Computing the first eigenpair of the p-laplacian in annuli

Size: px
Start display at page:

Download "Computing the first eigenpair of the p-laplacian in annuli"

Transcription

1 J. Mth. Anl. Appl Contents lists vilble t ScienceDiect Jounl of Mthemticl Anlysis nd Applictions Computing the fist eigenpi of the p-lplcin in nnuli Gey Ecole,, Júlio Cés do Espíito Snto b, Ede Minho Mtins b Univesidde Fedel de Mins Geis, Deptmento de Mtemátic, ICEx, Av. Antônio Clos 6627, Cix Postl 702, , Belo Hoizonte, MG, Bzil b Univesidde Fedel de Ouo Peto, Deptmento de Mtemátic, ICEB, Cmpus Univesitáio Moo do Cuzeio, , Ouo Peto, MG, Bzil t i c l e i n f o b s t c t Aticle histoy: Received 19 Mch 2014 Avilble online 16 Septembe 2014 Submitted by B. Kltenbche Keywods: Annulus Fist eigenpi Invese itetion method p-lplcin We popose method fo computing the fist eigenpi of the Diichlet p-lplcin, p > 1, in the nnulus Ω,b = x R N : < x < b}, N >1. Fo ech t, b), we use n invese itetion method to solve two dil eigenvlue poblems: one in the nnulus Ω,t, with the coesponding eigenvlue λ t) nd boundy conditions u) = 0 = u t); nd the othe in the nnulus Ω t,b, with the coesponding eigenvlue λ + t) nd boundy conditions u t) = 0 = ub). Next, we djust the pmete t using mtching pocedue to mke λ t) coincide with λ + t), theeby obtining the fist eigenvlue λ p. Hence, by simple splicing gument, we obtin the positive, L -nomlized, dil fist eigenfunction u p. The mtching pmete is the mximum point ρ of u p. In ode to pply this method, we deive estimtes fo λ t) nd λ + t), nd we pove tht these functions e monotone nd loclly Lipschitz) continuous. Moeove, we deive uppe nd lowe estimtes fo the mximum point ρ, which we use in the mtching pocedue, nd we lso pesent diect poof tht u p conveges to the L -nomlized distnce function to the boundy s p. We lso pesent some numeicl esults obtined using this method Elsevie Inc. All ights eseved. 1. Intoduction In this wok, we conside the following eigenvlue poblem Δ p u = λ u p 2 u, in Ω,b u =0 on Ω,b, 1) * Coesponding utho. E-mil ddesses: gey@mt.ufmg.b G. Ecole), jceses@iceb.ufop.b J.C. do Espíito Snto), ede@iceb.ufop.b E.M. Mtins) X/ 2014 Elsevie Inc. All ights eseved.

2 1278 G. Ecole et l. / J. Mth. Anl. Appl whee Δ p u := div u p 2 u) is the p-lplcin opeto, p > 1, nd Ω,b is the nnulus Ω,b := x R N :0<< x <b }, N > 1. It is well known tht the fist eigenvlue of the Diichlet p-lplcin in bounded domin Ω R N is positive nd it is lso chcteized s the minimum of the Ryleigh quotient v p LpΩ) tken ove v p LpΩ) ll nontivil functions v W 1,p 0 Ω). Futhemoe, the coesponding exteml functions, i.e., the fist eigenfunctions, do not chnge sign in Ω, e scl multiples of ech othe i.e., the fist eigenvlue is simple), nd they belong to C 1,τ Ω) fo some 0 < τ<1. We denote λ p s the fist eigenvlue of 1) nd u p s the positive nd L -nomlized eigenfunction tht coesponds to λ p. Thus, v p } L λ p =min p Ω,b ) v p :0 v W 1,p 0 Ω,b ) L p Ω,b ) = u p p L p Ω,b ) u p p, L p Ω,b ) u p > 0in Ω,b nd u p L Ω,b ) := 1. When the domin Ω is bll o n nnulus, the fist eigenfunctions must be dilly symmetic see [21]). In pticul, fo the nnulus Ω,b,we hve u p = u p ), whee = x [, b], λ p =min N 1 v ) p d N 1 v) p d 1,p ) } :0 v W0, b) = N 1 u p) p d N 1 u p ) p d nd u p C 1,τ [, b]) W 1,p 0, b)) stisfies the boundy vlue poblem N 1 u p 2 u ) = λp N 1 u,, b) u) =0=ub). 2) It is esy to check tht u p hs unique citicl point ρ, b), whee it ttins its mximum vlue. Thus, u p ) is stictly incesing if [, ρ), nd stictly decesing if ρ, b] nd u p ρ) = 1 = u p L [,b]). The popeties of the fist eigenpi of the Diichlet p-lplcin in n N-dimensionl bounded domin Ω e well known, but the fist eigenpi itself is genelly difficult to compute, even fo simple domins such s bll, sque, o n nnulus, when 1 < p 2nd N >1. In the lst thee decdes, sevel studies hve imed to impove the estimtes of the fist eigenvlue fo genel bounded domins, o poposed methods fo the numeicl computtion of the fist eigenpi fo some domins see [2 7,11,14,17,19]). In the pesent wok, we popose new method fo computing the fist eigenpi λ p, u p )of the eigenvlue poblem 1). In [7], n itetion method ws developed bsed on the invese powe method of line lgeb to compute the fist eigenpi of the Diichlet p-lplcin in bll. By exploiting the dil fom of the fist eigenfunction, this method poduces sequences tht convege pidly nd monotoniclly to the fist eigenpi. In [6], nothe itetive method ws poposed bsed on the sub-supesolution ppoch, which ws shown to wok fo genel bounded domin nd it ws implemented fo some simple cses. Fo nondil domins, such s sque, cube, o tous, the implementtion of this method used eguliztion of the fom divɛ 2 + u 2 ) p p 2 )fo Δp u in ode to void the singulity o degenecy t u = 0. The fist step of both itetive pocesses uses the p-tosion function, whee the solution of the following poblem is known s the tosionl ceep poblem see [16]) Δp u =1, in Ω u =0 on Ω.

3 G. Ecole et l. / J. Mth. Anl. Appl In the cse whee Ω is bll, the p-tosion function is lso dilly symmetic nd the coesponding dil vesion of the tosionl ceep poblem is ewitten s boundy vlue poblem fo n odiny diffeentil eqution ODE) in the dil vible. A simple exmintion of this ODE llows us to see tht the p-tosion function is stictly decesing with espect to. Hence, fte two integtions of the ODE), we cn esily obtin n explicit expession fo the p-tosion function. A simil pocedue cn be employed to solve the fist eigenvlue poblem in the unidimensionl cse N =1) fo ny p > 1. In fct, in this cse, Ω is n open intevl, b) nd both the p-tosion function nd the fist eigenfunctions e symmetic with espect to thei mximum point, which necessily occu t the sme plce: the midpoint m := +b 2. Theefoe, s in the cse of the bll, n explicit expession cn be deived fo the p-tosion function, theeby mking the invese itetion method diectly pplicble see [8]) to solving the eigenvlue poblem in, m) o in m, b), which llows us to obtin one of the hlves of the fist eigenfunction. The othe hlf is obtined by eflecting tht found peviously ound m. Howeve, the p-tosion function is genelly not expessed by simple fomul. Moeove, its numeicl computtion is not simple if 1 < p 2nd N >1. In some nondil domins see [6]), its computtion demnds significntly moe intections thn the subsequent tems of the sequences tht convege to the fist eigenpi. It should be noted tht the numbe of intections tht e necessy to poduce good ppoximtions of the p-tosion function seems to decese with p, fo lge vlues of p, s mentioned in [6]. Even in the cse of the nnulus whee N>1nd 1 < p 2, n explicit expession fo the p-tosion function is not vilble. Indeed, its dil fom lone is not sufficient to poduce such n expession fte integting the coesponding ODE boundy vlue poblem. This is becuse the position of its mximum point is not known pioi. Moeove, the mximum points in the subsequent itetions chnge duing ech step, theeby mking the computtions longe nd moe difficult. Consequently, invese itetion stting fom the p-tosion function does not ppe to be suitble fo computing the fist eigenpi of the nnulus Ω,b if we wnt to exploe its dil symmety. We compute the fist eigenpi of Ω,b by exploiting its dil symmety to split the coesponding dil eigenvlue poblem into two simple ones. Howeve, this sttegy mkes the mximum point ρ n dditionl unknown beyond λ p nd u p ) in ou poblem. In pticul, ou method fo computing the fist eigenpi of 1) involves splitting the fist eigenvlue poblem fo Ω,b into two dil poblems tht e detemined by the splitting pmete t, b), which should convege to ρ. The left dil eigenvlue poblem is posed in Ω,t whee the fist eigenpi is denoted by λ t), u t, )) nd the ight dil eigenvlue poblem is posed in Ω t,b whee the fist eigenpi is denoted by λ + t), u + t, )). Ech of these dil eigenvlue poblems hs the sme stuctue s the dil eigenvlue poblem fo bll. Next, we pply the invese itetion method to compute the fist eigenpis λ t), u t, )) nd λ + t), u + t, )) nd we use mtching pocedue to djust the pmete t to the mximum point ρ, i.e., to tht which mkes λ t) = λ + t) = λ p. This llows us to splice u t, ) with u + t, ), theeby foming the fist eigenpi u p of the nnulus. The numeicl implementtion of this scipt does not equie ny eguliztion of the p-lplcin. In ode to povide theoeticl suppot fo the pocedue descibed bove, we exploe the vitionl chcteiztion of the fist eigenvlues to pove the continuity of the functions λ t) nd λ + t), thei behvio t the endpoints nd b, nd the following explicit bounds fo the unknown mximum point ρ, which is elevnt issue fo stting the mtching pocedue: b + [ b )N 1 + b )N +1] 1 p 1+[ b )N 1 + b )N +1] 1 p <ρ< + b 2. 3) As bypoduct, these bounds show tht ρ tends to the midpoint m = +b 2 s p, which then llows us to povide diect poof of the following convegence

