A complete global solution to the pressure gradient equation

Size: px
Start display at page:

Download "A complete global solution to the pressure gradient equation"

Transcription

1 J. Diffeentil Equtions ) A complete glol solution to the pessue gdient eqution Zhen Lei,,c, Yuxi Zheng d, School of Mthemticl Sciences, Fudn Univesity, Shnghi 20033, PR Chin School of Mthemtics nd Sttistics, Nothest Noml Univesity, Chngchun 3002, PR Chin c Key Lotoy of Mthemtics fo Nonline Sciences Fudn Univesity), Ministy of Eduction, PR Chin d Deptment of Mthemtics, Pennsylvni Stte Univesity, Stte College, PA 6802, USA Received 5 Septeme 2006; evised 29 Jnuy 2007 Aville online 3 Feuy 2007 Astct We study the domin of existence of solution to Riemnn polem fo the pessue gdient eqution in two spce dimensions. The Riemnn polem is the expnsion of qudnt of gs of constnt stte into the othe thee vcuum qudnts. The glol existence of smooth solution ws estlished in Di nd Zhng Z. Di, T. Zhng, Existence of glol smooth solution fo degenete Goust polem of gs dynmics, Ach. Rtion. Mech. Anl ) ] up to the fee oundy of vcuum. We pove tht the vcuum oundy is the coodinte xes Elsevie Inc. All ights eseved. MSC: pimy 35L65, 35J70, 35R35; secondy 35J65 Keywods: Regulity; Vcuum oundy; Two-dimensionl Riemnn polem; Chcteistic decomposition; Gs dynmics; Shock wves; Eule equtions; Goust polem. Intoduction The pessue gdient system u t + p x 0, v t + p y 0, E t + pu) x + pv) y 0,.) * Coesponding utho. E-mil ddesses: leizhn@yhoo.com Z. Lei), yzheng@mth.psu.edu Y. Zheng) /$ see font mtte 2007 Elsevie Inc. All ights eseved. doi:0.06/j.jde

2 Z. Lei, Y. Zheng / J. Diffeentil Equtions ) Fig.. Solution with pesumed vcuum ule. whee E u 2 + v 2 )/2 + p, ppeed fist in the flux-splitting method of Li nd Co 9] nd Agwl nd Hlt ] in numeicl computtion of the Eule system of compessile gs. Lte, n symptotic deivtion ws given in Zheng 3,6] fom the two-dimensionl full Eule system fo n idel fluid ρ t + ρu) 0, ρu) t + ρu u + pi) 0, ρe) t + ρeu + pu) 0, whee u u, v), E u 2 + v 2 )/2 + p/γ )ρ), nd γ> is gs constnt. We efe the ede to the ooks of Zheng ] nd Li et l. 6] fo moe ckgound infomtion, nd the ppes 2,3,7,0,2,3,5,6] fo ecent studies. Afte eing decoupled fom system.), the pessue stisfies the following second ode qusi-line hypeolic eqution: pt p ) t x,y) p 0..2) Di nd Zhng 2] studied Riemnn polem fo system.), see lso Yng nd Zhng ] y the hodogph method. In the self-simil viles ξ x/t,η y/t, the vlue of the pessue vile of the Riemnn dt is pξ,η) ξ 2 fo 0 <ξ, η p, ξ p ) 2 + η 2 p, pξ,η) η 2 fo 0 <ξ, η p, ξ 2 + η p ) 2 p..3) Hee p is ny positive nume. They showed tht the Goust polem fo Eq..2) in the selfsimil plne dmits glol solution, which is smooth with possile vcuum ne the oigin see Fig., whee p ). We e inteested in the size of the vcuum oundy ξ, η) pξ,η) 0} whee the pessue gdient eqution.2) is degenete. Somewht supisingly, ou esult shows tht the vcuum ule is tivil nd the entie vcuum oundy is the tivil

3 282 Z. Lei, Y. Zheng / J. Diffeentil Equtions ) Fig. 2. The glol solution. coodinte xes in the self-simil plne see Fig. 2, whee p ). The esult is stted in ou min theoem t the end of Section 3. Futhe motivtion fo the study of the cuent polem is tht the study of oundies such s sonic cuve is impotnt in estlishing the glol existence of solution to genel two-dimensionl Riemnn polem of the pessue gdient system. In ddition, the solution of the cuent polem coves wve intection polems in which only some fctions of the plne wves e involved. Wve intections of these kinds e common in two-dimensionl Riemnn polems. Finlly, the study of the pessue gdient system hs motivted wok on two-dimensionl full Eule systems, see Li 5], Zheng 7,8], nd Li nd Zheng 8]. In pticul, the ltest wok 8] hs esolved completely the loction of the vcuum oundy fo the gs expnsion polem fo the ditic Eule system. 2. Integtion long chcteistics In the self-simil viles ξ x/t, η y/t, the pessue gdient eqution.2) tkes the fom ξ ξ + η η ) 2 p p In the pol coodintes ξ,η) p + ξ ξ + η η )p p ξ ξ + η η )p) 2 p ) ξ 2 + η 2, θ ctn η ξ, Eq. 2.) cn e decomposed long the chcteistics into the following fom see 2,,7]): + p mp p, + p mp + p, 2.2)

4 Z. Lei, Y. Zheng / J. Diffeentil Equtions ) povided tht p< 2, whee m λ 2p 2, nd ± θ ± λ, λ p 2 2 p). 2.3) Note tht the eqution is invint unde the following scling tnsfomtion: ξ η ξ,η,p),, p ) p p p p > 0). Thus, without loss of genelity, the coesponding oundy condition.3) in the pol coodintes cn e set in the fom p ξ 2 2 cos 2 θ cos θ on 2 cos θ, π/ θ π/2; p η 2 2 sin 2 θ sin θ on 2sinθ, 0 θ π/. 2.) The solution exists in the intection zone up to possile vcuum ule. See Fig. 3. The chcteistic fom 2.2) of the pessue gdient eqution enjoys nume of useful popeties. Fo exmple, the quntities ± p keep thei positivities/negtivities long chcteistics of plus/minus fmily, nd the sign-peseveing quntities yield monotonicity of the pimy vile p see 2,7], lso ] whee the uthos popose to cll them Riemnn sign-peseveing viles), nd the fct tht stte djcent to constnt stte fo the pessue gdient system must e simple wve in which p is constnt long the chcteistics of plus/minus fmily 7]. The chcteistic decomposition 2.2) hs plyed n impotnt ole nd ws poweful tool fo uilding the existence of smooth solutions in the wok of Di nd Zhng 2]. We e inteested in the size of the vcuum oundy, θ) p,θ) 0} whee the pessue gdient eqution is degenete. Fo this pupose, we ewite 2.2) s + p q + p p q p) 2, + p q + p p q + p) 2, 2.5) whee q 2 p 2 p). 2.6) Define the chcteistic cuves θ) nd + θ) y d θ) dθ λ θ),θ), ) 2sin, nd d + θ) dθ λ + θ),θ), + ) 2 cos. 2.7)

5 28 Z. Lei, Y. Zheng / J. Diffeentil Equtions ) We point out hee tht fo convenience, we lso use the nottion, θ) +, θ), espectively) which epesents the chcteistic cuve pssing though the point, θ) nd intesecting the lowe uppe, espectively) oundy t point, espectively). See Fig. 3. Now let us ewite system 2.5) in the fom + p exp q + p+ φ), φ) dφ) q exp q + p+ φ), φ) dφ, + p exp q p φ), φ) dφ) q exp q p φ), φ) dφ. Integte the ove equtions long the positive nd negtive chcteistics + θ) nd θ) fom nd to θ, espectively, with espect to θ, one otin the itetive expessions of + p nd p: p exp q + p+ φ), φ) dφ p 2 cos, ) + q+ ψ), ψ) exp ψ q + p+ φ), φ) dφ dψ, + p exp q p φ), φ) dφ + p 2sin, ) + q ψ), ψ) exp ψ q p φ), φ) dφ dψ. On the othe hnd, we use oundy condition 2.) to find exp exp q + p + φ), φ ) dφ p + ) 2 + p + p φ), φ) dφ p + θ), θ) exp 2 cos θ p + θ),θ) p2cos, ) 2.8) 2 + ) p dp }. 2.9) Similly, one hs exp q p φ), φ ) dφ p θ), θ ) exp 2sinθ p θ),θ) p2sin, ) 2 ) p dp }. 2.0) Then, we hve

