50PDS x <= x <=.0 50PDS x <= x <=.0 PDS x <= x <=.0 00PDS x <= x <=.0 550PDS x <= x <=.0 00PDS x <= x <=.0 PDS x <= x <=.0 50PDS x <= x <=.0 50PDS x <= x <=.0 PDS x <= x <=.0 00PDS x <= x <=.0 550PDS x <= x <=.0 00PDS x <= x <=.0 PDS x <= x <=.0 50PDS x <= x <=.0 50PDS x <= x <=.0 PDS x <= x <=.0 00PDS x <= x <=.0 550PDS x <= x <=.0 00PDS x <= x <=.0 PDS x <= x <=.0 50PDS x <= x <=.0 50PDS x <= x <=.0 PDS x <= x <=.0 00PDS x <= x <=.0 550PDS x <= x <=.0 00PDS x <= x <=.0 PDS x <= x <=.0 50PDS x <= x <=.0 50PDS x <= x <=.0 PDS x <= x <=.0 00PDS x <= x <=.0 550PDS x <= x <=.0 00PDS x <= x <=.0

17 ProSTUD ProSTUD Allowable Web Crippling Loads (ProSTUD Non-Structural Drywall Studs) - Back-to-Back Members (lbf) Design Yield Condition Condition Condition Condition Punchout Reductions Member Thickness Str Rc (EF) Rc (IF) PDS x <= x <=.0 50PDS x <= x <=.0 50PDS x <= x <=.0 PDS x <= x <=.0 00PDS x <= x <=.0 550PDS x <= x <=.0 00PDS x <= x <=.0 PDS x <= x <=.0 50PDS x <= x <=.0 50PDS x <= x <=.0 PDS x <= x <=.0 00PDS x <= x <=.0 550PDS x <= x <=.0 00PDS x <= x <=.0 PDS x <= x <=.0 50PDS x <= x <=.0 50PDS x <= x <=.0 PDS x <= x <=.0 00PDS x <= x <=.0 550PDS x <= x <=.0 00PDS x <= x <=.0 PDS x <= x <=.0 50PDS x <= x <=.0 50PDS x <= x <=.0 PDS x <= x <=.0 00PDS x <= x <=.0 550PDS x <= x <=.0 00PDS x <= x <=.0 PDS x <= x <=.0 50PDS x <= x <=.0 50PDS x <= x <=.0 PDS x <= x <=.0 00PDS x <= x <=.0 550PDS x <= x <=.0 00PDS x <= x <=.0 Web Crippling Capacity Table Notes: - For punchout reductions, x = nearest distance between web hole and edge of bearing.. Web-height to thickness ratio, h/t, exceeds 00. Web-height to thickness ratio, h/t, exceeds 0. Bearing length to thickness ratio, N/t, exceeds 0. Bearing length to web height ratio, N/h, exceeds

18 ProSTUD ProSTUD Allowable Screw Connection Designation Thickness, Mils Design Thickness Yield Ultimate # Screw (0.8" Dia, 5/" Head) # Screw (0.5" Dia, 5/" Head) #8 Screw (0." Dia, 5/" Head) Shear, lbs -Side -Side Pullout, lbs Shear, lbs -Side -Side Pullout, lbs Shear, lbs -Side -Side Pullout, lbs PDS PDS PDS PDS PDS Designation Thickness, Mils Design Thickness Yield Ultimate #0 Screw (0.90" Dia, 0." Head) # Screw (0." Dia, 0." Head) /" Screw (0.50" Dia, 0.09" Head) Shear, lbs -Side -Side Pullout, lbs Shear, lbs -Side -Side Pullout, lbs Shear, lbs -Side -Side Pullout, lbs PDS PDS PDS PDS PDS Screw Capacity Table Notes: - Allowable screw connection capacities are based on Section E of the AISI S00-0 Specification. - When connecting materials of different steel thickness or tensile strengths, use the lowest values. Tabulated values assume two sheets of equal thickness are connected. - Screw shear and tension capacities were developed using published screw manufacturer data and evaluation reports available at the time of publication. - Screw capacities are based on Allowable Strength Design (ASD) and include a safety factor of.0. - When multiple fasteners are used, screws are assumed to have a center-to-center spacing of at least times the nominal diameter (d). - Screws are assumed to have a center-of-screw to edge-of-steel dimension of at least.5 times the nominal diameter (d) of the screw. - Tension capacity is based on the lesser of pullout capacity in sheet closest to screw tip, or pullover capacity for sheet closest to screw head (using head diameter). - Screw capacities are governed by a conservative estimate of screw capacity, not by sheet steel failure. - For higher screw capacities, especially for screw strength, use specific screws from specific manufacturer. See manufacturer's data for specific allowable values and installation instructions. 8

19 ProTRAK ProTRAK Section Properties Member Design Thickness F y (ksi) Gross Section Properties Effective Section Properties at Fy Torsional Properties Area Weight I x R x I y R y A e I x S x M a Va g Jx000 C w X o R o (in ) (lb/ft) (in ) (in ) (in ) (in ) (in ) (in-lbs) (lb) (in ) (in ) PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT β 00PDT

20 ProTRAK ProTRAK Section Properties Member Design Thickness F y (ksi) Gross Section Properties Effective Section Properties at Fy Torsional Properties (in ) (lb/ft) (in ) (in ) (in ) (in ) (in ) (in-lbs) (lb) (in ) (in ) PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT β 0

21 ProTRAK ProTRAK Section Properties Member Design Thickness F y (ksi) Gross Section Properties Effective Section Properties at Fy Torsional Properties Area Weight I x R x I y R y A e I x S x M a Va g Jx000 C w X o R o (in ) (lb/ft) (in ) (in ) (in ) (in ) (in ) (in-lbs) (lb) (in ) (in ) PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT β 00PDT

22 ProTRAK ProTRAK Section Properties Member Design Thickness Area Weight I x R x I y R y A e I x S x M a Va g Jx000 C w X o R o F y (ksi) (in ) (lb/ft) (in ) (in ) (in ) (in ) (in ) (in-lbs) (lb) (in ) (in ) β PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT

23 ProTRAK ProTRAK Section Properties Member Design F Area y Weight I x R x I y R y A e I x S x M a Va g Jx000 C w X o R o β 50PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT PDT Section Properties Table Notes - Calculated properties are based on AISI S00-0, North American Specification for Design of Cold-Formed Steel Structural Members. - Effective properties incorporate the strength increase from the cold work of forming as applicable per AISI A.. - Tabulated gross properties including torsional properties are based on full-unreduced cross section of the tracks. - For deflection calculations, use the effective moment of inertia. - Allowable moment includes cold-work of forming. - Web depth for track sections is equal to the nominal height plus times the design thickness plus the bend radius. Hems on non-structural track sections are ignored.. Web-height to thickness ratio exceeds 00.. Web-height to thickness ratio exceeds 0.

24 ProTRAK ProTRAK Allowable Lateral Loads and Wall Heights Deflection Track System t, in Fy, psi " Leg Track with /" Gap -/" Leg Track with /" Gap " Leg Track with " Gap Allowable Load Limiting Wall Height Allowable Load Limiting Wall Height Allowable Load Limiting Wall Height ProTRAK ' 8'' ' '' 8 5' '' ProTRAK ' '' 8 ' 5'' 9 8' '' ProTRAK ' '' 5 5' 5'' 8 ' '' ProTRAK ' '' 8' '' ' 9'' ProTRAK ' 0'' 5 ' '' 5 ' '' Notes: - Limiting wall heights are based on studs spaced at " O.C. and an interior lateral load of 5psf. - Stud members must be analyzed independently of the track system.

25 Allowable Combined Section Bending Properties & Axial Non-Structural Stud Member Design t Area (in ) Weight (lb/ft) lx (in ) Gross Effective Properties ksi Torsional Properties Sx (in ) Rx ly (in ) Ry lx (in ) Sx (in ) Ma (in-k) Vag (lb) Vanet (lb) Jx000 (in ) Cw (in ) Xo m Ro Beta S S S S S S S S S S S S S S S S S5-8,* S S S Web-height to thickness ratio exceeds 00. Web Stiffeners are required at all support points and concentrated loads. * Section exceeds web height to width limit, only gross properties available. 5 Table Notes on Page 9-9

26 Section Properties Non-Structural Track Member Design Gross Effective Properties ksi Torsional Properties t Area (in ) Weight (lb/ft) lx (in ) Sx (in ) Rx ly (in ) Ry lx (in ) Sx (in ) Ma (in-k) Vag (lb) Jx000 (in ) Cw (in ) Xo m Ro Beta T T T T T T T T T T T T T T T T T ZT T T T T T T T T T T T T T T T T00-8,* T T T T T T T Web-height to thickness ratio exceeds 00. Web Stiffeners are required at all support points and concentrated loads. * Section exceeds web height to width limit, only gross properties available. Table Notes on Pages 9-9

27 ProSTUD ProSTUD Non-Composite Limiting Heights - Fully Braced Member Design Thickness Yield Strength (ksi) Spacing o/c Lateral Load (psf) Depth 5 PSF.5 PSF 0 PSF L/0 L/0 L/0 L/0 L/0 L/0 L/0 L/0 L/0 L/0 L/0 L/0 PDS '-'' '-'' '-'' 8'-0'' '-'' 5'-'' '-'' 5'-9'' 5'-'' 5'-8'' 5'-'' '-5'' PDS5-5 -5/8" '-'' '-8'' 5'-9'' '-'' 5'-9'' 5'-'' '-0'' 5'-'' '-'' '-'' '-'' '-0'' PDS '-'' 5'-9'' 5'-'' 5'-8'' 5'-'' '-5'' '-'' '-'' '-0'' '-0'' '-0'' '-'' 50PDS '-8'' 0'-'' 8'-'' 0'-'' 8'-'' '-9'' 8'-'' 8'-'' '-'' '-'' '-'' '-'' 50PDS5-5 -/" '-'' 9'-'' 8'-'' 8'-'' 8'-'' '-'' '-9'' '-'' '-5'' '-'' '-'' 5'-'' 50PDS '-'' 8'-'' '-'' '-'' '-'' '-'' '-'' '-'' 5'-'' '-'' (5'-'') '-'' (5'-'') '-'' ('-'') 50PDS '-9'' '-'' '-'' '-0'' '-'' 0'-'' 0'-5'' 0'-5'' 9'-'' '-5'' (8'-'') '-5'' (8'-'') '-5'' (8'-0'') 50PDS5-5 -/" '-9'' '-0'' 0'-'' 0'-5'' 0'-5'' 9'-'' 8'-'' (9'-0'') 8'-'' (9'-0'') 8'-'' (8'-'') 5'-'' ('-'') 5'-'' ('-'') 5'-'' ('-'') 50PDS '-5'' 0'-5'' 9'-'' '-5'' (8'-'') '-5'' (8'-'') '-5'' (8'-0'') 5'-'' ('-'') 5'-'' ('-'') 5'-'' ('-'') '-8'' ('-0'') '-8'' ('-0'') '-8'' ('-0'') PDS '-0'' '-'' '-0'' '-'' '-0'' 0'-'' 0'-'' (0'-'') 0'-'' (0'-'') 9'-5'' '-'' (8'-8'') '-'' (8'-8'') '-'' (8'-'') PDS5-5 -5/8" '-0'' '-'' 0'-9'' 0'-'' (0'-'') 0'-'' (0'-'') 9'-5'' '-'' (9'-'') '-'' (9'-'') '-'' (8'-'') 5'-'' ('-'') 5'-'' ('-'') 5'-'' ('-5'') PDS '-'' (0'-'') 0'-'' (0'-'') 9'-5'' '-'' (8'-8'') '-'' (8'-8'') '-'' (8'-'') 5'-'' ('-'') 5'-'' ('-'') 5'-'' ('-5'') '-'' ('-'') '-'' ('-'') '-'' ('-'') 00PDS '-9'' '-'' '-8'' '-'' ('-'') '-'' ('-8'') '-'' 9'-'' ('-'') 9'-'' ('-'') 9'-'' (0'-'') '-'' (9'-'') '-'' (9'-'') '-'' (8'-9'') 00PDS5-5 " '-8'' '-'' '-'' 9'-'' ('-'') 9'-'' ('-'') 9'-'' (0'-'') '-0'' (9'-8'') '-0'' (9'-8'') '-0'' (9'-'') '-8'' ('-'') '-8'' ('-'') '-8'' ('-'') 00PDS '-'' ('-'') 9'-'' ('-'') 9'-'' (0'-'') '-'' (9'-'') '-'' (9'-'') '-'' (8'-9'') '-8'' ('-'') '-8'' ('-'') '-8'' ('-'') '-'' ('-0'') '-'' ('-0'') '-'' ('-0'') PDS '-'' '-0'' '-0'' 8'-8'' '-0'' '-0'' '-0'' '-'' 5'-5'' '-0'' 5'-5'' '-9'' PDS5-9 -5/8" '-0'' '-'' '-'' '-0'' '-'' 5'-5'' '-'' 5'-8'' '-'' '-'' '-'' '-'' PDS '-0'' '-'' 5'-5'' '-0'' 5'-5'' '-9'' '-'' '-'' '-'' 5'-'' '-'' '-9'' 50PDS '-0'' '-'' 9'-8'' '-'' 9'-8'' 8'-'' '-'' 8'-0'' '-8'' 9'-8'' '-8'' '-9'' 50PDS5-9 -/" '-8'' 0'-'' 8'-0'' '-'' 8'-0'' '-8'' 0'-'' 8'-0'' '-0'' 8'-5'' '-0'' '-'' 50PDS '-'' 8'-0'' '-8'' 9'-8'' '-8'' '-9'' 8'-5'' '-0'' '-'' '-0'' '-'' 5'-'' 50PDS '-'' '-'' '-8'' '-0'' '-8'' '-'' '-'' '-'' 0'-'' '-'' 0'-'' 8'-0'' 50PDS5-9 -/" '-'' '-'' '-'' '-'' '-'' 0'-'' '-'' 0'-'' 9'-'' 0'-0'' 9'-'' 8'-0'' 50PDS '-'' '-'' 0'-'' '-'' 0'-'' 8'-0'' 0'-0'' 9'-'' 8'-0'' 8'-'' 8'-0'' '-0'' PDS '-0'' '-'' '-0'' '-5'' '-0'' '-5'' '-5'' '-0'' 0'-'' '-9'' 0'-'' 9'-0'' PDS5-9 -5/8" '-'' '-'' '-0'' '-5'' '-0'' 0'-'' '-5'' 0'-9'' 9'-5'' 0'-'' 9'-5'' 8'-'' PDS '-5'' '-0'' 0'-'' '-9'' 0'-'' 9'-0'' 0'-'' 9'-5'' 8'-'' 8'-'' (8'-'') 8'-'' (8'-'') '-'' 00PDS '-'' '-'' '-0'' '-8'' '-0'' '-'' 5'-'' '-9'' '-'' '-'' '-'' 9'-9'' 00PDS5-9 " '-5'' '-'' '-9'' 5'-'' '-9'' '-'' '-'' '-'' 0'-'' 0'-0'' 0'-'' 8'-0'' 00PDS '-'' '-9'' '-'' '-'' '-'' 9'-9'' 0'-0'' 0'-'' 8'-0'' 8'-0'' 8'-0'' '-9'' PDS '-'' 8'-'' '-'' 9'-'' '-'' '-'' 8'-'' '-'' 5'-9'' '-'' 5'-9'' 5'-0'' PDS5- -5/8" '-'' '-'' '-'' 8'-'' '-'' 5'-9'' '-'' '-0'' 5'-'' '-'' 5'-'' '-'' PDS '-'' '-'' 5'-9'' '-'' 5'-9'' 5'-0'' '-'' 5'-'' '-'' 5'-5'' '-'' '-0'' 50PDS '-'' '-'' 0'-0'' '-8'' 0'-0'' 8'-9'' '-'' 9'-'' '-'' 9'-'' '-'' '-'' 50PDS5- -/" '-'' 0'-5'' 9'-'' '-'' 9'-'' '-'' 0'-5'' 8'-'' '-'' 8'-'' '-'' '-'' 50PDS '-'' 9'-'' '-'' 9'-'' '-'' '-'' 8'-'' '-'' '-'' '-0'' '-'' 5'-'' 50PDS '-0'' 5'-0'' '-'' '-'' '-'' '-5'' '-'' '-'' 0'-5'' '-'' 0'-5'' 9'-'' 50PDS5- -/" '-'' '-'' '-'' '-'' '-'' 0'-5'' '-'' 0'-0'' 9'-5'' 0'-0'' 9'-5'' 8'-'' 50PDS '-'' '-'' 0'-5'' '-'' 0'-5'' 9'-'' 0'-0'' 9'-5'' 8'-'' 8'-'' 8'-'' '-'' PDS '-5'' 5'-5'' '-5'' '-8'' '-5'' '-9'' '-5'' '-'' 0'-8'' '-9'' 0'-8'' 9'-'' PDS5- -5/8" '-8'' '-0'' '-'' '-5'' '-'' 0'-8'' '-'' '-'' 9'-8'' 0'-'' 9'-8'' 8'-'' PDS '-5'' '-'' 0'-8'' '-9'' 0'-8'' 9'-'' 0'-'' 9'-8'' 8'-'' 8'-'' 8'-'' '-5'' 00PDS '-0'' '-8'' '-'' '-'' '-'' '-9'' 5'-'' '-'' '-'' '-5'' '-'' 0'-'' 00PDS5- " '-'' 5'-'' '-'' 5'-'' '-'' '-'' '-'' '-0'' 0'-'' 0'-9'' 0'-'' 9'-'' 00PDS '-'' '-'' '-'' '-5'' '-'' 0'-'' 0'-9'' 0'-'' 9'-'' 8'-9'' 8'-9'' 8'-0'' 550PDS '-9'' 0'-9'' 8'-'' '-0'' 8'-'' 5'-0'' 8'-'' '-'' '-5'' '-0'' '-5'' '-'' 550PDS5-5-/" '-'' 8'-0'' '-'' 8'-'' '-'' '-5'' 5'-9'' '-'' '-'' '-'' ('-0'') '-'' ('-0'') '-'' ('-5'') 550PDS '-'' '-'' '-5'' '-0'' '-5'' '-'' '-'' ('-0'') '-'' ('-0'') '-'' ('-5'') '-'' (0'-'') '-'' (0'-'') '-'' (0'-0'') 00PDS '-0'' '-'' 9'-'' '-'' 9'-'' '-'' 9'-0'' '-'' 5'-'' '-'' (5'-'') '-'' (5'-'') '-5'' 00PDS5- " '-'' 0'-'' '-'' 9'-0'' '-'' 5'-'' 5'-'' ('-5'') 5'-'' ('-0'') '-0'' 0'-'' ('-5'') 0'-'' ('-5'') 0'-'' ('-'') 00PDS '-0'' '-'' 5'-'' '-'' (5'-'') '-'' (5'-'') '-5'' 0'-'' ('-5'') 0'-'' ('-5'') 0'-'' ('-'') '-9'' ('-0'') '-9'' ('-0'') '-9'' (0'-8'') 5 PSF

28 ProSTUD ProSTUD Non-Composite Limiting Heights - Fully Braced Member Depth Design Thickness Yield Strength (ksi) Spacing o/c 5 PSF.5 PSF Lateral Load (psf) L/0 L/0 L/0 L/0 L/0 L/0 L/0 L/0 L/0 L/0 L/0 L/0 PDS '-0'' 9'-5'' 8'-'' 0'-'' 8'-'' '-'' 9'-5'' '-'' '-'' '-8'' '-'' 5'-8'' PDS5-0 -5/8" 0.0 0'-9'' 8'-'' '-'' 9'-5'' '-'' '-'' 8'-'' '-9'' 5'-'' '-8'' 5'-'' 5'-'' PDS '-5'' '-'' '-'' '-8'' '-'' 5'-8'' '-8'' 5'-'' 5'-'' 5'-5'' 5'-'' '-'' 50PDS '-5'' '-0'' '-'' '-'' '-'' 9'-'' '-'' 0'-'' 9'-0'' 0'-'' 9'-0'' '-'' 50PDS5-0 -/" 0.0 '-'' '-0'' 0'-'' '-'' 0'-'' 9'-0'' 0'-0'' 9'-5'' 8'-'' 8'-0'' 8'-'' '-'' 50PDS '-'' 0'-'' 9'-0'' 0'-'' 9'-0'' '-'' 8'-0'' 8'-'' '-'' '-'' '-'' '-'' 50PDS '-9'' '-0'' '-9'' '-'' '-9'' '-0'' '-8'' '-'' '-8'' '-0'' '-8'' 0'-'' 50PDS5-0 -/" 0.0 8'-0'' 5'-'' '-'' '-8'' '-'' '-8'' '-9'' '-'' 0'-'' 0'-5'' 0'-5'' 9'-'' 50PDS '-8'' '-'' '-8'' '-0'' '-8'' 0'-'' 0'-5'' 0'-5'' 9'-'' 8'-'' 8'-'' 8'-'' PDS '-'' '-'' 5'-'' '-'' 5'-'' '-'' 5'-0'' '-9'' '-0'' '-'' '-0'' 0'-'' PDS5-0 -5/8" 0.0 8'-'' 5'-9'' '-9'' 5'-0'' '-9'' '-0'' '-'' '-'' 0'-'' 0'-'' 0'-'' 9'-'' PDS '-0'' '-9'' '-0'' '-'' '-0'' 0'-'' 0'-'' 0'-'' 9'-'' 8'-8'' 8'-8'' 8'-'' 00PDS '-'' 8'-8'' '-'' 8'-'' '-'' '-'' 5'-9'' '-0'' '-0'' '-'' '-'' '-'' 00PDS5-0 " 0.0 9'-'' '-0'' '-0'' 5'-9'' '-0'' '-0'' '-8'' '-'' '-9'' '-'' '-'' 0'-'' 00PDS '-9'' '-0'' '-0'' '-'' '-'' '-'' '-'' '-'' 0'-'' 9'-'' 9'-'' 9'-0'' 550PDS '-'' '-'' 0'-'' '-'' 0'-'' 8'-'' 9'-'' 9'-0'' '-'' 5'-8'' 5'-8'' '-'' 550PDS5-0 5-/" 0.0 '-'' '-9'' 9'-0'' 9'-'' 9'-0'' '-'' '-8'' '-8'' 5'-'' '-'' '-'' '-'' 550PDS '-'' 9'-0'' '-'' 5'-8'' 5'-8'' '-'' '-'' '-'' '-'' '-'' '-'' '-'' 00PDS '-'' 5'-'' '-'' '-'' '-'' 9'-'' 0'-'' 0'-'' '-9'' '-'' '-'' 5'-'' 00PDS5-0 " 0.0 '-'' '-'' 0'-'' 0'-'' 0'-'' '-9'' '-'' '-'' '-'' '-'' '-'' '-'' 00PDS '-'' 0'-'' '-9'' '-'' '-'' 5'-'' '-'' '-'' '-'' '-'' '-'' '-'' PDS5-0.0 '-'' 9'-9'' 8'-'' 0'-8'' 8'-'' '-5'' 9'-9'' '-9'' '-9'' 8'-'' '-9'' 5'-'' PDS5- -5/8" 0.0 '-'' 8'-0'' '-9'' 9'-9'' '-9'' '-9'' 8'-9'' '-0'' '-'' '-'' '-'' 5'-'' PDS '-9'' '-9'' '-9'' 8'-'' '-9'' 5'-'' '-'' '-'' 5'-'' 5'-0'' 5'-'' '-8'' 50PDS5-0.0 '-'' '-5'' '-9'' '-0'' '-9'' 0'-'' '-5'' 0'-8'' 9'-'' 0'-'' 9'-'' 8'-'' 50PDS5- -/" 0.0 5'-5'' '-'' 0'-8'' '-5'' 0'-8'' 9'-'' '-'' 9'-8'' 8'-'' 9'-'' 8'-'' '-5'' 50PDS5-0.0 '-5'' 0'-8'' 9'-'' 0'-'' 9'-'' 8'-'' 9'-'' 8'-'' '-5'' '-9'' '-5'' '-'' 50PDS5-0.0 '-0'' '-5'' 5'-'' 8'-'' 5'-'' '-'' 5'-'' '-0'' '-'' '-0'' '-'' 0'-'' 50PDS5- -/" 0.0 9'-'' 5'-0'' '-0'' 5'-'' '-0'' '-'' '-9'' '-'' '-0'' '-'' '-0'' 9'-'' 50PDS '-'' '-0'' '-'' '-0'' '-'' 0'-'' '-'' '-0'' 9'-'' 9'-'' 9'-'' 8'-5'' PDS5-0.0 '-'' '-'' 5'-8'' 8'-9'' 5'-8'' '-8'' '-'' '-'' '-5'' '-'' '-5'' 0'-0'' PDS5- -5/8" 0.0 9'-0'' '-'' '-'' '-'' '-'' '-5'' '-0'' '-'' '-'' '-'' '-'' 9'-0'' PDS5-0.0 '-'' '-'' '-5'' '-'' '-5'' 0'-0'' '-'' '-'' 9'-0'' 9'-'' 9'-'' 8'-'' 00PDS5-0.0 '-'' 9'-'' '-'' 9'-9'' '-'' '-9'' '-'' 5'-'' '-5'' '-0'' '-5'' '-9'' 00PDS5- " 0.0 '-0'' '-'' 5'-'' '-'' 5'-'' '-5'' '-0'' '-'' '-'' '-'' '-'' 0'-8'' 00PDS5-0.0 '-'' 5'-'' '-5'' '-0'' '-5'' '-9'' '-'' '-'' 0'-8'' 9'-'' 9'-'' 9'-'' 550PDS '-'' '-0'' '-8'' '-'' '-8'' 8'-'' 0'-9'' 9'-8'' '-'' '-'' '-'' 5'-0'' 550PDS5-5-/" 0.0 5'-5'' '-'' 9'-8'' 0'-9'' 9'-8'' '-'' '-'' '-'' 5'-8'' '-8'' '-8'' '-8'' 550PDS '-9'' 9'-8'' '-'' '-'' '-'' 5'-0'' '-8'' '-8'' '-8'' '-0'' '-0'' '-'' 00PDS '-'' '-'' '-'' 5'-0'' '-'' 0'-'' '-8'' '-'' 8'-5'' '-8'' '-8'' '-'' 00PDS5- " 0.0 '-'' '-'' '-'' '-8'' '-'' 8'-5'' 8'-9'' 8'-9'' '-9'' 5'-'' 5'-'' '-'' 00PDS5-0.0 '-8'' '-'' 8'-5'' '-8'' '-8'' '-'' 5'-'' 5'-'' '-'' '-'' '-'' '-'' 0 PSF 5 PSF Fully Braced Non-Composite Limiting Heights Table Notes - Heights are based on 00 North American Specification S00-0 using steel properties alone. - Above listed Non-Composite Limiting Heights is applicable when the unbraced length is less than or equal to L u. - Heights not in parentheses are limited by moment, deflection, shear, and web crippling (assuming " end reaction bearing). - Heights in parentheses are limited by moment, deflection, and shear, and require end bearing stiffeners in order to achieve the indicated height.. Depth over thickness (h/t) ratio is greater than 00. 8