4 1280 G. Ecole et l. / J. Mth. Anl. Appl lim u p = δ, unifomly in Ω,b, 4) p δ whee x ; δx) := b x ; if x m if m x b is the distnce function of x to the boundy of Ω,b. The convegence 4) cn lso be veified by combining some esults on the Diichlet eigenvlue poblem fo the -Lplcin opeto in bounded domin Ω R N. In fct, it ws poved in [15] tht t lest u one subsequence of the fmily p u p } L 1 p>1 exists tht conveges unifomly in Ω to function u nd Ω) tht ny such limit function is positive viscosity fist eigenfunction of the Diichlet -Lplcin. In ddition, fo some specil domins, such s blls, nnuli, nd stdiums, it ws shown in [23] tht the distnce function to the boundy is the only viscosity fist eigenfunction of the Diichlet -Lplcin in Ω, up to some constnt fcto. To the best of ou knowledge, thee hve been no pevious epots of explicit computtions of the fist eigenvlue fo multidimensionl nnuli when 1 <p 2. The only pevious wok to del with the computtion of the dil eigenvlues in multidimensionl nnuli is [9], whee the uthos consideed moe genel dil p-lplcin eigenvlue poblem in the fmewok of the Stum Liouville poblem. They developed numeicl method to compute the dil eigenpis by tnsfoming the second-ode ODE into fist-ode system using genelized Püfe tnsfomtion), whee they pplied shooting lgoithms nd Newton s method. Thei method lso depends getly on the clculus of the genelized sine function intoduced in [13] see lso [20]). The dvntge of ou method is tht it is stightfowd when pplied to the Diichlet eigenvlue poblem fo genuine nnulus 0 < < b), whee ou ppoch only depends on the integl fomule obtined by diect integtion of the dil boundy vlue poblems posed in Ω,t nd Ω t,b. Unfotuntely, we could not compe ou outputs with those epoted in [9] becuse the Diichlet eigenvlue poblem fo genuine nnulus ws not mong the numeicl esults tht the uthos used to illustte thei method. Howeve, it is inteesting to note tht the numeicl esults pesented in [7, Tble 1] fo the fist eigenvlue of the unit bll e highly compble with the coesponding esults pesented in [9, Tble 4], whee they gee up to the thid deciml digit. We should lso note tht ou method cn be teted s outine fo computing the fist eigenpis fo finite numbe of nnuli tht coespond to ptition of the intevl [, b], nd thus it cn be used to compute ny dil eigenpi of the nnulus Ω,b. Fo exmple, in ode to compute the second dil eigenpi, we cn pply ou method to ech t, b) to clculte the Diichlet fist eigenpis γ t), u t, )) nd γ + t), u + t, )) of the nnuli Ω,t nd Ω t,b, espectively. Hence, we djust c such tht γ c) = γ + c) nd we tke this vlue s the second dil Diichlet eigenvlue of Ω,b we know fom [12] tht the j th -eigenfunction hs exctly j 1 zeoes in, b)). The second dil eigenfunction is then obtined by splicing u c, ) with ku + c, ), whee k := u c,c) u + c,c) guntees C1 contct t the oot = c. The constnt k cn be computed esily fom the integl expessions of the deivtives u ±c, c). This scipt cn lso be used to compute ny dil eigenpi of bll by combining ou method with tht employed in [7]. At this point, we should emphsize tht n eigenfunction ssocited with the second eigenvlue of dilly symmetic domin cn be nondil. In fct, the second eigenfunctions of the p-lplcin in pln disc e not dil, ccoding to [22] fo p = 2nd [5] fo ll p > 1. The eminde of this ppe is ognized s follows. In Section 2, we specify the nottions used in this study. In Section 3, we combine scling guments with vitionl chcteiztions of λ p to deive the pioibounds 3) fo the mximum point ρ of u p. In this section, we lso use simil guments to pove tht the functions λ ) nd λ + ) e stictly monotone nd loclly Lipschitz) continuous, s well s to detemine thei behvio t the end points nd b, espectively. In Section 4, we dpt the invese powe

5 G. Ecole et l. / J. Mth. Anl. Appl method developed in [7] to compute the eigenpis λ t), u t, )) nd λ + t), u + t, )) fo ech t, b). In Section 5, we use L Hôspitl ule fo monotonicity see Lemm 13) to obtin the lowe nd uppe bounds fo the fist eigenfunction u p in tems of explicit functions tht depend on p, nd hence we pove the convegence 4). Finlly, in Section 6, fo sevel vlues of p nd N, we pesent numeicl ppoximtions of λ p nd the coesponding gphs of u p. These numeicl esults endose the well-known symptotic behvios of the fist eigenpi when p goes to 1nd when p goes to ). 2. Peliminies nd nottions We ecll tht ρ denotes the mximum point of the fist eigenfunction u p. It is simple to check tht λ p is lso the fist eigenvlue of both eigenvlue poblems N 1 w p 2 w ) = λ N 1 w, < < ρ w) =0=w ρ) 5) nd N 1 w p 2 w ) = λ N 1 w, ρ<<b w ρ) =0=wb). 6) In ddition, the estiction of u p to the intevl [, ρ] is n eigenfunction of 5) coesponding to λ p s well s u p esticted to [ρ, b] is n eigenfunction of 5) coesponding to λ p. In fct, both of these eigenvlues poblems hve the following popety: the only eigenfunction tht does not chnge its sign is the fist. Theefoe, λ p cn lso be witten s ρ λ p =min N 1 w ) p d ρ N 1 w) p d :0 w C1 [, ρ] ) } such tht w) =0=w ρ) 7) s well s ρ λ p =min sn 1 w s) p ds ρ sn 1 ws) p ds :0 w C1 [ρ, b] ) } such tht w ρ) =0=wb). 8) Afte integting 5) with λ = λ p nd w = u p, we lso obtin 0 <u p) = λ p 1 N ρ σ N 1 u p σ) dσ, <ρ 9) nd u p ) = λ p 1 N ρ σ N 1 u p σ) dσ d, ρ. 10) Anlogously, fte integting 6) with λ = λ p nd w = u p, we obtin 0 < u p) = λ p 1 N ρ σ N 1 u p σ) dσ, ρ < b 11)

6 1282 G. Ecole et l. / J. Mth. Anl. Appl nd u p ) = λ p 1 N ρ σ N 1 u p σ) dσ d, ρ b. 12) In ode to clify ou method fo computing the fist eigenpi λ p, u p ), we need to povide some definitions. Fo ech < t < b, we denote λ t) s the fist eigenvlue ssocited with the eigenvlue poblem N 1 w p 2 w ) = λ N 1 w, <<t w) =0=w t) 13) nd u t, ) is the coesponding positive fist eigenfunction such tht u t, ) := mx t u t, ) =1. Anlogously, we denote λ + t) s the fist eigenvlue ssocited with the eigenvlue poblem N 1 w p 2 w ) = λ N 1 w, t<<b w t) =0=wb) 14) nd u + t, ) is the coesponding positive fist eigenfunction such tht u+ t, ) := mx t b u +t, ) =1. The eigenfunctions u t, ) nd u + t, ) belong to the clss C 2 in the closed intevls [, t] nd [t, b] if 1 < p 2nd they belong to C 1, 1 in these intevls if p > 2. It is lso esy to check tht u t, ) is stictly incesing whees u + t, ) is stictly decesing. The eigenvlues λ t) nd λ + t) e positive nd they stisfy, espectively, λ t) = min 0 w C 1 [,t]) w)=0=w t) N 1 w ) p d N 1 w) p d = N 1 u t, ) p d N 1 u t, ) p d 15) nd λ + t) = min 0 w C 1 [t,b]) w t)=0=wb) t N 1 w ) p d t N 1 w) p d = t N 1 u +t, ) p d t N 1 u + t, ) p d. 16) Of couse, λ ρ) =λ p = λ + ρ) nd u p ) = u ρ, ) if ρ u + ρ, ) if ρ b. 17) Remk 1. As shown in Section 3, the function Λt) := λ t) λ + t) is loclly Lipschitz) continuous nd stictly decesing in the intevl, b), nd it stisfies lim Λt) =+ nd lim Λt) =. t + t b Thus, the equlity λ t) = λ + t) occus if nd only if, t = ρ.

7 G. Ecole et l. / J. Mth. Anl. Appl Estimtes nd popeties of the eigenpis λ ± t), u ± t, )) In this section we deive lowe nd uppe bounds fo ρ nd we study the behvio of the pis λ ± t), u ± t, )) with espect to t, b). Lemm 2. Suppose 0 R 1 <R 2 nd tht u C 2 R 1, R 2 )) stisfies τ N 1 u τ) p 2 u τ) ) = τ N 1 f uτ) ) ; R 1 <τ<r 2, whee the function f is continuous. Conside the following function whee v) :=u s) ) ; R 1 <<R 2, s) =α + β, R 1 <<R 2 fo the constnts α nd β such tht minαr 1 + β, αr 2 + β} 0. Then, N 1 v ) p 2 v ) ) N 1)β N 2 = v ) p 2 v )+ α p N 1 f v) ) ; R 1 <<R 2. s) Poof. We hve whee we hve used N 1 v ) p 2 v ) ) = α p 2 α N 1 u s) ) p 2 u s) )) = α p 2 α [ = α p 2 α ) N 1 s) N 1 u s) ) p 2 u s) )) s) ) N 1 ] s) N 1 u s) ) p 2 u s) ) s) ) N 1 [ α p 2 α α d s N 1 u s) p 2 u s) )] s) ds s=s) = α p 2 αn 1)β N 2 u s) ) p 2 u s) ) s) ) N 1 + α p 2 α 2 s) N 1 f u s) )) s) = N 1)βN 2 v ) p 2 v )+ α p N 1 f v) ), s) [ ) N 1 ] ) N 2 s) N 1 s) α =N 1) s) s) s) 2 s) N 1 = N 1)βN 2. s) In the next poposition, we show tht the middius of the nnulus Ω,b is stict uppe bound fo ρ.

8 1284 G. Ecole et l. / J. Mth. Anl. Appl Poposition 3. The following uppe bound fo ρ holds: ρ< + b 2. 18) Poof. We use Lemm 2 with R 1 =, R 2 = ρ, u = u p, fξ) = λ p ξ, nd the constnts α nd β e defined by Note tht the gph of the function α = ρ b ρ < 0 nd β = ρ b ρ > 0. s) =α + β [ρ, b], ρ is the stight line connecting the points, b) nd ρ, ρ) on the s-plne. Thus, the function v) :=u p s) ), ρ stisfies v) = 0, v ρ) = 0, v ) = u ps))α >0 wheneve <ρ. Moeove, v C 1 [, ρ]) C 2 [, ρ)). Theefoe, by Lemm 2, we hve N 1 v ) p 2 v ) ) N 1)β N 2 = v ) + α p N 1 λ p v), <<t. 19) s) Hence, fte multiplying this equlity by v nd integting, we obtin ρ N 1 v ) ρ p d = N 1)β <λ p α p Now, by consideing 15) nd 17), we obtin ρ N 2 s) N 1 v) p d. v ) ρ v)d + λ p α p N 1 v) p d λ p ρ N 1 v ) p d ρ N 1 v) p d ) p b ρ <λ p α p = λ p ρ nd hence we ive t 1 < b ρ ρ. 20) This leds diectly to 18). Remk 4. In the unidimensionl cse N =1), we cn see fom 19) tht v is positive eigenfunction tht coesponds to the eigenvlue λ p α p. This fct implies tht α = 1nd ρ = +b 2. Now, we deive stict lowe bound fo ρ by using 20).