6 Z. Lei, Y. Zheng / J. Diffeentil Equtions ) q + ψ), ψ ) exp ψ q + p + φ), φ ) } dφ dψ 2 cos exp 2 p 3 2 p + ψ), ψ ) p + ψ),ψ) p2cos, ) } 2 + ) p dp dψ, 2.) nd q ψ), ψ ) exp ψ q p φ), φ ) dφdψ 2sin exp 2 p 3 2 p ψ), ψ ) p ψ),ψ) p2sin, ) } 2 ) p dp dψ. 2.2) Finlly, y sustituting 2.0) nd 2.2) into the second equlity of 2.8), we otin new itetive expession fo + p: + p,θ) exp q p φ), φ) dφ + p 2sin, ) + q ψ), ψ) exp ψ q p φ), φ) dφ dψ p, θ) exp p θ),θ) p2sin, ) 2 ) p dp } p 3/ 2sin 2 cos 2 p ψ), ψ) exp p ψ),ψ) p2sin, ) 2 ) p dp } dψ. 2.3) Similly, y sustituting 2.9) nd 2.) into the fist equlity of 2.8), one otins the new itetive fomul fo p : p,θ) exp q + p+ φ), φ) dφ p 2 cos, ) + q+ ψ), ψ) exp ψ q + p+ φ), φ) dφ dψ p, θ) exp p + θ),θ) } p2cos, ) 2 + ) p dp 2 2 p 3/ 2cos 2 sin 2 p + ψ), ψ) exp p + ψ),ψ) p2cos, ) }. 2 + ) p dp dψ 2.)

7 286 Z. Lei, Y. Zheng / J. Diffeentil Equtions ) Fig. 3. Pesumed vcuum in the pol coodintes. 3. The oundy of the vcuum ule In this section, we use the itetive fomuls 2.3) nd 2.) to pove tht the vcuum ule, θ) p,θ) 0,θ 0,π/2)} is in fct the tivil oigin 0, 0)} in the self-simil plne. We use the method of contdiction. Assume to the conty tht thee is ule with oundy 0 θ) 0 fo ll θ 0, π 2 ), nd 0θ) > 0fosomeθ 0, π 2 ). Tht mens p 0θ), θ) 0fo θ 0, π 2 ), nd the solution is smooth in the domin ounded y the ule oundy 0θ) nd the uppe nd lowe chcteistic oundies. We intend to deduce contdictions. Befoe we stt the ove pocedue, we point out two osevtions which oughly imply the nonexistence of the vcuum ule. Fo pesenting the osevtions, we ssume futhe tht 0 θ) > 0 fo ll θ 0, π 2 ). Fist, we cn compute esily the chcteistic slope dθ/d λ 2sinθ 2 long the uppe chcteistic oundy nd in the limit s θ π/2. Simil esult holds on the lowe oundy. Now let us ssume tht thee is nontivil ule with oundy 0 θ) > 0fo ll θ 0, π 2 ). We see fom the definition of λ in 2.3) tht p dθ/d λ 2 2 p) 0 s p 0 t the vcuum oundy) except fo 0, 0) nd 0, π 2 ). The ove computtion evels tht thee is some kind of inconsistency fo the slopes of the chcteistics t 0, 0) nd 0, π 2 ) in the pol coodinte plne i.e. the slope jumps fom 0 to /2). Next, let us clculte the decy te of p long the middle line θ π/ see Fig. 3). By using the symmety of system 2.), we clim tht ± p ±M 0 p /2 symptoticlly fo some M 0 0. To show the detils, we popose ± p ±M 0 p +δ

8 Z. Lei, Y. Zheng / J. Diffeentil Equtions ) Fig.. Domin nd nottion. s, θ) tends to point of the ule oundy. Then, y 2.3), we hve + p,θ) p, θ) exp p θ),θ) p2sin, ) 2 p p) p ψ), ψ ) exp δm 0 p +δ + high ode tems, which foces δ, i.e., δ should e. Thus, y using 2.3), we hve } / 2 ) p dp 2 2sin 2 cos p M 0 2 p p ψ),ψ) p2sin, ) } } 2 ) p dp dp symptoticlly s, θ) tends to point of the ule oundy. Theefoe, p c exp M ) 0 3.) symptoticlly s, θ) tends to point of the ule oundy on the line θ π, which implies tht thee is no inteio vcuum t lest on θ π. We point out incidentlly tht Zheng s pevious numeicl computtion of the ule, efeed to in Di nd Zhng 2], is poly cused y the fst exponentil decy 3.). In wht follows, we concentte on estlishing the ove foml intuition igoously. With the symmety of system 2.5), let us estict ou gument θ to e in 0, π ]. Fix point,θ) on the ule oundy. Let us use D,θ) to epesent the ounded domin suounded y

9 288 Z. Lei, Y. Zheng / J. Diffeentil Equtions ) the positive nd negtive chcteistic cuves stting fom,θ) nd 2, π ). See Fig.. Fo 0 <ɛ<, define cuve ɛ θ), θ 0, π 2 ),y Fom 2.3) nd 2.), it is esy to see tht p ɛ θ), θ ) ɛ. 3.2) + p,θ) > 0, p,θ) < 0, fo 0 <θ π. 3.3) Thus, y 2.3) nd 3.3), we hve p, θ) > 0, 3.) which implies tht the cuve ɛ θ), θ 0, π 2 ), defined in 3.2) is smooth if ɛ 0, ). Heewe point out tht we still denote y θ) nd + θ) the chcteistics pssing though ɛθ), θ) lthough in fct oth ɛ nd e dependent on ɛ nd θ. Futhe, we still denote y, θ) nd +, θ) the chcteistics pssing though, θ), whee, depend on, θ). Let us now fix n ɛ 0 0, ). Thus the cuve ɛ0 θ) exists. Define M mx p 2 + p, p 2 p }, 3.5) ove S whee S :, θ) θ 0,π/2), ɛ0 θ) 2 }. Then we hve + p M p 2, p M p 2, 3.6) fo ll, θ) with ɛ0 θ). Note tht M depends only on ɛ 0 nd does not depend on,θ). Next, fo, θ) D,θ),wefistlet e the intesection of the minus chcteistic cuve though, θ) with the oundy, nd the coesponding countept. We then let Then, let M 2 mx A, θ) B,θ) mx,θ) D,θ) exp p θ),θ) p2sinθ,θ ) ] 2 dp ) p 2, 2sin 2 cos exp p + θ),θ) p2cos, ) ] 2 + dp ) p 2. 2cos 2 sin p 2sin, ), mx A, θ),θ) D,θ) 3.7) p } 2 cos, ), 3.8) B,θ)