29 ProSTUD ProSTUD Non-Composite Limiting Heights - 8" o.c. Bracing Member Depth Design Thickness Yield Strength (ksi) Spacing o/c Lateral Load (psf) 5 PSF.5 PSF 0 PSF L/0 L/0 L/0 L/0 L/0 L/0 L/0 L/0 L/0 L/0 L/0 L/0 PDS '-'' '-'' '-'' '-'' '-'' 5'-'' 5'-9'' 5'-9'' 5'-'' '-8'' '-8'' '-5'' PDS5-5 -5/8" '-0'' '-8'' 5'-9'' 5'-9'' 5'-9'' 5'-'' '-'' '-'' '-'' '-0'' '-0'' '-0'' PDS '-9'' 5'-9'' 5'-'' '-8'' '-8'' '-5'' '-0'' '-0'' '-0'' '-'' '-'' '-'' 50PDS '-5'' 0'-'' 8'-'' 8'-'' 8'-'' '-9'' '-'' '-'' '-'' '-0'' '-0'' '-0'' 50PDS5-5 -/" '-0'' 9'-0'' 8'-'' '-'' '-'' '-'' '-5'' '-5'' '-5'' 5'-'' 5'-'' 5'-'' 50PDS '-'' '-'' '-'' '-0'' '-0'' '-0'' 5'-'' 5'-'' 5'-'' '-'' ('-'') '-'' ('-'') '-'' ('-'') 50PDS '-'' '-'' '-'' 9'-'' 9'-'' 9'-'' 8'-'' 8'-'' 8'-'' '-0'' '-0'' '-0'' 50PDS5-5 -/" '-'' 0'-'' 0'-'' 8'-'' 8'-'' 8'-'' '-5'' '-5'' '-5'' 5'-'' ('-'') 5'-'' ('-'') 5'-'' ('-'') 50PDS '-'' 8'-'' 8'-'' '-0'' '-0'' '-0'' 5'-'' ('-'') 5'-'' ('-'') 5'-'' ('-'') '-8'' (5'-0'') '-8'' (5'-0'') '-8'' (5'-0'') PDS '-5'' '-5'' '-0'' 0'-'' 0'-'' 0'-'' 8'-9'' 8'-9'' 8'-9'' '-'' ('-'') '-'' ('-'') '-'' ('-'') PDS5-5 -5/8" '-9'' 0'-9'' 0'-9'' 8'-9'' 8'-9'' 8'-9'' '-'' '-'' '-'' 5'-'' ('-'') 5'-'' ('-'') 5'-'' ('-'') PDS '-9'' 8'-9'' 8'-9'' '-'' ('-'') '-'' ('-'') '-'' ('-'') 5'-'' ('-'') 5'-'' ('-'') 5'-'' ('-'') '-'' (5'-'') '-'' (5'-'') '-'' (5'-'') 00PDS '-0'' '-0'' '-8'' 0'-8'' 0'-8'' 0'-8'' 9'-'' 9'-'' 9'-'' '-'' ('-'') '-'' ('-'') '-'' ('-'') 00PDS5-5 " '-'' '-'' '-'' 9'-'' 9'-'' 9'-'' '-0'' (8'-0'') '-0'' (8'-0'') '-0'' (8'-0'') '-8'' ('-'') '-8'' ('-'') '-8'' ('-'') 00PDS '-'' 9'-'' 9'-'' '-'' ('-'') '-'' ('-'') '-'' ('-'') '-8'' ('-'') '-8'' ('-'') '-8'' ('-'') '-'' (5'-'') '-'' (5'-'') '-'' (5'-'') PDS '-'' '-0'' '-0'' 8'-'' '-0'' '-0'' '-'' '-'' 5'-5'' '-0'' 5'-5'' '-9'' PDS5-9 -5/8" '-0'' '-'' '-'' '-'' '-'' 5'-5'' '-'' 5'-8'' '-'' 5'-'' '-'' '-'' PDS '-'' '-'' 5'-5'' '-0'' 5'-5'' '-9'' 5'-'' '-'' '-'' '-'' '-'' '-9'' 50PDS '-0'' '-'' 9'-8'' '-'' 9'-8'' 8'-'' 9'-9'' 8'-0'' '-8'' 8'-0'' '-8'' '-9'' 50PDS5-9 -/" '-0'' 0'-'' 8'-0'' 9'-9'' 8'-0'' '-8'' 8'-'' 8'-0'' '-0'' '-'' '-'' '-'' 50PDS '-9'' 8'-0'' '-8'' 8'-0'' '-8'' '-9'' '-'' '-'' '-'' 5'-8'' 5'-8'' 5'-'' 50PDS '-'' '-'' '-8'' '-5'' '-8'' '-'' '-8'' '-'' 0'-'' 9'-'' 9'-'' 8'-0'' 50PDS5-9 -/" '-'' '-'' '-'' '-8'' '-'' 0'-'' 0'-'' 0'-'' 9'-'' 8'-'' 8'-'' 8'-0'' 50PDS '-8'' '-'' 0'-'' 9'-'' 9'-'' 8'-0'' 8'-'' 8'-'' 8'-0'' '-9'' '-9'' '-9'' PDS '-9'' '-'' '-0'' '-8'' '-0'' '-5'' '-0'' '-0'' 0'-'' 9'-8'' 9'-8'' 9'-0'' PDS5-9 -5/8" '-'' '-'' '-0'' '-0'' '-0'' 0'-'' 0'-'' 0'-'' 9'-5'' 8'-5'' 8'-5'' 8'-'' PDS '-0'' '-0'' 0'-'' 9'-8'' 9'-8'' 9'-0'' 8'-5'' 8'-5'' 8'-'' '-0'' '-0'' '-0'' 00PDS '-'' '-'' '-0'' '-'' '-0'' '-'' '-8'' '-8'' '-'' 0'-'' 0'-'' 9'-9'' 00PDS5-9 " '-'' '-'' '-9'' '-8'' '-8'' '-'' '-0'' '-0'' 0'-'' 8'-'' 8'-'' 8'-0'' 00PDS '-8'' '-8'' '-'' 0'-'' 0'-'' 9'-9'' 8'-'' 8'-'' 8'-0'' '-'' '-'' '-'' PDS '-'' 8'-'' '-'' 8'-0'' '-'' '-'' '-8'' '-'' 5'-9'' '-'' 5'-9'' 5'-0'' PDS5- -5/8" '-5'' '-'' '-'' '-8'' '-'' 5'-9'' '-8'' '-0'' 5'-'' 5'-5'' 5'-'' '-'' PDS '-8'' '-'' 5'-9'' '-'' 5'-9'' 5'-0'' 5'-5'' 5'-'' '-'' '-5'' '-5'' '-0'' 50PDS '-'' '-'' 0'-0'' '-'' 0'-0'' 8'-9'' 0'-'' 9'-'' '-'' 8'-'' '-'' '-'' 50PDS5- -/" '-'' 0'-5'' 9'-'' 0'-'' 9'-'' '-'' 8'-8'' 8'-'' '-'' '-'' '-'' '-'' 50PDS '-'' 9'-'' '-'' 8'-'' '-'' '-'' '-'' '-'' '-'' 5'-0'' 5'-0'' 5'-'' 50PDS '-'' 5'-0'' '-'' '-'' '-'' '-5'' '-8'' '-8'' 0'-5'' 9'-'' 9'-'' 9'-'' 50PDS5- -/" '-'' '-'' '-'' '-8'' '-8'' 0'-5'' 0'-'' 0'-'' 9'-5'' 8'-'' 8'-'' 8'-'' 50PDS '-8'' '-8'' 0'-5'' 9'-'' 9'-'' 9'-'' 8'-'' 8'-'' 8'-'' '-9'' '-9'' '-9'' PDS '-0'' 5'-5'' '-5'' '-9'' '-5'' '-9'' '-'' '-'' 0'-8'' 9'-9'' 9'-9'' 9'-'' PDS5- -5/8" '-'' '-0'' '-'' '-'' '-'' 0'-8'' 0'-'' 0'-'' 9'-8'' 8'-5'' 8'-5'' 8'-5'' PDS '-'' '-'' 0'-8'' 9'-9'' 9'-9'' 9'-'' 8'-5'' 8'-5'' 8'-5'' '-0'' '-0'' '-0'' 00PDS '-9'' '-8'' '-'' '-'' '-'' '-9'' '-'' '-'' '-'' 0'-'' 0'-'' 0'-'' 00PDS5- " '-'' 5'-'' '-'' '-'' '-'' '-'' 0'-0'' 0'-0'' 0'-'' 8'-0'' 8'-0'' 8'-0'' 00PDS '-'' '-'' '-'' 0'-'' 0'-'' 0'-'' 8'-0'' 8'-0'' 8'-0'' '-'' '-'' '-'' 550PDS '-'' 0'-9'' 8'-'' '-'' '-'' 5'-0'' 5'-0'' 5'-0'' '-5'' '-'' '-'' '-'' 550PDS5-5-/" '-'' 8'-'' '-'' 5'-0'' 5'-0'' '-5'' '-0'' '-0'' '-0'' 0'-'' 0'-'' 0'-'' 550PDS '-0'' 5'-0'' '-5'' '-'' '-'' '-'' 0'-'' 0'-'' 0'-'' '-'' (8'-8'') '-'' (8'-8'') '-'' (8'-8'') 00PDS '-'' '-'' 9'-'' 8'-'' 8'-'' '-'' 5'-8'' 5'-8'' 5'-'' '-9'' '-9'' '-9'' 00PDS5- " '-'' 9'-'' '-'' 5'-8'' 5'-8'' 5'-'' '-'' '-'' '-'' 0'-'' ('-'') 0'-'' ('-'') 0'-'' ('-'') 00PDS '-8'' 5'-8'' 5'-'' '-9'' '-9'' '-9'' 0'-'' ('-'') 0'-'' ('-'') 0'-'' ('-'') '-9'' (9'-0'') '-9'' (9'-0'') '-9'' (9'-0'') 5 PSF 9

30 ProSTUD ProSTUD Non-Composite Limiting Heights - 8" o.c. Bracing Member Depth Design Thickness Yield Strength (ksi) Spacing o/c Lateral Load (psf) 5 PSF.5 PSF 0 PSF L/0 L/0 L/0 L/0 L/0 L/0 L/0 L/0 L/0 L/0 L/0 L/0 PDS '-0'' 9'-5'' 8'-'' 0'-'' 8'-'' '-'' 8'-'' '-'' '-'' '-'' '-'' 5'-8'' PDS5-0 -5/8" 0.0 0'-9'' 8'-'' '-'' 8'-'' '-'' '-'' '-8'' '-9'' 5'-'' '-'' 5'-'' 5'-'' PDS '-'' '-'' '-'' '-'' '-'' 5'-8'' '-'' 5'-'' 5'-'' 5'-'' 5'-'' '-'' 50PDS '-5'' '-0'' '-'' '-8'' '-'' 9'-'' '-0'' 0'-'' 9'-0'' 9'-8'' 9'-0'' '-'' 50PDS5-0 -/" 0.0 '-'' '-0'' 0'-'' '-0'' 0'-'' 9'-0'' 0'-'' 9'-5'' 8'-'' 8'-'' 8'-'' '-'' 50PDS '-0'' 0'-'' 9'-0'' 9'-8'' 9'-0'' '-'' 8'-'' 8'-'' '-'' '-0'' '-0'' '-'' 50PDS '-'' '-0'' '-9'' '-0'' '-9'' '-0'' '-0'' '-'' '-8'' '-'' '-'' 0'-'' 50PDS5-0 -/" 0.0 '-0'' 5'-'' '-'' '-0'' '-'' '-8'' '-0'' '-0'' 0'-'' 9'-9'' 9'-9'' 9'-'' 50PDS '-0'' '-'' '-8'' '-'' '-'' 0'-'' 9'-9'' 9'-9'' 9'-'' 8'-0'' 8'-0'' 8'-0'' PDS '-0'' '-'' 5'-'' '-'' 5'-'' '-'' '-'' '-9'' '-0'' '-'' '-'' 0'-'' PDS5-0 -5/8" 0.0 '-'' 5'-9'' '-9'' '-'' '-9'' '-0'' '-'' '-'' 0'-'' 0'-0'' 0'-0'' 9'-'' PDS '-'' '-9'' '-0'' '-'' '-'' 0'-'' 0'-0'' 0'-0'' 9'-'' 8'-'' 8'-'' 8'-'' 00PDS '-'' 8'-8'' '-'' '-'' '-'' '-'' '-'' '-0'' '-0'' '-'' '-'' '-'' 00PDS5-0 " 0.0 8'-'' '-0'' '-0'' '-'' '-0'' '-0'' '-'' '-'' '-9'' 0'-'' 0'-'' 0'-'' 00PDS '-'' '-0'' '-0'' '-'' '-'' '-'' 0'-'' 0'-'' 0'-'' 8'-'' 8'-'' 8'-'' 550PDS '-8'' '-'' 0'-'' 0'-'' 0'-'' 8'-'' 8'-'' 8'-'' '-'' '-0'' '-0'' '-'' 550PDS5-0 5-/" 0.0 '-'' '-9'' 9'-0'' 8'-'' 8'-'' '-'' 5'-8'' 5'-8'' 5'-'' '-0'' '-0'' '-0'' 550PDS '-'' 8'-'' '-'' '-0'' '-0'' '-'' '-0'' '-0'' '-0'' 0'-'' 0'-'' 0'-'' 00PDS '-9'' 5'-'' '-'' '-0'' '-0'' 9'-'' 8'-'' 8'-'' '-9'' 5'-5'' 5'-5'' 5'-5'' 00PDS5-0 " 0.0 '-'' '-'' 0'-'' 8'-'' 8'-'' '-9'' '-5'' '-5'' '-'' '-5'' '-5'' '-5'' 00PDS '-'' 8'-'' '-9'' 5'-5'' 5'-5'' 5'-5'' '-5'' '-5'' '-5'' 0'-'' 0'-'' 0'-'' PDS5-0.0 '-'' 9'-9'' 8'-'' 0'-8'' 8'-'' '-5'' 9'-5'' '-9'' '-9'' '-8'' '-9'' 5'-'' PDS5- -5/8" 0.0 '-'' 8'-0'' '-9'' 9'-5'' '-9'' '-9'' 8'-'' '-0'' '-'' '-8'' '-'' 5'-'' PDS '-5'' '-9'' '-9'' '-8'' '-9'' 5'-'' '-8'' '-'' 5'-'' 5'-5'' 5'-'' '-8'' 50PDS5-0.0 '-'' '-5'' '-9'' '-'' '-9'' 0'-'' '-5'' 0'-8'' 9'-'' 0'-'' 9'-'' 8'-'' 50PDS5- -/" 0.0 5'-'' '-'' 0'-8'' '-5'' 0'-8'' 9'-'' 0'-9'' 9'-8'' 8'-'' 8'-0'' 8'-'' '-5'' 50PDS5-0.0 '-5'' 0'-8'' 9'-'' 0'-'' 9'-'' 8'-'' 8'-0'' 8'-'' '-5'' '-'' '-'' '-'' 50PDS '-0'' '-5'' 5'-'' '-0'' 5'-'' '-'' '-9'' '-0'' '-'' '-0'' '-0'' 0'-'' 50PDS5- -/" 0.0 8'-'' 5'-0'' '-0'' '-9'' '-0'' '-'' '-9'' '-'' '-0'' 0'-5'' 0'-5'' 9'-'' 50PDS5-0.0 '-9'' '-0'' '-'' '-0'' '-0'' 0'-'' 0'-5'' 0'-5'' 9'-'' 8'-'' 8'-'' 8'-5'' PDS5-0.0 '-'' '-'' 5'-8'' '-'' 5'-8'' '-8'' 5'-0'' '-'' '-5'' '-'' '-'' 0'-0'' PDS5- -5/8" 0.0 8'-5'' '-'' '-'' 5'-0'' '-'' '-5'' '-0'' '-'' '-'' 0'-8'' 0'-8'' 9'-0'' PDS '-0'' '-'' '-5'' '-'' '-'' 0'-0'' 0'-8'' 0'-8'' 9'-0'' 8'-8'' 8'-8'' 8'-'' 00PDS5-0.0 '-5'' 9'-'' '-'' 8'-'' '-'' '-9'' 5'-0'' 5'-'' '-5'' '-0'' '-0'' '-9'' 00PDS5- " 0.0 9'-5'' '-'' 5'-'' 5'-0'' 5'-'' '-5'' '-9'' '-9'' '-'' '-'' '-'' 0'-8'' 00PDS '-0'' 5'-'' '-5'' '-0'' '-0'' '-9'' '-'' '-'' 0'-8'' 9'-'' 9'-'' 9'-'' 550PDS5-0.0 '-'' '-0'' '-8'' '-'' '-8'' 8'-'' 9'-'' 9'-'' '-'' 5'-8'' 5'-8'' 5'-0'' 550PDS5-5-/" 0.0 '-'' '-'' 9'-8'' 9'-'' 9'-'' '-'' '-8'' '-8'' 5'-8'' '-'' '-'' '-'' 550PDS '-'' 9'-'' '-'' 5'-8'' 5'-8'' 5'-0'' '-'' '-'' '-'' '-'' '-'' '-'' 00PDS '-'' '-'' '-'' '-'' '-'' 0'-'' 0'-'' 0'-'' 8'-5'' '-5'' '-5'' '-'' 00PDS5- " 0.0 '-'' '-'' '-'' 0'-'' 0'-'' 8'-5'' '-5'' '-5'' '-9'' '-'' '-'' '-'' 00PDS '-'' 0'-'' 8'-5'' '-5'' '-5'' '-'' '-'' '-'' '-'' '-'' '-'' '-'' 5 PSF 8" o.c. Braced Non-Composite Limiting Heights Table Notes - Heights are based on 00 North American Specification S00-0 using steel properties alone. - Allowable moment capacities are based on discrete stud bracing at -ft on-center. - Heights not in parentheses are limited by moment, deflection, shear, and web crippling (assuming " end reaction bearing). - Heights in parentheses are limited by moment, deflection, and shear, and require end bearing stiffeners in order to achieve the indicated height.. Depth over thickness (h/t) ratio is greater than 00. 0

31 ProSTUD ProSTUD Composite Limiting Heights 5/8" Type X Gypsum Board Width Stud Member -5/8" -/" -/" -5/8" " 5-/" " ProSTUD 5 PDS5-5 ProSTUD 5 50PDS5-5 ProSTUD 5 50PDS5-5 ProSTUD 5 PDS5-5 ProSTUD 5 00PDS5-5 ProSTUD 5 550PDS5-5 ProSTUD 5 00PDS5-5 Design Thickness Yield Strength (ksi) Spacing 5 psf.5 psf 0 psf 5 psf (inches) L/0 L/0 L/0 L/0 L/0 L/0 L/0 L/0 L/0 L/0 L/0 L/0 ' '' ' '' 0' '' ' '' 0' '' 8' '' ' '' 9' '' --- 8' '' f ' 9'' 0' '' 9' 0'' ' '' 9' '' --- 0' '' 8' '' ' '' 9' '' --- 9' 9'' ' 5'' ' '' ' 8'' ' 0'' 5' 0'' ' 0'' ' '' ' '' f ' 8'' 0' '' 8' 8'' f 8' 8'' f 8' '' 5' '' ' '' ' 9'' ' '' f ' 8'' 0' '' ' 5'' f 0' '' 9' '' ' '' f ' 8'' 0' '' 0' 0'' f 0' '' 8' '' 9' '' f 8' '' ' '' f ' '' 5' 0'' ' 5'' f ' 9'' ' '' 5' '' f ' 5'' ' 0'' 9' '' f 9' '' f 9' '' f 8' '' f 5' '' ' '' 5' '' f ' 5'' ' 0'' ' '' f ' '' 0' 8'' 8' '' f 8' '' f 8' '' f 5' '' f ' 5'' ' 0'' ' '' f ' 8'' 0' '' 0' 8'' f 0' 5'' 9' '' ' '' ' '' ' '' 8' '' f ' '' ' 0'' 5' 0'' f ' '' ' 0'' 0' 5'' f 0' 5'' f 0' '' 9' 5'' f 5' '' ' '' 5' 0'' f ' '' ' 0'' ' 9'' f ' '' 0' '' 9' 0'' f 9' 0'' f 9' 0'' f 5' 0'' f ' '' ' 0'' ' '' f ' 0'' 0' '' ' '' f 0' '' 9' 0'' ' 8'' 8' 0'' 5' 9'' 9' '' f 5' 9'' ' 9'' ' '' f ' '' ' '' 0' 0'' f 0' 0'' f 0' 8'' 0' '' f ' '' ' '' ' '' f ' '' ' '' ' '' f ' 0'' ' '' 9' 5'' f 9' 5'' f 9' 5'' f ' '' f ' '' ' '' ' '' f ' '' 0' 8'' ' 8'' f ' '' 9' '' ' '' f ' 9'' 0' '' ' 0'' f 9' '' ' 9'' 9' 0'' f 8' '' ' '' ' '' f ' '' f ' '' f ' '' f 0' 8'' 8' 5'' 9' 0'' f 8' '' ' '' ' '' f ' 5'' ' '' ' 0'' f 8' '' ' '' 5' '' f 5' '' f ' '' ' '' f ' '' f ' 9'' ' 0'' f ' '' ' 5'' ' 9'' f ' '' 8' 8'' 9' 8'' f 9' '' ' 0'' ' '' f ' '' f ' '' f ' '' f ' '' 9' 5'' 9' 8'' f 9' '' ' 0'' ' '' f ' '' f 5' 5'' ' 8'' f 9' '' ' 0'' ' '' f ' '' f ' 9'' ' '' f ' '' f ' '' Notes: - Allowable composite limiting heights were determined in accordance with ICC-ES AC Additional composite wall testing and analysis requirements of the SFIA Code Compliance Certification Program was observed. - In accordance with current building codes and AISI design standards, the / Stress Increase for strength was not used. - The composite limiting heights provided in the tables are based on a single layer of Type X Gypsum Board from the following manufacturers : American, CertainTeed, Georgia Pacific, Lafarge, National, Temple Inland, and USG. - The gypsum board must be applied full height in the vertical orientation to each stud flange and installed in accordance with ASTM C5-00 using minimum No. Type S Drywall screws spaced as listed below: - Screws spaced a minimum of in on-center to framing members spaced at in or in on-center. - Screws spaced a minimum of in on-center to framing members spaced at in on-center. - No fasteners are required for attaching the stud to the track except as detailed in ASTM C Stud end bearing must be a minimum of inch. f Adjacent to the height value indicates that flexural stress controls the allowable wall height. s Adjacent to the height value indicates that shear/end reaction controls the allowable wall height.

32 ProSTUD ProSTUD Composite Limiting Heights 5/8" Type X Gypsum Board Width Stud Member -5/8" -/" -/" -5/8" " 5-/" " ProSTUD 0 PDS5-9 ProSTUD 0 50PDS5-9 ProSTUD 0 50PDS5-9 ProSTUD 0 PDS5-9 ProSTUD 0 00PDS5-9 ProSTUD 0 550PDS5-9 ProSTUD 0 00PDS5-9 Design Thickness Yield Strength (ksi) Spacing 5 psf.5 psf 0 psf 5 psf (inches) L/0 L/0 L/0 L/0 L/0 L/0 L/0 L/0 L/0 L/0 L/0 L/0 ' 0'' ' '' ' '' ' '' ' '' 9' 9'' ' 9'' 0' '' 8' 8'' 9' '' f 8' '' --- ' 5'' ' 8'' 0' '' ' 9'' 0' '' 8' 8'' 0' 8'' 9' '' --- 8' 0'' f ' 9'' 0' '' 8' 8'' 0' '' 8' 8'' --- 9' '' ' '' 5' 9'' ' 0'' 5' 9'' ' 9'' ' '' ' '' ' '' ' '' 0' 9'' f 0' 9'' f 9' 8'' ' 5'' ' '' ' 8'' ' '' ' '' ' '' ' 0'' ' '' 0' '' 9' '' f 9' '' f 8' '' ' '' ' '' ' '' ' '' f 0' '' 9' 8'' ' 5'' 9' '' 8' '' ' 0'' 8' '' 5' 0'' 9' '' 5' 0'' ' 0'' 8' '' ' '' ' '' ' '' f ' '' f 0' '' 0' 9'' ' 5'' ' '' 8' '' ' '' ' '' ' '' f ' '' ' '' 0' 8'' f 0' 8'' f 9' 0'' 8' '' ' '' ' '' 5' '' f ' '' 0' '' ' '' f ' '' 9' 0'' 8' 8'' f 8' 8'' f 8' '' ' '' 8' 5'' ' '' 0' '' ' '' ' '' 8' 5'' ' 8'' ' 0'' ' '' f ' '' f ' '' ' '' ' 9'' ' 8'' 8' 5'' ' 8'' ' 0'' ' '' f ' '' ' '' 0' '' f 0' '' f 9' '' 8' 5'' ' 8'' ' 0'' 5' 8'' f ' 0'' ' '' ' '' f ' '' 9' '' 8' '' f 8' '' f 8' '' ' '' 0' '' ' 9'' ' '' ' 8'' 5' '' 9' '' ' 0'' ' '' ' '' f ' '' f ' '' ' '' 8' '' ' '' 9' '' ' 0'' ' '' ' '' f ' '' ' 9'' ' '' f ' '' f ' 0'' 9' '' ' 0'' ' '' ' '' f ' 0'' ' '' ' '' f ' 9'' ' 0'' 9' 5'' f 9' 5'' f 9' '' ' 0'' 5' '' ' '' ' 0'' f ' '' 9' '' ' '' f 0' '' ' '' 5' '' f 5' '' f 5' '' 8' '' ' 0'' 0' '' ' '' f 0' '' ' '' ' 0'' f 8' '' 5' '' ' 0'' f ' 0'' f ' 9'' f ' '' f 0' '' ' '' 9' 0'' f ' '' 5' '' ' '' f 5' '' ' 9'' ' 0'' ' 5'' ' '' 8' 0'' ' '' 0' '' ' 9'' f ' 0'' 8' 5'' ' '' f ' '' f ' '' 9' '' ' 0'' ' '' ' 9'' f ' 0'' 8' 5'' ' 5'' f 9' '' ' 9'' ' '' f ' '' f ' '' f ' 9'' f ' 0'' 8' 5'' 0' '' f 8' '' ' '' ' '' f ' 8'' ' '' Notes: - Allowable composite limiting heights were determined in accordance with ICC-ES AC Additional composite wall testing and analysis requirements of the SFIA Code Compliance Certification Program was observed. - In accordance with current building codes and AISI design standards, the / Stress Increase for strength was not used. - The composite limiting heights provided in the tables are based on a single layer of Type X Gypsum Board from the following manufacturers : American, CertainTeed, Georgia Pacific, Lafarge, National, Temple Inland, and USG. - The gypsum board must be applied full height in the vertical orientation to each stud flange and installed in accordance with ASTM C5-00 using minimum No. Type S Drywall screws spaced as listed below: - Screws spaced a minimum of in on-center to framing members spaced at in or in on-center. - Screws spaced a minimum of in on-center to framing members spaced at in on-center. - No fasteners are required for attaching the stud to the track except as detailed in ASTM C Stud end bearing must be a minimum of inch. f Adjacent to the height value indicates that flexural stress controls the allowable wall height. s Adjacent to the height value indicates that shear/end reaction controls the allowable wall height.

33 ProSTUD ProSTUD Composite Limiting Heights 5/8" Type X Gypsum Board Width Stud Member -5/8" -/" -/" -5/8" " 5-/" " ProSTUD 0XD PDS5- ProSTUD 0XD 50PDS5- ProSTUD 0XD 50PDS5- ProSTUD 0XD PDS5- ProSTUD 0XD 00PDS5- ProSTUD 0XD 550PDS5- ProSTUD 0XD 00PDS5- Design Thickness Yield Strength (ksi) Spacing 5 psf.5 psf 0 psf 5 psf (inches) L/0 L/0 L/0 L/0 L/0 L/0 L/0 L/0 L/0 L/0 L/0 L/0 ' '' ' 9'' ' '' ' 0'' ' '' 9' 9'' ' 0'' 0' '' 8' 5'' 9' 5'' f 8' '' --- ' '' ' '' 0' '' ' 0'' 0' '' 8' 5'' 0' 9'' 8' 0'' --- 8' '' f ' 0'' 0' '' 8' 5'' 0' '' 8' '' --- 9' '' ' 0'' 5' 9'' ' '' ' '' ' 9'' ' '' 5' '' ' '' ' '' ' '' f 0' '' 9' '' ' '' ' '' ' 8'' 5' '' ' '' ' '' ' 8'' ' 5'' 0' '' 9' '' f 9' '' f 8' '' 5' '' ' '' ' '' ' '' f 0' '' 9' '' ' '' 9' '' 8' '' 8' '' f 8' '' f --- ' '' 8' '' 5' '' 0' 0'' 5' '' ' '' 8' '' ' 5'' ' '' ' 5'' f ' '' 0' '' 0' 0'' ' '' ' 5'' 8' '' ' 5'' ' '' ' '' ' '' ' 5'' ' '' f ' 5'' 9' 9'' 8' '' ' 5'' ' '' 5' '' ' '' 0' '' ' 5'' f ' 5'' 9' 9'' 9' '' f 9' '' f 8' '' ' '' 8' '' ' '' 0' '' ' '' ' 0'' 8' '' ' '' ' 9'' ' '' f ' 9'' ' 0'' ' 0'' ' 8'' ' '' 8' '' ' '' ' 9'' ' 8'' ' '' ' '' ' '' f ' '' 9' 0'' 8' '' ' '' ' 9'' ' '' ' 9'' ' 0'' ' '' f ' '' 9' 0'' 9' 5'' f 9' 5'' f 8' 5'' ' '' 0' '' ' '' ' 5'' ' '' 5' 5'' 9' 5'' ' 0'' ' 0'' ' '' f ' '' ' '' ' '' 8' '' ' 0'' 9' 5'' ' 0'' ' 0'' ' 8'' ' '' ' 8'' ' '' f ' '' f 0' '' 9' 5'' ' 0'' ' 0'' ' 0'' ' '' ' '' 5' '' f ' 8'' 0' '' 0' '' f 0' '' f 9' '' ' 0'' 5' '' ' '' ' 0'' ' '' 9' '' 5' '' f 0' '' ' '' ' '' f ' '' f 5' '' 8' '' ' '' 0' '' 5' '' 0' '' ' '' ' 0'' f 8' '' 5' '' ' '' f ' '' f ' 0'' 5' '' 0' '' ' '' 0' '' f ' '' 5' '' ' 0'' f 5' '' ' 0'' ' 5'' ' '' ' '' 9' '' ' '' 0' '' ' '' f ' '' 8' 5'' ' '' f ' '' f ' '' 0' '' ' '' ' '' ' '' f ' '' 8' 5'' ' '' f 9' '' ' 8'' ' 0'' f ' 0'' f ' '' ' '' f ' '' 8' 5'' ' '' f 8' 5'' ' '' 8' '' f ' 8'' ' '' ' '' f ' '' f ' '' f Notes: - Allowable composite limiting heights were determined in accordance with ICC-ES AC Additional composite wall testing and analysis requirements of the SFIA Code Compliance Certification Program was observed. - In accordance with current building codes and AISI design standards, the / Stress Increase for strength was not used. - The composite limiting heights provided in the tables are based on a single layer of Type X Gypsum Board from the following manufacturers : American, CertainTeed, Georgia Pacific, Lafarge, National, Temple Inland, and USG. - The gypsum board must be applied full height in the vertical orientation to each stud flange and installed in accordance with ASTM C5-00 using minimum No. Type S Drywall screws spaced as listed below: - Screws spaced a minimum of in on-center to framing members spaced at in or in on-center. - Screws spaced a minimum of in on-center to framing members spaced at in on-center. - No fasteners are required for attaching the stud to the track except as detailed in ASTM C Stud end bearing must be a minimum of inch. f Adjacent to the height value indicates that flexural stress controls the allowable wall height. s Adjacent to the height value indicates that shear/end reaction controls the allowable wall height.