9 G. Ecole et l. / J. Mth. Anl. Appl Poposition 5. The following lowe bound fo ρ holds: b + [ b )N 1 + b )N +1] 1 p 1+[ b )N 1 + b )N +1] 1 p <ρ. 21) Poof. Following fom the ide of the pevious poof, we define ) v) :=u p s), ρ b, whee s) =α + β [, ρ], ρ b, α = ρ < 0 nd β = ρb b ρ b ρ = ρ 1+ α ) > 0. The gph of s is the stight line connecting points b, ) nd ρ, ρ) on the s-plne. Thus, vb) =0, v ρ) = 0nd v ) = u s))α <0 wheneve ρ < b. Then, it follows fom Lemm 2 tht N 1 v ) p 2 v ) ) N 1)β N 2 = v ) + α p N 1 λ p v), ρ<<b. 22) s) Hence, fte multiplying this equlity by v nd integting, we obtin ρ N 1 v ) p d =N 1)β Now, ccoding to 8), we obtin ρ N 2 s) v ) b v)d + λ p α p N 1 v) p d. ρ λ p ρ N 1 v ) p d ρ N 1 v) p d = N 1)β N 2 ρ s) v ) v)d + λ p α p. 23) ρ N 1 v) p d In ddition, by combining 9) with the monotonicity of u p s) fo s [, ρ], we obtin v ) v) = α u ) up ) p s) s) = α u p s) ) λ p s N = α λ p λ p α ρ s) ρ s) = λ p α ρ ρ s) σ N 1 u p σ) dσ ) N 1 σ ) u p s) up σ) dσ) s) ) N 1 ρ u p σ) p dσ ) ρ N 1 s) u p σ) p dσ. )

10 1286 G. Ecole et l. / J. Mth. Anl. Appl Afte chnging the vibles σ = sτ) in the ltte integl, we obtin nd hence we obtin v ) ) N 1 ρ ρ v) λ p α vτ) p αdτ = λ p α p ρ λ p α p ρ λ p α p ρ = λ p α p 1 N N 1)β N 2 ρ s) v ) v)d ρ N 1 v) p d whee we used ρ < +b 2 in the ltte inequlity. By substituting this estimte into 23), we ive t whee k := α 1 = b ρ ρ. Accoding to 20), k >1. Hence, Thus, we hve shown tht k p ) p b ρ = k p ρ 1+ 1 k < 2 bn 1 N 1+ 1 ) b N 1 k N ) N 1 ρ ) b N 1 ρ ) b N 1 ρ ρ vτ) p dτ vτ) p dτ ) N 1 τ vτ) p dτ ρ τ N 1 vτ) p dτ N 1)βλ p α p 1 N βλ p α p 1 N N 1) ρ ρ N 2 s) d N 2 d = ρ 1+ α ) λ p α p N b N 1 ρ N 1) <λ p α p 1+ α ) b N 1 ) + b N, 2 ) b N 1 + b N + b 2 + b 2 ) +1= 2 ) +1 ) +1, ) N 1 b + ) N b +1.

11 G. Ecole et l. / J. Mth. Anl. Appl b ρ ρ < [ ) N 1 b + ) N 1 b p +1], fom which 21) follows. It is inteesting to note tht ou estimtes 21) nd 18) yield the following bounds fo the quotient ρ in tems of the quotient b : b )+[b )N 1 + b )N +1] 1 p 1+[ b )N 1 + b )N +1] 1 p ρ 1+b ). 2 Remk 6. It follows immeditely fom estimtes 18) nd 21) tht lim ρ = + b p 2. 24) As mentioned in the Intoduction, this symptotic behvio is to be expected fom the convegence 4), which cn be obtined by combining esult on the existence in [15] with esult on the uniqueness in [23]. We use 24) in Section 5 to obtin diect poof of 4). In the sequel, we pove some popeties fo the functions λ nd λ + defined in 15) nd 16), espectively. Fist, we pove monotonicity esult, which implies tht the function Λt) = λ t) λ + t) is stictly decesing in the intevl, b). Lemm 7. The function λ is stictly decesing in the intevl, b] nd the function λ + is stictly incesing in the intevl [, b). Poof. Suppose < t 1 <t 2 b nd define ũ) = Obviously, ũ C 1 [, t 2 ]), ũ) = 0 = ũ t 2 ). Thus, λ t 2 ) = N 1 ũ ) p d N 1 ũ) p d 1 u t 1,) if t 1 1 if t 1 t 2. N 1 u t 1,) p d N 1 u t 1,) p d + 2 t 1 N 1 d < 1 theeby showing tht λ is stictly decesing in the open intevl, b]. The poof of the monotonicity of λ + is nlogous. N 1 u t 1,) p d 1 N 1 u t 1,) p d = λ t 1 ), In the eminde of this section, we use the following fomule, which cn be deived esily by integting 13) nd 14): u t, ) = λ t) 1 N t σ N 1 u t, σ) ) dσ, t 25)

12 1288 G. Ecole et l. / J. Mth. Anl. Appl nd u t, ) = λ t) 1 N u + t, ) = λ + t) 1 N u + t, ) = λ + t) 1 N t σ N 1 u t, σ) ) dσ d, t 26) t σ N 1 u + t, σ) ) dσ, t b σ N 1 u + t, σ) ) dσ d, t b. 27) The next esult shows the behvio of the function Λt) = λ t) λ + t) when t tends to the endpoints of the intevl, b). Lemm 8. The following lowe estimtes hold nd N N 1 t N N )t ) λ t), < t b 28) Nt N 1 b N t N )b t) λ +t), t<b. 29) Poof. Since u t, ) = u t, t) = 1, it follows fom 26) tht 1= λ t) 1 N λ t N σ N 1 u t, σ) ) dσ d σ N 1 dσ λ t) t N N d = N N 1 ) t ), fom which 28) follows. Anlogously, we obtin 29) by using 27). Poposition 9. Let < x y<b. Then, whee 0 λ x) λ y) λ x) λ x) λ y) λ y) Cy x) x ) p+n y x ) p 1, 30) x C := N 1) bn 2 N 1 b )p+n 1. 31) Poof. The fist nd second inequlities deive fom the monotonicity of λ t). In ode to pove the thid inequlity, let us define the function v) =u y, s) ), x,

13 G. Ecole et l. / J. Mth. Anl. Appl whee s) = α + β [, y], with We note tht α = y y > 0 nd β = x x x < 0. s) = nd sx) =y, tht is, the gph of s) is the stight line connecting the points, ) nd x, y) on the s-plne. We hve v) = 0, v x) = 0nd v ) =u ) y, s) α>0, <x. Fom Lemm 2, we lso hve N 1 v ) ) N 1)β N 2 = v ) + α p N 1 λ y)v). s) By multiplying this eqution by v) nd integting we obtin x It follows tht x N 1 v ) p d = N 1)β N 2 s) v ) v)d + α p λ y) x N 1 v) p d. x λ y) λ x) N 1 v ) p d x N 1 v) p d = N 1) β x N 2 s) v ) v)d x + α p λ N 1 v) p y), 32) d whee the fist inequlity is due to the monotonicity of the function λ ) nd the second inequlity deives fom the minimizing popety of λ x). We emk fom 25), with t = y, tht y u ) y, s) = λ y)s N s) σ N 1 u y, σ) ) dσ. Hence, v ) v) =α u ) u ) y, s) y, s) α λ y) α λ y) N 1 1 N y y s) σ N 1 u y, s) ) u y, σ) dσ σ N 1 u y, σ) p dσ, whee we used u y, s)) u y, σ) in the second inequlity since s) σ y. )

14 1290 G. Ecole et l. / J. Mth. Anl. Appl Now, fte chnging σ = sτ) in the ltte integl nd noting tht β <0, we obtin Theefoe, x N 1) β theeby implying tht v ) v) α λ y) N 1 = αp λ y) N 1 = αp λ y) N 1 x x y αp+n 1 λ y) N 1 N 2 s) v ) N 1) β xn 2 v)d N 1) β x N 2 s) v ) v)d x N 1 v) p d σ N 1 u y, σ) p dσ sτ) N 1 vτ) p dτ ατ + β) N 1 vτ) p dτ x τ N 1 vτ) p dτ. x v ) v)d N 1) β xn 2 x ) αp+n 1 λ y) N 1 x N 1) β xn 2 x ) αp+n 1 λ y) N 1 N 1) β bn 2 N x )α p+n 1 λ y) y =N 1) x y x b N 2 x ) N x N 1) bn 2 N 1 b )p+n 1 λ y)y x) x ) p+n 1 = Cλ y)y x) x ) p+n 1, whee C is given by 31). Finlly, we combine this estimte with 32) to obtin λ y) λ x) x N 1 v ) p d x N 1 v) p d Cy x) x ) p+n 1 + τ N 1 vτ) p dτ, ) p+n 1 λ y) ) p ) y λ y) x nd hence 30) follows. Poposition 10. Let < x y<b. Then, 0 λ +y) λ + x) λ + y) λ +y) λ + x) λ + x) 1+ y x ) p 1. 33) b y

15 G. Ecole et l. / J. Mth. Anl. Appl Poof. The monotonicity of the function λ + ) yields both the fist nd second inequlities. The thid inequlity follows in simil mnne s in the pevious poof, lthough it is slightly simple. In fct, we define the function v) =u + x, s) ), y b with s) = α + β [x, b] nd α = b x b y > 0 nd β = bx y b y < 0. Hee, the gph of s) is the stight line connecting the points y, x) nd b, b) on the s-plne. By pplying Lemm 2, we obtin N 1 v ) p 2 v ) ) N 1) β N 2 = v ) + α p N 1 λ + x)v). s) Note tht v 0.) Afte multiplying the ltte eqution by v) nd integting, we obtin Theefoe, y N 1 v ) p d = N 1) β α p λ + x) y y N 2 v ) v)d + α p λ + x) N 1 v) p d s) y N 1 v) p d. λ + x) λ + y) y N 1 v ) p d y N 1 v) p d αp λ + x) = ) p b x λ + x) b y nd 33) follows. The following coolly is n immedite consequence of Popositions 9 nd 10. Coolly 11. The functions λ, λ + :, b) 0, ) e loclly Lipschitz) continuous. Theoem 12. The following clims hold tue: 1. λ ρ) = λ + ρ) = λ p. 2. λ t) > λ + t) if < t < ρ. 3. λ t) < λ + t) if ρ < t < b. 4. u p ) = u ρ,) if ρ u + ρ,) if ρ b. Poof. The function Λt) = λ t) λ + t)is continuous t ny t, b) ccoding to Coolly 11. Moeove, it follows fom Lemm 7 tht this function is stictly decesing nd fom Lemm 8 tht lim t t b Λt) =+ nd lim Λt) =. +

16 1292 G. Ecole et l. / J. Mth. Anl. Appl Theefoe, unique vlue of t exists such tht λ t) = λ + t). Since we ledy know tht λ ρ) = λ + ρ), we cn conclude tht such vlue must be ρ, theeby poving the fist clim. The second nd thid clims follow diectly fom the fist given the monotonicity of Λt). Since the positive function v) = u ρ, ) if ρ u + ρ, ) belongs to C 1 [, b]), nd it stisfies mx b v) = 1nd if ρ b N 1 v ) p ρ d N 1 v) p d = N 1 u ρ, ) p d + ρ N 1 u +ρ, ) p d N 1 v) p d = λ ρ) ρ N 1 u ρ, ) p d + λ + ρ) ρ N 1 u + ρ, ) p d N 1 v) p d ρ = λ N 1 u ρ, ) p d + ρ N 1 u + ρ, ) p d p = λ p, N 1 v) p d we must hve v = u p, which poves the fouth clim. 4. Computing the eigenpis λ ± t), u ± t, )) In this section, we show how to pply the invese itetion method to solve, fo ech t, b), the eigenvlue poblems N 1 u p 2 u ) = λ N 1 u p 2 u, < < t 0 <u) < 1=ut), <<t u) =0=u t) 34) nd N 1 u p 2 u ) = λ N 1 u p 2 u, t < < b 0 <u) < 1=ut), t < < b u t) =0=ub). 35) We pesent some esults fo poblem 34) in gete detil whees we simply summize the coesponding esults fo the poblem 35) becuse they e fily nlogous. The method elies on the following lemm, which hs been used fequently s technicl tool in diffeentil geomety see [1]). It is simple consequence of the Cuchy men vlue theoem nd it functions s type of L Hôspitl ule fo monotonicity. Lemm 13. Let g, h : [, b] R be continuously diffeentible with g ) 0fo ll, b). If f is incesing esp. decesing), then the functions f) f) g) g) nd f) fb) g) gb) g e lso incesing esp. decesing). We note tht this lemm is lso in Section 5 to deive estimtes fo the fist eigenfunction u p, which e combined with Theoem 24 to pove the convegence 4).