10 Z. Lei, Y. Zheng / J. Diffeentil Equtions ) nd M 3 mxm,m 2 + }. 3.9) Just s wht we hd pointed out efoe, the intesections nd in 3.7) nd 3.8) vy with, θ), which e not expessed explicitly fo nottionl evity. We intend to pove tht inequlities 3.6) e still vlid fo ll points, θ) D,θ) with M eing eplced y M 3. Nmely, thee hold + p M 3 p 2,, θ) D,θ). 3.0) p M 3 p 2, Note tht the positive constnt M 3 M ) is independent of, θ) D,θ), ut depends on the fixed,θ). We stt to pove 3.0). Suppose tht 3.0) is coect up to line segment ɛ θ) D,θ), then we impove 3.0) to stict inequlities on the line segment ɛ θ) in the sme domin. In fct, fo, θ) D,θ) with ɛ0 θ), let us compute: / + p,θ) p 2 p 3, θ) A, θ) + 2 p ψ), ψ ) exp p ψ),ψ) p θ),θ) ] } 2 ) p dp dψ / p p 2 p 3, θ) A, θ) + p) 2 p) ψ), ψ ) exp p ψ),ψ) p θ),θ) M 3 p, θ) / M 3 A, θ) exp p ψ),ψ) p θ),θ) ] } 2 ) p dp dψ + p θ),θ) p2sin, ) ] } 2 ) p dp dp M 3 p, θ) M 3 A,θ) + fθ ) p θ),θ) p2sin, ) p 5 dp p 5 2 ψ), ψ ) 2 p M 3 p, θ), 3.) M 3 A,θ) + fθ )p, θ) p 2sin, )]

11 290 Z. Lei, Y. Zheng / J. Diffeentil Equtions ) whee fθ ) 2 2 p θ ), θ ) exp > exp p θ ),θ ) p θ),θ) 2 2 dp ] p θ ),θ ) p θ),θ) ] 2 ) p dp p exp θ ), θ ) p ] θ), θ) > 3.2) 8 with some <θ <nd A, θ) is defined in 3.7). Thus, y 3.9), 3.) nd 3.2), we hve M 3 p, θ) + p,θ) < M 3 A,θ) +p, θ) p 2sin, )] M 3 p 2, θ). 3.3) Similly, y 2.8), 2.9) nd 2.), we hve whee / p,θ) p 2 p 3, θ) B,θ) 2 p + ψ), ψ ) exp p + ψ),ψ) p + θ),θ) ] } 2 + ) p dp dψ M 3 p, θ), 3.) M 3 B,θ) + gθ + )p, θ) p 2 cos, )] g θ +) 2 2 p + θ + ),θ +) exp > exp p + θ + ),θ + ) p + θ),θ) ] dp 2 2 p exp + θ + ), θ + ) p+ 8 p + θ + ),θ + ) p + θ),θ) θ), θ) ] > ] 2 + ) p dp

12 Z. Lei, Y. Zheng / J. Diffeentil Equtions ) with some θ<θ + < nd B,θ) is given in 3.7). Thus, the simil estimte s 3.3) holds: p,θ) < M 3 p 2, θ). 3.5) Since M 3 depends only on,θ), nd in pticully, it is independent of, θ) D,θ),the poof of 3.0) follows y 3.3) nd 3.5). Now with the id of 2.3), we dd up 3.3) nd 3.5) to yield p M p) p 2M 3 2 fo ll, θ) in smll neighohood of,θ) in D,θ). Thus, simple integtion of the ove inequlity with espect to fom to yields p,θ) p,θ)exp 2 M } 3 ) fo <. 3.6) 2 On the othe hnd, y 3.) nd the fct tht p 0 θ), θ) 0, we hve p,θ) > 0 fo ll, θ) with > 0 θ), which togethe with 3.6) esult in tht p,θ)>0. Since,θ) is point on the ule, we ive t contdiction. Summing up, we hve in fct poven the following theoem. Theoem. The Riemnn polem.2), 2.) fo the pessue gdient eqution dmits unique smooth solution. The pessue of the solution is stictly positive in ξ>0,η>0. Acknowledgments This wok ws done when Zhen Lei ws visiting the Deptment of Mthemtics of the Pennsylvni Stte Univesity. He would like to expess his thnks fo its hospitlity. In pticul, he thnks Pofesso Chun Liu fo his encougement. Zhen Lei ws ptilly suppoted y the Ntionl Science Foundtion of Chin unde gnt nd Foundtion fo Excellent Doctol Dissettion of Chin. Yuxi Zheng ws ptilly suppoted y Ntionl Science Foundtion unde gnts NSF-DMS , 0305, nd Refeences ] R.K. Agwl, D.W. Hlt, A modified CUSP scheme in wve/pticle split fom fo unstuctued gid Eule flows, in: D.A. Cughey, M.M. Hfez Eds.), Fonties of Computtionl Fluid Dynmics, 99. 2] Zihun Di, Tong Zhng, Existence of glol smooth solution fo degenete Goust polem of gs dynmics, Ach. Rtion. Mech. Anl ) ] Eun Heui Kim, Kyungwoo Song, Clssicl solutions fo the pessue-gdient equtions in non-smooth nd nonconvex domins, J. Mth. Anl. Appl ) ] Zhen Lei, Yuxi Zheng, A chcteistic decomposition of nonline wve eqution in two spce dimensions, pepint, Feuy ] Jiequn Li, On the two-dimensionl gs expnsion fo compessile Eule equtions, SIAM J. Appl. Mth ) p

13 292 Z. Lei, Y. Zheng / J. Diffeentil Equtions ) ] Jiequn Li, Tong Zhng, Shuli Yng, The Two-Dimensionl Riemnn Polem in Gs Dynmics, Pitmn Monog. Suveys Pue Appl. Mth., vol. 98, Addison-Wesley, Longmn, ] Jiequn Li, Tong Zhng, Yuxi Zheng, Simple wves nd chcteistic decomposition of the two-dimensionl compessile Eule equtions, Comm. Mth. Phys ) 2. 8] Jiequn Li, Yuxi Zheng, Intection of efction wves of the two-dimensionl self-simil Eule equtions, 2007, sumitted fo puliction. 9] Yinfn Li, Yiming Co, Second ode lge pticle diffeence method, Sci. Chin Se. A 8 985) in Chinese). 0] Kyungwoo Song, The pessue-gdient system on non-smooth domins, Comm. Ptil Diffeentil Equtions ) ] Hnchun Yng, Tong Zhng, On two-dimensionl gs expnsion fo pessue-gdient equtions of Eule system, J. Hth. Anl. Appl ) ] Peng Zhng, Jiequn Li, Tong Zhng, On two-dimensionl Riemnn polem fo pessue-gdient equtions of the Eule system, Discete Contin. Dyn. Syst. 998) ] Yuxi Zheng, Existence of solutions to the tnsonic pessue-gdient equtions of the compessile Eule equtions in elliptic egions, Comm. Ptil Diffeentil Equtions ) ] Yuxi Zheng, Systems of Consevtion Lws: Two-Dimensionl Riemnn Polems, Pog. Nonline Diffeentil Equtions Appl., vol. 38, Bikhäuse, Boston, MA, ] Yuxi Zheng, A glol solution to two-dimensionl Riemnn polem involving shocks s fee oundies, Act Mth. Appl. Sin ) ] Yuxi Zheng, Two-dimensionl egul shock eflection fo the pessue gdient system of consevtion lws, Act Mth. Appl. Sinic English Se.) ) ] Yuxi Zheng, Shock eflection fo the Eule system, in: F. Asku, H. Aiso, S. Kwshim, A. Mtsumu, S. Nishit, K. Nishih, Eds.), Hypeolic Polems Theoy, Numeics nd Applictions, Poceedings of the Osk Meeting, 200, vol. II, Yokohm Pul., 2006, pp ] Yuxi Zheng, Regul shock eflection fo the Eule system, in peption.

Fourier-Bessel Expansions with Arbitrary Radial Boundaries

Fourier-Bessel Expansions with Arbitrary Radial Boundaries Applied Mthemtics,,, - doi:./m.. Pulished Online My (http://www.scirp.og/jounl/m) Astct Fouie-Bessel Expnsions with Aity Rdil Boundies Muhmmd A. Mushef P. O. Box, Jeddh, Sudi Ai E-mil: mmushef@yhoo.co.uk

More information

FI 2201 Electromagnetism

FI 2201 Electromagnetism FI 1 Electomgnetism Alexnde A. Isknd, Ph.D. Physics of Mgnetism nd Photonics Resech Goup Electosttics ELECTRIC PTENTIALS 1 Recll tht we e inteested to clculte the electic field of some chge distiution.