34 ProSTUD Composite Limiting Heights 5/8" Type X Gypsum Board Width Stud Member -5/8" -/" -/" -5/8" " 5-/" " ProSTUD 0 PDS5-0 ProSTUD 0 50PDS5-0 ProSTUD 0 50PDS5-0 ProSTUD 0 PDS5-0 ProSTUD 0 00PDS5-0 ProSTUD 0 550PDS5-0 ProSTUD 0 00PDS5-0 Design Thickness Yield Strength (ksi) Spacing 5 psf.5 psf 0 psf 5 psf (inches) L/0 L/0 L/0 L/0 L/0 L/0 L/0 L/0 L/0 L/0 L/0 L/0 ' '' ' '' ' '' ' '' ' '' 9' 0'' ' '' 0' '' 8' 8'' ' '' 8' 8'' --- ' 9'' ' 9'' 0' '' ' '' 0' '' 8' 8'' ' 9'' 9' '' --- 0' '' f ' '' 0' '' 8' 8'' ' '' 8' 8'' --- 0' '' ' '' f ' 9'' ' '' ' '' ' '' ' '' ' '' 5' 8'' ' '' ' '' ' '' f ' '' 9' '' ' '' ' 9'' ' 0'' 5' 8'' ' '' ' '' ' '' ' 9'' 0' '' ' '' f 0' '' 8' 8'' 5' 8'' ' '' ' '' ' 8'' f ' '' 9' '' ' 5'' 0' '' 8' 8'' 9' 5'' f 8' 8'' --- 5' '' 0' '' ' '' ' '' ' '' 5' '' 0' '' ' 0'' ' '' ' 0'' f ' '' ' '' ' 0'' 8' '' ' 0'' 0' '' ' 0'' ' '' 8' '' ' '' ' 8'' ' 0'' f ' 8'' 0' '' 0' '' ' 0'' ' '' ' '' ' '' ' '' ' 0'' ' 8'' 0' '' ' '' f 0' '' --- 5' 8'' 0' 5'' ' 0'' ' 5'' ' 0'' 5' '' 0' 5'' ' '' ' '' ' '' f ' '' ' '' ' '' 8' '' ' '' 0' 5'' ' '' ' '' 8' '' ' 8'' ' 0'' ' 0'' f ' 0'' ' 0'' 0' 5'' ' '' ' '' ' 0'' ' '' ' '' ' '' ' 0'' ' 0'' ' 5'' f ' 0'' --- ' 5'' ' 9'' 9' 0'' ' 0'' 9' 0'' ' 8'' ' 9'' ' '' 5' '' ' '' f 5' '' ' '' ' '' 9' 0'' ' '' ' 9'' ' '' 5' '' 9' 0'' 5' 9'' ' 9'' ' 8'' f ' 9'' ' 0'' ' 9'' ' '' 5' '' 9' 0'' 5' '' ' '' ' '' ' 9'' ' 0'' ' 0'' f ' 0'' 0' '' ' 9'' ' '' ' '' 0' 5'' ' '' ' '' ' '' ' '' 9' '' 0' 9'' f 9' '' ' '' ' '' 5' '' ' '' ' '' ' '' 9' '' 5' '' 9' '' ' '' ' '' f ' '' --- ' '' ' '' 9' '' ' '' 9' '' ' '' ' '' ' '' ' '' 9' '' 5' 5'' ' 0'' 5' 5'' ' '' 9' '' ' '' 0' '' 0' '' f 0' '' ' '' ' '' ' 5'' ' '' 9' '' ' '' 0' '' ' 5'' 0' '' 8' '' 8' '' f 8' '' f --- 9' '' ' '' 0' '' 5' 5'' 0' '' ' '' ' '' f 8' '' Notes: - Allowable composite limiting heights were determined in accordance with ICC-ES AC Additional composite wall testing and analysis requirements of the SFIA Code Compliance Certification Program was observed. - In accordance with current building codes and AISI design standards, the / Stress Increase for strength was not used. - The composite limiting heights provided in the tables are based on a single layer of Type X Gypsum Board from the following manufacturers : American, CertainTeed, Georgia Pacific, Lafarge, National, Temple Inland, and USG. - The gypsum board must be applied full height in the vertical orientation to each stud flange and installed in accordance with ASTM C5-00 using minimum No. Type S Drywall screws spaced as listed below: - Screws spaced a minimum of in on-center to framing members spaced at in or in on-center. - Screws spaced a minimum of in on-center to framing members spaced at in on-center. - No fasteners are required for attaching the stud to the track except as detailed in ASTM C Stud end bearing must be a minimum of inch. f Adjacent to the height value indicates that flexural stress controls the allowable wall height. s Adjacent to the height value indicates that shear/end reaction controls the allowable wall height.

35 ProSTUD Composite Limiting Heights 5/8" Type X Gypsum Board Width Stud Member 5/8" /" /" 5/8" " 5 /" " ProSTUD PDS5 ProSTUD 50PDS5 ProSTUD 50PDS5 ProSTUD PDS5 ProSTUD 00PDS5 ProSTUD 550PDS5 ProSTUD 00PDS5 Design Thickness Yield Strength (ksi) Spacing 5 psf.5 psf 0 psf 5 psf (inches) L/0 L/0 L/0 L/0 L/0 L/0 L/0 L/0 L/0 L/0 L/0 L/0 ' 0'' ' '' ' 0'' ' 0'' ' 0'' 0' '' ' '' 0' 9'' 9' '' ' '' 8' 8'' 5' '' ' '' 0' 9'' ' '' 0' 9'' 9' '' ' '' 9' 9'' 0' '' f ' '' 0' 9'' 9' '' ' 0'' 9' '' 0' 9" 8' '' f 0' '' ' 9'' ' 9'' ' 9'' ' " ' 0'' ' '' ' '' ' 8'' ' '' f ' '' 9' '' 8' '' 5' '' ' 5'' ' '' ' '' ' 8'' ' 8'' ' '' 0' '' ' '' f 0' '' 8' 8'' ' '' ' '' ' 8'' ' '' ' '' 0' '' ' 0'' 0' '' 9' '' 9' 5'' f 8' 8'' ' '' 0' 0'' 8' '' ' '' 8' '' 5' '' 0' 0'' ' '' ' 5'' ' 0'' f ' '' ' '' ' 0'' 8' '' ' '' 0' 0'' ' '' ' 5'' 8' '' 5' 0'' ' '' ' 0'' f ' 8'' 0' '' 0' 0'' ' '' ' 5'' 8' '' ' 5'' ' '' ' '' ' '' ' '' ' '' f 0' '' ' '' ' '' 8' 5'' ' '' 8' 5'' ' '' ' '' ' 9'' ' 8'' ' '' f ' '' ' '' ' '' 9' '' ' 9'' ' '' ' 9'' ' 8'' 9' '' 5' '' ' '' ' 0'' f ' 0'' ' 0'' ' '' ' 9'' ' 8'' 8' 5'' ' 8'' ' 0'' ' 9'' ' '' ' '' ' 5'' f ' 0'' ' 0'' ' 9'' 0' '' ' '' 9' '' ' '' ' '' 8' '' 5' '' ' '' f 5' '' ' '' 5' '' 0' 8'' 8' '' ' '' 8' '' 5' '' 0' '' ' 5'' ' '' ' 8'' f ' 9'' ' 0'' ' '' 8' '' 5' '' 9' '' 5' 0'' ' '' ' '' ' '' ' 8'' ' 0'' f ' 0'' 0' '' ' '' 8' '' 5' 0'' 0' '' 5' '' ' 0'' ' 8'' ' '' 9' 0'' 0' 9'' f 9' '' ' '' ' 8'' ' '' ' 9'' ' 8'' ' '' 9' 0'' 5' '' 0' 0'' 8' 0'' ' '' f ' '' ' 8'' ' '' 9' 0'' ' '' 0' 0'' ' '' ' 0'' 8' '' ' 8'' 0' '' ' '' ' 0'' ' '' ' '' 9' '' ' 0'' ' 0'' 0' '' f 0' '' ' '' ' '' ' '' ' '' 9' '' ' 0" ' 0'' ' 5'' ' 8'' 9' '' 8' '' f 8' '' f 9' '' ' 0'' ' 0'' 5' 5'' 0' 0'' 8' '' ' '' 8' '' Notes: - Allowable composite limiting heights were determined in accordance with ICC-ES AC Additional composite wall testing and analysis requirements of the SFIA Code Compliance Certification Program was observed. - In accordance with current building codes and AISI design standards, the / Stress Increase for strength was not used. - The composite limiting heights provided in the tables are based on a single layer of Type X Gypsum Board from the following manufacturers : American, CertainTeed, Georgia Pacific, Lafarge, National, Temple Inland, and USG. - The gypsum board must be applied full height in the vertical orientation to each stud flange and installed in accordance with ASTM C5-00 using minimum No. Type S Drywall screws spaced as listed below: - Screws spaced a minimum of in on-center to framing members spaced at in or in on-center. - Screws spaced a minimum of in on-center to framing members spaced at in on-center. - No fasteners are required for attaching the stud to the track except as detailed in ASTM C Stud end bearing must be a minimum of inch. f Adjacent to the height value indicates that flexural stress controls the allowable wall height. s Adjacent to the height value indicates that shear/end reaction controls the allowable wall height. 5

36 ProSTUD ProSTUD Allowable Ceiling Spans Allowable Ceiling Spans - Deflection Limit L/0 Section Fy, ksi PDS ' " ' 8" 5' " 9' 9" 8' 0" ' " ' 5" 5' " 5' " 8' 5" ' " ' " 5' " 5' " ' 5" ' 0" ' 0" 5' 0" 50PDS ' " ' 8" ' " ' 8" 0' 9" 9' 5" ' 5" ' " ' " 0' 5" 9' 5" 8' " ' " ' 0" 5' " 8' 8" ' 8" ' 5" e 50PDS ' " 8' 5" ' " ' " ' " 0' " 8' " ' " ' 8" ' " 0' " 8' 0" e ' 0" ' " 5' 9" e 9' 5" 8' " e ' " e PDS ' " 8' " ' " ' 9" ' 8" 0' " 8' " ' " ' 9" ' " 0' " 8' " e ' " ' " 5' 9" e 9' " e 8' " e ' " e 00PDS ' 5" 8' 9" ' 0" ' " ' 0" 0' " e 8' " ' 0" ' " e ' " e 0' " e 9' " e ' " e ' 9" e ' 0" e 9' 0" e 8' " e ' " e PDS5-9 5 ' " ' " ' " 0' 8" 9' 8" 8' " ' " ' " 5' 9" 9' " 8' " ' 5" ' " 5' " ' " ' 0" ' " ' " 50PDS ' " 8' 5" ' " ' " ' " 0' 9" 8' " ' " ' 0" ' 8" 0' 9" 9' " ' " ' 8" 5' " 0' " 9' " 8' " 50PDS ' 0" 9' " 8' " ' " ' " ' 9" 9' 0" 8' " ' " ' 9" ' 9" 0' 5" ' " ' " ' " ' 0" 0' " 8' " PDS ' " 9' 5" 8' 5" ' " ' " ' 0" 9' " 8' 5" ' " ' " ' 0" 0' " ' " ' " ' " ' " 0' " 9' 0" 00PDS ' 5" 9' 8" 8' 8" ' " ' 9" ' " 9' 5" 8' 8" ' 0" ' " ' " 0' " 8' " ' " ' 0" ' " 0' " 9' " PDS5-5 8' " ' 8" ' 0" ' " 0' " 8' " ' 5" ' 0" ' " 9' 0" 8' " ' 0" ' 5" 5' " 5' " 8' " ' " ' 5" 50PDS5-5 9' " 8' 8" ' 9" ' " ' " 0' 0" 8' 5" ' 9" ' 0" ' 9" 0' 0" 9' 8" ' " ' 9" ' 0" 0' " 9' " 8' " 50PDS5-5 0' " 9' " 8' " ' 8" ' " ' 0" 9' " 8' " ' 8" ' 0" ' 0" 0' " 8' " ' 5" ' 8" ' " 0' " 8' " PDS5-5 0' " 9' " 8' " ' 0" ' 8" ' 0" 9' " 8' " ' 9" ' " ' 0" 0' " 8' " ' " ' 9" ' " 0' " 9' " 00PDS5-5 0' 8" 9' 0" 8' 0" 5' " ' 0" ' 5" 9' " 8' 0" ' " ' " ' 5" 0' " 8' " ' 9" ' " ' " 0' " 9' " 550PDS5-5 ' 9" 0' " 9' 0" ' 0" 5' " ' " 0' " 9' 0" 8' 9" 5' " ' " ' " 9' " 8' " ' 8" ' 0" ' " 0' " e 00PDS5-5 ' " ' " 0' " ' " 5' " ' " 0' 0" 0' " 9' 0" 5' 5" ' " ' 8" e 9' " 8' 9" ' 0" e ' 5" e ' " e 0' 0" e PDS5-0 9' " 8' " ' 8" ' 5" ' " 9' 0" 8' " ' 8" ' 0" 0' 0" 9' 0" 8' " ' " ' " 5' " 9' " 8' " ' " 50PDS5-0 0' " 9' " 8' " ' 8" ' " ' " 9' " 8' " ' 8" ' " ' " 0' 0" 8' 0" ' 5" ' 8" ' 5" 0' " 9' " 50PDS5-0 ' " 0' " 9' " ' 0" ' 0" ' " 0' 0" 9' " 8' " ' 5" ' " ' " 8' 9" 8' " ' " ' " ' " 0' " PDS5-0 ' " 0' 5" 9' " ' " 5' 0" ' " 0' " 9' " 8' 5" ' " ' " ' 0" 8' 0" 8' " ' " ' 8" ' 8" 0' 5" 00PDS5-0 ' " 0' 9" 9' 8" ' 8" 5' " ' " 0' 5" 9' 8" 8' 8" 5' 0" ' " ' 5" 9' " 8' 5" ' " ' " ' 0" 0' 9" 550PDS5-0 ' 0" ' 0" 0' 8" 8' 5" ' " 5' " ' " 0' 8" 9' " ' " 5' " ' 9" 0' " 9' " 8' 5" ' 5" ' 5" ' " 00PDS5-0 ' " ' " 0' " 8' " ' " 5' 8" ' 9" 0' " 9' 0" ' 0" 5' 8" ' " 0' " 9' " 8' 8" ' 9" ' 8" ' " PDS5-9' 9" 9' 0" 8' 0" ' 0" ' 9" 0' " 8' 8" 8' 0" ' " ' " 0' " 9' 0" ' " ' 0" ' " 9' " 8' 8" ' " 50PDS5-0' 9" 9' " 8' 0" 5' " ' " ' " 9' " 8' 0" ' " ' " ' " ' " 8' " ' 8" ' " ' 9" 0' 0" 9' 8" 50PDS5- ' " 0' 8" 9' " ' " 5' " ' 9" 0' " 9' " 8' " ' 0" ' 9" ' " 9' 0" 8' " ' " ' 0" ' 0" 0' 8" PDS5- ' 8" 0' 9" 9' 8" ' 8" 5' 5" ' " 0' 5" 9' 8" 8' 8" 5' 0" ' " ' " 9' " 8' 5" ' " ' " ' " 0' 0" 00PDS5- ' 0" ' " 9' " ' " 5' " ' " 0' 9" 9' " 8' " 5' 5" ' " ' 0" 9' 5" 8' 8" ' 0" ' " ' " ' " 550PDS5- ' " ' " ' 0" 9' 0" ' " 5' 0" ' 0" ' 0" 9' 0" ' " 5' 0" ' " 0' " 9' " 8' 8" ' " ' 0" ' 5" 00PDS5- ' " ' " ' " 9' " 8' " ' " ' " ' " 0' " ' " ' " ' " 0' " 9' 0" 8' 0" 5' " ' " ' 8" " e " Web stiffeners required at supports. Ceiling Span Table Notes psf psf 0 psf Lateral Support of Compression Flange Lateral Support of Compression Flange Lateral Support of Compression Flange Unsupported Midspan Unsupported Midspan Unsupported Midspan Joist Spacing o.c. Joist Spacing o.c. Joist Spacing o.c. Joist Spacing o.c. Joist Spacing o.c. Joist Spacing o.c. - For unbraced sections, allowable moment is based on 00 AISI Specification Section C.. with weak axis and torsional unbraced length assumed to be the listed span (completely unbraced). For mid-span braced sections, allowable moment based on 00 AISI Specification Section C.. with weak axis and torsional unbraced length assumed to be one-half of the listed span (bracing at midspan). - Web crippling calculation based on bearing length = inch. - Web crippling and shear capacity have not been reduced for punchouts. If web punchouts occur near support members they must be checked for reduced shear and web crippling in accordance with the 00 AISI Specification. - Values are for simple span conditions.

37 ProSTUD ProSTUD Allowable Ceiling Spans Allowable Ceiling Spans - Deflection Limit L/0 Section Fy, ksi PDS ' " ' 8" 5' " ' 0" ' " ' " ' 5" 5' " 5' " ' 0" ' " 5' 5" 5' " 5' " ' 5" 5' 9" 5' " ' " 50PDS ' " ' 8" ' " 0' " 9' " 8' 8" ' 5" ' " ' " 9' " 8' 8" ' " ' " ' 0" 5' " 8' " ' " ' 5" e 50PDS ' " 8' 5" ' " ' " ' " 0' " 8' " ' " ' 8" ' " 0' " 8' 0" e ' 0" ' " 5' 9" e 9' 5" 8' " e ' " e PDS ' " 8' " ' " ' 9" ' 8" 0' " 8' " ' " ' 9" ' " 0' " 8' " e ' " ' " 5' 9" e 9' " e 8' " e ' " e 00PDS ' 5" 8' 9" ' 0" ' " ' 0" 0' " e 8' " ' 0" ' " e ' " e 0' " e 9' " e ' " e ' 9" e ' 0" e 9' 0" e 8' " e ' " e PDS5-9 5 ' " ' " ' " 8' 5" ' 8" ' 9" ' " ' " 5' 9" ' 5" ' 9" 5' " ' " 5' " ' " ' " 5' 8" ' " 50PDS ' " 8' 5" ' " ' " 0' 0" 9' " 8' " ' " ' 0" 0' 5" 9' " 8' " ' " ' 8" 5' " 8' 0" 8' 0" ' 0" 50PDS ' 0" 9' " 8' " ' " ' " ' 9" 9' 0" 8' " ' " ' 9" ' 9" 0' 5" ' " ' " ' " ' 0" 0' " 8' " PDS ' " 9' 5" 8' 5" ' " ' " ' 0" 9' " 8' 5" ' " ' " ' 0" 0' " ' " ' " ' " ' " 0' " 9' 0" 00PDS ' 5" 9' 8" 8' 8" ' " ' 9" ' " 9' 5" 8' 8" ' 0" ' " ' " 0' " 8' " ' " ' 0" ' " 0' " 9' " PDS5-5 8' " ' 8" ' 0" 8' " 8' " ' " ' 5" ' 0" ' " ' 0" ' " ' " ' 5" 5' " 5' " ' " ' 0" 5' " 50PDS5-5 9' " 8' 8" ' 9" ' " ' " 9' 0" 8' 5" ' 9" ' 0" 0' 0" 9' 0" 8' " ' " ' 9" ' 0" 9' " 8' " ' " 50PDS5-5 0' " 9' " 8' " ' 8" ' " ' 0" 9' " 8' " ' 8" ' 0" ' 0" 0' " 8' " ' 5" ' 8" ' " 0' " 8' " PDS5-5 0' " 9' " 8' " ' 0" ' 8" ' 0" 9' " 8' " ' 9" ' " ' 0" 0' " 8' " ' " ' 9" ' " 0' " 9' " 00PDS5-5 0' 8" 9' 0" 8' 0" 5' " ' 0" ' 5" 9' " 8' 0" ' " ' " ' 5" 0' " 8' " ' 9" ' " ' " 0' " 9' " 550PDS5-5 ' 9" 0' " 9' 0" ' 0" 5' " ' " 0' " 9' 0" 8' 9" 5' " ' " ' " 9' " 8' " ' 8" ' 0" ' " 0' " e 00PDS5-5 ' " ' " 0' " ' " 5' " ' " 0' 0" 0' " 9' 0" 5' 5" ' " ' 8" e 9' " 8' 9" ' 0" e ' 5" e ' " e 0' 0" e PDS5-0 9' " 8' " ' 8" 9' 0" 9' 0" ' 0" 8' " ' 8" ' 0" 8' " ' 0" ' 0" ' " ' " 5' 9" ' " ' " 5' 9" 50PDS5-0 0' " 9' " 8' " ' 8" ' 5" 0' 0" 9' " 8' " ' 8" ' " 0' 0" 9' " 8' 0" ' 5" ' 8" 0' " 9' " 8' 0" 50PDS5-0 ' " 0' " 9' " ' 0" ' 0" ' " 0' 0" 9' " 8' " ' 5" ' " ' " 8' 9" 8' " ' " ' " ' " 0' " PDS5-0 ' " 0' 5" 9' " ' " 5' 0" ' " 0' " 9' " 8' 5" ' " ' " ' 0" 8' 0" 8' " ' " ' 8" ' 8" 0' 5" 00PDS5-0 ' " 0' 9" 9' 8" ' 8" 5' " ' " 0' 5" 9' 8" 8' 8" 5' 0" ' " ' 5" 9' " 8' 5" ' " ' " ' 0" 0' 9" 550PDS5-0 ' 0" ' 0" 0' 8" 8' 5" ' " 5' " ' " 0' 8" 9' " ' " 5' " ' 9" 0' " 9' " 8' 5" ' 5" ' 5" ' " 00PDS5-0 ' " ' " 0' " 8' " ' " 5' 8" ' 9" 0' " 9' 0" ' 0" 5' 8" ' " 0' " 9' " 8' 8" ' 9" ' 8" ' " PDS5-9' 9" 9' 0" 8' 0" 0' " 9' " 8' " 8' 8" 8' 0" ' " 9' 0" 8' " ' " ' " ' 0" ' 0" ' " ' " ' 0" 50PDS5-0' 9" 9' " 8' 0" ' " ' " ' " 9' " 8' 0" ' " ' 5" ' " 9' 0" 8' " ' 8" ' " 0' " 9' " 8' " 50PDS5- ' " 0' 8" 9' " ' " 5' " ' 9" 0' " 9' " 8' " ' 0" ' 9" ' " 9' 0" 8' " ' " ' 0" ' 0" 0' 8" PDS5- ' 8" 0' 9" 9' 8" ' 8" 5' 5" ' " 0' 5" 9' 8" 8' 8" 5' 0" ' " ' " 9' " 8' 5" ' " ' " ' " 0' 0" 00PDS5- ' 0" ' " 9' " ' " 5' " ' " 0' 9" 9' " 8' " 5' 5" ' " ' 0" 9' 5" 8' 8" ' 0" ' " ' " ' " 550PDS5- ' " ' " ' 0" 9' 0" ' " 5' 0" ' 0" ' 0" 9' 0" ' " 5' 0" ' " 0' " 9' " 8' 8" ' " ' 0" ' 5" 00PDS5- ' " ' " ' " 9' " 8' " ' " ' " ' " 0' " ' " ' " ' " 0' " 9' 0" 8' 0" 5' " ' " ' 8" " e " Web stiffeners required at supports. psf psf 0 psf Lateral Support of Compression Flange Lateral Support of Compression Flange Lateral Support of Compression Flange Unsupported Midspan Unsupported Midspan Unsupported Midspan Joist Spacing o.c. Joist Spacing o.c. Joist Spacing o.c. Joist Spacing o.c. Joist Spacing o.c. Joist Spacing o.c. Ceiling Span Table Notes - For unbraced sections, allowable moment is based on 00 AISI Specification Section C.. with weak axis and torsional unbraced length assumed to be the listed span (completely unbraced). For mid-span braced sections, allowable moment based on 00 AISI Specification Section C.. with weak axis and torsional unbraced length assumed to be one-half of the listed span (bracing at midspan). - Web crippling calculation based on bearing length = inch. - Web crippling and shear capacity have not been reduced for punchouts. If web punchouts occur near support members must be checked for reduced shear and web crippling in accordance with the 00 AISI Specification. - Values are for simple span conditions.

38 ProSTUD ProSTUD Allowable Ceiling Spans Allowable Ceiling Spans - Deflection Limit L/0 psf psf 0 psf Lateral Support of Compression Flange Lateral Support of Compression Flange Lateral Support of Compression Flange Unsupported Midspan Unsupported Midspan Unsupported Midspan Joist Spacing o.c. Joist Spacing o.c. Joist Spacing o.c. Joist Spacing o.c. Joist Spacing o.c. Joist Spacing o.c. Section Fy, ksi PDS ' 0" ' " 5' 5" ' 0" ' " 5' 5" ' 0" 5' 5" ' 9" ' 0" 5' 5" ' 9" 5' " ' " ' 0" 5' " ' " ' 0" 50PDS ' " ' 8" ' " 9' " 8' 8" ' " ' 5" ' " ' " 8' " ' " ' 8" ' " ' 0" 5' " ' " ' 5" 5' " 50PDS ' " 8' 5" ' " ' 5" ' " 9' " 8' " ' " ' 8" 0' 0" 9' " 8' 8" e ' 0" ' " 5' 9" e 9' " 8' " e ' " e PDS ' " 8' " ' " ' 9" ' " 0' " 8' " ' " ' 9" ' " 0' " 8' 0" e ' " ' " 5' 9" e 9' 5" e 8' " e ' " e 00PDS ' 5" 8' 9" ' 0" ' " ' 0" 0' " e 8' " ' 0" ' " e ' " e 0' " e 9' " e ' " e ' 9" e ' 0" e 9' 0" e 8' " e ' " e PDS5-9 5 ' 5" ' 9" 5' " ' 5" ' 9" 5' " ' 5" 5' " 5' " ' " 5' " 5' " 5' 5" ' " ' " 5' 5" ' " ' " 50PDS ' " 8' 5" ' " 0' 5" 9' " 8' " 8' " ' " ' 0" 9' " 8' " ' " ' " ' 8" 5' " ' 8" ' 0" ' " 50PDS ' 0" 9' " 8' " ' 8" ' 5" 0' 0" 9' 0" 8' " ' " ' " 0' 0" 9' " ' " ' " ' " 0' " 9' " 8' 0" PDS ' " 9' 5" 8' 5" ' " ' 9" ' " 9' " 8' 5" ' " ' " ' " 9' 9" ' " ' " ' " 0' " 9' 5" 8' " 00PDS ' 5" 9' 8" 8' 8" ' " ' 9" ' 0" 9' 5" 8' 8" ' 0" ' " ' 0" 0' " 8' " ' " ' 0" ' " 0' " 8' 0" PDS5-5 ' 0" ' " ' " ' 0" ' " ' " ' 0" ' " 5' 5" ' 0" ' " 5' 5" 5' 9" 5' " ' " 5' 9" 5' " ' " 50PDS5-5 9' " 8' 8" ' 9" 0' 0" 9' 0" 8' " 8' 5" ' 9" ' 0" 9' 5" 8' " ' " ' " ' 9" ' 0" ' " ' " ' " 50PDS5-5 0' " 9' " 8' " ' " ' 0" ' " 9' " 8' " ' 8" ' " ' " 9' 9" 8' " ' 5" ' 8" 0' 5" 9' 5" 8' " PDS5-5 0' " 9' " 8' " ' " ' " ' " 9' " 8' " ' 9" ' 8" ' " 0' " 8' " ' " ' 9" 0' 8" 9' 8" 8' " 00PDS5-5 0' 8" 9' 0" 8' 0" 5' " ' 0" ' 5" 9' " 8' 0" ' " ' " ' 5" 0' " 8' " ' 9" ' " ' " 0' " 9' " 550PDS5-5 ' 9" 0' " 9' 0" ' 0" 5' " ' " 0' " 9' 0" 8' 9" 5' " ' " ' " 9' " 8' " ' 8" ' 0" ' " 0' " e 00PDS5-5 ' " ' " 0' " ' " 5' " ' " 0' 0" 0' " 9' 0" 5' 5" ' " ' 8" e 9' " 8' 9" ' 0" e ' 5" e ' " e 0' 0" e PDS5-0 8' " ' 0" ' 0" 8' " ' 0" ' 0" ' " ' 0" ' 0" ' " ' 0" ' 0" ' " 5' 9" 5' " ' " 5' 9" 5' " 50PDS5-0 0' " 9' " 8' " ' " 0' 0" 9' " 9' " 8' " ' 8" 0' 5" 9' " 8' " 8' 0" ' 5" ' 8" 8' 9" 8' 0" ' 0" 50PDS5-0 ' " 0' " 9' " 5' " ' " ' " 0' 0" 9' " 8' " ' " ' " 0' 9" 8' 9" 8' " ' " ' 5" 0' " 9' " PDS5-0 ' " 0' 5" 9' " 5' " ' " ' 8" 0' " 9' " 8' 5" ' " ' 8" ' " 8' 0" 8' " ' " ' 9" 0' 8" 9' " 00PDS5-0 ' " 0' 9" 9' 8" ' 8" 5' " ' 9" 0' 5" 9' 8" 8' 8" 5' 0" ' 9" ' 0" 9' " 8' 5" ' " ' 9" ' " 0' " 550PDS5-0 ' 0" ' 0" 0' 8" 8' 5" ' " 5' " ' " 0' 8" 9' " ' " 5' " ' 9" 0' " 9' " 8' 5" ' 5" ' 5" ' " 00PDS5-0 ' " ' " 0' " 8' " ' " 5' 8" ' 9" 0' " 9' 0" ' 0" 5' 8" ' " 0' " 9' " 8' 8" ' 9" ' 8" ' " PDS5-9' 0" 8' " ' " 9' 0" 8' " ' " ' 0" ' " ' " ' 0" ' " ' " ' 8" ' 0" 5' " ' 8" ' 0" 5' " 50PDS5-0' 9" 9' " 8' 0" ' 5" ' " 9' 0" 9' " 8' 0" ' " 0' 0" 9' 0" 8' " 8' " ' 8" ' " 9' " 8' " ' " 50PDS5- ' " 0' 8" 9' " ' " ' " ' 9" 0' " 9' " 8' " ' " ' 9" ' " 9' 0" 8' " ' " ' 0" 0' 9" 9' 5" PDS5- ' 8" 0' 9" 9' 8" ' " 5' 0" ' " 0' 5" 9' 8" 8' 8" ' 5" ' " ' " 9' " 8' 5" ' " ' " ' " 9' 8" 00PDS5- ' 0" ' " 9' " ' " 5' " ' " 0' 9" 9' " 8' " 5' 5" ' " ' 5" 9' 5" 8' 8" ' 0" ' " ' 0" 0' " 550PDS5- ' " ' " ' 0" 9' 0" ' " 5' 0" ' 0" ' 0" 9' 0" ' " 5' 0" ' " 0' " 9' " 8' 8" ' " ' 0" ' 5" 00PDS5- ' " ' " ' " 9' " 8' " ' " ' " ' " 0' " ' " ' " ' " 0' " 9' 0" 8' 0" 5' " ' " ' 8" " e " Web stiffeners required at supports. Ceiling Span Table Notes - For unbraced sections, allowable moment is based on 00 AISI Specification Section C.. with weak axis and torsional unbraced length assumed to be the listed span (completely unbraced). For mid-span braced sections, allowable moment based on 00 AISI Specification Section C.. with weak axis and torsional unbraced length assumed to be one-half of the listed span (bracing at midspan). - Web crippling calculation based on bearing length = inch. - Web crippling and shear capacity have not been reduced for punchouts. If web punchouts occur near support members must be checked for reduced shear and web crippling in accordance with the 00 AISI Specification. - Values are for simple span conditions. 8