17 G. Ecole et l. / J. Mth. Anl. Appl Solving the fist eigenvlue poblem in the intevl [, t] Conside the sequence of functions φ n } defined by φ 0 := 1 nd N 1 φ n+1 p 2 φ n+1 ) = N 1 φ n, < < t φ n+1 ) =0=φ n+1t). It is esy to check tht ech φ n is positive nd stictly incesing, nd tht the following fomule hold: φ n+1) = 1 N s N 1 φ n s) ds 36) nd φ n+1 ) = 1 N s N 1 φ n s) ds d. 37) Lemm 14. Fo ll n 1, we hve φ n+1 φ 1 φ n, in [, t]. Poof. Fo n = 1, we hve φ 2 ) = φ 1 1 N = φ 1 φ 1 ). s N 1 φ 1 s) ds 1 N s N 1 ds If we ssume tht the esult is tue fo n = k>1, we obtin φ k+2 ) = 1 N 1 N = φ 1 φ k+1 ). s N 1 φ k+1 s) ds d d d s N 1 φ 1 φ k s) ) ds d Thus, we hve poved the lemm by induction. Lemm 15. Fo ech n 1, we hve lim φ n ) φ n+1 ) = sn 1 φ n s) ds > 0. sn 1 φ n+1 s) ds Poof. Since φ n ) = φ n+1 ) = 0, the lemm follows immeditely fom L Hôspitl s ule nd 36).

18 1294 G. Ecole et l. / J. Mth. Anl. Appl Accoding to this lemm, the function Theoem 16. Fo ech n 0, the function φ n φ n+1 becomes continuous t = if we define φ n ) φ n+1 ) := sn 1 φ n s) ds. sn 1 φ n+1 s) ds φ n φ n+1 is decesing with espect to. Poof. Agin we pply induction on n. The cse whee n = 0is obvious since φ 0 φ 1 = 1 φ 1 nd φ 1 is n incesing function of. Now, let us suppose tht is decesing fo ech k 1,..., n}. Then, the quotient of deivtives φ k φ k+1 sn 1 φ n s) ds) ) sn 1 φ n+1 s) ds) = φn ) φ n+1 ) is decesing function. It follows fom Lemm 13 tht the quotient of deivtives φ n+1) φ n+2 ) = sn 1 φ n s) ds sn 1 φ n+1 s) ds is lso decesing function. Theefoe, Lemm 13 gin implies tht the quotient φ n+1) φ n+2 ) is decesing function nd the poof is complete. Fo ech n 1, let us define the following el numbes: γ n := φ n = φ nt) φ n+1 φ n+1 t) nd Γ n := φ n) φ n+1 ). Coolly 17. We clim the following. 1. γ n } is n incesing sequence. 2. Γ n } is decesing sequence φ 1 γ n Γ n Γ 1 := φ 1) φ 2 ) <. 4. The limits γ = lim λ n nd Γ := lim Γ n exist, nd 1 φ 1 γ Γ sn 1 φ 1 s) ds. sn 1 φ 2 s) ds Poof. The finl clim follows diectly fom the othe thee, which themselves follow diectly fom the fct tht the function is decesing. In fct, this monotonicity implies tht φ n φ n+1 γ n = φ nt) φ n+1 t) lim φ n ) φ n+1 ) φ n) φ n+1 ) = Γ n, which is pt of the thid clim. The fist inequlity in this clim follows diectly fom Lemm 14.

19 G. Ecole et l. / J. Mth. Anl. Appl Moeove, φ n+1 t) = = 1 N 1 N φ nt) φ n+1 t) s N 1 φ n s) ds d 1 ) s N 1 φn s) φ n+1s) ds) d φ n+1 s) 1 N nd thus the fist clim follows. Anlogously, implies tht φ n+1 ) = = 1 N 1 N φ n) φ n+1 ) s N 1 φ n s) ds s N 1 φ n+1 s) ds d d = 1 ) s N 1 φn s) φ n+1s) ds) d φ n+1 s) 1 N s N 1 φ n+1 s) ds d = φ nt) φ n+1 t) φ n+2t), φ n) φ n+1 ) φ n+2) Γ n+1 = φ n+1) φ n+2 ) = lim φ n+1 ) + φ n+2 ) φ n) φ n+1 ) = Γ n. Now, fo ech n 1, we define the function It is esy to check tht u n ) =γ n 1 u n := 1 N φ n φ n. s N 1 u n 1 s) ds d. 38) Theoem 18. The sequence u n } is decesing with espect to n fo ech fixed [, t] nd it conveges unifomly to the fist eigenfunction u t, ). Moeove, λ t) = γ. φ n φ n+1 Poof. Agin, the monotonicity of is impotnt becuse it gives the monotonicity of the sequence of functions u n }. Indeed, since φ i = φ i t), we hve u n ) = φ n) = φ n) φ n+1 ) φ nt) φ n+1 ) = φ n+1) = u n+1 ). φ n φ n+1 ) φ n φ n+1 t) φ n φ n+1 Theefoe, the function u) := lim n u n ) is well defined. Now, by using the Lebesgue Dominted Convegence Theoem, we cn pss to the limit in 38) to conclude tht

20 1296 G. Ecole et l. / J. Mth. Anl. Appl u) =γ 1 N s N 1 us) ds Futhemoe, u n} is lso unifomly bounded since 0 u n) =γ n 1 1 N Γ 1 1 N d, t. 39) s N 1 u n 1 s) ds d s N 1 ds Γ1 tn N. Hence, the Azelà Ascoli theoem shows tht the convegence u n u is unifom in [, t] nd tht u is continuous in this intevl. Hence, the expession 39) implies tht u C 1 [, t]) nd u ) =γ 1 N s N 1 us) ds d, t. Then, fte stightfowd clcultion, we cn veify tht u stisfies N 1 u p 2 u ) = γ N 1 u, < < t, u) =0=u t), theeby implying tht u is n eigenfunction tht coesponds to the eigenvlue γ. Since u 0in [, t] nd ut) = 1, we must hve u = u t, ) nd γ = λ t). The next esult is somewht supising. Poposition 19. The sequence of functions φ n φ n+1 ) } conveges to the constnt function λ t) pointwise in [, t] nd unifomly in ech closed intevl contined in, t]. Theefoe, Γ = λ t). Poof. Fist, we emk tht 1 u n+1 ) = φ n+1 = 1 N 1 N As we know, the sequence φ n φ n+1 } is bounded since γ 1 γ n s N 1 φ n s) ds d ) s N 1 φn s) u n+1s) d. φ n+1 s) φ n) φ n+1 ) Γ n Γ 1, t. Now, we clim tht the sequence of deivtives φ n φ n+1 ) } is lso bounded in ech intevl of the fom [ +ɛ, t]. Fist, we note tht

21 0 G. Ecole et l. / J. Mth. Anl. Appl φn φ n+1 ) ) φn = = φ n φ n+1 φ n φ n+1 Γ 1. φ n+1 φ n+1 φ n+1 φ n+1 φ n+1 Hence, in ode to pove ou clim, it is sufficient to veify tht φ n+1 φ n+1 } is bounded sequence in [ + ɛ, t]. Indeed, fo [ + ɛ, t], we hve φ n+1 ) = = 1 N 1 N s N 1 φ n s) ds s N 1 φ n s) ds φ n+1)d = φ n+1) ) ɛφ n+1). Then, it follows fom the Azelà Ascoli theoem tht subsequence φ n k φ nk } exists tht conveges unifomly to function v in the intevl [ + ɛ, t] nd pointwise in the intevl, t]. Moeove, v is continuous +1 in, t] nd These fcts llow us to pss to the limit in u nk +1 = λ t = γ = vt) v) v) =Γ. 1 N d d ) s N 1 φnk s) u nk+1s) d φ nk +1s) nd to conclude tht u t, ) = 1 N s N 1 vs) u t, s) d. It follows tht u t, ) ) = 1 N Futhemoe, we hve ledy poved tht u t, ) ) = 1 N s N 1 vs) u t, s) ds. s N 1 λ t)u t, s) ds. Hence, by combining these expessions fo u t, )), we conclude tht s N 1 vs) λ t) ) u t, s) ds =0.