More information

Physics 505 Fall 2005 Midterm Solutions. This midterm is a two hour open book, open notes exam. Do all three problems.

Physics 505 Fall 2005 Midterm Solutions. This midterm is a two hour open book, open notes exam. Do all three problems. Physics 55 Fll 5 Midtem Solutions This midtem is two hou open ook, open notes exm. Do ll thee polems. [35 pts] 1. A ectngul ox hs sides of lengths, nd c z x c [1] ) Fo the Diichlet polem in the inteio

More information

About Some Inequalities for Isotonic Linear Functionals and Applications

About Some Inequalities for Isotonic Linear Functionals and Applications Applied Mthemticl Sciences Vol. 8 04 no. 79 8909-899 HIKARI Ltd www.m-hiki.com http://dx.doi.og/0.988/ms.04.40858 Aout Some Inequlities fo Isotonic Line Functionls nd Applictions Loedn Ciudiu Deptment

More information

Michael Rotkowitz 1,2

Michael Rotkowitz 1,2 Novembe 23, 2006 edited Line Contolles e Unifomly Optiml fo the Witsenhusen Counteexmple Michel Rotkowitz 1,2 IEEE Confeence on Decision nd Contol, 2006 Abstct In 1968, Witsenhusen intoduced his celebted

More information

Chapter 7. Kleene s Theorem. 7.1 Kleene s Theorem. The following theorem is the most important and fundamental result in the theory of FA s:

Chapter 7. Kleene s Theorem. 7.1 Kleene s Theorem. The following theorem is the most important and fundamental result in the theory of FA s: Chpte 7 Kleene s Theoem 7.1 Kleene s Theoem The following theoem is the most impotnt nd fundmentl esult in the theoy of FA s: Theoem 6 Any lnguge tht cn e defined y eithe egul expession, o finite utomt,

More information

General Physics II. number of field lines/area. for whole surface: for continuous surface is a whole surface

General Physics II. number of field lines/area. for whole surface: for continuous surface is a whole surface Genel Physics II Chpte 3: Guss w We now wnt to quickly discuss one of the moe useful tools fo clculting the electic field, nmely Guss lw. In ode to undestnd Guss s lw, it seems we need to know the concept

More information

( ) D x ( s) if r s (3) ( ) (6) ( r) = d dr D x

( ) D x ( s) if r s (3) ( ) (6) ( r) = d dr D x SIO 22B, Rudnick dpted fom Dvis III. Single vile sttistics The next few lectues e intended s eview of fundmentl sttistics. The gol is to hve us ll speking the sme lnguge s we move to moe dvnced topics.

More information

Available online at ScienceDirect. Procedia Engineering 91 (2014 ) 32 36

Available online at   ScienceDirect. Procedia Engineering 91 (2014 ) 32 36 Aville online t wwwsciencediectcom ScienceDiect Pocedi Engineeing 91 (014 ) 3 36 XXIII R-S-P semin Theoeticl Foundtion of Civil Engineeing (3RSP) (TFoCE 014) Stess Stte of Rdil Inhomogeneous Semi Sphee

More information

Review of Mathematical Concepts

Review of Mathematical Concepts ENEE 322: Signls nd Systems view of Mthemticl Concepts This hndout contins ief eview of mthemticl concepts which e vitlly impotnt to ENEE 322: Signls nd Systems. Since this mteil is coveed in vious couses

More information

Integrals and Polygamma Representations for Binomial Sums

Integrals and Polygamma Representations for Binomial Sums 3 47 6 3 Jounl of Intege Sequences, Vol. 3 (, Aticle..8 Integls nd Polygmm Repesenttions fo Binomil Sums Anthony Sofo School of Engineeing nd Science Victoi Univesity PO Box 448 Melboune City, VIC 8 Austli

More information

3.1 Magnetic Fields. Oersted and Ampere

3.1 Magnetic Fields. Oersted and Ampere 3.1 Mgnetic Fields Oested nd Ampee The definition of mgnetic induction, B Fields of smll loop (dipole) Mgnetic fields in mtte: ) feomgnetism ) mgnetiztion, (M ) c) mgnetic susceptiility, m d) mgnetic field,

More information

10 Statistical Distributions Solutions

10 Statistical Distributions Solutions Communictions Engineeing MSc - Peliminy Reding 1 Sttisticl Distiutions Solutions 1) Pove tht the vince of unifom distiution with minimum vlue nd mximum vlue ( is ) 1. The vince is the men of the sques

More information

This immediately suggests an inverse-square law for a "piece" of current along the line.

This immediately suggests an inverse-square law for a piece of current along the line. Electomgnetic Theoy (EMT) Pof Rui, UNC Asheville, doctophys on YouTube Chpte T Notes The iot-svt Lw T nvese-sque Lw fo Mgnetism Compe the mgnitude of the electic field t distnce wy fom n infinite line

More information

On Natural Partial Orders of IC-Abundant Semigroups

On Natural Partial Orders of IC-Abundant Semigroups Intentionl Jounl of Mthemtics nd Computtionl Science Vol. No. 05 pp. 5-9 http://www.publicsciencefmewok.og/jounl/ijmcs On Ntul Ptil Odes of IC-Abundnt Semigoups Chunhu Li Bogen Xu School of Science Est

More information

Friedmannien equations

Friedmannien equations ..6 Fiedmnnien equtions FLRW metic is : ds c The metic intevl is: dt ( t) d ( ) hee f ( ) is function which detemines globl geometic l popety of D spce. f d sin d One cn put it in the Einstein equtions

More information

EECE 260 Electrical Circuits Prof. Mark Fowler

EECE 260 Electrical Circuits Prof. Mark Fowler EECE 60 Electicl Cicuits Pof. Mk Fowle Complex Numbe Review /6 Complex Numbes Complex numbes ise s oots of polynomils. Definition of imginy # nd some esulting popeties: ( ( )( ) )( ) Recll tht the solution

More information

Class Summary. be functions and f( D) , we define the composition of f with g, denoted g f by

Class Summary. be functions and f( D) , we define the composition of f with g, denoted g f by Clss Summy.5 Eponentil Functions.6 Invese Functions nd Logithms A function f is ule tht ssigns to ech element D ectly one element, clled f( ), in. Fo emple : function not function Given functions f, g:

More information

Two dimensional polar coordinate system in airy stress functions

Two dimensional polar coordinate system in airy stress functions I J C T A, 9(9), 6, pp. 433-44 Intentionl Science Pess Two dimensionl pol coodinte system in iy stess functions S. Senthil nd P. Sek ABSTRACT Stisfy the given equtions, boundy conditions nd bihmonic eqution.in

More information

Radial geodesics in Schwarzschild spacetime

Radial geodesics in Schwarzschild spacetime Rdil geodesics in Schwzschild spcetime Spheiclly symmetic solutions to the Einstein eqution tke the fom ds dt d dθ sin θdϕ whee is constnt. We lso hve the connection components, which now tke the fom using

More information

dx was area under f ( x ) if ( ) 0

dx was area under f ( x ) if ( ) 0 13. Line Integls Line integls e simil to single integl, f ( x) dx ws e unde f ( x ) if ( ) 0 Insted of integting ove n intevl [, ] (, ) f xy ds f x., we integte ove cuve, (in the xy-plne). **Figue - get

More information

Topics for Review for Final Exam in Calculus 16A

Topics for Review for Final Exam in Calculus 16A Topics fo Review fo Finl Em in Clculus 16A Instucto: Zvezdelin Stnkov Contents 1. Definitions 1. Theoems nd Poblem Solving Techniques 1 3. Eecises to Review 5 4. Chet Sheet 5 1. Definitions Undestnd the

More information

9.4 The response of equilibrium to temperature (continued)

9.4 The response of equilibrium to temperature (continued) 9.4 The esponse of equilibium to tempetue (continued) In the lst lectue, we studied how the chemicl equilibium esponds to the vition of pessue nd tempetue. At the end, we deived the vn t off eqution: d