39 Wall Height Summary Table Interior Non-Structural, Non Composite Wall Height Section Fy (ksi) Web: 5/8" Spacing 5 psf. psf.5 psf 0 psf.5 psf 5 psf 0 psf oc L/0 L/0 L/0 L/0 L/0 L/0 L/0 L/0 L/0 L/0 L/0 L/0 L/0 L/0 L/0 L/0 L/0 L/0 L/0 L/0 L/0 S S S e 8 e 8 e e e e S S S S S S S S S Web: /" 50S e e 5 e e 5 0 e 50S e 0 e e e 5 0 e 5 5 e 5 5 e 5 e 50S e e 5 e e 5 0 e 5 e 5 e 5 5 e 5 e 5 e 5 e 5 e 5 e 5 e 50S S S S S S S S S Web: 5/8" S e 9 e 9 e 8 e 8 e 8 e 8 e 8 e 8 e 0 e 0 e 0 e S e 9 e 9 e 8 e 8 e 8 e 8 e 8 e 8 e 0 e 0 e 0 e e e e S5-8 9 e 9 e 9 e 8 e 8 e 8 e 8 e 8 e 8 e 0 e 0 e 0 e e e e 5 9 e 5 9 e 5 9 e 5 0 e 5 0 e 5 0 e S S S e 8 e 8 e 8 e 8 e 8 e S S S e e e S S S Table Notes on Pages 9-9

40 Wall Height Summary Table Interior Non-Structural, Non Composite Wall Height Section Fy (ksi) Spacing 5 psf. psf.5 psf 0 psf.5 psf 5 psf 0 psf oc L/0 L/0 L/0 L/0 L/0 L/0 L/0 L/0 L/0 L/0 L/0 L/0 L/0 L/0 L/0 L/0 L/0 L/0 L/0 L/0 L/0 Web: " 00S5-8 9 e 9 e e 9 e 9 e e e e 9 e 0 5 e 0 5 e 0 5 e 9 e 9 e 9 e 8 e 8 e 8 e 5 e 5 e 5 e 00S5-8 0 e 0 e e e e e 0 5 e 0 5 e 0 5 e 9 e 9 e 9 e 8 e 8 e 8 e 5 e 5 e 5 e 5 e 5 e 5 e 00S e 0 5 e 0 5 e 9 0 e 9 0 e 9 0 e 8 e 8 e 8 e 5 e 5 e 5 e e e e 0 e 0 e 0 e 5 e 5 e 5 e 00S S e 8 e 8 e 00S e 8 e 8 e 8 e 8 e 8 e 0 e 0 e 0 e 00S S S e e e 00S S S e 8 e 8 e Web: " 00S5-8 e e e e e 9 e 0 e e 8 e 8 e 8 e 0 e e e 5 8 e 5 5 e 5 5 e 9 e e e e 00S5- e e 9 e 0 0 e 0 0 e e 8 e 8 e 0 e e e 5 e 8 e 8 e e e e e e e e 00S5-8 e 8 e 0 e e e 5 e 5 5 e 5 5 e 9 e e e e e e e 0 e 0 e 0 e 9 5 e 9 5 e 9 5 e 00S e 8 e 5 5 e 5 e 0 e 00S e 5 9 e 9 5 e 5 e 0 e e e e 00S e 8 e 5 5 e 5 e 0 e e e 0 e 9 e 9 e 9 e 0 e 0 e 0 e 00S e 5 e 5 00S e 5 e 5 e e e 00S e 5 e 5 e e e 9 e 9 e e 0 e 0 e 0 e Table Notes on Pages 9-9 0

41 Section Properties Structural Stud Member Design t Area (in ) Weight (lb/ft) lx (in ) Gross Effective Properties ksi Effective Properties 50 ksi Torsional Properties Sx (in ) Rx ly (in ) Ry lx (in ) Sx (in ) Ma (in-k) Vag (lb) Vanet (lb) lx (in ) Sx (in ) Ma (in-k) Vag (lb) Vanet (lb) Jx000 (in ) Cw (in ) Xo m Ro Beta 50S S * S * * S * * S * * S S S * S * * S * * S S S S * S * * S S S S S * * S S S S * S * * S S S S * S * * S S S S S * * S S S S S * * S S S S S * * Web-height to thickness ratio exceeds 00. Web Stiffeners are required at all support points and concentrated loads. * Yield point increased for cold-work of forming. Table Notes on Pages 9-9

42 Section Properties Structural Stud Member Design t Area (in ) Weight (lb/ft) lx (in ) Gross Effective Properties ksi Effective Properties 50 ksi Torsional Properties Sx (in ) Rx ly (in ) Ry lx (in ) Sx (in ) Ma (in-k) Vag (lb) Vanet (lb) lx (in ) Sx (in ) Ma (in-k) Vag (lb) Vanet (lb) Jx000 (in ) Cw (in ) Xo m Ro Beta 00S S * S * * S * * S * * S S S * S * 9.0..* S * * S S S S * S * * S S S S S * * S S S * S * * S * * S S S S * S * * S S S S S * S S S * S * * S * * S S S S * S * * Web-height to thickness ratio exceeds 00. Web Stiffeners are required at all support points and concentrated loads. * Yield point increased for cold-work of forming. Table Notes on Pages 9-9

43 Section Properties Structural Stud Member Design t Area (in ) Weight (lb/ft) lx (in ) Gross Effective Properties ksi Effective Properties 50 ksi Torsional Properties Sx (in ) Rx ly (in ) Ry lx (in ) Sx (in ) Ma (in-k) Vag (lb) Vanet (lb) lx (in ) Sx (in ) Ma (in-k) Vag (lb) Vanet (lb) Jx000 (in ) Cw (in ) Xo m Ro Beta 95S S S S S S S S S S S * S * * S S S S S S S S S S S * S * * S S S S S S S S S Web-height to thickness ratio exceeds 00. Web Stiffeners are required at all support points and concentrated loads. * Yield point increased for cold-work of forming. Table Notes on Pages 9-9

44 Section Properties Structural Track Member Design t Area (in ) Weight (lb/ft) lx (in ) Gross Effective Properties ksi Effective Properties 50 ksi Torsional Properties Sx (in ) Rx ly (in ) Ry lx (in ) Sx (in ) Ma (in-k) Vag (lb) lx (in ) Sx (in ) Ma (in-k) Vag (lb) Jx000 (in ) Cw (in ) Xo m Ro Beta 50T T T T T * T T T T T T T T T T T T T T T * T T T T T T T T T T T T T T T * T T T T T Web-height to thickness ratio exceeds 00. Web Stiffeners are required at all support points and concentrated loads. * Section exceeds web height to width limit, only gross properties available. Table Notes on Pages 9-9

45 Section Properties Structural Track Member Design t Area (in ) Weight (lb/ft) lx (in ) Gross Effective Properties ksi Effective Properties 50 ksi Torsional Properties Sx (in ) Rx ly (in ) Ry lx (in ) Sx (in ) Ma (in-k) Vag (lb) lx (in ) Sx (in ) Ma (in-k) Vag (lb) Jx000 (in ) Cw (in ) Xo m Ro Beta 00T T T T T T T T T T * T T T T T T T T T T T T T T T * T T T T T T T T T T T T T T T T T T T T Web-height to thickness ratio exceeds 00. Web Stiffeners are required at all support points and concentrated loads. * Section exceeds web height to width limit, only gross properties available. 5 Table Notes on Pages 9-9

46 Section Properties Structural Track Member Design t Area (in ) Weight (lb/ft) lx (in ) Gross Effective Properties ksi Effective Properties 50 ksi Torsional Properties Sx (in ) Rx ly (in ) Ry lx (in ) Sx (in ) Ma (in-k) Vag (lb) lx (in ) Sx (in ) Ma (in-k) Vag (lb) Jx000 (in ) Cw (in ) Xo m Ro Beta 800T T T T T T T T T * T T T T T T T T T T T T T T T T T T T T T T T T T T T T T Web-height to thickness ratio exceeds 00. Web Stiffeners are required at all support points and concentrated loads. * Section exceeds web height to width limit, only gross properties available. Table Notes on Pages 9-9

47 Wall Height Summary Table Structural Wall Height Section Spacing Fy (ksi) oc 5 psf 5 psf 0 psf 5 psf 0 psf 0 psf 50 psf L/0 L/0 L/0 L/0 L/0 L/00 L/0 L/0 L/00 L/0 L/0 L/00 L/0 L/0 L/00 L/0 L/0 L/00 L/0 L/0 L/00 Web: /" CS: (FB=-5/8") 50S S e e 5 0 e 0 e 5 50S e e e 5 5 e 0 e 0 e 0 e 5 e 50S S S e S S S S S S S S S Web: 5/8" CS: (FB=-5/8") S e 9 5 e e 8 5 e 5 e S e 0 e e 9 5 e e 8 e e e e 9 e S e 9 5 e e 8 5 e 5 e 8 e 8 e 0 e 8 e 8 e e 5 e 5 e 5 e S S e 8 e S e 0 e e 0 e 0 e 5 e S S S S S S S S S Table Notes on Pages 9-9

48 Wall Height Summary Table Structural Wall Height Section Spacing Fy (ksi) oc 5 psf 5 psf 0 psf 5 psf 0 psf 0 psf 50 psf L/0 L/0 L/0 L/0 L/0 L/00 L/0 L/0 L/00 L/0 L/0 L/00 L/0 L/0 L/00 L/0 L/0 L/00 L/0 L/0 L/00 Web: " CS: (FB=-5/8") 00S e e 9 9 e 9 e 8 8 e 8 0 e 8 0 e 8 0 e 00S e 0 0 e 9 9 e 9 e 8 8 e 8 e 8 e 0 e 8 e 8 e e 00S e e 9 9 e 9 e 8 8 e 8 0 e 8 0 e 8 0 e 8 e 8 e e 0 e 0 e 0 e e e e 00S S e 9 e 00S e 9 e 8 8 e 8 e e 5 e 5 e e 00S S S S S S S S S Web: " CS: (FB=-5/8") 00S e 9 9 e 9 e e e e 5 e 5 e e 9 e 9 e e e e 0 e 00S e 9 e 5 0 e e e 5 e 5 0 e 8 e 9 e 9 e e e e 0 0 e 0 8 e 0 8 e 0 0 e 00S e 5 e e 9 e 9 e e e e 0 e e e 0 5 e 9 9 e 9 9 e 9 5 e 8 9 e 8 9 e 8 9 e 00S e 8 e 5 e e e 0 e 00S e 0 8 e e 9 8 e 5 e 5 e e 9 e e e 0 e 00S e 8 e 5 e e e 0 e e 5 e e 9 e 9 e 0 e 0 e 0 e 9 e 00S S S e e 0 00S S S S S S

49 Wall Height Summary Table Structural Wall Height Section Spacing Fy (ksi) oc 5 psf 5 psf 0 psf 5 psf 0 psf 0 psf 50 psf L/0 L/0 L/0 L/0 L/0 L/00 L/0 L/0 L/00 L/0 L/0 L/00 L/0 L/0 L/00 L/0 L/0 L/00 L/0 L/0 L/00 Web: /" JW: (FB=") 50S e 0 e 5 50S e 0 e 5 9 e e 5 e 50S e 0 e 5 e e e 5 8 e 5 e 5 e 5 e 8 e 50S S S e e 5 50S S S S S S S S S Web: 5/8" JW: (FB=") S e e e 9 0 e 8 e 8 0 e 8 0 e 0 e S e 0 8 e e 9 0 e 8 e 8 e 8 e 8 e e e e S e e e 9 0 e 8 e 8 0 e 8 0 e 0 e 8 0 e 8 0 e 5 e 0 e 0 e 9 e e e e S S e 9 e 9 S e 9 e e 8 5 e e e e 9 e S S S S S S S S S Table Notes on Pages 9-9 9

50 Wall Height Summary Table Structural Wall Height Section Spacing Fy (ksi) oc 5 psf 5 psf 0 psf 5 psf 0 psf 0 psf 50 psf L/0 L/0 L/0 L/0 L/0 L/00 L/0 L/0 L/00 L/0 L/0 L/00 L/0 L/0 L/00 L/0 L/0 L/00 L/0 L/0 L/00 Web: " JW: (FB=") 00S e e e e 0 5 e 9 e 9 e 9 e 8 e 00S e 5 e e 5 e e 0 5 e 9 e 9 0 e 9 0 e 8 e 8 e 8 e 8 e 00S e e e 0 5 e 9 e 9 e 9 e 8 e 8 e 8 e 8 0 e e e e e e e 00S e S e 0 8 e e 9 9 e 8 5 e 00S e e 0 e e 8 0 e e e e e 00S S S S S S S S S Web: " JW: (FB=") 00S e 0 e 0 e 8 e 5 8 e 8 e e e e e 8 e e e 5 e 0 e 0 e e 00S e 8 e 5 8 e e e e 5 8 e 5 8 e e e e 5 e 5 e 5 e e e e 0 e 00S e e 8 e e e 5 e 0 e 0 e e 8 e 8 e 0 0 e 0 e 0 e 9 e 9 e 9 e 9 e 00S e e 9 e 5 0 e e e 5 e 5 0 e e 00S e e e 5 e e e 8 e 8 e e e e e 00S e 9 e 5 0 e e e 5 e 5 0 e e 0 e 0 e e 0 e 0 e 0 9 e 0 9 e 0 9 e 0 0 e 00S S S e 9 e 9 e S S S S S S Table Notes on Pages

51 Wall Height Summary Table Structural Wall Height Section Spacing Fy (ksi) oc 5 psf 5 psf 0 psf 5 psf 0 psf 0 psf 50 psf L/0 L/0 L/0 L/0 L/0 L/00 L/0 L/0 L/00 L/0 L/0 L/00 L/0 L/0 L/00 L/0 L/0 L/00 L/0 L/0 L/00 Web: /" JE: (FB= /") 50S S S e e S S S S S S S S S Web: 5/8" JE: (FB= /") S S e 0 e e 9 5 e 8 S e 9 e 8 8 e 8 e 9 e 8 e 8 e e S S S S S S S S S Table Notes on Pages 9-9

52 Wall Height Summary Table Structural Wall Height Section Spacing Fy (ksi) oc 5 psf 5 psf 0 psf 5 psf 0 psf 0 psf 50 psf L/0 L/0 L/0 L/0 L/0 L/00 L/0 L/0 L/00 L/0 L/0 L/00 L/0 L/0 L/00 L/0 L/0 L/00 L/0 L/0 L/00 Web: " JE: (FB= /") 00S e e S e e e 0 0 e 8 0 e 00S e e e 0 e 9 e 9 e 9 e 8 e 8 e 8 e 9 e 00S S S S S S S S S Web: " JE: (FB= /") 00S e e 8 e e e e 5 e 5 e e 00S50-9 e 9 9 e e 5 5 e e e 5 e 5 e e e e 0 e 00S e 8 e e e e 5 e 5 e e e e 5 e e e e 0 e 0 e 0 e 00S S S e e e 00S S S S S S Table Notes on Page 9-9 5

53 Allowable Combined Bending & Axial 5 psf Lateral Load Wall Spacing 50S-mils (Fy) 50S00-mils (Fy) 50S50-mils (Fy) Ht. (ft) o.c. - () - () () - () () Wall Spacing S-mils (Fy) S00-mils (Fy) S50-mils (Fy) Ht. (ft) o.c. - () - () () - () () Combined Loading Allowable Axial Load Table Notes. Allowable axial loads listed in kips ( kip = 000 lb).. Allowable axial loads determined in accordance with section C5 of the NASPEC, with section D used for treatment of punchouts.. Listed lateral pressures and axial loads have not been modified for strength checks based on wind/earthquake or multiple transient loads.. Allowable axial loads based on bracing KyLy = KtLt = 8 inches. 5. Superscripts represent exceeded deflection: = L/0 exceeded; = L/0 exceeded; = L/0 exceeded; exceeded = L/00 exceeded; = L/0. Lateral pressures have been multiplied by 0. for deflection checks for pressures > 5 psf.. Studs are assumed to be adequately braced to develop full allowable bending moment, Ma. 8. Check end reactions for web crippling. 5

54 Allowable Combined Bending & Axial 5 psf Lateral Load Wall Spacing 00S-mils (Fy) 00S00-mils (Fy) 00S50-mils (Fy) Ht. (ft) o.c. - () - () () - () () Wall Spacing 00S-mils (Fy) 00S00-mils (Fy) 00S50-mils (Fy) Ht. (ft) o.c. - () - () () - () () Combined Loading Allowable Axial Load Table Notes. Allowable axial loads listed in kips ( kip = 000 lb).. Allowable axial loads determined in accordance with section C5 of the NASPEC, with section D used for treatment of punchouts.. Listed lateral pressures and axial loads have not been modified for strength checks based on wind/earthquake or multiple transient loads.. Allowable axial loads based on bracing KyLy = KtLt = 8 inches. 5. Superscripts represent exceeded deflection: = L/0 exceeded; = L/0 exceeded; = L/0 exceeded; exceeded = L/00 exceeded; = L/0. Lateral pressures have been multiplied by 0. for deflection checks for pressures > 5 psf.. Studs are assumed to be adequately braced to develop full allowable bending moment, Ma. 8. Check end reactions for web crippling. 5

55 Allowable Combined Bending & Axial 5 psf Lateral Load Wall Spacing 50S-mils (Fy) 50S00-mils (Fy) 50S50-mils (Fy) Ht. (ft) o.c. - () - () () - () () Wall Spacing S-mils (Fy) S00-mils (Fy) S50-mils (Fy) Ht. (ft) o.c. - () - () () - () () Combined Loading Allowable Axial Load Table Notes. Allowable axial loads listed in kips ( kip = 000 lb).. Allowable axial loads determined in accordance with section C5 of the NASPEC, with section D used for treatment of punchouts.. Listed lateral pressures and axial loads have not been modified for strength checks based on wind/earthquake or multiple transient loads.. Allowable axial loads based on bracing KyLy = KtLt = 8 inches. 5. Superscripts represent exceeded deflection: = L/0 exceeded; = L/0 exceeded; = L/0 exceeded; exceeded = L/00 exceeded; = L/0. Lateral pressures have been multiplied by 0. for deflection checks for pressures > 5 psf.. Studs are assumed to be adequately braced to develop full allowable bending moment, Ma. 8. Check end reactions for web crippling. 55

56 Allowable Combined Bending & Axial 5 psf Lateral Load Wall Spacing 00S-mils (Fy) 00S00-mils (Fy) 00S50-mils (Fy) Ht. (ft) o.c. - () - () () - () () Wall Spacing 00S-mils (Fy) 00S00-mils (Fy) 00S50-mils (Fy) Ht. (ft) o.c. - () - () () - () () Combined Loading Allowable Axial Load Table Notes. Allowable axial loads listed in kips ( kip = 000 lb).. Allowable axial loads determined in accordance with section C5 of the NASPEC, with section D used for treatment of punchouts.. Listed lateral pressures and axial loads have not been modified for strength checks based on wind/earthquake or multiple transient loads.. Allowable axial loads based on bracing KyLy = KtLt = 8 inches. 5. Superscripts represent exceeded deflection: = L/0 exceeded; = L/0 exceeded; = L/0 exceeded; exceeded = L/00 exceeded; = L/0. Lateral pressures have been multiplied by 0. for deflection checks for pressures > 5 psf.. Studs are assumed to be adequately braced to develop full allowable bending moment, Ma. 8. Check end reactions for web crippling. 5

57 Allowable Combined Bending & Axial 0 psf Lateral Load Wall Spacing 50S-mils (Fy) 50S00-mils (Fy) 50S50-mils (Fy) Ht. (ft) o.c. - () - () () - () () Wall Spacing S-mils (Fy) S00-mils (Fy) S50-mils (Fy) Ht. (ft) o.c. - () - () () - () () Combined Loading Allowable Axial Load Table Notes. Allowable axial loads listed in kips ( kip = 000 lb).. Allowable axial loads determined in accordance with section C5 of the NASPEC, with section D used for treatment of punchouts.. Listed lateral pressures and axial loads have not been modified for strength checks based on wind/earthquake or multiple transient loads.. Allowable axial loads based on bracing KyLy = KtLt = 8 inches. 5. Superscripts represent exceeded deflection: = L/0 exceeded; = L/0 exceeded; = L/0 exceeded; exceeded = L/00 exceeded; = L/0. Lateral pressures have been multiplied by 0. for deflection checks for pressures > 5 psf.. Studs are assumed to be adequately braced to develop full allowable bending moment, Ma. 8. Check end reactions for web crippling. 5

58 Allowable Combined Bending & Axial 0 psf Lateral Load Wall Spacing 00S-mils (Fy) 00S00-mils (Fy) 00S50-mils (Fy) Ht. (ft) o.c. - () - () () - () () Wall Spacing 00S-mils (Fy) 00S00-mils (Fy) 00S50-mils (Fy) Ht. (ft) o.c. - () - () () - () () Combined Loading Allowable Axial Load Table Notes. Allowable axial loads listed in kips ( kip = 000 lb).. Allowable axial loads determined in accordance with section C5 of the NASPEC, with section D used for treatment of punchouts.. Listed lateral pressures and axial loads have not been modified for strength checks based on wind/earthquake or multiple transient loads.. Allowable axial loads based on bracing KyLy = KtLt = 8 inches. 5. Superscripts represent exceeded deflection: = L/0 exceeded; = L/0 exceeded; = L/0 exceeded; exceeded = L/00 exceeded; = L/0. Lateral pressures have been multiplied by 0. for deflection checks for pressures > 5 psf.. Studs are assumed to be adequately braced to develop full allowable bending moment, Ma. 8. Check end reactions for web crippling. 58

59 Allowable Combined Bending & Axial 5 psf Lateral Load Wall Spacing 50S-mils (Fy) 50S00-mils (Fy) 50S50-mils (Fy) Ht. (ft) o.c. - () - () () - () () Wall Spacing S-mils (Fy) S00-mils (Fy) S50-mils (Fy) Ht. (ft) o.c. - () - () () - () () Combined Loading Allowable Axial Load Table Notes. Allowable axial loads listed in kips ( kip = 000 lb).. Allowable axial loads determined in accordance with section C5 of the NASPEC, with section D used for treatment of punchouts.. Listed lateral pressures and axial loads have not been modified for strength checks based on wind/earthquake or multiple transient loads.. Allowable axial loads based on bracing KyLy = KtLt = 8 inches. 5. Superscripts represent exceeded deflection: = L/0 exceeded; = L/0 exceeded; = L/0 exceeded; exceeded = L/00 exceeded; = L/0. Lateral pressures have been multiplied by 0. for deflection checks for pressures > 5 psf.. Studs are assumed to be adequately braced to develop full allowable bending moment, Ma. 8. Check end reactions for web crippling. 59

60 Allowable Combined Bending & Axial 5 psf Lateral Load Wall Spacing 00S-mils (Fy) 00S00-mils (Fy) 00S50-mils (Fy) Ht. (ft) o.c. - () - () () - () () Wall Spacing 00S-mils (Fy) 00S00-mils (Fy) 00S50-mils (Fy) Ht. (ft) o.c. - () - () () - () () Combined Loading Allowable Axial Load Table Notes. Allowable axial loads listed in kips ( kip = 000 lb).. Allowable axial loads determined in accordance with section C5 of the NASPEC, with section D used for treatment of punchouts.. Listed lateral pressures and axial loads have not been modified for strength checks based on wind/earthquake or multiple transient loads.. Allowable axial loads based on bracing KyLy = KtLt = 8 inches. 5. Superscripts represent exceeded deflection: = L/0 exceeded; = L/0 exceeded; = L/0 exceeded; exceeded = L/00 exceeded; = L/0. Lateral pressures have been multiplied by 0. for deflection checks for pressures > 5 psf.. Studs are assumed to be adequately braced to develop full allowable bending moment, Ma. 8. Check end reactions for web crippling. 0

61 Allowable Combined Bending & Axial 0 psf Lateral Load Wall Spacing 50S-mils (Fy) 50S00-mils (Fy) 50S50-mils (Fy) Ht. (ft) o.c. - () - () () - () () Wall Spacing S-mils (Fy) S00-mils (Fy) S50-mils (Fy) Ht. (ft) o.c. - () - () () - () () Combined Loading Allowable Axial Load Table Notes. Allowable axial loads listed in kips ( kip = 000 lb).. Allowable axial loads determined in accordance with section C5 of the NASPEC, with section D used for treatment of punchouts.. Listed lateral pressures and axial loads have not been modified for strength checks based on wind/earthquake or multiple transient loads.. Allowable axial loads based on bracing KyLy = KtLt = 8 inches. 5. Superscripts represent exceeded deflection: = L/0 exceeded; = L/0 exceeded; = L/0 exceeded; exceeded = L/00 exceeded; = L/0. Lateral pressures have been multiplied by 0. for deflection checks for pressures > 5 psf.. Studs are assumed to be adequately braced to develop full allowable bending moment, Ma. 8. Check end reactions for web crippling.

62 Allowable Combined Bending & Axial 0 psf Lateral Load Wall Spacing 00S-mils (Fy) 00S00-mils (Fy) 00S50-mils (Fy) Ht. (ft) o.c. - () - () () - () () Wall Spacing 00S-mils (Fy) 00S00-mils (Fy) 00S50-mils (Fy) Ht. (ft) o.c. - () - () () - () () Combined Loading Allowable Axial Load Table Notes. Allowable axial loads listed in kips ( kip = 000 lb).. Allowable axial loads determined in accordance with section C5 of the NASPEC, with section D used for treatment of punchouts.. Listed lateral pressures and axial loads have not been modified for strength checks based on wind/earthquake or multiple transient loads.. Allowable axial loads based on bracing KyLy = KtLt = 8 inches. 5. Superscripts represent exceeded deflection: = L/0 exceeded; = L/0 exceeded; = L/0 exceeded; exceeded = L/00 exceeded; = L/0. Lateral pressures have been multiplied by 0. for deflection checks for pressures > 5 psf.. Studs are assumed to be adequately braced to develop full allowable moment, Ma. 8. Check end reactions for web crippling.

63 Allowable Combined Bending & Axial 0 psf Lateral Load Wall Spacing 50S-mils (Fy) 50S00-mils (Fy) 50S50-mils (Fy) Ht. (ft) o.c. - () - () () - () () Wall Spacing S-mils (Fy) S00-mils (Fy) S50-mils (Fy) Ht. (ft) o.c. - () - () () - () () Combined Loading Allowable Axial Load Table Notes. Allowable axial loads listed in kips ( kip = 000 lb).. Allowable axial loads determined in accordance with section C5 of the NASPEC, with section D used for treatment of punchouts.. Listed lateral pressures and axial loads have not been modified for strength checks based on wind/earthquake or multiple transient loads.. Allowable axial loads based on bracing KyLy = KtLt = 8 inches. 5. Superscripts represent exceeded deflection: = L/0 exceeded; = L/0 exceeded; = L/0 exceeded; exceeded = L/00 exceeded; = L/0. Lateral pressures have been multiplied by 0. for deflection checks for pressures > 5 psf.. Studs are assumed to be adequately braced to develop full allowable bending moment, Ma. 8. Check end reactions for web crippling.