22 1298 G. Ecole et l. / J. Mth. Anl. Appl Given tht vs) λ t), this implies tht vs) = λ t) fo ll s, t]. Since the limit function v does not depend on pticul subsequences, we conclude tht the whole sequence φ n φ n+1 } conveges to λ t unifomly in ech closed intevl contined in, t] nd pointwise in this intevl nd, of couse, the sme convegence occus fo the sequence φ n φ n+1 ) }, the limit of which is λ t). φ n ) φ n+1 ) = We ecll tht ) Γ. Theefoe, in ode to complete the poof, we need to show tht Γ = λ t. Howeve, this follows fom Lebesgue s Dominted Convegence Theoem fo φ n) φ n+1 ) = φ n ) φ n+1 sn 1 φ n 1 s) ds sn 1 φ n s) ds = sn 1 φ n 1s) φ n s) ) φ ns) = λ t. φ n ) ds sn 1 φ ns) φ n ) ds 4.2. Solving the fist eigenvlue poblem in the intevl [t, b] t sn 1 λ t)u t, s) ds sn 1 u t, s) ds The esults given in this subsection e fily nlogous to those pesented in the pevious subsection. Thus, they e simply stted nd the coesponding poofs e omitted. The invese itetion method fo obtining the fist eigenpi λ + t), u + t, )) is bsed on the sequence of itetions φ n } defined by: φ 0 := 1 nd nd N 1 φ n+1 p 2 φ n+1) = N 1 φ n, t<<b φ n+1t) =0=φ n+1 b). These functions e stictly decesing, nd they stisfy φ n+1) = φ n+1 ) = t t 1 ) N 1 s φ n s) ds) 1 ) N 1 s φ n s) ds) d. 40) The next esult is lso consequence of Lemm 13 nd it compises the bsis fo the emining esults. Theoem 20. Fo ech n 0, the function φ n φ n+1 is incesing with espect to. We note tht the only diffeence comped with the coesponding esult in the pevious section is tht φ the monotonicity of the function n φ n+1 is evesed. Howeve, we show tht this fct llows us to mintin the sme type of monotonicity fo the othe coesponding sequences, which e defined in the sequel. Fo ech n 1, let us define the numbes nd γ n := φ n = φ nt) φ n+1 φ n+1 t)

23 G. Ecole et l. / J. Mth. Anl. Appl s well s the function Γ n := φ nb) φ n+1 b) = lim b Theoem 21. The following clims hold. φ b n) φ n+1 ) = u n := 1. γ n } is n incesing sequence. 2. Γ n } is decesing sequence φ 1 γ n Γ n Γ 1 := φ 1b) φ 2 b) <. 4. The limits γ = lim λ n nd Γ := lim Γ n exist, nd 1 φ 1 γ Γ φ n φ n. t sn 1 φ n 1 s) ds t sn 1 φ n s) ds t sn 1 φ 1 s) ds. t sn 1 φ 2 s) ds, 5. The sequence u n } is decesing with espect to n fo ech fixed [t, b] nd it conveges unifomly to the fist eigenfunction u + t, ). Moeove, λ + t) = γ. 6. The sequence of functions φ n φ n+1 ) } conveges to the constnt function λ + t) pointwise in [t, b] nd unifomly in ech closed intevl contined in [t, b). Theefoe, Γ = λ + t). 5. Asymptotics s p In this section, we use the symptotic behvio 24) nd Lemm 13 to pove tht u p conveges unifomly δ to δ, whee ; δ) := b ; if m if m b is the distnce function to the boundy of the nnulus Ω,b nd m := +b 2 is its middius. We lso use well-known esult see [15], o [11] fo diffeent poof) tht is vlid fo ny bounded domin Ω, which sttes tht [ lim λp Ω) ] 1 p 1 =, p d, Ω) whee λ p Ω) denotes the fist eigenvlue of the p-lplcin Diichlet of Ω nd dx, Ω) denotes the distnce of x Ω fom the boundy Ω. In ou cse, this mens tht lim λ 1 p = 1 = 1 p δ δm) = 2 b. 41) In the next lemm, we estimte u p in tems of the following functions φ ρ ) := ρ 1 N σ N 1 dσ d, ρ nd

24 1300 G. Ecole et l. / J. Mth. Anl. Appl nd φ + ρ ) := 1 N Afte consideing 24), it is esy to check tht Lemm 22. The following estimtes hold: ρ σ N 1 dσ d, ρ b. lim p φ ρ ) = = δ), <m 42) lim p φ ρ ) =b = δ), m b. 43) nd λ 1 p ρ σn 1 u p σ) dσ ρ φ ρ ) u p ) φ ρ ) σn 1 dσ φ ρ ρ), ρ 44) λ 1 ρ σn 1 u p σ) dσ p ρ σn 1 dσ Poof. Fist, we pove 44). Since the function is incesing, Lemm 13 shows tht the function φ + ρ ) u p ) φ+ ρ ) φ +, ρ b. 45) ρ ρ) [, ρ) ρ σn 1 u p σ) dσ) ρ = u σn 1 dσ) p ) [, ρ) is incesing in the intevl [, ρ). Thus, the function ρ σn 1 u p σ) dσ ρ σn 1 dσ u ρ p) φ p ) ) = λ 1 σn 1 u p σ) dσ p ρ σn 1 dσ is lso incesing in this intevl. Theefoe, by pplying Lemm 13, we gin conclude tht the function is incesing in the intevl [, ρ). u p ) φ p ) It follows tht u p ) φ p ) lim u p σ) σ + φ p σ) = lim u pσ) + φ p ) σ) = λ 1 p ρ σn 1 u p σ) dσ ρ, σn 1 dσ < < ρ nd u p ) φ p ) lim u p σ) σ ρ φ p σ) = u pρ) φ p ρ) = 1 φ p ρ), <<ρ, theeby poving 44). We cn pove 45) in n nlogous mnne.

25 G. Ecole et l. / J. Mth. Anl. Appl Theoem 23. The following unifom convegence in Ω,b holds: Poof. We know tht lim u p = δ. p δ u p ) 1 N λ 1 p = 1 N λ 1 p ρ σn 1 u p σ) dσ ρ σn 1 u p σ) dσ if ρ if ρ b nd tht 0 u p 1. Theefoe, which implies tht u p ) 1 N λ 1 p ρ σn 1 dσ ρ σn 1 dσ if ρ if ρ b, lim sup u p ) 1 N = 21 N p δ b, b. Then, we cn pply the Azelà Ascoli theoem to obtin sequence p n such tht u pn conveges unifomly in [, b] to continuous function u. Of couse, um) = 1since u pn ρ n ) = 1nd ρ n m hee, ρ n := ρp n ) < m). Let us tke < τ 1 <m < τ 2 <b. Then, fte using the monotonicity of ech function u pn nd 24), we obtin lim ρn σ N 1 u pn σ) p n 1 dσ pn 1 lim ρn τ 1 lim u pn τ 1 ) σ N 1 u pn σ) pn 1 dσ ρn τ 1 σ N 1 dσ pn 1 pn 1 = uτ 1 ). Anlogously, lim b ρ n σ N 1 u pn σ) pn 1 dσ Thus, by mking τ 1, τ 2 m, we conclude tht nd lim ρn pn 1 lim uτ 2 ) σ N 1 u pn σ) p n 1 dσ τ2 m σ N 1 u pn σ) p n 1 dσ lim pn 1 τ 2 m σ N 1 dσ pn 1 pn 1 = uτ 2 ). um) = 1 46)

26 1302 G. Ecole et l. / J. Mth. Anl. Appl lim b σ N 1 u pn σ) pn 1 dσ pn 1 um) =1. 47) ρ n By combining these two symptotics with 42), 43), nd 41), we cn conclude fom Lemm 22 tht δ) lim λ 1 p φ ρ δ n ) u) lim φ ρ n ) φ ρ n ρ n ) = δ) m = δ), δ <<ρ nd δ) lim λ 1 p φ + ρ δ n ) u) lim φ+ ρ n ) φ + ρ n ρ n ) = δ) b m = δ), δ ρ<<b. Thus, we hve veified tht u = δ δ δ in [, b]. Futhemoe, s p, the function δ is the limit of ny unifom convegent sequence extcted fom the fmily u p } p>1. This fct implies tht u p conveges to unifomly in [, b] nd tht δ δ lim p ρ 6. Numeicl esults σ N 1 u p σ) dσ = lim p ρ σ N 1 u p σ) dσ =1. In this section, we pesent some numeicl esults, which we obtined by implementing ou method fo the nnulus Ω 1,3 = 1 < x < 3} R N, fo N =2, 3, nd 4. Befoe poceeding, fo ech t, b), let us denote the sequences φ n t, )} nd φ n t +, )}, espectively, by φ 0 t,) 1; φ n+1 t,):= 1 N s N 1 φ n t,s) ds d; t t nd φ 0 t +,) 1; φ n+1 t +,)= 1 N t s N 1 φ n t +,) ds t b d; t b. Using this nottion, it follows fom Section 4 tht ) φn t, ) λ t) = lim nd u p t,) = lim φ nt,) ; φ n+1 t, ) φ n t, ) t

27 G. Ecole et l. / J. Mth. Anl. Appl Tble 1 Some fist eigenvlues λ p nd the coesponding mximum points ρ fo the nnulus Ω 1,3 in dimensions N =2, 3, nd 4. p N =2 N =3 N =4 λ p ρ λ p ρ λ p ρ nd tht ) φn t +, ) λ + t) = lim nd u p t +,) = lim φ nt +,) ; t b. φ n+1 t +, ) φ n t +, ) We lso ecll tht φ n t ±, ) = φ n t ±, t ± ).) Ou numeicl esults fo the nnulus Ω 1,3 wee obtined by implementing the following lgoithm fo = 1nd b = 3in C++ using the GCC compile. Algoithm Set N, p,, nd b. 2. Set t 1 := b+[ b )N 1 + b )N +1] 1 p 1+[ b )N 1 + b )N +1] 1 p nd t 2 := +b 2 ccoding to 3)). 3. Solve Λρ) = 0by using mtching pocedue with initil estimtes of t 1 nd t 2 ). 4. Retun ρ the oot of Λ, which is the ppoximtion fo the mximum point of u p ). 5. Compute the pis λ ρ), u ρ, )) nd λ + ρ), u + ρ, )) by invese itetion). 6. Retun λ := λ ρ)+λ + ρ) 2 the ppoximtion fo λ p ). u ρ,) if ρ 7. Retun u p ) := the ppoximtion fo u p). u + ρ,) if ρ< b To solve Λρ) := λ ρ) λ + ρ) =0in step 3, we used the secnt method with initil estimtes of t 1 nd t 2, s defined in step 2. Thus, we geneted finite sequence t 3, t 4,..., t n } t 1, t 2 )using the ecuence fomul t i = t i 2Λt i 1 ) t i 1 Λt i 2 ), i =3, 4,...,n Λt i 1 ) Λt i 2 ) with the stopping citeion t n t n 1 t n < Theefoe, we took ρ := t n in step 4. In ode to compute λ t i )nd λ + t i )in step 3 nd thus to compute Λt i )), we pefomed 10 itetions of the invese itetion method, i.e., we computed the functions φ 1 t i ) ±, ),..., φ 10 t i ) ±, ) nd, fo ech of these functions, we used 101 nodes in the -intevls [, t i ]nd [t i, b]. The coesponding integls wee computed using Simpson s ule. The sme pocedue ws employed in step 5 to compute λ ± ρ), u ± ρ, )) using ρ obtined in step 4. Some of the numeicl esults we obtined fo the nnulus Ω 1,3 = 1 < x < 3} R N e pesented in Tble 1, fo N =2, 3, nd 4. In the line cse, p = 2, the 3-dimensionl fist eigenpi is esie to obtin nlyticlly. In fct, fte mking convenient chnge of vible, we cn tnsfom the oiginl eigenpoblem into simple one to

28 1304 G. Ecole et l. / J. Mth. Anl. Appl Fig. 1. Gphs showing the L -nomlized fist eigenfunction fo N = 2 top), N = 3 middle), N =4bottom), nd some vlues of p. The mximum points nd thei espective lowe bounds given by 3) e highlighted. obtin both the fist eigenvlue λ = π b )2 nd the fist eigenfunction u) = b π π ) sin b ).