More information

The Area of a Triangle

The Area of a Triangle The e of Tingle tkhlid June 1, 015 1 Intodution In this tile we will e disussing the vious methods used fo detemining the e of tingle. Let [X] denote the e of X. Using se nd Height To stt off, the simplest

More information

Electric Potential. and Equipotentials

Electric Potential. and Equipotentials Electic Potentil nd Euipotentils U Electicl Potentil Review: W wok done y foce in going fom to long pth. l d E dl F W dl F θ Δ l d E W U U U Δ Δ l d E W U U U U potentil enegy electic potentil Potentil

More information

Previously. Extensions to backstepping controller designs. Tracking using backstepping Suppose we consider the general system

Previously. Extensions to backstepping controller designs. Tracking using backstepping Suppose we consider the general system 436-459 Advnced contol nd utomtion Extensions to bckstepping contolle designs Tcking Obseves (nonline dmping) Peviously Lst lectue we looked t designing nonline contolles using the bckstepping technique

More information

Qualitative Analysis for Solutions of a Class of. Nonlinear Ordinary Differential Equations

Qualitative Analysis for Solutions of a Class of. Nonlinear Ordinary Differential Equations Adv. Theo. Appl. Mech., Vol. 7, 2014, no. 1, 1-7 HIKARI Ltd, www.m-hiki.com http://dx.doi.og/10.12988/tm.2014.458 Qulittive Anlysis fo Solutions of Clss of Nonline Odiny Diffeentil Equtions Juxin Li *,

More information

Physics 604 Problem Set 1 Due Sept 16, 2010

Physics 604 Problem Set 1 Due Sept 16, 2010 Physics 64 Polem et 1 Due ept 16 1 1) ) Inside good conducto the electic field is eo (electons in the conducto ecuse they e fee to move move in wy to cncel ny electic field impessed on the conducto inside

More information

U>, and is negative. Electric Potential Energy

U>, and is negative. Electric Potential Energy Electic Potentil Enegy Think of gvittionl potentil enegy. When the lock is moved veticlly up ginst gvity, the gvittionl foce does negtive wok (you do positive wok), nd the potentil enegy (U) inceses. When

More information

MATHEMATICS IV 2 MARKS. 5 2 = e 3, 4

MATHEMATICS IV 2 MARKS. 5 2 = e 3, 4 MATHEMATICS IV MARKS. If + + 6 + c epesents cicle with dius 6, find the vlue of c. R 9 f c ; g, f 6 9 c 6 c c. Find the eccenticit of the hpeol Eqution of the hpeol Hee, nd + e + e 5 e 5 e. Find the distnce

More information

Week 8. Topic 2 Properties of Logarithms

Week 8. Topic 2 Properties of Logarithms Week 8 Topic 2 Popeties of Logithms 1 Week 8 Topic 2 Popeties of Logithms Intoduction Since the esult of ithm is n eponent, we hve mny popeties of ithms tht e elted to the popeties of eponents. They e

More information

SPA7010U/SPA7010P: THE GALAXY. Solutions for Coursework 1. Questions distributed on: 25 January 2018.

SPA7010U/SPA7010P: THE GALAXY. Solutions for Coursework 1. Questions distributed on: 25 January 2018. SPA7U/SPA7P: THE GALAXY Solutions fo Cousewok Questions distibuted on: 25 Jnuy 28. Solution. Assessed question] We e told tht this is fint glxy, so essentilly we hve to ty to clssify it bsed on its spectl

More information

π,π is the angle FROM a! TO b

π,π is the angle FROM a! TO b Mth 151: 1.2 The Dot Poduct We hve scled vectos (o, multiplied vectos y el nume clled scl) nd dded vectos (in ectngul component fom). Cn we multiply vectos togethe? The nswe is YES! In fct, thee e two

More information

1 Using Integration to Find Arc Lengths and Surface Areas

1 Using Integration to Find Arc Lengths and Surface Areas Novembe 9, 8 MAT86 Week Justin Ko Using Integtion to Find Ac Lengths nd Sufce Aes. Ac Length Fomul: If f () is continuous on [, b], then the c length of the cuve = f() on the intevl [, b] is given b s

More information

Collection of Formulas

Collection of Formulas Collection of Fomuls Electomgnetic Fields EITF8 Deptment of Electicl nd Infomtion Technology Lund Univesity, Sweden August 8 / ELECTOSTATICS field point '' ' Oigin ' Souce point Coulomb s Lw The foce F

More information

Right-indefinite half-linear Sturm Liouville problems

Right-indefinite half-linear Sturm Liouville problems Computes nd Mthemtics with Applictions 55 2008) 2554 2564 www.elsevie.com/locte/cmw Right-indefinite hlf-line Stum Liouville poblems Lingju Kong, Qingki Kong b, Deptment of Mthemtics, The Univesity of

More information

The Formulas of Vector Calculus John Cullinan

The Formulas of Vector Calculus John Cullinan The Fomuls of Vecto lculus John ullinn Anlytic Geomety A vecto v is n n-tuple of el numbes: v = (v 1,..., v n ). Given two vectos v, w n, ddition nd multipliction with scl t e defined by Hee is bief list

More information

School of Electrical and Computer Engineering, Cornell University. ECE 303: Electromagnetic Fields and Waves. Fall 2007

School of Electrical and Computer Engineering, Cornell University. ECE 303: Electromagnetic Fields and Waves. Fall 2007 School of Electicl nd Compute Engineeing, Conell Univesity ECE 303: Electomgnetic Fields nd Wves Fll 007 Homewok 3 Due on Sep. 14, 007 by 5:00 PM Reding Assignments: i) Review the lectue notes. ii) Relevnt

More information

Math 4318 : Real Analysis II Mid-Term Exam 1 14 February 2013

Math 4318 : Real Analysis II Mid-Term Exam 1 14 February 2013 Mth 4318 : Rel Anlysis II Mid-Tem Exm 1 14 Febuy 2013 Nme: Definitions: Tue/Flse: Poofs: 1. 2. 3. 4. 5. 6. Totl: Definitions nd Sttements of Theoems 1. (2 points) Fo function f(x) defined on (, b) nd fo

More information

Discrete Model Parametrization

Discrete Model Parametrization Poceedings of Intentionl cientific Confeence of FME ession 4: Automtion Contol nd Applied Infomtics Ppe 9 Discete Model Pmetition NOKIEVIČ, Pet Doc,Ing,Cc Deptment of Contol ystems nd Instumenttion, Fculty

More information

Mathematical Reflections, Issue 5, INEQUALITIES ON RATIOS OF RADII OF TANGENT CIRCLES. Y.N. Aliyev

Mathematical Reflections, Issue 5, INEQUALITIES ON RATIOS OF RADII OF TANGENT CIRCLES. Y.N. Aliyev themtil efletions, Issue 5, 015 INEQULITIES ON TIOS OF DII OF TNGENT ILES YN liev stt Some inequlities involving tios of dii of intenll tngent iles whih inteset the given line in fied points e studied

More information

Optimization. x = 22 corresponds to local maximum by second derivative test

Optimization. x = 22 corresponds to local maximum by second derivative test Optimiztion Lectue 17 discussed the exteme vlues of functions. This lectue will pply the lesson fom Lectue 17 to wod poblems. In this section, it is impotnt to emembe we e in Clculus I nd e deling one-vible

More information

defined on a domain can be expanded into the Taylor series around a point a except a singular point. Also, f( z)

defined on a domain can be expanded into the Taylor series around a point a except a singular point. Also, f( z) 08 Tylo eie nd Mcluin eie A holomophic function f( z) defined on domin cn be expnded into the Tylo eie ound point except ingul point. Alo, f( z) cn be expnded into the Mcluin eie in the open dik with diu

More information

Data Structures. Element Uniqueness Problem. Hash Tables. Example. Hash Tables. Dana Shapira. 19 x 1. ) h(x 4. ) h(x 2. ) h(x 3. h(x 1. x 4. x 2.