64 Allowable Combined Bending & Axial 0 psf Lateral Load Wall Spacing 00S-mils (Fy) 00S00-mils (Fy) 00S50-mils (Fy) Ht. (ft) o.c. - () - () () - () () Wall Spacing 00S-mils (Fy) 00S00-mils (Fy) 00S50-mils (Fy) Ht. (ft) o.c. - () - () () - () () Combined Loading Allowable Axial Load Table Notes. Allowable axial loads listed in kips ( kip = 000 lb).. Allowable axial loads determined in accordance with section C5 of the NASPEC, with section D used for treatment of punchouts.. Listed lateral pressures and axial loads have not been modified for strength checks based on wind/earthquake or multiple transient loads.. Allowable axial loads based on bracing KyLy = KtLt = 8 inches. 5. Superscripts represent exceeded deflection: = L/0 exceeded; = L/0 exceeded; = L/0 exceeded; exceeded = L/00 exceeded; = L/0. Lateral pressures have been multiplied by 0. for deflection checks for pressures > 5 psf.. Studs are assumed to be adequately braced to develop full allowable bending moment, Ma. 8. Check end reactions for web crippling.

65 Allowable Combined Bending & Axial 50 psf Lateral Load Wall Spacing 50S-mils (Fy) 50S00-mils (Fy) 50S50-mils (Fy) Ht. (ft) o.c. - () - () () - () () Wall Spacing S-mils (Fy) S00-mils (Fy) S50-mils (Fy) Ht. (ft) o.c. - () - () () - () () Combined Loading Allowable Axial Load Table Notes. Allowable axial loads listed in kips ( kip = 000 lb).. Allowable axial loads determined in accordance with section C5 of the NASPEC, with section D used for treatment of punchouts.. Listed lateral pressures and axial loads have not been modified for strength checks based on wind/earthquake or multiple transient loads.. Allowable axial loads based on bracing KyLy = KtLt = 8 inches. 5. Superscripts represent exceeded deflection: = L/0 exceeded; = L/0 exceeded; = L/0 exceeded; exceeded = L/00 exceeded; = L/0. Lateral pressures have been multiplied by 0. for deflection checks for pressures > 5 psf.. Studs are assumed to be adequately braced to develop full allowable bending moment, Ma. 8. Check end reactions for web crippling. 5

66 Allowable Combined Bending & Axial 50 psf Lateral Load Wall Spacing 00S-mils (Fy) 00S00-mils (Fy) 00S50-mils (Fy) Ht. (ft) o.c. - () - () () - () () Wall Spacing 00S-mils (Fy) 00S00-mils (Fy) 00S50-mils (Fy) Ht. (ft) o.c. - () - () () - () () Combined Loading Allowable Axial Load Table Notes. Allowable axial loads listed in kips ( kip = 000 lb).. Allowable axial loads determined in accordance with section C5 of the NASPEC, with section D used for treatment of punchouts.. Listed lateral pressures and axial loads have not been modified for strength checks based on wind/earthquake or multiple transient loads.. Allowable axial loads based on bracing KyLy = KtLt = 8 inches. 5. Superscripts represent exceeded deflection: = L/0 exceeded; = L/0 exceeded; = L/0 exceeded; exceeded = L/00 exceeded; = L/0. Lateral pressures have been multiplied by 0. for deflection checks for pressures > 5 psf.. Studs are assumed to be adequately braced to develop full allowable bending moment, Ma. 8. Check end reactions for web crippling.

67 Allowable Floor Joist Spans 0 psf Dead Load 0 psf Live Load L/0 Live Load Deflection L/80 Live Load Deflection Section Fy (ksi) Single Span Two Equal Spans Single Span Two Equal Spans Spacing Spacing Spacing Spacing 50S i 8 i i i 5 i i 50S i 8 i i i 0 i i 50S i i 8 8 i 50S i 0 i i 50S i 9 i 8 i i i 50S S S S S S S S S S i 9 5 i 8 i i 9 5 i 8 i S i 9 0 i 8 0 i i 9 0 i 8 0 i S i i 9 0 i i 0 9 i 9 0 i S i 0 i 9 8 i i i 9 8 i S i i 9 i i i 9 i S S S i S S S S S S S i 9 i 8 i i 9 i 8 i 00S i 0 5 i 8 i i 0 5 i 8 i 00S- 9 i 9 i 9 i i i 9 i 00S i i 0 i i i 0 i 00S i 0 i 0 i i 0 i 0 i 00S S i S i S S S S S S Table Notes on Page 9-9

68 Allowable Floor Joist Spans 0 psf Dead Load 0 psf Live Load L/0 Live Load Deflection L/80 Live Load Deflection Section Fy (ksi) Single Span Two Equal Spans Single Span Two Equal Spans Spacing Spacing Spacing Spacing 00S e e 5 i 9 i a 0 e e 5 i 9 i a 00S00- e e 8 e i i 8 a e 8 e i i 8 a 00S- 5 e 9 i 8 i i 5 5 i 5 i i 00S e 9 i i 0 i i 9 i 0 i 00S50-8 e 0 i 5 i i 5 e 9 i 5 i i 00S i S i i 00S i 8 0 i i 00S S S S S S S- 9 e e 0 e 9 a a 0 a 5 e e 0 e 9 a a 0 a 5S00-8 e 5 8 e 9 e 8 a 5 a 5 a 5 e 5 8 e 9 e 8 a 5 a 5 a 5S- 9 0 e 0 0 i i i 8 5 e 0 0 i i i 5S e i 9 i 5 9 i e i 9 i 5 9 i 5S e e 0 i 9 9 i i e i 9 9 i i 5S i 9 0 i i 5S i 0 0 i i 5S i 0 0 i i 5S i S S i S S S S- 8 e 5 e e 8 a a 0 9 a 8 e 5 e e 8 a a 0 9 a 800S00-8 e 5 e 5 e 8 5 a 5 a a 8 0 e 5 e 5 e 8 5 a 5 a a 800S e i 8 i 5 0 i e i 8 i 5 0 i 800S e 0 e 0 i 0 8 i 0 i e i 0 8 i 0 i 800S e 0 e 0 i 0 0 i 0 a 5 9 e 0 e 0 i 0 0 i 0 a 800S i i 0 i i 8 8 i 800S i 8 i i 800S i 5 9 i i i 0 5 i 800S i S i S i S S S Table Notes on Pages 9-9 8

69 Allowable Floor Joist Spans 0 psf Dead Load 0 psf Live Load L/0 Live Load Deflection L/80 Live Load Deflection Section Fy (ksi) Single Span Two Equal Spans Single Span Two Equal Spans Spacing Spacing Spacing Spacing 95S- 9 0 e e i 9 0 i i e e i 9 0 i i 95S00- e e i i a e e i i a 95S e e 8 e 5 8 i i 8 a 0 0 e 8 e 5 8 i i 8 a 95S i i i 5 8 i 0 0 i 95S i i 0 i i 0 i 95S i 8 i i i i 0 i 95S i i i 95S i 0 i i 95S i i i 95S S S S- e 0 9 e e a 0 9 a 5 a e 0 9 e e a 0 9 a 5 a 000S e 0 e 8 0 e 5 5 a 0 a 0 a e e 8 0 e 5 5 a 0 a 0 a 000S50-8 e e 8 0 e 8 a a a 5 e e 8 0 e 8 a a a 000S i i 0 i i 5 i i 000S i 9 i 0 i i i i 000S i 0 i 5 0 i i 8 0 i i 000S i i i 000S i 8 i i 000S i 9 0 i i 000S S S S-5 50 e 8 e 5 0 e 5 a 0 a 5 a 8 e 0 e 9 e a 9 a 5 a 00S e 9 e e 0 a a a 9 e e 9 e a 0 a a 00S e e 9 e 0 a 9 a a e 8 e 9 e 5 0 a 9 a a 00S i i 9 8 i i 9 i 00S i 5 i 5 i i 8 i 00S i i 8 i i 0 i 00S i S i S i Table Notes on Pages 9-9

70 Allowable Floor Joist Spans 0 psf Dead Load 0 psf Live Load L/0 Live Load Deflection L/80 Live Load Deflection Section Fy (ksi) Single Span Two Equal Spans Single Span Two Equal Spans Spacing Spacing Spacing Spacing 50S i 8 i 5 5 i i i 5 5 i 50S i 0 i 5 8 i 8 5 i 0 i 5 8 i 50S i i 5 9 i 50S i 8 i 9 i i i 50S i 8 i 0 i i i 50S S S S S S S S S S e 9 5 i 8 i 8 i e 9 5 i 8 i 8 i S e 9 0 i 8 i 0 i e 9 0 i 8 i 0 i S i 9 i 0 i i 9 i 0 i S i 0 i 8 5 i i 9 i 8 5 i S i 0 i 8 i i 0 5 i 8 i S i S i S i S S S S S S S e 9 i 8 i 0 i e 9 i 8 i 0 i 00S e 0 5 i 9 0 i i e 0 5 i 9 0 i i 00S i 0 i 8 i i 0 i 8 i 00S i 0 0 i 8 0 i i 0 8 i 8 0 i 00S i i 9 i i i 9 i 00S i S i S i S S S S S S Table Notes on Pages 9-9 0

71 Allowable Floor Joist Spans 0 psf Dead Load 0 psf Live Load L/0 Live Load Deflection L/80 Live Load Deflection Section Fy (ksi) Single Span Two Equal Spans Single Span Two Equal Spans Spacing Spacing Spacing Spacing 00S- 9 e e 9 9 e 9 i i 9 5 a e e 9 9 e 9 i i 9 5 a 00S00- e 5 e 0 e i 5 a 9 8 a e e 0 e i 5 a 9 8 a 00S e 8 i 5 i 9 i e 5 i i 9 i 00S e i 8 i 0 i 0 e i i 0 i 00S e e 5 i 5 i i 5 0 e 0 i 5 i i 00S i 5 0 i 00S i 5 i i 00S i 5 9 i i 00S S S i S S S S- e e 0 e a a 8 a e e 0 e a a 8 a 5S e e e 5 a a 9 a 5 e e e 5 a a 9 a 5S- 5 0 e e i 5 0 i i 5 9 e i 5 0 i i 5S00-8 e 8 e 9 i 9 i 8 a 5 e e 8 8 i 9 i 8 a 5S50-9 e 0 e 9 9 i i 0 a 5 9 e 9 e 9 i i 0 a 5S i 9 0 i i i 5 i 5S i 0 0 i i i 5 i 5S i 0 0 i 8 i i i 5S i S i S i i 5S S S S- 5 e e 0 0 e a 9 a 8 8 a 5 e e 0 0 e a 9 a 8 8 a 800S00-5 e e e 5 a a 8 a 5 e e e 5 a a 8 a 800S e e 8 i 5 0 i a e e 8 i 5 0 i a 800S e 0 e e 0 8 i 0 i a 8 0 e e 0 i 0 i a 800S50-0 e 8 0 e 8 e 0 0 i 8 0 i 8 a e 8 e 0 0 i 8 0 i 8 a 800S i 0 i i i i 800S i 8 i 8 i i i 800S i i 9 i i 0 i 800S i i 800S i S i i i 800S S S Table Notes on Pages 9-9

72 Allowable Floor Joist Spans 0 psf Dead Load 0 psf Live Load L/0 Live Load Deflection L/80 Live Load Deflection Section Fy (ksi) Single Span Two Equal Spans Single Span Two Equal Spans Spacing Spacing Spacing Spacing 95S- 9 0 e e 0 e 9 0 i i a 9 0 e e 0 e 9 0 i i a 95S00- e 8 e e i 8 i 0 a 9 e 8 e e i 8 i 0 a 95S50- e 9 e 5 9 e i 9 a 5 a 0 e 9 e 5 9 e i 9 a 5 a 95S i 0 i 9 0 i i 0 0 i 8 i 95S i i 9 9 i i 0 i 9 i 95S i 5 i 0 0 i 0 5 i 0 i 0 i 95S i 9 i i 95S i 9 i i 95S i 9 i i 95S S S S- 0 9 e e 8 e 0 9 a 0 a a 0 e e 8 e 0 9 a 0 a a 000S00-0 e 9 e 5 e 0 a 8 a 0 a e 9 e 5 e 0 a 8 a 0 a 000S50- e 0 0 e e a 9 0 a a e 0 0 e e a 9 0 a a 000S i i 9 0 i i i 9 i 000S i 5 i 0 8 i i i 0 i 000S i i 8 i i i 5 i 000S i i i 000S i i i 000S i 5 i i 0 i 000S S S S-5 50 e 5 0 e 0 e 0 a 9 a 0 0 a 5 0 e 9 e 9 0 e 8 a 5 a 0 0 a 00S e e 9 e a 0 a a e 9 e 0 9 e 9 a 8 a a 00S e e e 9 a 8 a a e 9 e e 0 a 9 a a 00S i 0 i 5 8 i i i 00S i 0 i i i 5 i 00S i i 5 i i 0 i i 00S i S i S i Table Notes on Pages 9-9

73 Allowable Floor Joist Spans 0 psf Dead Load 0 psf Live Load L/0 Live Load Deflection L/80 Live Load Deflection Section Fy (ksi) Single Span Two Equal Spans Single Span Two Equal Spans Spacing Spacing Spacing Spacing 50S i 0 i 0 i i 5 i 0 i 50S i i 5 i i i 5 i 50S- 5 9 i i 5 i i 5 i 50S i 5 i i i 5 i 50S i 8 i i 5 5 i i i 50S S S S S S S S S S e 8 5 i i 5 i e 8 5 i i 5 i S e 8 0 i i i 8 e 8 0 i i i S i 8 i 0 i i 8 i 0 i S i 9 i i i 9 0 i i S i 9 5 i 8 i i 9 5 i 8 i S i S i S i i S S S S S S S e e 8 0 i 8 i i 8 e 8 0 i 8 i i 00S e e 9 i 8 i i 8 9 e e 9 i 8 i i 00S i 9 i 5 i i 9 i 5 i 00S i 9 9 i i i 9 8 i i 00S i 0 0 i 8 i i 0 0 i 8 i 00S i S i i 00S i 0 i i 00S S S S S S Table Notes on Page 9-9

74 Allowable Floor Joist Spans 0 psf Dead Load 0 psf Live Load L/0 Live Load Deflection L/80 Live Load Deflection Section Fy (ksi) Single Span Two Equal Spans Single Span Two Equal Spans Spacing Spacing Spacing Spacing 00S- e 0 8 e 8 9 e i 0 8 a 8 a e 0 e 8 9 e i 0 8 a 8 a 00S00-0 e e 9 e 0 a 0 a 8 a e 0 0 e 9 e 0 a 0 a 8 a 00S- 8 5 e 0 e i i 0 i e i 8 i 0 i 00S00-0 e 0 9 e 5 i i 0 9 a e i i 0 9 a 00S e 0 e 5 i i 0 a e 0 0 e 5 i i 0 a 00S i 0 i 0 0 i 00S i 8 i i 00S i i i 0 i 0 i 00S i S i S i i 00S S S S- 0 e e 9 e a 0 a a 0 e e 9 e a 0 a a 5S00-0 e e 9 e a 0 a 9 a 0 e e 9 e a 0 a 9 a 5S- 5 e 5 e 0 e 5 i 5 i 0 a 0 e 0 e 5 i 5 i 0 a 5S00- e e e i i a 5 9 e 0 e i i a 5S50- e 5 e e 8 i 5 i a 5 9 e e e 8 i 5 i a 5S i i 0 i i 9 i 5S i 8 i 5 i i 5 i 5S i 8 i i i 5 0 i 5S i i i 5S i i 5S i 0 i i 5S S S S- 8 e 0 e 9 e a 0 0 a a 8 e 0 e 9 e a 0 0 a a 800S00-8 e 8 e 9 e 9 a 0 a a 8 e 8 e 9 e 9 a 0 a a 800S- 5 e e e 5 i i a 5 5 e 0 e e 5 i i a 800S e 0 e e 8 5 i 0 a a e 0 e e 8 i 0 a a 800S50-8 e e e 8 i a a 0 e 5 e e 8 i a a 800S i 8 8 i 5 8 i i i 0 i 800S i 9 8 i i i i 5 i 800S i 0 5 i 5 i i 8 i i 800S i i i 800S i 8 i i 800S i 9 i i 800S S S Table Notes on Pages 9-9

75 Allowable Floor Joist Spans 0 psf Dead Load 0 psf Live Load L/0 Live Load Deflection L/80 Live Load Deflection Section Fy (ksi) Single Span Two Equal Spans Single Span Two Equal Spans Spacing Spacing Spacing Spacing 95S- 9 e 5 5 e e 9 i 5 a a e 5 5 e e 9 i 5 a a 95S e e e 8 0 i 5 a a 8 e e e 8 0 i 5 a a 95S50-9 e e e 9 a 5 a a 9 e e e 9 a 5 a a 95S i 0 9 i 0 i i 9 0 i i 95S i 8 i 8 i i 9 0 i i 95S e 5 i 0 i 8 8 i i 0 i 8 i 95S i i 9 9 i i i 95S i 8 i 0 8 i i 8 9 i 95S i 9 i i i 9 i 95S i S i S S- 8 e e e 8 a 5 a a 8 e e e 8 a 5 a a 000S e e e 9 a 5 9 a 8 a 9 e e e 9 a 5 9 a 8 a 000S e 0 e e 9 a a 0 a 0 e 0 e e 9 a a 0 a 000S e 5 i 8 i 9 i i 0 i i 000S e 5 i i 8 5 i i i 8 5 i 000S e i 9 i 9 i e i i 9 i 000S i 0 i 0 9 i i 9 i 000S i 5 i i i 9 i 000S i i 0 i 5 8 i 0 i 000S i S i S i S e 9 e 9 e 8 a 8 a 9 a 9 e 0 8 e 8 0 e 5 a a 9 a 00S e 9 e 0 e 8 9 a a 8 a 9 e e 8 0 e 8 a a 8 a 00S e 9 e 0 9 e 9 a a 8 a 9 e e 9 e 9 a a 8 a 00S i 9 i 0 i i 5 i 0 i 00S i 8 i i i i i 00S i 0 0 i i i i i 00S i i 00S i i 00S i i 5 Table Notes on Pages 9-9

76 0 psf Dead Load 50 psf Live Load L/0 Live Load Deflection L/80 Live Load Deflection Section Single Span Two Equal Spans Single Span Two Equal Spans Fy (ksi) Spacing Spacing Spacing Spacing 50S i 5 5 i 5 i i 5 5 i 5 i 50S e i 5 8 i 8 i i 5 8 i 8 i 50S i i 5 5 i i 5 i 50S i 9 i 5 i 5 i i 5 i 50S i 0 i 5 9 i 5 5 i 8 i 5 9 i 50S S S i S S S S S S S- 8 8 e 5 5 e 8 i 8 i 5 5 i 5 5 e 8 i 8 i 5 5 i S e 5 8 e 8 0 i 0 i 5 8 i 0 e 5 8 e 8 0 i 0 i 5 8 i S i 0 i 5 i i 0 i 5 i S i 8 5 i 0 i i 8 i 0 i S i 8 i 0 i i 8 i 0 i S i S i i S i 9 i i S S S S S S S- 8 0 e 5 9 e 8 i 0 i 5 9 a 8 0 e 5 9 e 8 i 0 i 5 9 a 00S00-8 e 0 e 8 i i 0 a 8 e 0 e 8 i i 0 a 00S i 8 i 9 i i 8 i 9 i 00S e 0 i 8 0 i i i 8 0 i i 00S e 0 i 9 i 5 i e 0 5 i 9 i 5 i 00S i 8 9 i i 00S i 9 i i 00S i 9 9 i i 00S S S i S S S Table Notes on Page 85 Allowable Floor Joist Spans 0 psf Dead Load 50 psf Live Load L/0 Live Load Deflection L/80 Live Load Deflection Section Fy (ksi) Single Span Two Equal Spans Single Span Two Equal Spans Spacing Spacing Spacing Spacing 50S i 5 5 i 5 i i 5 5 i 5 i 50S e i 5 8 i 8 i i 5 8 i 8 i 50S i i 5 5 i i 5 i 50S i 9 i 5 i 5 i i 5 i 50S i 0 i 5 9 i 5 5 i 8 i 5 9 i 50S S S i S S S S S S S- 8 8 e 5 5 e 8 i 8 i 5 5 i 5 5 e 8 i 8 i 5 5 i S e 5 8 e 8 0 i 0 i 5 8 i 0 e 5 8 e 8 0 i 0 i 5 8 i S i 0 i 5 i i 0 i 5 i S i 8 5 i 0 i i 8 i 0 i S i 8 i 0 i i 8 i 0 i S i S i i S i 9 i i S S S S S S S- 8 0 e 5 9 e 8 i 0 i 5 9 a 8 0 e 5 9 e 8 i 0 i 5 9 a 00S00-8 e 0 e 8 i i 0 a 8 e 0 e 8 i i 0 a 00S i 8 i 9 i i 8 i 9 i 00S e 0 i 8 0 i i i 8 0 i i 00S e 0 i 9 i 5 i e 0 5 i 9 i 5 i 00S i 8 9 i i 00S i 9 i i 00S i 9 9 i i 00S S S i S S S Table Notes on Pages 9-9

77 0 psf Dead Load 50 psf Live Load L/0 Live Load Deflection L/80 Live Load Deflection Section Single Span Two Equal Spans Single Span Two Equal Spans Fy (ksi) Spacing Spacing Spacing Spacing 00S- e 9 9 e 8 0 e a 9 5 a a 0 e 9 e 8 0 e a 9 5 a a 00S00-8 e 0 e 8 e 8 a 9 8 a a e 0 0 e 8 e 8 a 9 8 a a 00S- 8 e 9 8 e i 9 i 9 8 a 0 5 e 9 e i 9 i 9 8 a 00S00-0 e 9 9 e 0 i 0 i 9 9 a 0 e 9 e i 0 i 9 9 a 00S50- e e 0 0 e i i 0 0 a 8 e 0 0 e i i 0 0 a 00S i i i 0 i 00S i i 9 i i i 00S i 5 i i i i 00S i S i S i i 0 0 i 00S S S S- 0 e 0 e 8 e 0 a 8 a a 0 e 0 e 8 e 0 a 8 a a 5S00-9 e e 8 9 e 5 a 9 a 9 a 9 e e 8 9 e 5 a 9 a 9 a 5S- e e 0 0 e i i 0 0 a e e 0 0 e i i 0 0 a 5S e 8 e e 5 9 i 8 a 0 a 0 e 9 e e 5 9 i 8 a 0 a 5S50- e 0 e 5 e i 0 a a 8 e e 5 e i 0 a a 5S i i i 0 i i 9 i 5S i i 9 i 5 8 i 5 i 5 i 5S i i 5 i i 5 i i 5S i 5 i i 5S i 5 0 i i 5S i i i 5S S S S- e 0 0 e e 0 9 a 8 8 a a e 0 0 e e 0 9 a 8 8 a a 800S00-5 e e e a 8 a a 5 e e e a 8 a a 800S- 5 0 e e 0 e 5 0 i a 0 a e e 0 e 5 0 i a 0 a 800S00-8 e e e 0 i a 0 a 5 e 9 e e 0 i a 0 a 800S50-0 e 8 e 0 e 0 a 8 a a 5 0 e e 0 e 0 a 8 a a 800S i i i i 5 9 i 9 i 800S i 8 i 5 9 i 9 8 i i i 800S e 0 i 9 0 i 5 i i i 5 i 800S i i i 800S i i i 800S i 0 i i i i 800S S S PB Table Notes on Page 85 Allowable Floor Joist Spans 0 psf Dead Load 50 psf Live Load L/0 Live Load Deflection L/80 Live Load Deflection Section Fy (ksi) Single Span Two Equal Spans Single Span Two Equal Spans Spacing Spacing Spacing Spacing 00S- e 9 9 e 8 0 e a 9 5 a a 0 e 9 e 8 0 e a 9 5 a a 00S00-8 e 0 e 8 e 8 a 9 8 a a e 0 0 e 8 e 8 a 9 8 a a 00S- 8 e 9 8 e i 9 i 9 8 a 0 5 e 9 e i 9 i 9 8 a 00S00-0 e 9 9 e 0 i 0 i 9 9 a 0 e 9 e i 0 i 9 9 a 00S50- e e 0 0 e i i 0 0 a 8 e 0 0 e i i 0 0 a 00S i i i 0 i 00S i i 9 i i i 00S i 5 i i i i 00S i S i S i i 0 0 i 00S S S S- 0 e 0 e 8 e 0 a 8 a a 0 e 0 e 8 e 0 a 8 a a 5S00-9 e e 8 9 e 5 a 9 a 9 a 9 e e 8 9 e 5 a 9 a 9 a 5S- e e 0 0 e i i 0 0 a e e 0 0 e i i 0 0 a 5S e 8 e e 5 9 i 8 a 0 a 0 e 9 e e 5 9 i 8 a 0 a 5S50- e 0 e 5 e i 0 a a 8 e e 5 e i 0 a a 5S i i i 0 i i 9 i 5S i i 9 i 5 8 i 5 i 5 i 5S i i 5 i i 5 i i 5S i 5 i i 5S i 5 0 i i 5S i i i 5S S S S- e 0 0 e e 0 9 a 8 8 a a e 0 0 e e 0 9 a 8 8 a a 800S00-5 e e e a 8 a a 5 e e e a 8 a a 800S- 5 0 e e 0 e 5 0 i a 0 a e e 0 e 5 0 i a 0 a 800S00-8 e e e 0 i a 0 a 5 e 9 e e 0 i a 0 a 800S50-0 e 8 e 0 e 0 a 8 a a 5 0 e e 0 e 0 a 8 a a 800S i i i i 5 9 i 9 i 800S i 8 i 5 9 i 9 8 i i i 800S e 0 i 9 0 i 5 i i i 5 i 800S i i i 800S i i i 800S i 0 i i i i 800S S S Table Notes on Pages 9-9

78 0 psf Dead Load 50 psf Live Load L/0 Live Load Deflection L/80 Live Load Deflection Section Single Span Two Equal Spans Single Span Two Equal Spans Fy (ksi) Spacing Spacing Spacing Spacing 95S- e 0 e e i a 0 a 0 e 0 e e i a 0 a 95S00- e e e a 0 a 0 5 a 9 e e e a 0 a 0 5 a 95S50-8 e 5 9 e 0 e 8 a 5 a 0 8 a 9 e 5 9 e 0 e 8 a 5 a 0 8 a 95S e i 9 0 i 5 i i i 5 5 i 95S e i 9 9 i i 8 5 e 0 i 8 5 i i 95S e i 0 0 i i e i 9 5 i i 95S i 0 i 8 i i 8 i 95S i i 9 i i 5 i 95S i i 0 i i 8 i 95S i S i S i S- e 8 e e 5 a a 9 a e 8 e e 5 a a 9 a 000S e 5 e 8 e 0 a 0 a 0 a 0 e 5 e 8 e 0 a 0 a 0 a 000S e e e a a 0 5 a 8 0 e e e a a 0 5 a 000S e 8 i 9 0 i 5 i 8 8 e 0 i 8 8 i 5 i 000S e 8 i 0 8 i i e i 9 i i 000S e 5 0 i 8 i 0 i e 9 i 0 8 i 0 i 000S i i 8 i i 9 i 000S i i 0 i i i 8 i 000S i 5 i i i i 9 5 i 000S i S i S i S-5 50 e e 0 e 5 a 0 0 a 5 a e 9 e 9 e 8 a 0 0 a 5 a 00S e 0 e 8 e a a 5 0 a 0 e 0 0 e e 9 a a 5 0 a 00S e e 8 e a a 0 a e 0 0 e 8 e 5 9 a a 0 a 00S i 5 8 i 0 i i 5 i 0 5 i 00S e 9 i 0 i i i 5 i i 00S e 0 9 i 5 i i i 5 5 i i 00S i 5 i i 00S i i 0 i 00S i i i Table Notes on Page 85 8 Allowable Floor Joist Spans 0 psf Dead Load 50 psf Live Load L/0 Live Load Deflection L/80 Live Load Deflection Section Fy (ksi) Single Span Two Equal Spans Single Span Two Equal Spans Spacing Spacing Spacing Spacing 95S- e 0 e e i a 0 a 0 e 0 e e i a 0 a 95S00- e e e a 0 a 0 5 a 9 e e e a 0 a 0 5 a 95S50-8 e 5 9 e 0 e 8 a 5 a 0 8 a 9 e 5 9 e 0 e 8 a 5 a 0 8 a 95S e i 9 0 i 5 i i i 5 5 i 95S e i 9 9 i i 8 5 e 0 i 8 5 i i 95S e i 0 0 i i e i 9 5 i i 95S i 0 i 8 i i 8 i 95S i i 9 i i 5 i 95S i i 0 i i 8 i 95S i S i S i S- e 8 e e 5 a a 9 a e 8 e e 5 a a 9 a 000S e 5 e 8 e 0 a 0 a 0 a 0 e 5 e 8 e 0 a 0 a 0 a 000S e e e a a 0 5 a 8 0 e e e a a 0 5 a 000S e 8 i 9 0 i 5 i 8 8 e 0 i 8 8 i 5 i 000S e 8 i 0 8 i i e i 9 i i 000S e 5 0 i 8 i 0 i e 9 i 0 8 i 0 i 000S i i 8 i i 9 i 000S i i 0 i i i 8 i 000S i 5 i i i i 9 5 i 000S i S i S i S-5 50 e e 0 e 5 a 0 0 a 5 a e 9 e 9 e 8 a 0 0 a 5 a 00S e 0 e 8 e a a 5 0 a 0 e 0 0 e e 9 a a 5 0 a 00S e e 8 e a a 0 a e 0 0 e 8 e 5 9 a a 0 a 00S i 5 8 i 0 i i 5 i 0 5 i 00S e 9 i 0 i i i 5 i i 00S e 0 9 i 5 i i i 5 5 i i 00S i 5 i i 00S i i 0 i 00S i i i Table Notes on Pages 9-9 8