29 G. Ecole et l. / J. Mth. Anl. Appl Fig. 2. Gphs fo the function p λ 1 p when N =2, 3, nd 4, ll of which ppoch Λ = 1 when p is lge. By witing the mximum point of u s ρ = μ b π, we cn see tht μ must stisfy the eqution μ =tn μ π ). 48) b Thus, when =1nd b =3, the exct fist eigenvlue is λ = π nd the oot of 48) in the intevl π 2, 3π 2 )is μ Hence, ρ Fom Tble 1, we note tht these vlues fo λ nd ρ gee with those obtined in ou numeicl esults. Fig. 1 shows the gphs of some of the L -nomlized fist eigenfunctions fo the nnulus Ω 1,3. We note tht the gphs ppe to esemble the gph of the chcteistic function of the nnulus s p tends to 1. This suggests tht the Cheege set of n nnulus is the nnulus itself. In the 2-dimensionl cse, this follows fom the esults given in [18] the Cheege poblem is ssocited with the p-lplcin s p 1vi the fist eigenpoblem in [17] nd the p-tosion functions in [10]). In Fig. 1, we cn see tht s p, the L -nomlized fist eigenfunction ppoches the L -nomlized distnce function to the boundy, s descibed in Section 5 see the gphs fo p = 10 4 in Fig. 1). Moeove, the gphs in Fig. 1 show tht ou lowe bound fo the mximum point given in 3) impoves s p inceses nd it vitully coincides with the mximum point fo p = The symptotic behvio of λ 1 p s p is shown clely in Fig. 2, whee we plot sevel vlues of λ p fo p, which vy fom 1.1 to As mentioned in Section 5, the p th oot of the fist eigenvlue of the p-lplcin in bounded domin Ω conveges to Λ := R 1, whee R is the indius of Ω the dius of the lgest bll contined in Ω). Fo the nnulus Ω 1,3, we hve Λ =1. In Fig. 3, we finish this section by pesenting the gphs fo the fouth, fifth, sixth, nd seventh itetions n = 3, 4, 5, nd 6, esp.) of the functions φ nρ,) φ n+1 ρ,) ) nd φ nρ +,) φ n+1 ρ +,) ) fo p = 1.5 left) nd p = 4 ight). We cn obseve the inteesting fcts poved in Section 4: the convegence of the fist sequence to λ p is unifom with espect to in ny closed intevl contined in, ρ] nd pointwise in the whole intevl [, ρ], nd the convegence of the second sequence is unifom with espect to in ny closed intevl contined in [ρ, b) nd pointwise in the whole intevl [ρ, b]. In ech gph, we cn lso see tht the convegence of the ight-hnd side section which coesponds to φ nρ +,) φ n+1 ρ +,) ) ) is slowe thn the left-hnd side section. This

30 1306 G. Ecole et l. / J. Mth. Anl. Appl Fig. 3. Gphs of the fouth, fifth, sixth, nd seventh itetions n = 3, 4, 5, nd 6, esp.) of the functions φ nρ,) φ n+1 ρ,) ) nd φ nρ +,) φ n+1 ρ +,) ) fo p = 1.5 left) nd p = 4 ight) in dimensions N =2, 3, nd 4. The contct points t = ρ e highlighted. is pobbly becuse which cn be checked esily) φ n ρ, ) is concve in the -vible whees φ n ρ +, ) chnges the concvity t point close to b. Acknowledgments The uthos e gteful fo the suppot of CNPq /2013-1) nd FAPEMIG CEX-PPM ), Bzil. Refeences [1] G.D. Andeson, M.K. Vmnmuthy, M. Vuoinen, Inequlities fo qusiconfoml mppings in spce, Pcific J. Mth [2] B. Andeinov, F. Boye, F. Hubet, Finite volume schemes fo the p-lplcin on Ctesin meshes, ESAIM Mth. Model. Nume. Anl. 38 6) 2004) [3] J. Benedikt, P. Dábek, Estimtes of the pincipl eigenvlue of the p-lplcin, J. Mth. Anl. Appl ) [4] J. Benedikt, P. Dábek, Asymptotics fo the pincipl eigenvlue of the p-lplcin on the bll s p ppoches 1, Nonline Anl ) [5] J. Benedikt, P. Dábek, P. Gig, The second eigenfunction of the p-lplcin on the disk is not dil, Nonline Anl ) [6] R.J. Biezune, J. Bown, G. Ecole, E.M. Mtins, Computing the fist eigenpi of the p-lplcin vi invese itetion of subline supesolutions, J. Sci. Comput [7] R.J. Biezune, G. Ecole, E.M. Mtins, Computing the fist eigenvlue of the p-lplcin vi the invese powe method, J. Funct. Anl ) [8] R.J. Biezune, G. Ecole, E.M. Mtins, Computing the sin p function vi the invese powe method, Comput. Methods Appl. Mth [9] B.M. Bown, W. Reichel, Computing eigenvlues nd Fučik-spectum of the dilly symmetic p-lplcin, J. Comput. Appl. Mth [10] H. Bueno, G. Ecole, Solutions of the Cheege poblem vi tosion functions, J. Mth. Anl. Appl ) [11] H. Bueno, G. Ecole, A. Zumpno, Positive solutions fo the p-lplcin nd bounds fo its fist eigenvlue, Adv. Nonline Stud ) [12] M. DelPino, R. Mnásevich, Globl bifuction fom the eigenvlues of the p-lplcin, J. Diffeentil Equtions ) [13] Á. Elbet, A hlf-line second ode diffeentil eqution, Colloq. Mth. Soc. János Bolyi [14] X. Feng, Y. He, High ode itetive methods without deivtives fo solving nonline equtions, Appl. Mth. Comput [15] J. Juutinen, P. Lindqvist, J. Mnfedi, The -eigenvlue poblem, Ach. Rtion. Mech. Anl )

31 G. Ecole et l. / J. Mth. Anl. Appl [16] B. Kwohl, On fmily of tosionl ceep poblems, J. Reine Angew. Mth [17] B. Kwohl, V. Fidmn, Isopeimetic estimtes fo the fist eigenvlue of the p-lplce opeto nd the Cheege constnt, Comment. Mth. Univ. Colin ) [18] D. Kejčiřík, A. Ptelli, The Cheege constnt of cuved stips, Pcific J. Mth ) [19] L. Lefton, D. Wei, Numeicl ppoximtion of the fist eigenpi of the p-lplcin using finite elements nd the penlty method, Nume. Funct. Anl. Optim ) [20] P. Lindqvist, Some emkble sine nd cosine functions, Ric. Mt. XLIV 2995) [21] A.I. Nzov, The one-dimensionl chcte of n extemum point of the Fiedichs inequlity in spheicl nd plne lyes, J. Mth. Sci ) [22] L.E. Pyne, On two conjectues in the fixed membne eigenvlue poblem, Z. Angew. Mth. Phys ) [23] Y. Yu, Some popeties of the gound sttes of the infinity Lplcin, Indin Univ. Mth. J )

Chapter 7. Kleene s Theorem. 7.1 Kleene s Theorem. The following theorem is the most important and fundamental result in the theory of FA s:

Chapter 7. Kleene s Theorem. 7.1 Kleene s Theorem. The following theorem is the most important and fundamental result in the theory of FA s: Chpte 7 Kleene s Theoem 7.1 Kleene s Theoem The following theoem is the most impotnt nd fundmentl esult in the theoy of FA s: Theoem 6 Any lnguge tht cn e defined y eithe egul expession, o finite utomt,

More information

Right-indefinite half-linear Sturm Liouville problems

Right-indefinite half-linear Sturm Liouville problems Computes nd Mthemtics with Applictions 55 2008) 2554 2564 www.elsevie.com/locte/cmw Right-indefinite hlf-line Stum Liouville poblems Lingju Kong, Qingki Kong b, Deptment of Mthemtics, The Univesity of

More information

Math 4318 : Real Analysis II Mid-Term Exam 1 14 February 2013

Math 4318 : Real Analysis II Mid-Term Exam 1 14 February 2013 Mth 4318 : Rel Anlysis II Mid-Tem Exm 1 14 Febuy 2013 Nme: Definitions: Tue/Flse: Poofs: 1. 2. 3. 4. 5. 6. Totl: Definitions nd Sttements of Theoems 1. (2 points) Fo function f(x) defined on (, b) nd fo

More information

Previously. Extensions to backstepping controller designs. Tracking using backstepping Suppose we consider the general system

Previously. Extensions to backstepping controller designs. Tracking using backstepping Suppose we consider the general system 436-459 Advnced contol nd utomtion Extensions to bckstepping contolle designs Tcking Obseves (nonline dmping) Peviously Lst lectue we looked t designing nonline contolles using the bckstepping technique

More information

Radial geodesics in Schwarzschild spacetime

Radial geodesics in Schwarzschild spacetime Rdil geodesics in Schwzschild spcetime Spheiclly symmetic solutions to the Einstein eqution tke the fom ds dt d dθ sin θdϕ whee is constnt. We lso hve the connection components, which now tke the fom using

More information

Topics for Review for Final Exam in Calculus 16A

Topics for Review for Final Exam in Calculus 16A Topics fo Review fo Finl Em in Clculus 16A Instucto: Zvezdelin Stnkov Contents 1. Definitions 1. Theoems nd Poblem Solving Techniques 1 3. Eecises to Review 5 4. Chet Sheet 5 1. Definitions Undestnd the

More information

1 Using Integration to Find Arc Lengths and Surface Areas

1 Using Integration to Find Arc Lengths and Surface Areas Novembe 9, 8 MAT86 Week Justin Ko Using Integtion to Find Ac Lengths nd Sufce Aes. Ac Length Fomul: If f () is continuous on [, b], then the c length of the cuve = f() on the intevl [, b] is given b s

More information

Friedmannien equations

Friedmannien equations ..6 Fiedmnnien equtions FLRW metic is : ds c The metic intevl is: dt ( t) d ( ) hee f ( ) is function which detemines globl geometic l popety of D spce. f d sin d One cn put it in the Einstein equtions

More information

This immediately suggests an inverse-square law for a "piece" of current along the line.