Data Structures. Element Uniqueness Problem. Hash Tables. Example. Hash Tables. Dana Shapira. 19 x 1. ) h(x 4. ) h(x 2. ) h(x 3. h(x 1. x 4. x 2. Element Uniqueness Poblem Dt Stuctues Let x,..., xn < m Detemine whethe thee exist i j such tht x i =x j Sot Algoithm Bucket Sot Dn Shpi Hsh Tbles fo (i=;i

More information

Study of Electromagnetic Wave Propagation in Periodic Dielectric Structure; MathCAD Analysis

Study of Electromagnetic Wave Propagation in Periodic Dielectric Structure; MathCAD Analysis Communictions in Applied Sciences ISSN -737 Volume Nume 3-9 Stud of lectomgnetic Wve Popgtion in Peiodic Dielectic Stuctue; MthCAD Anlsis Ugwu mmnuel.i Ieogu C. nd chi M.I Deptment of Industil phsics oni

More information

Geometry of the homogeneous and isotropic spaces

Geometry of the homogeneous and isotropic spaces Geomety of the homogeneous and isotopic spaces H. Sonoda Septembe 2000; last evised Octobe 2009 Abstact We summaize the aspects of the geomety of the homogeneous and isotopic spaces which ae most elevant

More information

Summary: Binomial Expansion...! r. where

Summary: Binomial Expansion...! r. where Summy: Biomil Epsio 009 M Teo www.techmejcmth-sg.wes.com ) Re-cp of Additiol Mthemtics Biomil Theoem... whee )!!(! () The fomul is ville i MF so studets do ot eed to memoise it. () The fomul pplies oly

More information

Lecture 10. Solution of Nonlinear Equations - II

Lecture 10. Solution of Nonlinear Equations - II Fied point Poblems Lectue Solution o Nonline Equtions - II Given unction g : R R, vlue such tht gis clled ied point o the unction g, since is unchnged when g is pplied to it. Whees with nonline eqution

More information

arxiv: v1 [hep-th] 6 Jul 2016

arxiv: v1 [hep-th] 6 Jul 2016 INR-TH-2016-021 Instbility of Sttic Semi-Closed Wolds in Genelized Glileon Theoies Xiv:1607.01721v1 [hep-th] 6 Jul 2016 O. A. Evseev, O. I. Melichev Fculty of Physics, M V Lomonosov Moscow Stte Univesity,

More information

RELATIVE KINEMATICS. q 2 R 12. u 1 O 2 S 2 S 1. r 1 O 1. Figure 1

RELATIVE KINEMATICS. q 2 R 12. u 1 O 2 S 2 S 1. r 1 O 1. Figure 1 RELAIVE KINEMAICS he equtions of motion fo point P will be nlyzed in two diffeent efeence systems. One efeence system is inetil, fixed to the gound, the second system is moving in the physicl spce nd the

More information

Refutation of comment by Jadczyk et al

Refutation of comment by Jadczyk et al Refuttion of Comment y Jdczyk et l 617 Jounl of Foundtions of Physics nd Chemisty, 11, vol. 1 (5) 617 63 Refuttion of comment y Jdczyk et l M.W. Evns 1 *Alph Institute fo Advnced Studies (AIAS) (www.is.us)

More information

u(r, θ) = 1 + 3a r n=1

u(r, θ) = 1 + 3a r n=1 Mth 45 / AMCS 55. etuck Assignment 8 ue Tuesdy, Apil, 6 Topics fo this week Convegence of Fouie seies; Lplce s eqution nd hmonic functions: bsic popeties, computions on ectngles nd cubes Fouie!, Poisson

More information

Solutions to Midterm Physics 201

Solutions to Midterm Physics 201 Solutions to Midtem Physics. We cn conside this sitution s supeposition of unifomly chged sphee of chge density ρ nd dius R, nd second unifomly chged sphee of chge density ρ nd dius R t the position of

More information

Electronic Supplementary Material

Electronic Supplementary Material Electonic Supplementy Mteil On the coevolution of socil esponsiveness nd behvioul consistency Mx Wolf, G Snde vn Doon & Fnz J Weissing Poc R Soc B 78, 440-448; 0 Bsic set-up of the model Conside the model

More information

6. Numbers. The line of numbers: Important subsets of IR:

6. Numbers. The line of numbers: Important subsets of IR: 6. Nubes We do not give n xiotic definition of the el nubes hee. Intuitive ening: Ech point on the (infinite) line of nubes coesponds to el nube, i.e., n eleent of IR. The line of nubes: Ipotnt subsets

More information

On the Eötvös effect

On the Eötvös effect On the Eötvös effect Mugu B. Răuţ The im of this ppe is to popose new theoy bout the Eötvös effect. We develop mthemticl model which loud us bette undestnding of this effect. Fom the eqution of motion

More information

On the integration of the equations of hydrodynamics

On the integration of the equations of hydrodynamics Uebe die Integation de hydodynamischen Gleichungen J f eine u angew Math 56 (859) -0 On the integation of the equations of hydodynamics (By A Clebsch at Calsuhe) Tanslated by D H Delphenich In a pevious

More information

On Some Hadamard-Type Inequalıtıes for Convex Functıons

On Some Hadamard-Type Inequalıtıes for Convex Functıons Aville t htt://vuedu/ Al Al Mth ISSN: 93-9466 Vol 9, Issue June 4, 388-4 Alictions nd Alied Mthetics: An Intentionl Jounl AAM On Soe Hdd-Tye Inequlıtıes o, Convex Functıons M Ein Özdei Detent o Mthetics

More information

ELECTRO - MAGNETIC INDUCTION

ELECTRO - MAGNETIC INDUCTION NTRODUCTON LCTRO - MAGNTC NDUCTON Whenee mgnetic flu linked with cicuit chnges, n e.m.f. is induced in the cicuit. f the cicuit is closed, cuent is lso induced in it. The e.m.f. nd cuent poduced lsts s

More information

(a) Counter-Clockwise (b) Clockwise ()N (c) No rotation (d) Not enough information

(a) Counter-Clockwise (b) Clockwise ()N (c) No rotation (d) Not enough information m m m00 kg dult, m0 kg bby. he seesw stts fom est. Which diection will it ottes? ( Counte-Clockwise (b Clockwise ( (c o ottion ti (d ot enough infomtion Effect of Constnt et oque.3 A constnt non-zeo toque

More information

Chapter 28 Sources of Magnetic Field

Chapter 28 Sources of Magnetic Field Chpte 8 Souces of Mgnetic Field - Mgnetic Field of Moving Chge - Mgnetic Field of Cuent Element - Mgnetic Field of Stight Cuent-Cying Conducto - Foce Between Pllel Conductos - Mgnetic Field of Cicul Cuent

More information

D-STABLE ROBUST RELIABLE CONTROL FOR UNCERTAIN DELTA OPERATOR SYSTEMS

D-STABLE ROBUST RELIABLE CONTROL FOR UNCERTAIN DELTA OPERATOR SYSTEMS Jounl of Theoeticl nd Applied nfomtion Technology 8 th Febuy 3. Vol. 48 No.3 5-3 JATT & LLS. All ights eseved. SSN: 99-8645 www.jtit.og E-SSN: 87-395 D-STABLE ROBUST RELABLE CONTROL FOR UNCERTAN DELTA

More information

School of Electrical and Computer Engineering, Cornell University. ECE 303: Electromagnetic Fields and Waves. Fall 2007

School of Electrical and Computer Engineering, Cornell University. ECE 303: Electromagnetic Fields and Waves. Fall 2007 School of Electicl nd Compute Engineeing, Conell Univesity ECE 303: Electomgnetic Fields nd Wves Fll 007 Homewok 4 Due on Sep. 1, 007 by 5:00 PM Reding Assignments: i) Review the lectue notes. ii) Relevnt