79 5 psf Dead Load 5 psf Live Load L/0 Live Load Deflection L/80 Live Load Deflection Section Single Span Two Equal Spans Single Span Two Equal Spans Fy (ksi) Spacing Spacing Spacing Spacing 50S- e e e i i a e e e i i a 50S00- e 9 e e i 9 i a e 9 e e i 9 i a 50S- 9 e 5 0 i i i 5 e 0 i i i 50S e 5 i 5 i i e 5 i 5 i i 50S e 5 i i 9 i e 5 i i 9 i 50S i i i 50S i 9 i i 50S i 5 9 i i i i 50S i S i S i i 50S S S S- 5 0 e e e 5 0 a a a 5 0 e e e 5 0 a a a S00-5 e e 9 e 5 a a 9 a 5 e e 9 e 5 a a 9 a S- 5 5 e e 5 i 5 i a e e 5 i 5 i a S00- e 5 e e i 5 i a 0 5 e e i 5 i a S50- e 5 8 e e i 5 8 i a e 5 8 e e i 5 8 i a S i 0 i 5 i i i 5 5 i S i i 5 i i i 5 9 i S i 5 i i i i i S i 5 i i S i 9 i 5 9 i S i 8 i 0 i i i S S S S- 5 e e 9 e 5 a a 9 a 5 e e 9 e 5 a a 9 a 00S00-5 e 0 e e 5 a 0 a a 5 e 0 e e 5 a 0 a a 00S- e 5 5 e 5 e i 5 5 i 5 a e 5 5 e 5 e i 5 5 i 5 a 00S00-9 e 5 0 e 9 e 9 i 5 0 i 9 a e 5 0 e 9 e 9 i 5 0 i 9 a 00S50- e 5 e 0 e i 5 i 0 a 0 e 5 e 0 e i 5 i 0 a 00S i i 5 i i 9 i 5 i 00S i 8 i i i i i 00S i 0 i 5 i i i 5 i 00S i i 0 i 5 5 i i 00S i 8 5 i i i 8 i 00S i 8 0 i 5 i i 0 i 00S S S PB Table Notes on Page 85 Allowable Floor Joist Spans 5 psf Dead Load 5 psf Live Load L/0 Live Load Deflection L/80 Live Load Deflection Section Fy (ksi) Single Span Two Equal Spans Single Span Two Equal Spans Spacing Spacing Spacing Spacing 50S- e e e i i a e e e i i a 50S00- e 9 e e i 9 i a e 9 e e i 9 i a 50S- 9 e 5 0 i i i 5 e 0 i i i 50S e 5 i 5 i i e 5 i 5 i i 50S e 5 i i 9 i e 5 i i 9 i 50S i i i 50S i 9 i i 50S i 5 9 i i i i 50S i S i S i i 50S S S S- 5 0 e e e 5 0 a a a 5 0 e e e 5 0 a a a S00-5 e e 9 e 5 a a 9 a 5 e e 9 e 5 a a 9 a S- 5 5 e e 5 i 5 i a e e 5 i 5 i a S00- e 5 e e i 5 i a 0 5 e e i 5 i a S50- e 5 8 e e i 5 8 i a e 5 8 e e i 5 8 i a S i 0 i 5 i i i 5 5 i S i i 5 i i i 5 9 i S i 5 i i i i i S i 5 i i S i 9 i 5 9 i S i 8 i 0 i i i S S S S- 5 e e 9 e 5 a a 9 a 5 e e 9 e 5 a a 9 a 00S00-5 e 0 e e 5 a 0 a a 5 e 0 e e 5 a 0 a a 00S- e 5 5 e 5 e i 5 5 i 5 a e 5 5 e 5 e i 5 5 i 5 a 00S00-9 e 5 0 e 9 e 9 i 5 0 i 9 a e 5 0 e 9 e 9 i 5 0 i 9 a 00S50- e 5 e 0 e i 5 i 0 a 0 e 5 e 0 e i 5 i 0 a 00S i i 5 i i 9 i 5 i 00S i 8 i i i i i 00S i 0 i 5 i i i 5 i 00S i i 0 i 5 5 i i 00S i 8 5 i i i 8 i 00S i 8 0 i 5 i i 0 i 00S S S Table Notes on Page 9-9

80 5 psf Dead Load 5 psf Live Load L/0 Live Load Deflection L/80 Live Load Deflection Section Single Span Two Equal Spans Single Span Two Equal Spans Fy (ksi) Spacing Spacing Spacing Spacing 00S- e 5 e e a 5 a 8 a e 5 e e a 5 a 8 a 00S00-8 e e e 5 a 5 a 8 a 8 e e e 5 a 5 a 8 a 00S- 8 e 9 e e 8 a 9 a a 8 e 8 e e 8 a 9 a a 00S00-9 e 0 e 5 e 9 a 0 a a 8 e 0 e 5 e 9 a 0 a a 00S50-9 e 8 e e 9 a 8 a a 9 e 8 e e 9 a 8 a a 00S e i 0 i 8 i 9 8 e 0 i 9 i 8 i 00S e 0 i 0 5 i 8 i e 0 9 i 9 9 i 8 i 00S e 8 8 e i 0 8 i 8 9 a 9 9 e i 0 i 8 9 a 00S i 0 i 9 i i 9 i 8 8 i 00S i i 0 i i 0 5 i 9 i 00S i i 9 i i 0 i 9 i 00S i i 00S i i 00S i i 5S- e 5 e 9 e 5 9 a a 0 a e 5 e 9 e 5 9 a a 0 a 5S00- e 5 e 9 e 0 a a 0 a e 5 e 9 e 0 a a 0 a 5S- 9 e 8 0 e e 9 a a 5 8 a 9 e 8 0 e e 9 a a 5 8 a 5S00-0 e 8 e e 9 a 8 a 0 a 0 e 8 e e 9 a 8 a 0 a 5S50-0 e 9 e e 0 a 8 a 0 a 0 e 9 e e 0 a 8 a 0 a 5S e 8 0 e i 0 0 i 8 0 a 0 9 e 8 e 0 i 0 9 i 8 0 a 5S e 9 8 e 8 i i 9 a 0 e 8 0 e 5 i i 9 a 5S e e 9 e i i 9 8 a 0 e 9 e i 9 i 9 8 a 5S e 0 i i 0 i i i 0 i 5S e 8 i i 8 i i i 0 i 5S e 5 i 0 i i e 0 i 8 i i 5S i i i 5S i 0 i i 5S i i i 800S- 9 e 5 e 5 e 5 5 a a 9 a 9 e 5 e 5 e 5 5 a a 9 a 800S00-9 e 5 e 5 e 5 5 a a 9 a 9 e 5 e 5 e 5 5 a a 9 a 800S- 9 0 e 8 e e 9 a a 5 a 9 0 e 8 e e 9 a a 5 a 800S00-0 e 9 e e 9 0 a 8 0 a 5 0 a 0 e 9 e e 9 0 a 8 0 a 5 0 a 800S50- e 9 8 e e 9 a 8 0 a 5 0 a e 9 8 e e 9 a 8 0 a 5 0 a 800S-5 50 e e 9 e i i 9 0 a 0 e 9 0 e 9 i i 9 0 a 800S e 0 e 0 e i a 9 a 0 0 e 9 e i i 9 a 800S e e 0 5 e 9 i 8 a 9 a e 9 e 0 i 8 a 9 a 800S e 5 i i 0 i 9 9 e 0 i i 0 i 800S e 5 i 5 i i 8 0 e 5 i i i 800S e i 0 i i e 5 i 8 i 0 i 800S i 5 i i i i 800S i i 0 9 i 800S i 8 i i i Table Notes on Page Allowable Floor Joist Spans 5 psf Dead Load 5 psf Live Load L/0 Live Load Deflection L/80 Live Load Deflection Section Fy (ksi) Single Span Two Equal Spans Single Span Two Equal Spans Spacing Spacing Spacing Spacing 00S- e 5 e e a 5 a 8 a e 5 e e a 5 a 8 a 00S00-8 e e e 5 a 5 a 8 a 8 e e e 5 a 5 a 8 a 00S- 8 e 9 e e 8 a 9 a a 8 e 8 e e 8 a 9 a a 00S00-9 e 0 e 5 e 9 a 0 a a 8 e 0 e 5 e 9 a 0 a a 00S50-9 e 8 e e 9 a 8 a a 9 e 8 e e 9 a 8 a a 00S e i 0 i 8 i 9 8 e 0 i 9 i 8 i 00S e 0 i 0 5 i 8 i e 0 9 i 9 9 i 8 i 00S e 8 8 e i 0 8 i 8 9 a 9 9 e i 0 i 8 9 a 00S i 0 i 9 i i 9 i 8 8 i 00S i i 0 i i 0 5 i 9 i 00S i i 9 i i 0 i 9 i 00S i i 00S i i 00S i i 5S- e 5 e 9 e 5 9 a a 0 a e 5 e 9 e 5 9 a a 0 a 5S00- e 5 e 9 e 0 a a 0 a e 5 e 9 e 0 a a 0 a 5S- 9 e 8 0 e e 9 a a 5 8 a 9 e 8 0 e e 9 a a 5 8 a 5S00-0 e 8 e e 9 a 8 a 0 a 0 e 8 e e 9 a 8 a 0 a 5S50-0 e 9 e e 0 a 8 a 0 a 0 e 9 e e 0 a 8 a 0 a 5S e 8 0 e i 0 0 i 8 0 a 0 9 e 8 e 0 i 0 9 i 8 0 a 5S e 9 8 e 8 i i 9 a 0 e 8 0 e 5 i i 9 a 5S e e 9 e i i 9 8 a 0 e 9 e i 9 i 9 8 a 5S e 0 i i 0 i i i 0 i 5S e 8 i i 8 i i i 0 i 5S e 5 i 0 i i e 0 i 8 i i 5S i i i 5S i 0 i i 5S i i i 800S- 9 e 5 e 5 e 5 5 a a 9 a 9 e 5 e 5 e 5 5 a a 9 a 800S00-9 e 5 e 5 e 5 5 a a 9 a 9 e 5 e 5 e 5 5 a a 9 a 800S- 9 0 e 8 e e 9 a a 5 a 9 0 e 8 e e 9 a a 5 a 800S00-0 e 9 e e 9 0 a 8 0 a 5 0 a 0 e 9 e e 9 0 a 8 0 a 5 0 a 800S50- e 9 8 e e 9 a 8 0 a 5 0 a e 9 8 e e 9 a 8 0 a 5 0 a 800S-5 50 e e 9 e i i 9 0 a 0 e 9 0 e 9 i i 9 0 a 800S e 0 e 0 e i a 9 a 0 0 e 9 e i i 9 a 800S e e 0 5 e 9 i 8 a 9 a e 9 e 0 i 8 a 9 a 800S e 5 i i 0 i 9 9 e 0 i i 0 i 800S e 5 i 5 i i 8 0 e 5 i i i 800S e i 0 i i e 5 i 8 i 0 i 800S i 5 i i i i 800S i i 0 9 i 800S i 8 i i i Table Notes on Pages

81 5 psf Dead Load 5 psf Live Load L/0 Live Load Deflection L/80 Live Load Deflection Section Single Span Two Equal Spans Single Span Two Equal Spans Fy (ksi) Spacing Spacing Spacing Spacing 95S- 0 e 9 e e 9 0 a a 5 a 0 e 9 e e 9 0 a a 5 a 95S00- e 9 8 e e 9 a 5 a 5 a e 9 8 e e 9 a 5 a 5 a 95S50- e 9 8 e e 9 a a 5 a e 9 8 e e 9 a a 5 a 95S e 5 e 0 e i 9 i 8 9 a 9 e e 0 e i 9 i 8 9 a 95S e e 0 e 9 i i 8 a e e 0 e 9 i i 8 a 95S e 8 e e 5 i 5 a 9 a 0 e 9 e e 5 i 5 a 9 a 95S e 9 i i 0 i 9 0 e 5 i i 0 i 95S e e 9 i 5 5 i a 5 5 e i 8 i a 95S e e 8 i 5 i 5 a 5 8 e i 5 i 5 a 95S i i i i 9 i 95S i 8 i 5 i i i 95S i 8 0 i i i 5 0 i 000S- e 8 e 0 e 8 0 a 0 a 9 a e 8 e 0 e 8 0 a 0 a 9 a 000S00-9 e 8 e 0 e 9 0 a a 9 a 9 e 8 e 0 e 9 0 a a 9 a 000S50- e 8 e 0 e 9 a a 9 a e 8 e 0 e 9 a a 9 a 000S e 0 e 0 e i 8 i 8 a e e 0 e i 8 i 8 a 000S e e 0 e 8 i i 8 9 a e 0 e 0 e 8 i i 8 9 a 000S e e e 5 i a 8 a e e e 5 i a 8 a 000S e 5 e i 5 i 5 a 8 e 5 i i 5 a 000S e e 8 i i a 5 e e i 5 i a 000S e 0 e 9 0 i i 0 a 0 e 9 e 8 0 i i 0 a 000S i 8 i 5 i 5 8 i 9 i 8 i 000S i 9 i i i i 5 i 000S i 0 i i 0 8 i 5 i 00S-5 50 e e 9 0 e 0 a a 0 a 5 e e 9 0 e 0 a a 0 a 00S e 9 e 9 0 e a a 0 a e 9 e 9 0 e a a 0 a 00S e 9 e 9 0 e a a 0 a e 9 e 9 0 e a a 0 a 00S e 0 e 9 e 9 5 i 9 i a 5 e 5 e 9 0 i 9 i a 00S e e e 0 i i 0 a 0 e 0 e 9 9 i i 0 a 00S e e 8 e 0 8 i 5 i a 8 e 8 e e 0 i 5 i a 00S i 0 i i i 9 i i 00S e i i 8 i i 0 i 9 i 00S e 5 i i 8 i i i 8 5 i PB Table Notes on Page 85 Allowable Floor Joist Spans 5 psf Dead Load 5 psf Live Load L/0 Live Load Deflection L/80 Live Load Deflection Section Fy (ksi) Single Span Two Equal Spans Single Span Two Equal Spans Spacing Spacing Spacing Spacing 95S- 0 e 9 e e 9 0 a a 5 a 0 e 9 e e 9 0 a a 5 a 95S00- e 9 8 e e 9 a 5 a 5 a e 9 8 e e 9 a 5 a 5 a 95S50- e 9 8 e e 9 a a 5 a e 9 8 e e 9 a a 5 a 95S e 5 e 0 e i 9 i 8 9 a 9 e e 0 e i 9 i 8 9 a 95S e e 0 e 9 i i 8 a e e 0 e 9 i i 8 a 95S e 8 e e 5 i 5 a 9 a 0 e 9 e e 5 i 5 a 9 a 95S e 9 i i 0 i 9 0 e 5 i i 0 i 95S e e 9 i 5 5 i a 5 5 e i 8 i a 95S e e 8 i 5 i 5 a 5 8 e i 5 i 5 a 95S i i i i 9 i 95S i 8 i 5 i i i 95S i 8 0 i i i 5 0 i 000S- e 8 e 0 e 8 0 a 0 a 9 a e 8 e 0 e 8 0 a 0 a 9 a 000S00-9 e 8 e 0 e 9 0 a a 9 a 9 e 8 e 0 e 9 0 a a 9 a 000S50- e 8 e 0 e 9 a a 9 a e 8 e 0 e 9 a a 9 a 000S e 0 e 0 e i 8 i 8 a e e 0 e i 8 i 8 a 000S e e 0 e 8 i i 8 9 a e 0 e 0 e 8 i i 8 9 a 000S e e e 5 i a 8 a e e e 5 i a 8 a 000S e 5 e i 5 i 5 a 8 e 5 i i 5 a 000S e e 8 i i a 5 e e i 5 i a 000S e 0 e 9 0 i i 0 a 0 e 9 e 8 0 i i 0 a 000S i 8 i 5 i 5 8 i 9 i 8 i 000S i 9 i i i i 5 i 000S i 0 i i 0 8 i 5 i 00S-5 50 e e 9 0 e 0 a a 0 a 5 e e 9 0 e 0 a a 0 a 00S e 9 e 9 0 e a a 0 a e 9 e 9 0 e a a 0 a 00S e 9 e 9 0 e a a 0 a e 9 e 9 0 e a a 0 a 00S e 0 e 9 e 9 5 i 9 i a 5 e 5 e 9 0 i 9 i a 00S e e e 0 i i 0 a 0 e 0 e 9 9 i i 0 a 00S e e 8 e 0 8 i 5 i a 8 e 8 e e 0 i 5 i a 00S i 0 i i i 9 i i 00S e i i 8 i i 0 i 9 i 00S e 5 i i 8 i i i 8 5 i 8 Table Notes on Pages 9-9

82 L/0 Live Load Deflection L/80 Live Load Deflection Single Span Two Equal Spans Single Span Two Equal Spans Section Fy (ksi) Spacing Spacing Spacing Spacing 50S- 9 e e 8 e 9 i i 8 a 9 e e 8 e 9 i i 8 a 50S00-0 e 5 e 0 e 0 i 5 a 0 a 0 e 5 e 0 e 0 i 5 a 0 a 50S- 0 e i 0 i i e i 0 i i 50S00-9 e e 9 i i i e e 9 i i i 50S50-0 e 5 e 0 i i 5 i 0 e 5 e 0 i i 5 i 50S i 5 i i i i 50S i 5 5 i 5 i i 5 0 i i 50S i 5 i i i 5 i i 50S i 0 i i 50S i 5 i i 50S i 5 i i 50S S S S- e 0 e e a 0 a a e 0 e e a 0 a a S00-0 e e 5 e 0 a a 5 a 0 e e 5 e 0 a a 5 a S- 5 5 e 9 e 0 e 5 5 i 9 i 0 a 5 5 e 9 e 0 e 5 5 i 9 i 0 a S e 5 e e 5 0 i 5 i a 5 0 e 5 e e 5 0 i 5 i a S50-0 e 5 e e 0 i 5 a a 0 e 5 e e 0 i 5 a a S i i 5 i i i 5 i S i 8 i 5 5 i i i 5 5 i S i 0 i 5 i i 0 i 5 i S i i 5 i i 5 0 i S i 9 i i 5 9 i i S i i 5 i i i 5 i S i S i S i S- e e 5 e a a 5 a e e 5 e a a 5 a 00S00-5 e 5 e e 5 a 5 a a 5 e 5 e e 5 a 5 a a 00S- 5 9 e 5 0 e e 5 9 i 5 0 i a 5 9 e 5 0 e e 5 9 i 5 0 i a 00S00- e 5 e e i 5 a a e 5 e e i 5 a a 00S50- e 5 e e i 5 a a e 5 e e i 5 a a 00S i 9 i 5 i i 9 i 5 i 00S i i 5 9 i i i 5 9 i 00S e 8 i i 5 i e 8 i i 5 i 00S i 8 i i 5 5 i i i 00S i 8 i 9 i i i 8 i 00S i 8 5 i 0 i 8 0 i 8 0 i 0 i 00S i S i S i i Table Notes on Page 85 8 Allowable Floor Joist Spans 0 psf Dead Load 5 psf Live Load L/0 Live Load Deflection L/80 Live Load Deflection Section Fy (ksi) Single Span Two Equal Spans Single Span Two Equal Spans Spacing Spacing Spacing Spacing 50S- 9 e e 8 e 9 i i 8 a 9 e e 8 e 9 i i 8 a 50S00-0 e 5 e 0 e 0 i 5 a 0 a 0 e 5 e 0 e 0 i 5 a 0 a 50S- 0 e i 0 i i e i 0 i i 50S00-9 e e 9 i i i e e 9 i i i 50S50-0 e 5 e 0 i i 5 i 0 e 5 e 0 i i 5 i 50S i 5 i i i i 50S i 5 5 i 5 i i 5 0 i i 50S i 5 i i i 5 i i 50S i 0 i i 50S i 5 i i 50S i 5 i i 50S S S S- e 0 e e a 0 a a e 0 e e a 0 a a S00-0 e e 5 e 0 a a 5 a 0 e e 5 e 0 a a 5 a S- 5 5 e 9 e 0 e 5 5 i 9 i 0 a 5 5 e 9 e 0 e 5 5 i 9 i 0 a S e 5 e e 5 0 i 5 i a 5 0 e 5 e e 5 0 i 5 i a S50-0 e 5 e e 0 i 5 a a 0 e 5 e e 0 i 5 a a S i i 5 i i i 5 i S i 8 i 5 5 i i i 5 5 i S i 0 i 5 i i 0 i 5 i S i i 5 i i 5 0 i S i 9 i i 5 9 i i S i i 5 i i i 5 i S i S i S i S- e e 5 e a a 5 a e e 5 e a a 5 a 00S00-5 e 5 e e 5 a 5 a a 5 e 5 e e 5 a 5 a a 00S- 5 9 e 5 0 e e 5 9 i 5 0 i a 5 9 e 5 0 e e 5 9 i 5 0 i a 00S00- e 5 e e i 5 a a e 5 e e i 5 a a 00S50- e 5 e e i 5 a a e 5 e e i 5 a a 00S i 9 i 5 i i 9 i 5 i 00S i i 5 9 i i i 5 9 i 00S e 8 i i 5 i e 8 i i 5 i 00S i 8 i i 5 5 i i i 00S i 8 i 9 i i i 8 i 00S i 8 5 i 0 i 8 0 i 8 0 i 0 i 00S i S i S i i Table Notes on Pages 9-9 8

83 Allowable Floor Joist Spans 0 psf Dead Load 5 psf Live Load L/0 Live Load Deflection L/80 Live Load Deflection Section Fy (ksi) Single Span Two Equal Spans Single Span Two Equal Spans Spacing Spacing Spacing Spacing 00S- 9 e 5 0 e 0 e 5 a 5 a a 9 e 5 0 e 0 e 5 a 5 a a 00S00- e 5 0 e 0 e 5 8 a a a e 5 0 e 0 e 5 8 a a a 00S- 8 e e 5 0 e 8 a a 5 5 a 8 e e 5 0 e 8 a a 5 5 a 00S00-8 e e 5 e 8 a a 5 5 a 8 e e 5 e 8 a a 5 5 a 00S50-8 e 5 e e 8 a a 5 a 8 e 5 e e 8 a a 5 a 00S e 0 e i 9 i 0 a 9 8 e 0 i 9 i 0 a 00S e 0 e i 9 i 0 a e e 0 9 i 9 i 0 a 00S e 8 0 e i 9 0 i 8 0 a 9 9 e e i 9 0 i 8 0 a 00S e 0 i 0 i 8 i i 9 i 8 8 i 00S e 8 i i 9 5 i i 0 5 i 9 i 00S e i i 9 i e i 0 i 9 i 00S i 0 i i 00S i i i 00S i 5 i 9 i i 0 8 i 5S- e 9 e e 5 a 0 a a e 9 e e 5 a 0 a a 5S00- e 9 e e 5 a 0 a a e 9 e e 5 a 0 a a 5S- 8 e 5 e 0 e 8 a 9 a 5 0 a 8 e 5 e 0 e 8 a 9 a 5 0 a 5S00-9 e 8 e 9 e 8 0 a a 5 a 9 e 8 e 9 e 8 0 a a 5 a 5S e 8 5 e e 8 a a 5 a 9 9 e 8 5 e e 8 a a 5 a 5S-5 50 e 0 0 e 8 e i 0 0 i 8 a 0 9 e 8 e i 0 0 i 8 a 5S e 0 e 8 e 8 i 0 a 8 a e 0 e 8 0 e 5 i 0 a 8 a 5S e e 9 e i a 8 8 a e 0 e 9 e i a 8 8 a 5S e 5 i i 9 i e 9 i i 9 i 5S e 8 i i 0 9 i e i i 0 i 5S e 0 5 e 9 i 9 i 0 5 i e 0 i 8 i 0 5 i 5S i i i i i 5S i 0 i 0 i i 9 i 5S i 5 i i i i 800S- 5 9 e e 0 e a 5 a a 5 9 e e 0 e a 5 a a 800S e e 0 e a 5 a a 5 9 e e 0 e a 5 a a 800S- 9 0 e 0 e e 8 a 8 a 0 a 9 0 e 0 e e 8 a 8 a 0 a 800S00-0 e 8 0 e e 8 9 a 0 a 5 a 0 e 8 0 e e 8 9 a 0 a 5 a 800S50-0 e 8 0 e e 8 9 a a 5 a 0 e 8 0 e e 8 9 a a 5 a 800S-5 50 e 0 e 8 e i 0 i 8 0 a e 0 e 8 e i 0 i 8 0 a 800S e 8 e 9 e i a 8 5 a 0 e 0 e 9 e i a 8 5 a 800S e 9 e 9 e i a 8 a e e 9 e i a 8 a 800S-8 50 e 0 0 e i i 0 0 i 9 9 e 0 i i 0 0 i 800S e e 5 i i a 8 0 e 5 i i a 800S e e 5 9 i 8 i a 5 e 0 8 e 5 i 8 i a 800S i 0 i i i i i 800S i i 0 i 0 i 9 i 800S i 0 i 5 i i 5 i i 8 Table Notes on Pages 9-9

84 Allowable Floor Joist Spans 0 psf Dead Load 5 psf Live Load L/0 Live Load Deflection L/80 Live Load Deflection Section Fy (ksi) Single Span Two Equal Spans Single Span Two Equal Spans Spacing Spacing Spacing Spacing 00S- 9 e 5 0 e 0 e 5 a 5 a a 9 e 5 0 e 0 e 5 a 5 a a 00S00- e 5 0 e 0 e 5 8 a a a e 5 0 e 0 e 5 8 a a a 00S- 8 e e 5 0 e 8 a a 5 5 a 8 e e 5 0 e 8 a a 5 5 a 00S00-8 e e 5 e 8 a a 5 5 a 8 e e 5 e 8 a a 5 5 a 00S50-8 e 5 e e 8 a a 5 a 8 e 5 e e 8 a a 5 a 00S e 0 e i 9 i 0 a 9 8 e 0 i 9 i 0 a 00S e 0 e i 9 i 0 a e e 0 9 i 9 i 0 a 00S e 8 0 e i 9 0 i 8 0 a 9 9 e e i 9 0 i 8 0 a 00S e 0 i 0 i 8 i i 9 i 8 8 i 00S e 8 i i 9 5 i i 0 5 i 9 i 00S e i i 9 i e i 0 i 9 i 00S i 0 i i 00S i i i 00S i 5 i 9 i i 0 8 i 5S- e 9 e e 5 a 0 a a e 9 e e 5 a 0 a a 5S00- e 9 e e 5 a 0 a a e 9 e e 5 a 0 a a 5S- 8 e 5 e 0 e 8 a 9 a 5 0 a 8 e 5 e 0 e 8 a 9 a 5 0 a 5S00-9 e 8 e 9 e 8 0 a a 5 a 9 e 8 e 9 e 8 0 a a 5 a 5S e 8 5 e e 8 a a 5 a 9 9 e 8 5 e e 8 a a 5 a 5S-5 50 e 0 0 e 8 e i 0 0 i 8 a 0 9 e 8 e i 0 0 i 8 a 5S e 0 e 8 e 8 i 0 a 8 a e 0 e 8 0 e 5 i 0 a 8 a 5S e e 9 e i a 8 8 a e 0 e 9 e i a 8 8 a 5S e 5 i i 9 i e 9 i i 9 i 5S e 8 i i 0 9 i e i i 0 i 5S e 0 5 e 9 i 9 i 0 5 i e 0 i 8 i 0 5 i 5S i i i i i 5S i 0 i 0 i i 9 i 5S i 5 i i i i 800S- 5 9 e e 0 e a 5 a a 5 9 e e 0 e a 5 a a 800S e e 0 e a 5 a a 5 9 e e 0 e a 5 a a 800S- 9 0 e 0 e e 8 a 8 a 0 a 9 0 e 0 e e 8 a 8 a 0 a 800S00-0 e 8 0 e e 8 9 a 0 a 5 a 0 e 8 0 e e 8 9 a 0 a 5 a 800S50-0 e 8 0 e e 8 9 a a 5 a 0 e 8 0 e e 8 9 a a 5 a 800S-5 50 e 0 e 8 e i 0 i 8 0 a e 0 e 8 e i 0 i 8 0 a 800S e 8 e 9 e i a 8 5 a 0 e 0 e 9 e i a 8 5 a 800S e 9 e 9 e i a 8 a e e 9 e i a 8 a 800S-8 50 e 0 0 e i i 0 0 i 9 9 e 0 i i 0 0 i 800S e e 5 i i a 8 0 e 5 i i a 800S e e 5 9 i 8 i a 5 e 0 8 e 5 i 8 i a 800S i 0 i i i i i 800S i i 0 i 0 i 9 i 800S i 0 i 5 i i 5 i i 95S- 9 9 e 8 e 5 e a a 5 a 9 9 e 8 e 5 e a a 5 a 95S e 8 e 5 e 8 a a 5 a 0 5 e 8 e 5 e 8 a a 5 a Table Notes on Pages 9-9 8