This immediately suggests an inverse-square law for a piece of current along the line. Electomgnetic Theoy (EMT) Pof Rui, UNC Asheville, doctophys on YouTube Chpte T Notes The iot-svt Lw T nvese-sque Lw fo Mgnetism Compe the mgnitude of the electic field t distnce wy fom n infinite line

More information

Class Summary. be functions and f( D) , we define the composition of f with g, denoted g f by

Class Summary. be functions and f( D) , we define the composition of f with g, denoted g f by Clss Summy.5 Eponentil Functions.6 Invese Functions nd Logithms A function f is ule tht ssigns to ech element D ectly one element, clled f( ), in. Fo emple : function not function Given functions f, g:

More information

Fourier-Bessel Expansions with Arbitrary Radial Boundaries

Fourier-Bessel Expansions with Arbitrary Radial Boundaries Applied Mthemtics,,, - doi:./m.. Pulished Online My (http://www.scirp.og/jounl/m) Astct Fouie-Bessel Expnsions with Aity Rdil Boundies Muhmmd A. Mushef P. O. Box, Jeddh, Sudi Ai E-mil: mmushef@yhoo.co.uk

More information

Optimization. x = 22 corresponds to local maximum by second derivative test

Optimization. x = 22 corresponds to local maximum by second derivative test Optimiztion Lectue 17 discussed the exteme vlues of functions. This lectue will pply the lesson fom Lectue 17 to wod poblems. In this section, it is impotnt to emembe we e in Clculus I nd e deling one-vible

More information

10 Statistical Distributions Solutions

10 Statistical Distributions Solutions Communictions Engineeing MSc - Peliminy Reding 1 Sttisticl Distiutions Solutions 1) Pove tht the vince of unifom distiution with minimum vlue nd mximum vlue ( is ) 1. The vince is the men of the sques

More information

u(r, θ) = 1 + 3a r n=1

u(r, θ) = 1 + 3a r n=1 Mth 45 / AMCS 55. etuck Assignment 8 ue Tuesdy, Apil, 6 Topics fo this week Convegence of Fouie seies; Lplce s eqution nd hmonic functions: bsic popeties, computions on ectngles nd cubes Fouie!, Poisson

More information

Lecture 10. Solution of Nonlinear Equations - II

Lecture 10. Solution of Nonlinear Equations - II Fied point Poblems Lectue Solution o Nonline Equtions - II Given unction g : R R, vlue such tht gis clled ied point o the unction g, since is unchnged when g is pplied to it. Whees with nonline eqution

More information

EXISTENCE OF THREE SOLUTIONS FOR A KIRCHHOFF-TYPE BOUNDARY-VALUE PROBLEM

EXISTENCE OF THREE SOLUTIONS FOR A KIRCHHOFF-TYPE BOUNDARY-VALUE PROBLEM Electonic Jounl of Diffeentil Eutions, Vol. 20 (20, No. 9, pp.. ISSN: 072-669. URL: http://ejde.mth.txstte.edu o http://ejde.mth.unt.edu ftp ejde.mth.txstte.edu EXISTENCE OF THREE SOLUTIONS FOR A KIRCHHOFF-TYPE

More information

The Formulas of Vector Calculus John Cullinan

The Formulas of Vector Calculus John Cullinan The Fomuls of Vecto lculus John ullinn Anlytic Geomety A vecto v is n n-tuple of el numbes: v = (v 1,..., v n ). Given two vectos v, w n, ddition nd multipliction with scl t e defined by Hee is bief list

More information

Integrals and Polygamma Representations for Binomial Sums

Integrals and Polygamma Representations for Binomial Sums 3 47 6 3 Jounl of Intege Sequences, Vol. 3 (, Aticle..8 Integls nd Polygmm Repesenttions fo Binomil Sums Anthony Sofo School of Engineeing nd Science Victoi Univesity PO Box 448 Melboune City, VIC 8 Austli

More information

9.4 The response of equilibrium to temperature (continued)

9.4 The response of equilibrium to temperature (continued) 9.4 The esponse of equilibium to tempetue (continued) In the lst lectue, we studied how the chemicl equilibium esponds to the vition of pessue nd tempetue. At the end, we deived the vn t off eqution: d

More information

General Physics II. number of field lines/area. for whole surface: for continuous surface is a whole surface

General Physics II. number of field lines/area. for whole surface: for continuous surface is a whole surface Genel Physics II Chpte 3: Guss w We now wnt to quickly discuss one of the moe useful tools fo clculting the electic field, nmely Guss lw. In ode to undestnd Guss s lw, it seems we need to know the concept

More information

Data Structures. Element Uniqueness Problem. Hash Tables. Example. Hash Tables. Dana Shapira. 19 x 1. ) h(x 4. ) h(x 2. ) h(x 3. h(x 1. x 4. x 2.

Data Structures. Element Uniqueness Problem. Hash Tables. Example. Hash Tables. Dana Shapira. 19 x 1. ) h(x 4. ) h(x 2. ) h(x 3. h(x 1. x 4. x 2. Element Uniqueness Poblem Dt Stuctues Let x,..., xn < m Detemine whethe thee exist i j such tht x i =x j Sot Algoithm Bucket Sot Dn Shpi Hsh Tbles fo (i=;i

More information

Michael Rotkowitz 1,2

Michael Rotkowitz 1,2 Novembe 23, 2006 edited Line Contolles e Unifomly Optiml fo the Witsenhusen Counteexmple Michel Rotkowitz 1,2 IEEE Confeence on Decision nd Contol, 2006 Abstct In 1968, Witsenhusen intoduced his celebted

More information

On the Eötvös effect

On the Eötvös effect On the Eötvös effect Mugu B. Răuţ The im of this ppe is to popose new theoy bout the Eötvös effect. We develop mthemticl model which loud us bette undestnding of this effect. Fom the eqution of motion

More information

Physics 505 Fall 2005 Midterm Solutions. This midterm is a two hour open book, open notes exam. Do all three problems.

Physics 505 Fall 2005 Midterm Solutions. This midterm is a two hour open book, open notes exam. Do all three problems. Physics 55 Fll 5 Midtem Solutions This midtem is two hou open ook, open notes exm. Do ll thee polems. [35 pts] 1. A ectngul ox hs sides of lengths, nd c z x c [1] ) Fo the Diichlet polem in the inteio

More information

( ) D x ( s) if r s (3) ( ) (6) ( r) = d dr D x

( ) D x ( s) if r s (3) ( ) (6) ( r) = d dr D x SIO 22B, Rudnick dpted fom Dvis III. Single vile sttistics The next few lectues e intended s eview of fundmentl sttistics. The gol is to hve us ll speking the sme lnguge s we move to moe dvnced topics.

More information

Week 8. Topic 2 Properties of Logarithms

Week 8. Topic 2 Properties of Logarithms Week 8 Topic 2 Popeties of Logithms 1 Week 8 Topic 2 Popeties of Logithms Intoduction Since the esult of ithm is n eponent, we hve mny popeties of ithms tht e elted to the popeties of eponents. They e

More information

Qualitative Analysis for Solutions of a Class of. Nonlinear Ordinary Differential Equations

Qualitative Analysis for Solutions of a Class of. Nonlinear Ordinary Differential Equations Adv. Theo. Appl. Mech., Vol. 7, 2014, no. 1, 1-7 HIKARI Ltd, www.m-hiki.com http://dx.doi.og/10.12988/tm.2014.458 Qulittive Anlysis fo Solutions of Clss of Nonline Odiny Diffeentil Equtions Juxin Li *,

More information

EECE 260 Electrical Circuits Prof. Mark Fowler

EECE 260 Electrical Circuits Prof. Mark Fowler EECE 60 Electicl Cicuits Pof. Mk Fowle Complex Numbe Review /6 Complex Numbes Complex numbes ise s oots of polynomils. Definition of imginy # nd some esulting popeties: ( ( )( ) )( ) Recll tht the solution

More information

On Natural Partial Orders of IC-Abundant Semigroups

On Natural Partial Orders of IC-Abundant Semigroups Intentionl Jounl of Mthemtics nd Computtionl Science Vol. No. 05 pp. 5-9 http://www.publicsciencefmewok.og/jounl/ijmcs On Ntul Ptil Odes of IC-Abundnt Semigoups Chunhu Li Bogen Xu School of Science Est

More information

Electric Potential. and Equipotentials

Electric Potential. and Equipotentials Electic Potentil nd Euipotentils U Electicl Potentil Review: W wok done y foce in going fom to long pth. l d E dl F W dl F θ Δ l d E W U U U Δ Δ l d E W U U U U potentil enegy electic potentil Potentil

More information

About Some Inequalities for Isotonic Linear Functionals and Applications

About Some Inequalities for Isotonic Linear Functionals and Applications Applied Mthemticl Sciences Vol. 8 04 no. 79 8909-899 HIKARI Ltd www.m-hiki.com http://dx.doi.og/0.988/ms.04.40858 Aout Some Inequlities fo Isotonic Line Functionls nd Applictions Loedn Ciudiu Deptment

More information

School of Electrical and Computer Engineering, Cornell University. ECE 303: Electromagnetic Fields and Waves. Fall 2007

School of Electrical and Computer Engineering, Cornell University. ECE 303: Electromagnetic Fields and Waves. Fall 2007 School of Electicl nd Compute Engineeing, Conell Univesity ECE 303: Electomgnetic Fields nd Wves Fll 007 Homewok 3 Due on Sep. 14, 007 by 5:00 PM Reding Assignments: i) Review the lectue notes. ii) Relevnt

More information

Two dimensional polar coordinate system in airy stress functions

Two dimensional polar coordinate system in airy stress functions I J C T A, 9(9), 6, pp. 433-44 Intentionl Science Pess Two dimensionl pol coodinte system in iy stess functions S. Senthil nd P. Sek ABSTRACT Stisfy the given equtions, boundy conditions nd bihmonic eqution.in

More information

SPA7010U/SPA7010P: THE GALAXY. Solutions for Coursework 1. Questions distributed on: 25 January 2018.

SPA7010U/SPA7010P: THE GALAXY. Solutions for Coursework 1. Questions distributed on: 25 January 2018. SPA7U/SPA7P: THE GALAXY Solutions fo Cousewok Questions distibuted on: 25 Jnuy 28. Solution. Assessed question] We e told tht this is fint glxy, so essentilly we hve to ty to clssify it bsed on its spectl

More information

Important design issues and engineering applications of SDOF system Frequency response Functions

Important design issues and engineering applications of SDOF system Frequency response Functions Impotnt design issues nd engineeing pplictions of SDOF system Fequency esponse Functions The following desciptions show typicl questions elted to the design nd dynmic pefomnce of second-ode mechnicl system

More information

defined on a domain can be expanded into the Taylor series around a point a except a singular point. Also, f( z)

defined on a domain can be expanded into the Taylor series around a point a except a singular point. Also, f( z) 08 Tylo eie nd Mcluin eie A holomophic function f( z) defined on domin cn be expnded into the Tylo eie ound point except ingul point. Alo, f( z) cn be expnded into the Mcluin eie in the open dik with diu

More information

r a + r b a + ( r b + r c)

r a + r b a + ( r b + r c) AP Phsics C Unit 2 2.1 Nme Vectos Vectos e used to epesent quntities tht e chcteized b mgnitude ( numeicl vlue with ppopite units) nd diection. The usul emple is the displcement vecto. A quntit with onl

More information

Chapter 6 Thermoelasticity

Chapter 6 Thermoelasticity Chpte 6 Themoelsticity Intoduction When theml enegy is dded to n elstic mteil it expnds. Fo the simple unidimensionl cse of b of length L, initilly t unifom tempetue T 0 which is then heted to nonunifom

More information

FI 2201 Electromagnetism

FI 2201 Electromagnetism FI 1 Electomgnetism Alexnde A. Isknd, Ph.D. Physics of Mgnetism nd Photonics Resech Goup Electosttics ELECTRIC PTENTIALS 1 Recll tht we e inteested to clculte the electic field of some chge distiution.