More information

Physics 11b Lecture #11

Physics 11b Lecture #11 Physics 11b Lectue #11 Mgnetic Fields Souces of the Mgnetic Field S&J Chpte 9, 3 Wht We Did Lst Time Mgnetic fields e simil to electic fields Only diffeence: no single mgnetic pole Loentz foce Moving chge

More information

Journal of Inequalities in Pure and Applied Mathematics

Journal of Inequalities in Pure and Applied Mathematics Jounal of Inequalities in Pue and Applied Mathematics COEFFICIENT INEQUALITY FOR A FUNCTION WHOSE DERIVATIVE HAS A POSITIVE REAL PART S. ABRAMOVICH, M. KLARIČIĆ BAKULA AND S. BANIĆ Depatment of Mathematics

More information

Homework: Study 6.2 #1, 3, 5, 7, 11, 15, 55, 57

Homework: Study 6.2 #1, 3, 5, 7, 11, 15, 55, 57 Gols: 1. Undestnd volume s the sum of the es of n infinite nume of sufces. 2. Be le to identify: the ounded egion the efeence ectngle the sufce tht esults fom evolution of the ectngle ound n xis o foms

More information

Electric Field F E. q Q R Q. ˆ 4 r r - - Electric field intensity depends on the medium! origin

Electric Field F E. q Q R Q. ˆ 4 r r - - Electric field intensity depends on the medium! origin 1 1 Electic Field + + q F Q R oigin E 0 0 F E ˆ E 4 4 R q Q R Q - - Electic field intensity depends on the medium! Electic Flux Density We intoduce new vecto field D independent of medium. D E So, electic

More information

Deterministic simulation of a NFA with k symbol lookahead

Deterministic simulation of a NFA with k symbol lookahead Deteministic simultion of NFA with k symbol lookhed SOFSEM 7 Bl Rvikum, Clifoni Stte Univesity (joint wok with Nic Snten, Univesity of Wteloo) Oveview Definitions: DFA, NFA nd lookhed DFA Motivtion: utomted

More information

B.A. (PROGRAMME) 1 YEAR MATHEMATICS

B.A. (PROGRAMME) 1 YEAR MATHEMATICS Gdute Couse B.A. (PROGRAMME) YEAR MATHEMATICS ALGEBRA & CALCULUS PART B : CALCULUS SM 4 CONTENTS Lesson Lesson Lesson Lesson Lesson Lesson Lesson : Tngents nd Nomls : Tngents nd Nomls (Pol Co-odintes)

More information

Chapter 4: Christoffel Symbols, Geodesic Equations and Killing Vectors Susan Larsen 29 October 2018

Chapter 4: Christoffel Symbols, Geodesic Equations and Killing Vectors Susan Larsen 29 October 2018 Content 4 Chistoffel Symbols, Geodesic Equtions nd illing Vectos... 4. Chistoffel symbols.... 4.. Definitions... 4.. Popeties... 4..3 The Chistoffel Symbols of digonl metic in Thee Dimensions... 4. Cylindicl

More information

DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING FLUID MECHANICS III Solutions to Problem Sheet 3

DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING FLUID MECHANICS III Solutions to Problem Sheet 3 DEPATMENT OF CIVIL AND ENVIONMENTAL ENGINEEING FLID MECHANICS III Solutions to Poblem Sheet 3 1. An tmospheic vote is moelle s combintion of viscous coe otting s soli boy with ngul velocity Ω n n iottionl

More information

22.615, MHD Theory of Fusion Systems Prof. Freidberg Lecture 20

22.615, MHD Theory of Fusion Systems Prof. Freidberg Lecture 20 .615, MHD Theoy of Fusion Systes Pof. Feideg Lectue Resistive Wll Mode 1. We hve seen tht pefectly conducting wll, plced in close poxiity to the pls cn hve stong stilizing effect on extenl kink odes..

More information

Computing the first eigenpair of the p-laplacian in annuli

Computing the first eigenpair of the p-laplacian in annuli J. Mth. Anl. Appl. 422 2015277 1307 Contents lists vilble t ScienceDiect Jounl of Mthemticl Anlysis nd Applictions www.elsevie.com/locte/jm Computing the fist eigenpi of the p-lplcin in nnuli Gey Ecole,,

More information

KRASNOSEL SKII TYPE FIXED POINT THEOREM FOR NONLINEAR EXPANSION

KRASNOSEL SKII TYPE FIXED POINT THEOREM FOR NONLINEAR EXPANSION Fixed Point Theory, 13(2012), No. 1, 285-291 http://www.mth.ubbcluj.ro/ nodecj/sfptcj.html KRASNOSEL SKII TYPE FIXED POINT THEOREM FOR NONLINEAR EXPANSION FULI WANG AND FENG WANG School of Mthemtics nd

More information

Production Mechanism of Quark Gluon Plasma in Heavy Ion Collision. Ambar Jain And V.Ravishankar

Production Mechanism of Quark Gluon Plasma in Heavy Ion Collision. Ambar Jain And V.Ravishankar Poduction Mechnism of Quk Gluon Plsm in Hevy Ion Collision Amb Jin And V.Rvishnk Pimy im of theoeticlly studying URHIC is to undestnd Poduction of quks nd gluons tht fom the bulk of the plsm ( ) t 0 Thei

More information

Kinematic Waves. These are waves which result from the conservation equation. t + I = 0. (2)

Kinematic Waves. These are waves which result from the conservation equation. t + I = 0. (2) Introduction Kinemtic Wves These re wves which result from the conservtion eqution E t + I = 0 (1) where E represents sclr density field nd I, its outer flux. The one-dimensionl form of (1) is E t + I

More information

Important design issues and engineering applications of SDOF system Frequency response Functions

Important design issues and engineering applications of SDOF system Frequency response Functions Impotnt design issues nd engineeing pplictions of SDOF system Fequency esponse Functions The following desciptions show typicl questions elted to the design nd dynmic pefomnce of second-ode mechnicl system

More information

Fluids & Bernoulli s Equation. Group Problems 9

Fluids & Bernoulli s Equation. Group Problems 9 Goup Poblems 9 Fluids & Benoulli s Eqution Nme This is moe tutoil-like thn poblem nd leds you though conceptul development of Benoulli s eqution using the ides of Newton s 2 nd lw nd enegy. You e going

More information

Surfaces of Constant Retarded Distance and Radiation Coordinates

Surfaces of Constant Retarded Distance and Radiation Coordinates Apeion, Vol. 9, No., Apil 00 6 Sufces of Constnt Retded Distnce nd Rdition Coodintes J. H. Cltenco, R. Lines y M., J. López-Bonill Sección de Estudios de Posgdo e Investigción Escuel Supeio de Ingenieí

More information

10 m, so the distance from the Sun to the Moon during a solar eclipse is. The mass of the Sun, Earth, and Moon are = =

10 m, so the distance from the Sun to the Moon during a solar eclipse is. The mass of the Sun, Earth, and Moon are = = Chpte 1 nivesl Gvittion 11 *P1. () The un-th distnce is 1.4 nd the th-moon 8 distnce is.84, so the distnce fom the un to the Moon duing sol eclipse is 11 8 11 1.4.84 = 1.4 The mss of the un, th, nd Moon

More information

Comparative Studies of Law of Gravity and General Relativity. No.1 of Comparative Physics Series Papers

Comparative Studies of Law of Gravity and General Relativity. No.1 of Comparative Physics Series Papers Comptive Studies of Lw of Gvity nd Genel Reltivity No. of Comptive hysics Seies pes Fu Yuhu (CNOOC Resech Institute, E-mil:fuyh945@sin.com) Abstct: As No. of comptive physics seies ppes, this ppe discusses

More information

Influence of the Magnetic Field in the Solar Interior on the Differential Rotation