85 Allowable Floor Joist Spans 0 psf Dead Load 5 psf Live Load 95S50-0 e 8 e 5 e 8 a a 5 a 0 e 8 e 5 e 8 a a 5 a 95S-5 50 e 5 e 9 e 0 i 0 5 a 9 a 9 e 5 e 9 e 0 i 0 5 a 9 a 95S e e 9 9 e i 0 8 a a e e 9 9 e i 0 8 a a 95S e e 0 e i 0 a 8 a 0 e e 0 e i 0 a 8 a 95S e 0 e 5 5 i i 0 a 9 e 0 e 5 5 i i 0 a 95S e e e i i a 5 e 5 e i i a 95S e 5 e e i 5 i a 5 8 e e i 5 i a 95S i 5 i 5 i i 5 9 i 5 i 95S i i i i 5 i i 95S i 8 0 i 5 i i i 5 0 i 000S- 0 e e 5 e 9 a a a 0 e e 5 e 9 a a a 000S00-0 e e 5 e a a a 0 e e 5 e a a a 000S50-0 e e 5 e 8 a a a 0 e e 5 e 8 a a a 000S e e 9 9 e 9 i 0 a a e e 9 9 e 9 i 0 a a 000S e 5 e 0 e 0 i 0 a 8 a e 5 e 0 e 0 i 0 a 8 a 000S e e 0 e i 0 9 a 0 a e e 0 e i 0 9 a 0 a 000S-8 50 e 0 e 5 e i 0 i 5 a 8 e 5 e i 0 i 5 a 000S e 0 e e i 0 i 0 a 5 e e i 0 i 0 a 000S e 5 0 e e 8 i 5 0 a a 0 e e 9 e 8 0 i 5 0 a a 000S i i i 5 8 i 9 i i 000S e i 8 5 i 5 i i i 5 i 000S e i 0 i 0 i 0 i 8 i 5 i 00S e e 8 e a 9 9 a 8 a 5 e e 8 e a 9 9 a 8 a 00S e e 8 e 5 a 9 a 8 a 5 0 e e 8 e 5 a 9 a 8 a 00S e e 8 e a 0 0 a 8 a e e 8 e a 0 0 a 8 a 00S-8 50 e 5 e 8 e i i a e 5 e 8 e i i a 00S e 5 e 5 e 8 i 5 5 a a e 0 e 5 e 8 i 5 5 a a 00S e e e 9 0 i 5 a a 8 e e e 9 0 i 5 a a 00S e i 9 i 5 9 i e i 9 i 5 9 i 00S e 9 i 0 i 9 i e i 0 i 9 i 00S e 8 i 5 i 5 i e i i 5 i 85 Table Notes on Pages 9-9

86 /8" Furring Channel Properties and Span Summary Allowable Combined Furring Bending Channel & Axial Physical/Structural Properties for Hat Furring Channels Section Fy (ksi) Design Gross Properties Effective Properties Thickness Area (in ) Weight (lb/ft) lx (in ) Rx ly (in ) Ry lx (in ) Sx (in ) Ma (Ft-lb) 08F F F F F F Notes:. Properties based on the 00 NASPEC with the 00 Supplement. Design thickness used for determination of properties. Minimum delivered thickness must be no less than 95% of design thickness.. For deflection calculations, use effective lx. Effective lx is based on Procedure of the NASPEC.. Effective properties are given as the minimum value for positive or negative bending. Furring Channel Allowable Ceiling Spans - L/0 Uniform Load Uniform Load Uniform Load Section Fy (ksi) psf psf psf Spacing oc Spacing oc Spacing oc 08F5-8 08F5-08F5-0 08F5-08F5-08F5-5 Single Multiple Single Multiple Single Multiple Single Multiple Single Multiple Single Multiple Section Fy (ksi) Furring Channel Allowable Ceiling Spans - L/0 Uniform Load Uniform Load Uniform Load psf psf psf Spacing oc Spacing oc Spacing oc 08F5-8 08F5-08F5-0 08F5-08F5-08F5-5 Single 9 5 Multiple Single Multiple Single Multiple Single Multiple Single Multiple Single Multiple Notes:. Single spans taken as the minimum span based on moment, shear, web crippling or deflection.. Multiple spans indicate two or more equal, continuous spans with span length measured support to support.. Multiple spans taken as the minimum span based on moment, shear, web crippling, deflection, combined bending and shear or combined and web crippling. Web crippling values based on bearing at end and interior supports. 8

87 Allowable Combined Furring Bending Channel & Axial -/" Furring Channel Properties and Span Summary Section Fy (ksi) Design Thickness Area (in ) Physical/Structural Properties for Hat Furring Channels Weight (lb/ft) Gross Properties lx (in ) Rx ly (in ) Ry lx (in ) Effective Properties Sx (in ) Ma (Ft-lb) 50F F F F F F Notes:. Properties based on the 00 NASPEC with the 00 Supplement.. Design thickness used for determination of properties. Minimum delivered thickness must be no less than 95% of design thickness.. For deflection calculations, use effective lx. Effective lx is based on Procedure of the NASPEC.. Effective properties are given as the minimum value for positive or negative bending. Furring Channel Allowable Ceiling Spans - L/0 Uniform Load Uniform Load Uniform Load Section Fy (ksi) psf psf psf Spacing oc Spacing oc Spacing oc 50F5-8 50F5-50F5-0 50F5-50F5-50F5-5 Single '" '" '" '" '" 5'" 5'" '0" '" Multiple 9'9" 8'0" '" 8'" '" 5'" 5'8" '9" '8" Single 9'" 8'" '" '" '" '" '" 5'" '0" Multiple '" 0'" 8'" 9'0" 8'" '0" 5'0" '" 5'" Single 9'5" 8'" '5" 8'" '5" '" '" 5'9" 5'0" Multiple '" 0'" 9'" 0'" 9'" 8'0" '0" 0 5'8" Single 9'8" 8'0" '8" 8'" '8" '9" '" 5'" 5'" Multiple '0" 0'" 9'" 0'" 9'" 8'" 8'" '" '0" Single 0'" 9'" 8'" 9'" 8'" '" '" '5" 5'" Multiple '" '9" 0'" '" 0'" 8'" 8'9" '" '8" Single '" 0'" 8'0" 9'9" 8'0" '9" '" ' 0 Multiple '9" '" 0'" '0" 0'" 9'" 9'" 8'5" '" Furring Channel Allowable Ceiling Spans - L/0 Uniform Load Uniform Load Uniform Load Section Fy (ksi) psf psf psf Spacing oc Spacing oc Spacing oc 50F5-8 50F5-50F5-0 50F5-50F5-50F5-5 Single '" '" 5'" '0" 5'" '9" '8" '" '8" Multiple 8'" '9" '9" '5" '9" 5'" 5'8" '9" '8" Single '" '" '" '" '" 5'" 5'" '0" '" Multiple 9'0" 8'" '0" 8'" '0" '0" '8" '0" 5'" Single 8'" '5" '" '" '" 5'8" 5'" 5'0" '5" Multiple 0'" 9'" 8'0" 8'0" 8'0" '0" '0" '" 5'5" Single 8'" '8" '9" '5" '9" 5'0" 5'9" 5'" '" Multiple 0'" 9'" 8'" 9'" 8'" '" '" '5" 5'" Single 9'" 8'" '" 8'0" '" '" '" 5'" '" Multiple '" 0'" 9 0 9'" 9'0" '0" '8" '" '" Single 9'9" 8'0" '9" 8'" '9" '9" '" 0 5'" Multiple '0" 0'" 9'" 0'" 9'" 8'" 8'" '5" '5" Notes:. Single spans taken as the minimum span based on moment, shear, web crippling or deflection.. Multiple spans indicate two or more equal, continuous spans with span length measured support to support.. Multiple spans taken as the minimum span based on moment, shear, web crippling, deflection, combined bending and shear or combined and web crippling.. Web crippling values based on bearing at end and interior supports. 8

88 Allowable Combined Bending U-Channel & Axial Cold Rolled Channel Properties and Spans Section Properties - U Channels Section Design Thickness Gross Effective Properties ksi Area Weight lx Rx ly Ry lx Sx Ma Va (in ) (lb/ft) (in ) (in ) (in ) (in ) (in-k) (lb) 5U U U Property Notes:. For Deflection calculations, use effective lx. Allowable U-Channel Ceiling Spans - L/0 psf psf psf Section Channel Spacing o.c. Channel Spacing o.c. Channel Spacing o.c U U U050-5 Section Single Multiple Single Multiple Single Multiple Allowable U-Channel Ceiling Spans - L/0 psf psf psf Channel Spacing o.c. Channel Spacing o.c. Channel Spacing o.c U U U050-5 Single Multiple Single Multiple Single Multiple Span Notes:. Fy = ksi for all sections.. Multiple span indicates two or more equal spans with channel continuous over interior supports.. Bearing Lengths = 0.5. Allowable spans based on the compression flange laterally unbraced. 88

89 Web Crippling Section Design t Fy (ksi) Condition Bearing Length Condition Bearing Length Condition Bearing Length Condition Bearing Length Punchout Reductions Rc (EF) Rc (IF) S x <= x <=.0 S x <= x <=.0 S x <= x <=.0 50 S x <= x <=.0 50 S x <= x <=.0 50 S x <= x <=.0 50 S x <= x <=.0 50 S x <= x <=.0 50 S x <= x <=.0 50 S x <= x <=.0 50 S x <= x <=.0 50 S x <= x <=.0 50 S x <= x <=.0 S x <= x <=.0 S x <= x <=.0 S x <= x <=.0 S x <= x <=.0 S x <= x <=.0 S x <= x <=.0 S x <= x <=.0 S x <= x <=.0 S x <= x <=.0 S x <= x <=.0 00 S x <= x <=.0 00 S x <= x <=.0 00 S x <= x <=.0 00 S x <= x <=.0 00 S x <= x <=.0 00 S x <= x <=.0 00 S x <= x <=.0 00 S x <= x <=.0 00 S x <= x <=.0 00 S x <= x <=.0 00 S x <= x <=.0 00 S x <= x <=.0 00 S x <= x <=.0 00 S x <= x <=.0 00 S x <= x <=.0 00 S x <= x <=.0 00 S x <= x <=.0 5 S x <= x <=.0 5 S x <= x <=.0 5 S x <= x <=.0 5 S x <= x <=.0 5 S x <= x <=.0 5 S x <= x <=.0 Notes: Bearing length to web height ratio N/h, exceeds NASPEC limit of. Bearing length to web height ratio N/t, exceeds NASPEC limit of 0. Bearing length to web height ratio N/h, exceeds NASPEC limit of and bearing length to thickness ratio, N/t exceeds NASPEC limit of 0. Table Notes on Pages

90 Web Crippling Section Design t Fy (ksi) Condition Bearing Length Condition Bearing Length Condition Bearing Length Condition Bearing Length Punchout Reductions Rc (EF) Rc (IF) 5 S x <= x <= S x <= x <= S x <= x <= S x <= x <= S x <= x <= S x <= x <= S x <= x <= S x <= x <=.0 95 S x <= x <=.0 95 S x <= x <=.0 95 S x <= x <=.0 95 S x <= x <=.0 95 S x <= x <=.0 95 S x <= x <=.0 95 S x <= x <= S x <= x <= S x <= x <= S x <= x <= S x <= x <= S x <= x <= S x <= x <=.0 00 S x <= x <=.0 00 S x <= x <=.0 00 S x <= x <=.0 00 S x <= x <=.0 Notes: Bearing length to web height ratio N/h, exceeds NASPEC limit of. Bearing length to web height ratio N/t, exceeds NASPEC limit of 0. Bearing length to web height ratio N/h, exceeds NASPEC limit of and bearing length to thickness ratio, N/t exceeds NASPEC limit of Table Notes on Pages 9-9

91 Table Notes SECTION PROPERTY TABLE NOTES. Web depth for track sections equals nominal depth plus x design thickness plus bend radius.. Hems on non-structural track sections are ignored.. Effective properties include the strength increase from cold-work of forming per NASPEC section A. where applicable.. Tabulated gross properties are based on the full, unreduced section away from punchouts. 5. Effective properties of all S sections based on punched sections. Track sections are considered unpunched.. For deflection determination, use the effective moment of inertia. Effective moment of inertia is based on Procedure of the NASPEC.. For sections with properties listed for both ksi and 50 ksi yield point, the required yield point should be specified in the design documents. 8. Where effective properties are not listed for a section at or 50 ksi yield, web depth-to-thickness or flange width-to-thickness limits from the NASPEC are exceeded. Only gross properties are available. 9. Where section designations include a superscript, web height-to-thickness exceeds 00. Web stiffeners are required at all supports and concentrated loads. ALLOWABLE FLOOR JOIST SPAN TABLE NOTES. Spans are based on continuous support of each flange over the full length of the joist.. For two equal spans, listed span is the distance from either end to the center support, with the joist continuous over the center support.. Joists must be braced against rotation at all supports.. Shear and web crippling capacity have not been reduced for punchouts. 5. Web crippling check based on.5 inch end and interior bearing. Where listed allowable spans are followed by "e, web stiffeners are required at ends, "i web stiffeners required at interior support, and a web stiffeners are required at all supports.. Total load deflection limited to L/0. Live load deflection limit as noted.. Alternate span live loading has been considered for two, equal span conditions. 8. At interior supports of two-span conditions, joists must be braced to resist rotation. Bridging Recommendations Floor joist bridging may be spaced as indicated below, except where member design requires an alternate spacing. Span(ft) Minimum Number of Rows up to at mid span to 0 at / point 0 to at / point 9

92 Table Notes INTERIOR NON-STRUCTURAL, NON-COMPOSITE WALL HEIGHT TABLES NOTES. Lateral loads have not been modified for strength checks.. Lateral loads have not been modified for deflection determination.. Limiting heights based on continuous support of each flange over the full length of the stud.. Limiting heights are based on steel properties only (non-composite). 5. Web crippling check based on inch end bearing. Where listed limiting heights are followed by e, web stiffeners are required. STRUCTURAL, NON-COMPOSITE WALL HEIGHT TABLES NOTES. Lateral loads have not been modified for strength checks.. Lateral loads greater than 5 psf have been multiplied by 0. for deflection determination.. Limiting heights based on continuous support of each flange over the full length of the stud.. Limiting heights are based on steel properties only (non-composite). 5. Web crippling check based on inch end bearing. Where listed limiting heights are followed by e, web stiffeners are required. WEB CRIPPLING LOAD TABLE NOTES. Listed allowable loads apply only to members with stiffened flanges (i.e. S-sections).. Listed allowable loads are based on members fastened to supports.. Listed allowable loads are for unpunched webs.. Capacity reduction factors, Rc, are given for each member for End One Flange (EF) Loading and Interior One Flange Loading (IF). x is the nearest distance between the web hole and the edge of bearing. 9

93 MSDS State Building Products, Inc. Material Name: Iron Alloy (steel) Material Safety Data Sheet Section Chemical Product and Company Id Chemical Name: Steel Product Use: Fabricated Metal Studs Manufacturer Information STATE BUILDING PRODUCTS 5 Schmeman Warren, Michigan 8089 Phone: (58) -888 Section - Composition/ Information on Ingredient CAS# Components Percent Iron Manganese Nickel Chromium Silicon Aluminum Copper Antimony NOTE: The above listing is a summary of elements used in alloying steel. Various grades of steel will contain different combinations of these elements. Trace elements may also be present in minute amounts. Coating May Also Contain: Aluminum Antimony Zinc Tin Chromium - Component Related Regulatory Information This product may be regulated, have exposure limits or other information identified as the following; Nickel compounds Component Information/Information on Non-Hazardous Components As supplied, this product is considered non-hazardous under 9 CFR (Hazard Communication) however, dusts particulate or fumes generated in the processing of this product are hazardous. 9

94 MSDS Section - Hazards Identification Emergency Overview Product is a solid iron alloy. As supplied, this product does not present a physical or health hazard. Processing of the product for some final users can include formation of dusts, particulate or fumes that may present certain health hazards. Dusts from this product may pose a dust explosion hazard. Firefighters should wear a positive pressure self-contained breathing apparatus with full facepiece. Hazard Statements Dusts, particulates and vapors that may be produced in the processing of this product may be irritating to the eyes, skin, respiratory system and gastrointestinal tract. Dusts, particulates or fumes that may be produced may contain metals that cause metal fume fever, a flu-like condition lasting to 8 hours and includes fever, chills, aches, cough and general malaise. Exposure to dusts, particulates or fumes containing nickel may cause cancer. Fumes containing metallic components in this product may be hazardous. Potential Health Effects: Eyes Dust or powder may be irritating to the eyes. Rubbing may cause abrasion of the cornea. Section Material is ( at normal conditions ) Appearance and Odor Liquid Solid Gas Other Gray-Black with Metallic Luster-Odorless Acidity/Alkalinity Approximately Vapor Pressure ph = NA Melting Point 50 º F (mm Hg at 0ºC) Specific Gravity (H O=)--- Boiling Point N/A º F NA Solubility in water ( by weight) ---NA Section 5 Fire fighting Measures This material will not burn. Fine dust of this material mixed with oxygen and a suitable source of ignition may pose as an explosion hazard. Hazardous Combustion Products Material will begin softening at approximately 00 F, will proceed to a liquid and will form irritating and toxic fumes at extremely high temperatures. Storage Procedures Store in a dry area Labeling No label is required Section Handling and Storage 9

95 MSDS Section Disposal Considerations US EPA Waste Number and Descriptions General Product Information The federal EPA does not regulate this product as a hazardous waste. US DOT Information Shipping Name: Not regulated as dangerous goods. Hazardous Class: None UN/NA #: None Packing Group: None Required Label(s): None Section 8 Transportation Information Section 9 Personal Protective Equiptment Respiratory Protection NIOSH approved dust/mist/fume respirator should be used during welding or burning if OSHA PEL or TLV is exceeded. Hands, Arms and Body Use appropriate protective clothing. Such as welder s aprons and gloves when welding or burning. Check local codes. Eyes and Face Safety glasses should always be worn when grinding or cutting; face shields should be worn when welding or burning. Other Clothing and Equipment As required Section 0 Emergency Medical Procedures Inhalation: Remove to fresh air; if condition continues, consult physician. Eye Contact: Immediately flush well with running water to remove Particulate; get medical attention. Skin Contact: If irritation develops, remove clothing and wash well with soap and water. If condition persists, seek medical attention. Ingestion: If significant amounts of metal are ingested, seek medical attention. 95

96 Manufacturer of Drywall & Structural Studs Track & Accessories **This label is an example of the SFIA Code Certification lable which is attached to certified products. Toll Free: Fax: Schmeman Warren, MI 8089

EXTERIOR FRAMING EXTERIOR FRAMING

EXTERIOR FRAMING EXTERIOR FRAMING 1 EXTERIOR FRAMING BUILDSTRONG www.buildstrong.com 2 TABLE OF CONTENTS Product Identification...........................5 General Product Information....................... 4-5 Compliance Guaranteed...............................

More information

STEEL FRAMING AND ACCESSORIES CATALOG

STEEL FRAMING AND ACCESSORIES CATALOG STEEL FRAMING AND ACCESSORIES CATALOG ICC ES ESR-3016 2009 & 20 IBC, IRC www.cemcosteel.com Certified Steel Stud Association TABLE OF CONTENTS Section Pages Introduction to CEMCO... 3 Product Identification...4-5

More information

PRODUCT CATALOG PRODUCT CATALOG. 100% American-Owned and Operated marinoware.com ESR #2620

PRODUCT CATALOG PRODUCT CATALOG. 100% American-Owned and Operated marinoware.com ESR #2620 PRODUCT CATALOG PRODUCT CATALOG ESR #2620 100% American-Owned and Operated marinoware.com CERTIFIED STEEL STUD ASSOCIATION By providing a lighter, stronger, more efficient framing system, The Proprietary

More information

X X. Physical Properties Gross Properties Effective Properties Torsional Properties

X X. Physical Properties Gross Properties Effective Properties Torsional Properties Structural Sections X X Cee Purlins (flange) Physical Properties Gross Properties Effective Properties Torsional Properties Ga. (nom) (lip) Weight Area Ix Sx Rx Iy Sy Sy R Ry Ae Ixe Sxe J (x10-3 ) Cw Xo

More information

1 Exterior Wall Members & Accessories

1 Exterior Wall Members & Accessories JamStud Introduction Table of Contents JamStud Introduc on...1 JamStud Assembly Comparisons...2 JamStud Design Considera ons...3- JamStud Sec on Proper es...5- JamStud Non Load Bearing Design Example...7-

More information

STEEL FRAMING AND ACCESSORIES CATALOG

STEEL FRAMING AND ACCESSORIES CATALOG STEEL FRAMING AND ACCESSORIES CATALOG ICC ES ESR-3016 2009 & 20 IBC, IRC www.cemcosteel.com Certified Steel Stud Association TABLE OF CONTENTS Section Pages Introduction to CEMCO... 3 LEED Certification...4

More information

1 Exterior Wall Members & Accessories

1 Exterior Wall Members & Accessories JamStud Introduction Table of Contents JamStud Introduc on...1 JamStud Assembly Comparisons...2 JamStud Design Considera ons...3- JamStud Sec on Proper es...5- JamStud Non Load Bearing Design Example...7-

More information

Accordingly, the nominal section strength [resistance] for initiation of yielding is calculated by using Equation C-C3.1.

Accordingly, the nominal section strength [resistance] for initiation of yielding is calculated by using Equation C-C3.1. C3 Flexural Members C3.1 Bending The nominal flexural strength [moment resistance], Mn, shall be the smallest of the values calculated for the limit states of yielding, lateral-torsional buckling and distortional

More information

DIVISION: METALS SECTION: METAL FASTENINGS SECTION: STEEL DECKING REPORT HOLDER: PNEUTEK, INC.

DIVISION: METALS SECTION: METAL FASTENINGS SECTION: STEEL DECKING REPORT HOLDER: PNEUTEK, INC. ICC ES Report ICC ES () 7 () www.icc es.org Most Widely Accepted and Trusted ESR 1 Reissued /1 This report is subject to renewal /. DIVISION: METALS SECTION: METAL FASTENINGS SECTION: 1 STEEL ING REPORT

More information

THREE HOLE SPLICE CLEVIS FOR B52 Standard finishes: ZN, GRN Wt./C 126 Lbs. (57.1 kg)

THREE HOLE SPLICE CLEVIS FOR B52 Standard finishes: ZN, GRN Wt./C 126 Lbs. (57.1 kg) CLEVIS FITTINGS B169 TWO HOLE SPLICE Wt./C 84 Lbs. (38.1 kg) B168 THREE HOLE SPLICE Wt./C 126 Lbs. (57.1 kg) B167 Wt./C 178 Lbs. (80.7 kg) 3 1 /2 (88.9) B170 TWO HOLE SPLICE Wt./C 123 Lbs. (55.8 kg) 5

More information

Failure in Flexure. Introduction to Steel Design, Tensile Steel Members Modes of Failure & Effective Areas

Failure in Flexure. Introduction to Steel Design, Tensile Steel Members Modes of Failure & Effective Areas Introduction to Steel Design, Tensile Steel Members Modes of Failure & Effective Areas MORGAN STATE UNIVERSITY SCHOOL OF ARCHITECTURE AND PLANNING LECTURE VIII Dr. Jason E. Charalambides Failure in Flexure!

More information

Hilti North America Installation Technical Manual Technical Data MI System Version

Hilti North America Installation Technical Manual Technical Data MI System Version MIC-SA-MAH 174671 Hilti North America Installation Technical Manual Technical Data MI System Version 1. 08.017 Terms of common cooperation / Legal disclaimer The product technical data published in these

More information

Introduction...COMB-2 Design Considerations and Examples...COMB-3

Introduction...COMB-2 Design Considerations and Examples...COMB-3 SECTION DIRECTORY General Information Introduction...COMB-2 Design Considerations and Examples...COMB-3 Combination Assembly Recommendations and Limitations Composite Configurations...COMB-4 Typical Sealant

More information

Karbala University College of Engineering Department of Civil Eng. Lecturer: Dr. Jawad T. Abodi

Karbala University College of Engineering Department of Civil Eng. Lecturer: Dr. Jawad T. Abodi Chapter 05 Structural Steel Design According to the AISC Manual 13 th Edition Analysis and Design of Beams By Dr. Jawad Talib Al-Nasrawi University of Karbala Department of Civil Engineering 71 Introduction

More information

twenty one concrete construction: shear & deflection ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2014 lecture

twenty one concrete construction: shear & deflection ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2014 lecture ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2014 lecture twenty one concrete construction: Copyright Kirk Martini shear & deflection Concrete Shear 1 Shear in Concrete

More information

APPENDIX 1 MODEL CALCULATION OF VARIOUS CODES

APPENDIX 1 MODEL CALCULATION OF VARIOUS CODES 163 APPENDIX 1 MODEL CALCULATION OF VARIOUS CODES A1.1 DESIGN AS PER NORTH AMERICAN SPECIFICATION OF COLD FORMED STEEL (AISI S100: 2007) 1. Based on Initiation of Yielding: Effective yield moment, M n

More information

MAXIMUM SUPERIMPOSED UNIFORM ASD LOADS, psf SINGLE SPAN DOUBLE SPAN TRIPLE SPAN GAGE

MAXIMUM SUPERIMPOSED UNIFORM ASD LOADS, psf SINGLE SPAN DOUBLE SPAN TRIPLE SPAN GAGE F-DEK ROOF (ASD) 1-1/2" high x 6" pitch x 36" wide SECTION PROPERTIES GAGE Wd 22 1.63 20 1.98 18 2.62 16 3.30 I D (DEFLECTION) 0.142 0.173 0.228 fy = 40 ksi Sp Sn 0.122 0.135 708 815 905 1211 1329 2365

More information

DIVISION: METALS SECTION: STEEL DECKING SECTION: STEEL ROOF DECKING REPORT HOLDER: NEW MILLENNIUM BUILDING SYSTEMS, LLC

DIVISION: METALS SECTION: STEEL DECKING SECTION: STEEL ROOF DECKING REPORT HOLDER: NEW MILLENNIUM BUILDING SYSTEMS, LLC 0 Most Widely Accepted and Trusted ICC ES Report ICC ES 000 (800) 423 6587 (562) 699 0543 www.icc es.org ESR 2657 Reissued 05/2017 This report is subject to renewal 03/2018. DIVISION: 05 00 00 METALS SECTION:

More information

ALUMINUM STRUCTURAL PLATE HEADWALLS AASHTO LRFD BASIS OF DESIGN

ALUMINUM STRUCTURAL PLATE HEADWALLS AASHTO LRFD BASIS OF DESIGN ALUMINUM STRUCTURAL PLATE EADWALLS AASTO LRFD BASIS OF DESIGN LANE ENTERPRISES, INC. www.lane-enterprises.com Required Backfill and Load Cases: ALUMINUM STRUCTURAL PLATE EADWALLS BASIS OF DESIGN Backfill

More information

Karbala University College of Engineering Department of Civil Eng. Lecturer: Dr. Jawad T. Abodi

Karbala University College of Engineering Department of Civil Eng. Lecturer: Dr. Jawad T. Abodi Chapter 04 Structural Steel Design According to the AISC Manual 13 th Edition Analysis and Design of Compression Members By Dr. Jawad Talib Al-Nasrawi University of Karbala Department of Civil Engineering

More information

Hilti North America Installation Technical Manual Technical Data MI System Version

Hilti North America Installation Technical Manual Technical Data MI System Version MIC-S10-AH-L 179517-1 Hilti North America Installation Technical Manual Technical Data MI System Version 1. 08.017 Terms of common cooperation / Legal disclaimer The product technical data published in

More information

host structure (S.F.D.)

host structure (S.F.D.) TABLE 00.4 FBC Typical Mansard Beam [AAF] Allowable Span of Mansard Screen Enclosure Self-Mating Beams in accordance with requirements of Table 00.4 (and the 005 Aluminum Design Manual) using 6005T5 alloy:

More information

PERFORATED METAL DECK DESIGN

PERFORATED METAL DECK DESIGN PERFORATED METAL DECK DESIGN with Commentary Prepared By: L.D. Luttrell, Technical Advisor Steel Deck Institute November 18, 2011 Copyright 2011 All rights reserved P.O. Box 25 Fox River Grove, IL 60021

More information

Structural Calculations For:

Structural Calculations For: Structural Calculations For: Project: Address: Job No. Revision: Date: 1400 N. Vasco Rd. Livermore, CA 94551 D031014 Delta 1 - Plan Check May 8, 2015 Client: Ferreri & Blau MEMBER REPORT Roof, Typical

More information

APPENDIX A Thickness of Base Metal

APPENDIX A Thickness of Base Metal APPENDIX A Thickness of Base Metal For uncoated steel sheets, the thickness of the base metal is listed in Table A.1. For galvanized steel sheets, the thickness of the base metal can be obtained by subtracting

More information

Steel Cross Sections. Structural Steel Design

Steel Cross Sections. Structural Steel Design Steel Cross Sections Structural Steel Design PROPERTIES OF SECTIONS Perhaps the most important properties of a beam are the depth and shape of its cross section. There are many to choose from, and there

More information

Tension zone applications, i.e., cable trays and strut, pipe supports, fire sprinklers Seismic and wind loading

Tension zone applications, i.e., cable trays and strut, pipe supports, fire sprinklers Seismic and wind loading General Information Mechanical Anchors General Information Power-Stud + SD1 Wedge Expansion Anchor Product Description The Power-Stud+ SD1 anchor is a fully threaded, torque-controlled, wedge expansion

More information

Edward C. Robison, PE, SE. 02 January Architectural Metal Works ATTN: Sean Wentworth th ST Emeryville, CA 94608

Edward C. Robison, PE, SE. 02 January Architectural Metal Works ATTN: Sean Wentworth th ST Emeryville, CA 94608 Edward C. Robison, PE, SE ks ATTN: Sean Wentworth 1483 67 th ST Emeryville, CA 94608 02 January 2013 SUBJ: 501 CORTE MADERA AVE, CORTE MADERA, CA 94925 BALCONY GUARD BASE PLATE MOUNTS The guards for the

More information

research report Design Example for Analytical Modeling of a Curtainwall and Considering the Effects of Bridging (All-Steel Design Approach)

research report Design Example for Analytical Modeling of a Curtainwall and Considering the Effects of Bridging (All-Steel Design Approach) research report Design Example for Analytical Modeling of a Curtainwall and Considering the Effects of Bridging (All-Steel Design Approach) RESEARCH REPORT RP18- August 018 Committee on Specifications

More information

DNV DESIGN. POU_Rect - Design Report Page 1 of 11

DNV DESIGN. POU_Rect - Design Report Page 1 of 11 DNV DESIGN Page 1 of 11 Details Code Details Code DNV 2.7-1 2006 with AISC 360-10 ASD Description This is the 2006 edition of the DNV Standard for Certification No 2.7-1, which defines minimum technical

More information

Protective Coatings: Non-lead orange paint RAL red (optional) non-lead paint Hot dipped galvanized conforming to ASTM A-153.