Influence of the Magnetic Field in the Solar Interior on the Differential Rotation Influene of the gneti Fiel in the Sol Inteio on the Diffeentil ottion Lin-Sen Li * Deptment of Physis Nothest Noml Univesity Chnghun Chin * Coesponing utho: Lin-Sen Li Deptment of Physis Nothest Noml Univesity

More information

Homework 3 MAE 118C Problems 2, 5, 7, 10, 14, 15, 18, 23, 30, 31 from Chapter 5, Lamarsh & Baratta. The flux for a point source is:

Homework 3 MAE 118C Problems 2, 5, 7, 10, 14, 15, 18, 23, 30, 31 from Chapter 5, Lamarsh & Baratta. The flux for a point source is: . Homewok 3 MAE 8C Poblems, 5, 7, 0, 4, 5, 8, 3, 30, 3 fom Chpte 5, msh & Btt Point souces emit nuetons/sec t points,,, n 3 fin the flux cuent hlf wy between one sie of the tingle (blck ot). The flux fo

More information

Properties of the Riemann Integral

Properties of the Riemann Integral Properties of the Riemnn Integrl Jmes K. Peterson Deprtment of Biologicl Sciences nd Deprtment of Mthemticl Sciences Clemson University Februry 15, 2018 Outline 1 Some Infimum nd Supremum Properties 2

More information

Mark Scheme (Results) January 2008

Mark Scheme (Results) January 2008 Mk Scheme (Results) Jnuy 00 GCE GCE Mthemtics (6679/0) Edecel Limited. Registeed in Englnd nd Wles No. 4496750 Registeed Office: One90 High Holbon, London WCV 7BH Jnuy 00 6679 Mechnics M Mk Scheme Question

More information

Answers to test yourself questions

Answers to test yourself questions Answes to test youself questions opic Descibing fields Gm Gm Gm Gm he net field t is: g ( d / ) ( 4d / ) d d Gm Gm Gm Gm Gm Gm b he net potentil t is: V d / 4d / d 4d d d V e 4 7 9 49 J kg 7 7 Gm d b E

More information

7.5-Determinants in Two Variables

7.5-Determinants in Two Variables 7.-eteminnts in Two Vibles efinition of eteminnt The deteminnt of sque mti is el numbe ssocited with the mti. Eve sque mti hs deteminnt. The deteminnt of mti is the single ent of the mti. The deteminnt

More information

Chapter 6 Frequency Response & System Concepts

Chapter 6 Frequency Response & System Concepts hpte 6 Fequency esponse & ystem oncepts Jesung Jng stedy stte (fequency) esponse Phso nottion Filte v v Foced esponse by inusoidl Excittion ( t) dv v v dv v cos t dt dt ince the focing fuction is sinusoid,

More information

Torsion in Groups of Integral Triangles

Torsion in Groups of Integral Triangles Advnces in Pure Mthemtics, 01,, 116-10 http://dxdoiorg/1046/pm011015 Pulished Online Jnury 01 (http://wwwscirporg/journl/pm) Torsion in Groups of Integrl Tringles Will Murry Deprtment of Mthemtics nd Sttistics,

More information

Research Article Moment Inequalities and Complete Moment Convergence

Research Article Moment Inequalities and Complete Moment Convergence Hindwi Publishing Corportion Journl of Inequlities nd Applictions Volume 2009, Article ID 271265, 14 pges doi:10.1155/2009/271265 Reserch Article Moment Inequlities nd Complete Moment Convergence Soo Hk

More information

13.5. Torsion of a curve Tangential and Normal Components of Acceleration

13.5. Torsion of a curve Tangential and Normal Components of Acceleration 13.5 osion of cuve ngentil nd oml Components of Acceletion Recll: Length of cuve '( t) Ac length function s( t) b t u du '( t) Ac length pmetiztion ( s) with '( s) 1 '( t) Unit tngent vecto '( t) Cuvtue:

More information

Notes on length and conformal metrics

Notes on length and conformal metrics Notes on length nd conforml metrics We recll how to mesure the Eucliden distnce of n rc in the plne. Let α : [, b] R 2 be smooth (C ) rc. Tht is α(t) (x(t), y(t)) where x(t) nd y(t) re smooth rel vlued

More information

Research Article On Alzer and Qiu s Conjecture for Complete Elliptic Integral and Inverse Hyperbolic Tangent Function

Research Article On Alzer and Qiu s Conjecture for Complete Elliptic Integral and Inverse Hyperbolic Tangent Function Abstact and Applied Analysis Volume 011, Aticle ID 697547, 7 pages doi:10.1155/011/697547 Reseach Aticle On Alze and Qiu s Conjectue fo Complete Elliptic Integal and Invese Hypebolic Tangent Function Yu-Ming

More information

Prerna Tower, Road No 2, Contractors Area, Bistupur, Jamshedpur , Tel (0657) ,

Prerna Tower, Road No 2, Contractors Area, Bistupur, Jamshedpur , Tel (0657) , R Pen Towe Rod No Conttos Ae Bistupu Jmshedpu 8 Tel (67)89 www.penlsses.om IIT JEE themtis Ppe II PART III ATHEATICS SECTION I (Totl ks : ) (Single Coet Answe Type) This setion ontins 8 multiple hoie questions.

More information

EXISTENCE OF THREE SOLUTIONS FOR A KIRCHHOFF-TYPE BOUNDARY-VALUE PROBLEM

EXISTENCE OF THREE SOLUTIONS FOR A KIRCHHOFF-TYPE BOUNDARY-VALUE PROBLEM Electonic Jounl of Diffeentil Eutions, Vol. 20 (20, No. 9, pp.. ISSN: 072-669. URL: http://ejde.mth.txstte.edu o http://ejde.mth.unt.edu ftp ejde.mth.txstte.edu EXISTENCE OF THREE SOLUTIONS FOR A KIRCHHOFF-TYPE

More information

Physics 161 Fall 2011 Extra Credit 2 Investigating Black Holes - Solutions The Following is Worth 50 Points!!!

Physics 161 Fall 2011 Extra Credit 2 Investigating Black Holes - Solutions The Following is Worth 50 Points!!! Physics 161 Fall 011 Exta Cedit Investigating Black Holes - olutions The Following is Woth 50 Points!!! This exta cedit assignment will investigate vaious popeties of black holes that we didn t have time

More information

Unobserved Correlation in Ascending Auctions: Example And Extensions

Unobserved Correlation in Ascending Auctions: Example And Extensions Unobseved Coelation in Ascending Auctions: Example And Extensions Daniel Quint Univesity of Wisconsin Novembe 2009 Intoduction In pivate-value ascending auctions, the winning bidde s willingness to pay

More information

KOEBE DOMAINS FOR THE CLASSES OF FUNCTIONS WITH RANGES INCLUDED IN GIVEN SETS

KOEBE DOMAINS FOR THE CLASSES OF FUNCTIONS WITH RANGES INCLUDED IN GIVEN SETS Jounal of Applied Analysis Vol. 14, No. 1 2008), pp. 43 52 KOEBE DOMAINS FOR THE CLASSES OF FUNCTIONS WITH RANGES INCLUDED IN GIVEN SETS L. KOCZAN and P. ZAPRAWA Received Mach 12, 2007 and, in evised fom,

More information

Compactly Supported Radial Basis Functions

Compactly Supported Radial Basis Functions Chapte 4 Compactly Suppoted Radial Basis Functions As we saw ealie, compactly suppoted functions Φ that ae tuly stictly conditionally positive definite of ode m > do not exist The compact suppot automatically

More information

Energy Dissipation Gravitational Potential Energy Power

Energy Dissipation Gravitational Potential Energy Power Lectue 4 Chpte 8 Physics I 0.8.03 negy Dissiption Gvittionl Potentil negy Powe Couse wesite: http://fculty.uml.edu/andiy_dnylov/teching/physicsi Lectue Cptue: http://echo360.uml.edu/dnylov03/physicsfll.html

More information