Protective Coatings: Non-lead orange paint RAL red (optional) non-lead paint Hot dipped galvanized conforming to ASTM A-153. Technical Services: Tel: (66) 500-76 / Fax: (01) 71-7317 www.grinnell.com Grinnell Mechanical Products Grooved Fittings, Ductile Iron & Fabricated Steel General Description Grooved fittings provide an

More information

CH. 5 TRUSSES BASIC PRINCIPLES TRUSS ANALYSIS. Typical depth-to-span ratios range from 1:10 to 1:20. First: determine loads in various members

CH. 5 TRUSSES BASIC PRINCIPLES TRUSS ANALYSIS. Typical depth-to-span ratios range from 1:10 to 1:20. First: determine loads in various members CH. 5 TRUSSES BASIC PRINCIPLES Typical depth-to-span ratios range from 1:10 to 1:20 - Flat trusses require less overall depth than pitched trusses Spans: 40-200 Spacing: 10 to 40 on center - Residential

More information

The following pages are an excerpt from the North American Product Technical Guide, Volume 1: Direct Fastening Technical Guide, Edition 18.

The following pages are an excerpt from the North American Product Technical Guide, Volume 1: Direct Fastening Technical Guide, Edition 18. The following pages are an excerpt from the North American Product Technical Guide, Volume 1: Direct Fastening Technical Guide, Edition. Please refer to the publication in its entirety for complete details

More information

For sunshades using the Zee blades wind loads are reduced by 10 psf.

For sunshades using the Zee blades wind loads are reduced by 10 psf. C.R. Laurence Co., Inc. 2503 East Vernon Los Angeles, CA 90058 24 July 2009 SUBJ: CR LAURENCE UNIVERSAL SUN SHADES The CRL Universal Aluminum Sun Shades were evaluated in accordance with the 2006 International

More information

Design of Beams (Unit - 8)

Design of Beams (Unit - 8) Design of Beams (Unit - 8) Contents Introduction Beam types Lateral stability of beams Factors affecting lateral stability Behaviour of simple and built - up beams in bending (Without vertical stiffeners)

More information

Section Downloads. Section Downloads. Handouts & Slides can be printed. Other documents cannot be printed Course binders are available for purchase

Section Downloads. Section Downloads. Handouts & Slides can be printed. Other documents cannot be printed Course binders are available for purchase Level II: Section 04 Simplified Method (optional) Section Downloads Section Downloads Handouts & Slides can be printed Version.0 Other documents cannot be printed Course binders are available for purchase

More information

RESEARCH REPORT RP02-2 MARCH 2002 REVISION Committee on Specifications for the Design of Cold-Formed Steel Structural Members

RESEARCH REPORT RP02-2 MARCH 2002 REVISION Committee on Specifications for the Design of Cold-Formed Steel Structural Members research report Web Crippling and Bending Interaction of Cold-Formed Steel Members RESEARCH REPORT RP02-2 MARCH 2002 REVISION 2006 Committee on Specifications for the Design of Cold-Formed Steel Structural

More information

10012 Creviston DR NW Gig Harbor, WA fax

10012 Creviston DR NW Gig Harbor, WA fax C.R. Laurence Co., Inc. ATTN: Chris Hanstad 2503 East Vernon Los Angeles, CA 90058 27 March 2013 SUBJ: CRL SRS STANDOFF RAILING SYSTEM GLASS BALUSTRADE GUARDS The SRS Standoff Railing System is an engineered

More information

Behaviour of the Cold-formedTrapezoidal Sheet Overlap Jointin a Gerber Lapped Connection

Behaviour of the Cold-formedTrapezoidal Sheet Overlap Jointin a Gerber Lapped Connection Behaviour of the Cold-formedTrapezoidal Sheet Overlap Jointin a Gerber Lapped Connection April Anne Acosta Sustainable Constructions under Natural Hazards and Catastrophic Events, master's level (60 credits)

More information

6593 Riverdale St. San Diego, CA (619) Page of

6593 Riverdale St. San Diego, CA (619) Page of 6593 Riverdale St. Client: ProVent PV1807 Description: CBKD-91 (80-266-18**) Unit: YORK ZJ,ZR 180-300 / ZF 210-300 / XP 180-240 Curb Information Hcurb = 18 in (Height of curb) Lcurb = 126.25 in (Length

More information

6593 Riverdale St. San Diego, CA (619) Page of. Client: ProVent PV1807 Description: CBKD-92 ( **) Unit: ZF180

6593 Riverdale St. San Diego, CA (619) Page of. Client: ProVent PV1807 Description: CBKD-92 ( **) Unit: ZF180 6593 Riverdale St. Client: ProVent PV1807 Description: CBKD-92 (80-266-19**) Unit: ZF180 Curb Information Hcurb = 18 in (Height of curb) Lcurb = 115.25 in (Length of curb) wcurb = 84 in (Width of curb)

More information

Serviceability Deflection calculation

Serviceability Deflection calculation Chp-6:Lecture Goals Serviceability Deflection calculation Deflection example Structural Design Profession is concerned with: Limit States Philosophy: Strength Limit State (safety-fracture, fatigue, overturning

More information

S E C T I O N 1 2 P R O D U C T S E L E C T I O N G U I D E - H E L I C A L S C R E W P I L E F O U N D A T I O N S

S E C T I O N 1 2 P R O D U C T S E L E C T I O N G U I D E - H E L I C A L S C R E W P I L E F O U N D A T I O N S 1. P R O D U C T S E L E C T I O N G U I D E - H E L I C A L S C R E W P I L E F O U N D A T I O N S Helical foundation pile includes a lead and extension(s). The lead section is made of a central steel

More information

Structural Steelwork Eurocodes Development of A Trans-national Approach

Structural Steelwork Eurocodes Development of A Trans-national Approach Structural Steelwork Eurocodes Development of A Trans-national Approach Course: Eurocode Module 7 : Worked Examples Lecture 0 : Simple braced frame Contents: 1. Simple Braced Frame 1.1 Characteristic Loads

More information

Flexural-Torsional Buckling of General Cold-Formed Steel Columns with Unequal Unbraced Lengths

Flexural-Torsional Buckling of General Cold-Formed Steel Columns with Unequal Unbraced Lengths Proceedings of the Annual Stability Conference Structural Stability Research Council San Antonio, Texas, March 21-24, 2017 Flexural-Torsional Buckling of General Cold-Formed Steel Columns with Unequal

More information

Presented by: Civil Engineering Academy

Presented by: Civil Engineering Academy Presented by: Civil Engineering Academy Structural Design and Material Properties of Steel Presented by: Civil Engineering Academy Advantages 1. High strength per unit length resulting in smaller dead

More information

5. What is the moment of inertia about the x - x axis of the rectangular beam shown?

5. What is the moment of inertia about the x - x axis of the rectangular beam shown? 1 of 5 Continuing Education Course #274 What Every Engineer Should Know About Structures Part D - Bending Strength Of Materials NOTE: The following question was revised on 15 August 2018 1. The moment

More information

Substituting T-braces for continuous lateral braces on wood truss webs

Substituting T-braces for continuous lateral braces on wood truss webs Substituting T-braces for continuous lateral braces on wood truss webs By heryl Anderson, Frank Woeste, PE, and Donald Bender, PE Introduction W eb bracing in trusses is essential for several reasons.

More information

Mechanics of Materials Primer

Mechanics of Materials Primer Mechanics of Materials rimer Notation: A = area (net = with holes, bearing = in contact, etc...) b = total width of material at a horizontal section d = diameter of a hole D = symbol for diameter E = modulus

More information

API 11E - Specification for Pumping Units

API 11E - Specification for Pumping Units API 11E - Specification for Pumping Units 5 Beam Pump Structure Requirements 5.1 General Requirements for beam pump structures are specified in the following sections. Only loads imposed on the structure

More information

Chapter 4 Seismic Design Requirements for Building Structures

Chapter 4 Seismic Design Requirements for Building Structures Chapter 4 Seismic Design Requirements for Building Structures where: F a = 1.0 for rock sites which may be assumed if there is 10 feet of soil between the rock surface and the bottom of spread footings

More information

Chapter 8: Bending and Shear Stresses in Beams

Chapter 8: Bending and Shear Stresses in Beams Chapter 8: Bending and Shear Stresses in Beams Introduction One of the earliest studies concerned with the strength and deflection of beams was conducted by Galileo Galilei. Galileo was the first to discuss

More information

CR LAURENCE Z-SERIES GLASS CLAMPS (12/14/2012) Page 1 of Dec. 2012

CR LAURENCE Z-SERIES GLASS CLAMPS (12/14/2012) Page 1 of Dec. 2012 CR LAURENCE Z-SERIES GLASS CLAMPS (12/14/2012) Page 1 of 19 Architectural Railing Division C.R.Laurence Co., Inc. 2503 E Vernon Ave. Los Angeles, CA 90058 (T) 800.421.6144 (F) 800.587.7501 www.crlaurence.com

More information

NAIL SECTION TABLE OF CONTENTS

NAIL SECTION TABLE OF CONTENTS NAIL SECTION TABLE OF CONTENTS ANCHOR TRUSS BOX NAILS-1 NAILS-1 COMMMON NAILS-1 & 2 DECK NAILS NAILS-2 & 3 DRYWALL DUPLEX FINISH FLOOR - HARD SCREW NAILS-4 NAILS-4 NAILS-5 NAILS-5 MASONRY - STUB NAILS-6

More information

FHWA Bridge Design Guidance No. 1 Revision Date: July 21, Load Rating Evaluation of Gusset Plates in Truss Bridges

FHWA Bridge Design Guidance No. 1 Revision Date: July 21, Load Rating Evaluation of Gusset Plates in Truss Bridges FHWA Bridge Design Guidance No. 1 Revision Date: July 21, 2008 Load Rating Evaluation of Gusset Plates in Truss Bridges By Firas I. Sheikh Ibrahim, PhD, PE Part B Gusset Plate Resistance in Accordance

More information

STEEL. General Information

STEEL. General Information General Information General Information TYPICAL STRESS-STRAIN CURVE Below is a typical stress-strain curve. Each material has its own unique stress-strain curve. Tensile Properties Tensile properties indicate

More information

CONNECTION DESIGN. Connections must be designed at the strength limit state

CONNECTION DESIGN. Connections must be designed at the strength limit state CONNECTION DESIGN Connections must be designed at the strength limit state Average of the factored force effect at the connection and the force effect in the member at the same point At least 75% of the

More information

UNIT- I Thin plate theory, Structural Instability:

UNIT- I Thin plate theory, Structural Instability: UNIT- I Thin plate theory, Structural Instability: Analysis of thin rectangular plates subject to bending, twisting, distributed transverse load, combined bending and in-plane loading Thin plates having

More information

Chapter 9: Column Analysis and Design

Chapter 9: Column Analysis and Design Chapter 9: Column Analysis and Design Introduction Columns are usually considered as vertical structural elements, but they can be positioned in any orientation (e.g. diagonal and horizontal compression

More information

HELIODYNE SOLAR COLLECTOR RACK STRUCTURES FOR HELIODYNE, INC. Structural calculations. Gobi 410 at 45 degrees. for WCM HELIODYNE RACK

HELIODYNE SOLAR COLLECTOR RACK STRUCTURES FOR HELIODYNE, INC. Structural calculations. Gobi 410 at 45 degrees. for WCM HELIODYNE RACK HELIODYNE RACK PROJECT: JOB NO: 2008-36 SHEET: DESIGNED BY: WCM DATE: CHECKED BY: SCOPE: KTD DATE: Racking Calculation Report 1 OF 1/22/2011 1/22/2011 17 Structural calculations for HELIODYNE SOLAR COLLECTOR

More information

Trusted SECTION: POST COLUMBIA, PANELS. Conformity! ICC-ES Evaluation. Copyright 2015

Trusted SECTION: POST COLUMBIA, PANELS. Conformity! ICC-ES Evaluation. Copyright 2015 0 ICC ES Report ICC ES (800) 423 6587 (562) 699 0543 www.icc es.orgg 000 Most Widely Accepted and Trusted ESR 1169 Reissued 06/2015 This report is subject to renewal 06/2016. DIVISION: 05 00 00 METALS

More information

Example 1 - Single Headed Anchor in Tension Away from Edges BORRADOR. Calculations and Discussion

Example 1 - Single Headed Anchor in Tension Away from Edges BORRADOR. Calculations and Discussion Example 1 - Single Headed Anchor in Tension Away from Edges Check the capacity of a single anchor, 1 in. diameter, F1554 Grade 36 headed bolt with heavy-hex head installed in the top of a foundation without

More information

Appendix. A 1 Properties of areas.* *Symbols used are: A = area I = moment of inertia S = Section modulus

Appendix. A 1 Properties of areas.* *Symbols used are: A = area I = moment of inertia S = Section modulus Appendix A 1 Properties of areas.* *Symbols used are: A = area I = moment of inertia S = Section modulus r = radius of gyration = I/A J = polar moment of inertia Z p = polar section modulus Circle R D

More information

Case Study in Reinforced Concrete adapted from Simplified Design of Concrete Structures, James Ambrose, 7 th ed.

Case Study in Reinforced Concrete adapted from Simplified Design of Concrete Structures, James Ambrose, 7 th ed. ARCH 631 Note Set 11 S017abn Case Study in Reinforced Concrete adapted from Simplified Design of Concrete Structures, James Ambrose, 7 th ed. Building description The building is a three-story office building

More information

QUESTION BANK SEMESTER: III SUBJECT NAME: MECHANICS OF SOLIDS

QUESTION BANK SEMESTER: III SUBJECT NAME: MECHANICS OF SOLIDS QUESTION BANK SEMESTER: III SUBJECT NAME: MECHANICS OF SOLIDS UNIT 1- STRESS AND STRAIN PART A (2 Marks) 1. Define longitudinal strain and lateral strain. 2. State Hooke s law. 3. Define modular ratio,

More information

PLATE GIRDERS II. Load. Web plate Welds A Longitudinal elevation. Fig. 1 A typical Plate Girder

PLATE GIRDERS II. Load. Web plate Welds A Longitudinal elevation. Fig. 1 A typical Plate Girder 16 PLATE GIRDERS II 1.0 INTRODUCTION This chapter describes the current practice for the design of plate girders adopting meaningful simplifications of the equations derived in the chapter on Plate Girders

More information

Huntly Christie 1/26/2018 Christie Lites 100 Carson Street Toronto, ON M8W3R9

Huntly Christie 1/26/2018 Christie Lites 100 Carson Street Toronto, ON M8W3R9 Huntly Christie 1/26/2018 Christie Lites 100 Carson Street Toronto, ON M8W3R9 Structural Analysis for 20.5x20.5 Plated Box Truss Tables CRE Project # 16.614.01 Table of Contents for Analysis Package General

More information

Curved Steel I-girder Bridge LFD Guide Specifications (with 2003 Edition) C. C. Fu, Ph.D., P.E. The BEST Center University of Maryland October 2003

Curved Steel I-girder Bridge LFD Guide Specifications (with 2003 Edition) C. C. Fu, Ph.D., P.E. The BEST Center University of Maryland October 2003 Curved Steel I-girder Bridge LFD Guide Specifications (with 2003 Edition) C. C. Fu, Ph.D., P.E. The BEST Center University of Maryland October 2003 Guide Specifications (1993-2002) 2.3 LOADS 2.4 LOAD COMBINATIONS

More information

Design of Steel Structures Prof. Damodar Maity Department of Civil Engineering Indian Institute of Technology, Guwahati

Design of Steel Structures Prof. Damodar Maity Department of Civil Engineering Indian Institute of Technology, Guwahati Design of Steel Structures Prof. Damodar Maity Department of Civil Engineering Indian Institute of Technology, Guwahati Module 7 Gantry Girders and Plate Girders Lecture - 3 Introduction to Plate girders

More information

5 Compression Members

5 Compression Members 5 Compression Members 5.1 GENERAL REMARKS Similar to the heavy hot-rolled steel sections, thin-walled cold-formed steel compression members can be used to carry a compressive load applied through the centroid

More information

Structural Calculations for Juliet balconies using BALCONY 2 System (Aerofoil) handrail. Our ref: JULB2NB Date of issue: March 2017

Structural Calculations for Juliet balconies using BALCONY 2 System (Aerofoil) handrail. Our ref: JULB2NB Date of issue: March 2017 Juliet balconies using BALCONY 2 System (Aerofoil) handrail PAGE 1 (ref: JULB2NB280317) Structural Calculations for Juliet balconies using BALCONY 2 System (Aerofoil) handrail Our ref: JULB2NB280317 Date

More information

ANSI/SPRI ES-1 Test Reports UL Classified Products

ANSI/SPRI ES-1 Test Reports UL Classified Products Introduction to ES-1 The ANSI/SPRI ES-1 Roof Edge Standard is a reference for those who design, specify or install edge materials used with low slope roofs. This standard focuses primarily on design for

More information

Glossary Innovative Measurement Solutions

Glossary Innovative Measurement Solutions Glossary GLOSSARY OF TERMS FOR TRANSDUCERS, LOAD CELLS AND WEIGH MODULES This purpose of this document is to provide a comprehensive, alphabetical list of terms and definitions commonly employed in the

More information

Design of Steel Structures Prof. S.R.Satish Kumar and Prof. A.R.Santha Kumar

Design of Steel Structures Prof. S.R.Satish Kumar and Prof. A.R.Santha Kumar 5.4 Beams As stated previousl, the effect of local buckling should invariabl be taken into account in thin walled members, using methods described alread. Laterall stable beams are beams, which do not

More information

3 Hours/100 Marks Seat No.

3 Hours/100 Marks Seat No. *17304* 17304 14115 3 Hours/100 Marks Seat No. Instructions : (1) All questions are compulsory. (2) Illustrate your answers with neat sketches wherever necessary. (3) Figures to the right indicate full

More information

Structural Steelwork Eurocodes Development of A Trans-national Approach

Structural Steelwork Eurocodes Development of A Trans-national Approach Structural Steelwork Eurocodes Development of A Trans-national Approach Course: Eurocode 3 Module 7 : Worked Examples Lecture 20 : Simple braced frame Contents: 1. Simple Braced Frame 1.1 Characteristic

More information

Design of Reinforced Concrete Structures (II)

Design of Reinforced Concrete Structures (II) Design of Reinforced Concrete Structures (II) Discussion Eng. Mohammed R. Kuheil Review The thickness of one-way ribbed slabs After finding the value of total load (Dead and live loads), the elements are

More information

AC R1 #16. Jay W. Larson, P.E., F. ASCE Managing Director, Construction Technical Sydna Street

AC R1 #16. Jay W. Larson, P.E., F. ASCE Managing Director, Construction Technical Sydna Street AC46-0210-R1 #16 January 27, 2010 Mr. Woods McRoy International Code Council Evaluation Service, Inc. Birmingham Regional Office 900 Montclair Road, Suite A Birmingham, AL 35213 Re: Proposed Acceptance

More information

NICE-PACK ALCOHOL PREP ROOM PLATFORM CALCULATIONS

NICE-PACK ALCOHOL PREP ROOM PLATFORM CALCULATIONS DESIGN STATEMENT THIS GALVANISED STEEL PLATFORM IS ANALYSED USING THE ALLOWABLE STRESS DESIGN METHOD TO DETERMINE MATERIAL STRENGTH. MEMBER SIZES AND FASTENERS ARE CHOSEN NOT SO MUCH FOR THEIR STRENGTH

More information

Downloaded from Downloaded from / 1

Downloaded from   Downloaded from   / 1 PURWANCHAL UNIVERSITY III SEMESTER FINAL EXAMINATION-2002 LEVEL : B. E. (Civil) SUBJECT: BEG256CI, Strength of Material Full Marks: 80 TIME: 03:00 hrs Pass marks: 32 Candidates are required to give their

More information

SAMPLE PROJECT IN THE MIDDLE EAST DOCUMENT NO. STR-CALC UNITISED CURTAIN WALL 117 ENGINEER PROJECT. Pages REVISION TITLE

SAMPLE PROJECT IN THE MIDDLE EAST DOCUMENT NO. STR-CALC UNITISED CURTAIN WALL 117 ENGINEER PROJECT. Pages REVISION TITLE PROJECT ENGINEER DOCUMENT NO. STR-CALC-548 0 REVISION TITLE Pages UNITISED CURTAIN WALL 117 UNITISED CURTAIN WALL 2 of 117 Table of Contents 1 Summary 3 2 Basic Data 4 2.1 Standards and References 4 2.2

More information

Tuesday, February 11, Chapter 3. Load and Stress Analysis. Dr. Mohammad Suliman Abuhaiba, PE

Tuesday, February 11, Chapter 3. Load and Stress Analysis. Dr. Mohammad Suliman Abuhaiba, PE 1 Chapter 3 Load and Stress Analysis 2 Chapter Outline Equilibrium & Free-Body Diagrams Shear Force and Bending Moments in Beams Singularity Functions Stress Cartesian Stress Components Mohr s Circle for

More information

2. (a) Explain different types of wing structures. (b) Explain the advantages and disadvantages of different materials used for aircraft

2. (a) Explain different types of wing structures. (b) Explain the advantages and disadvantages of different materials used for aircraft Code No: 07A62102 R07 Set No. 2 III B.Tech II Semester Regular/Supplementary Examinations,May 2010 Aerospace Vehicle Structures -II Aeronautical Engineering Time: 3 hours Max Marks: 80 Answer any FIVE

More information

MECHANICS OF MATERIALS. Prepared by Engr. John Paul Timola

MECHANICS OF MATERIALS. Prepared by Engr. John Paul Timola MECHANICS OF MATERIALS Prepared by Engr. John Paul Timola Mechanics of materials branch of mechanics that studies the internal effects of stress and strain in a solid body. stress is associated with the

More information

PUNCHING SHEAR CALCULATIONS 1 ACI 318; ADAPT-PT

PUNCHING SHEAR CALCULATIONS 1 ACI 318; ADAPT-PT Structural Concrete Software System TN191_PT7_punching_shear_aci_4 011505 PUNCHING SHEAR CALCULATIONS 1 ACI 318; ADAPT-PT 1. OVERVIEW Punching shear calculation applies to column-supported slabs, classified

More information

Sabah Shawkat Cabinet of Structural Engineering Walls carrying vertical loads should be designed as columns. Basically walls are designed in

Sabah Shawkat Cabinet of Structural Engineering Walls carrying vertical loads should be designed as columns. Basically walls are designed in Sabah Shawkat Cabinet of Structural Engineering 17 3.6 Shear walls Walls carrying vertical loads should be designed as columns. Basically walls are designed in the same manner as columns, but there are

More information

QUESTION BANK DEPARTMENT: CIVIL SEMESTER: III SUBJECT CODE: CE2201 SUBJECT NAME: MECHANICS OF SOLIDS UNIT 1- STRESS AND STRAIN PART A

QUESTION BANK DEPARTMENT: CIVIL SEMESTER: III SUBJECT CODE: CE2201 SUBJECT NAME: MECHANICS OF SOLIDS UNIT 1- STRESS AND STRAIN PART A DEPARTMENT: CIVIL SUBJECT CODE: CE2201 QUESTION BANK SEMESTER: III SUBJECT NAME: MECHANICS OF SOLIDS UNIT 1- STRESS AND STRAIN PART A (2 Marks) 1. Define longitudinal strain and lateral strain. 2. State

More information

General Comparison between AISC LRFD and ASD

General Comparison between AISC LRFD and ASD General Comparison between AISC LRFD and ASD 1 General Comparison between AISC LRFD and ASD 2 AISC ASD and LRFD AISC ASD = American Institute of Steel Construction = Allowable Stress Design AISC Ninth

More information

product manual H-3030, H-3032, H-3033 Concrete Beam Tester

product manual H-3030, H-3032, H-3033 Concrete Beam Tester 05.09 product manual H-3030, H-3032, H-3033 Concrete Beam Tester Introduction These self-contained portable concrete beam testers accurately and easily determine flexural strengths of 6 x 6" cross-section

More information

MEMS Project 2 Assignment. Design of a Shaft to Transmit Torque Between Two Pulleys

MEMS Project 2 Assignment. Design of a Shaft to Transmit Torque Between Two Pulleys MEMS 029 Project 2 Assignment Design of a Shaft to Transmit Torque Between Two Pulleys Date: February 5, 206 Instructor: Dr. Stephen Ludwick Product Definition Shafts are incredibly important in order

More information

COURSE TITLE : APPLIED MECHANICS & STRENGTH OF MATERIALS COURSE CODE : 4017 COURSE CATEGORY : A PERIODS/WEEK : 6 PERIODS/ SEMESTER : 108 CREDITS : 5

COURSE TITLE : APPLIED MECHANICS & STRENGTH OF MATERIALS COURSE CODE : 4017 COURSE CATEGORY : A PERIODS/WEEK : 6 PERIODS/ SEMESTER : 108 CREDITS : 5 COURSE TITLE : APPLIED MECHANICS & STRENGTH OF MATERIALS COURSE CODE : 4017 COURSE CATEGORY : A PERIODS/WEEK : 6 PERIODS/ SEMESTER : 108 CREDITS : 5 TIME SCHEDULE MODULE TOPICS PERIODS 1 Simple stresses

More information

MODULE C: COMPRESSION MEMBERS

MODULE C: COMPRESSION MEMBERS MODULE C: COMPRESSION MEMBERS This module of CIE 428 covers the following subjects Column theory Column design per AISC Effective length Torsional and flexural-torsional buckling Built-up members READING:

More information

8 Deflectionmax. = 5WL 3 384EI

8 Deflectionmax. = 5WL 3 384EI 8 max. = 5WL 3 384EI 1 salesinfo@mechanicalsupport.co.nz PO Box 204336 Highbrook Auckland www.mechanicalsupport.co.nz 2 Engineering Data - s and Columns Structural Data 1. Properties properties have been

More information

: APPLIED MECHANICS & STRENGTH OF MATERIALS COURSE CODE : 4021 COURSE CATEGORY : A PERIODS/ WEEK : 5 PERIODS/ SEMESTER : 75 CREDIT : 5 TIME SCHEDULE

: APPLIED MECHANICS & STRENGTH OF MATERIALS COURSE CODE : 4021 COURSE CATEGORY : A PERIODS/ WEEK : 5 PERIODS/ SEMESTER : 75 CREDIT : 5 TIME SCHEDULE COURSE TITLE : APPLIED MECHANICS & STRENGTH OF MATERIALS COURSE CODE : 4021 COURSE CATEGORY : A PERIODS/ WEEK : 5 PERIODS/ SEMESTER : 75 CREDIT : 5 TIME SCHEDULE MODULE TOPIC PERIODS 1 Simple stresses

More information

D e s i g n o f R i v e t e d J o i n t s, C o t t e r & K n u c k l e J o i n t s

D e s i g n o f R i v e t e d J o i n t s, C o t t e r & K n u c k l e J o i n t s D e s i g n o f R i v e t e d J o i n t s, C o t t e r & K n u c k l e J o i n t s 1. Design of various types of riveted joints under different static loading conditions, eccentrically loaded riveted joints.

More information

CHAPTER 5. T a = 0.03 (180) 0.75 = 1.47 sec 5.12 Steel moment frame. h n = = 260 ft. T a = (260) 0.80 = 2.39 sec. Question No.

CHAPTER 5. T a = 0.03 (180) 0.75 = 1.47 sec 5.12 Steel moment frame. h n = = 260 ft. T a = (260) 0.80 = 2.39 sec. Question No. CHAPTER 5 Question Brief Explanation No. 5.1 From Fig. IBC 1613.5(3) and (4) enlarged region 1 (ASCE 7 Fig. -3 and -4) S S = 1.5g, and S 1 = 0.6g. The g term is already factored in the equations, thus

More information

MODULE F: SIMPLE CONNECTIONS

MODULE F: SIMPLE CONNECTIONS MODULE F: SIMPLE CONNECTIONS This module of CIE 428 covers the following subjects Connector characterization Failure modes of bolted shear connections Detailing of bolted connections Bolts: common and

More information

Design of Steel Structures Prof. S.R.Satish Kumar and Prof. A.R.Santha Kumar

Design of Steel Structures Prof. S.R.Satish Kumar and Prof. A.R.Santha Kumar 5.10 Examples 5.10.1 Analysis of effective section under compression To illustrate the evaluation of reduced section properties of a section under axial compression. Section: 00 x 80 x 5 x 4.0 mm Using

More information

Design of Steel Structures Dr. Damodar Maity Department of Civil Engineering Indian Institute of Technology, Guwahati

Design of Steel Structures Dr. Damodar Maity Department of Civil Engineering Indian Institute of Technology, Guwahati Design of Steel Structures Dr. Damodar Maity Department of Civil Engineering Indian Institute of Technology, Guwahati Module - 6 Flexural Members Lecture 5 Hello today I am going to deliver the lecture

More information

Shear and combined bending and shear behavior of web elements with openings

Shear and combined bending and shear behavior of web elements with openings Missouri University of Science and Technology Scholars' Mine Center for Cold-Formed Steel Structures Library Wei-Wen Yu Center for Cold-Formed Steel Structures 5-1-1992 Shear and combined bending and shear

More information