More information

U>, and is negative. Electric Potential Energy

U>, and is negative. Electric Potential Energy Electic Potentil Enegy Think of gvittionl potentil enegy. When the lock is moved veticlly up ginst gvity, the gvittionl foce does negtive wok (you do positive wok), nd the potentil enegy (U) inceses. When

More information

School of Electrical and Computer Engineering, Cornell University. ECE 303: Electromagnetic Fields and Waves. Fall 2007

School of Electrical and Computer Engineering, Cornell University. ECE 303: Electromagnetic Fields and Waves. Fall 2007 School of Electicl nd Compute Engineeing, Conell Univesity ECE 303: Electomgnetic Fields nd Wves Fll 007 Homewok 4 Due on Sep. 1, 007 by 5:00 PM Reding Assignments: i) Review the lectue notes. ii) Relevnt

More information

ITI Introduction to Computing II

ITI Introduction to Computing II ITI 1121. Intoduction to Computing II Mcel Tucotte School of Electicl Engineeing nd Compute Science Abstct dt type: Stck Stck-bsed lgoithms Vesion of Febuy 2, 2013 Abstct These lectue notes e ment to be

More information

Physics 604 Problem Set 1 Due Sept 16, 2010

Physics 604 Problem Set 1 Due Sept 16, 2010 Physics 64 Polem et 1 Due ept 16 1 1) ) Inside good conducto the electic field is eo (electons in the conducto ecuse they e fee to move move in wy to cncel ny electic field impessed on the conducto inside

More information

6. Numbers. The line of numbers: Important subsets of IR:

6. Numbers. The line of numbers: Important subsets of IR: 6. Nubes We do not give n xiotic definition of the el nubes hee. Intuitive ening: Ech point on the (infinite) line of nubes coesponds to el nube, i.e., n eleent of IR. The line of nubes: Ipotnt subsets

More information

Answers to test yourself questions

Answers to test yourself questions Answes to test youself questions opic Descibing fields Gm Gm Gm Gm he net field t is: g ( d / ) ( 4d / ) d d Gm Gm Gm Gm Gm Gm b he net potentil t is: V d / 4d / d 4d d d V e 4 7 9 49 J kg 7 7 Gm d b E

More information

Electronic Supplementary Material

Electronic Supplementary Material Electonic Supplementy Mteil On the coevolution of socil esponsiveness nd behvioul consistency Mx Wolf, G Snde vn Doon & Fnz J Weissing Poc R Soc B 78, 440-448; 0 Bsic set-up of the model Conside the model

More information

π,π is the angle FROM a! TO b

π,π is the angle FROM a! TO b Mth 151: 1.2 The Dot Poduct We hve scled vectos (o, multiplied vectos y el nume clled scl) nd dded vectos (in ectngul component fom). Cn we multiply vectos togethe? The nswe is YES! In fct, thee e two

More information

RELATIVE KINEMATICS. q 2 R 12. u 1 O 2 S 2 S 1. r 1 O 1. Figure 1

RELATIVE KINEMATICS. q 2 R 12. u 1 O 2 S 2 S 1. r 1 O 1. Figure 1 RELAIVE KINEMAICS he equtions of motion fo point P will be nlyzed in two diffeent efeence systems. One efeence system is inetil, fixed to the gound, the second system is moving in the physicl spce nd the

More information

The Clamped Plate Equation for the Limaçon

The Clamped Plate Equation for the Limaçon A. Dll Acqu G. Swees The Clmped Plte Eqution fo the Limçon Received: dte / in finl fom: dte Abstct. Hdmd climed in 907 tht the clmped plte eqution is positivity peseving fo domins which e bounded by Limçon

More information

DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING FLUID MECHANICS III Solutions to Problem Sheet 3

DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING FLUID MECHANICS III Solutions to Problem Sheet 3 DEPATMENT OF CIVIL AND ENVIONMENTAL ENGINEEING FLID MECHANICS III Solutions to Poblem Sheet 3 1. An tmospheic vote is moelle s combintion of viscous coe otting s soli boy with ngul velocity Ω n n iottionl

More information

MATHEMATICS IV 2 MARKS. 5 2 = e 3, 4

MATHEMATICS IV 2 MARKS. 5 2 = e 3, 4 MATHEMATICS IV MARKS. If + + 6 + c epesents cicle with dius 6, find the vlue of c. R 9 f c ; g, f 6 9 c 6 c c. Find the eccenticit of the hpeol Eqution of the hpeol Hee, nd + e + e 5 e 5 e. Find the distnce

More information

THE EXISTENCE-UNIQUENESS THEOREM FOR FIRST-ORDER DIFFERENTIAL EQUATIONS.

THE EXISTENCE-UNIQUENESS THEOREM FOR FIRST-ORDER DIFFERENTIAL EQUATIONS. THE EXISTENCE-UNIQUENESS THEOREM FOR FIRST-ORDER DIFFERENTIAL EQUATIONS RADON ROSBOROUGH https://intuitiveexplntionscom/picrd-lindelof-theorem/ This document is proof of the existence-uniqueness theorem

More information

The Regulated and Riemann Integrals

The Regulated and Riemann Integrals Chpter 1 The Regulted nd Riemnn Integrls 1.1 Introduction We will consider severl different pproches to defining the definite integrl f(x) dx of function f(x). These definitions will ll ssign the sme vlue

More information

Review of Mathematical Concepts

Review of Mathematical Concepts ENEE 322: Signls nd Systems view of Mthemticl Concepts This hndout contins ief eview of mthemticl concepts which e vitlly impotnt to ENEE 322: Signls nd Systems. Since this mteil is coveed in vious couses

More information

Advanced Calculus: MATH 410 Notes on Integrals and Integrability Professor David Levermore 17 October 2004

Advanced Calculus: MATH 410 Notes on Integrals and Integrability Professor David Levermore 17 October 2004 Advnced Clculus: MATH 410 Notes on Integrls nd Integrbility Professor Dvid Levermore 17 October 2004 1. Definite Integrls In this section we revisit the definite integrl tht you were introduced to when

More information

Comparative Studies of Law of Gravity and General Relativity. No.1 of Comparative Physics Series Papers

Comparative Studies of Law of Gravity and General Relativity. No.1 of Comparative Physics Series Papers Comptive Studies of Lw of Gvity nd Genel Reltivity No. of Comptive hysics Seies pes Fu Yuhu (CNOOC Resech Institute, E-mil:fuyh945@sin.com) Abstct: As No. of comptive physics seies ppes, this ppe discusses

More information

(a) Counter-Clockwise (b) Clockwise ()N (c) No rotation (d) Not enough information

(a) Counter-Clockwise (b) Clockwise ()N (c) No rotation (d) Not enough information m m m00 kg dult, m0 kg bby. he seesw stts fom est. Which diection will it ottes? ( Counte-Clockwise (b Clockwise ( (c o ottion ti (d ot enough infomtion Effect of Constnt et oque.3 A constnt non-zeo toque

More information

Homework 3 MAE 118C Problems 2, 5, 7, 10, 14, 15, 18, 23, 30, 31 from Chapter 5, Lamarsh & Baratta. The flux for a point source is:

Homework 3 MAE 118C Problems 2, 5, 7, 10, 14, 15, 18, 23, 30, 31 from Chapter 5, Lamarsh & Baratta. The flux for a point source is: . Homewok 3 MAE 8C Poblems, 5, 7, 0, 4, 5, 8, 3, 30, 3 fom Chpte 5, msh & Btt Point souces emit nuetons/sec t points,,, n 3 fin the flux cuent hlf wy between one sie of the tingle (blck ot). The flux fo

More information

NS-IBTS indices calculation procedure

NS-IBTS indices calculation procedure ICES Dt Cente DATRAS 1.1 NS-IBTS indices 2013 DATRAS Pocedue Document NS-IBTS indices clcultion pocedue Contents Genel... 2 I Rw ge dt CA -> Age-length key by RFA fo defined ge nge ALK... 4 II Rw length

More information

Available online at ScienceDirect. Procedia Engineering 91 (2014 ) 32 36

Available online at   ScienceDirect. Procedia Engineering 91 (2014 ) 32 36 Aville online t wwwsciencediectcom ScienceDiect Pocedi Engineeing 91 (014 ) 3 36 XXIII R-S-P semin Theoeticl Foundtion of Civil Engineeing (3RSP) (TFoCE 014) Stess Stte of Rdil Inhomogeneous Semi Sphee

More information

CHAPTER 2 ELECTROSTATIC POTENTIAL

CHAPTER 2 ELECTROSTATIC POTENTIAL 1 CHAPTER ELECTROSTATIC POTENTIAL 1 Intoduction Imgine tht some egion of spce, such s the oom you e sitting in, is pemeted by n electic field (Pehps thee e ll sots of electiclly chged bodies outside the

More information

The Area of a Triangle

The Area of a Triangle The e of Tingle tkhlid June 1, 015 1 Intodution In this tile we will e disussing the vious methods used fo detemining the e of tingle. Let [X] denote the e of X. Using se nd Height To stt off, the simplest

More information

Variational Techniques for Sturm-Liouville Eigenvalue Problems

Variational Techniques for Sturm-Liouville Eigenvalue Problems Vritionl Techniques for Sturm-Liouville Eigenvlue Problems Vlerie Cormni Deprtment of Mthemtics nd Sttistics University of Nebrsk, Lincoln Lincoln, NE 68588 Emil: vcormni@mth.unl.edu Rolf Ryhm Deprtment

More information

ODE: Existence and Uniqueness of a Solution

ODE: Existence and Uniqueness of a Solution Mth 22 Fll 213 Jerry Kzdn ODE: Existence nd Uniqueness of Solution The Fundmentl Theorem of Clculus tells us how to solve the ordinry differentil eqution (ODE) du = f(t) dt with initil condition u() =

More information

Algebra Based Physics. Gravitational Force. PSI Honors universal gravitation presentation Update Fall 2016.notebookNovember 10, 2016

Algebra Based Physics. Gravitational Force. PSI Honors universal gravitation presentation Update Fall 2016.notebookNovember 10, 2016 Newton's Lw of Univesl Gvittion Gvittionl Foce lick on the topic to go to tht section Gvittionl Field lgeb sed Physics Newton's Lw of Univesl Gvittion Sufce Gvity Gvittionl Field in Spce Keple's Thid Lw

More information

10 m, so the distance from the Sun to the Moon during a solar eclipse is. The mass of the Sun, Earth, and Moon are = =

10 m, so the distance from the Sun to the Moon during a solar eclipse is. The mass of the Sun, Earth, and Moon are = = Chpte 1 nivesl Gvittion 11 *P1. () The un-th distnce is 1.4 nd the th-moon 8 distnce is.84, so the distnce fom the un to the Moon duing sol eclipse is 11 8 11 1.4.84 = 1.4 The mss of the un, th, nd Moon

More information

Lecture 4. Beyond the Hückel π-electron theory. Charge density is an important parameter that is used widely to explain properties of molecules.

Lecture 4. Beyond the Hückel π-electron theory. Charge density is an important parameter that is used widely to explain properties of molecules. Lectue 4. Beyond the Hückel π-electon theoy 4. Chge densities nd bond odes Chge density is n impotnt pmete tht is used widely to explin popeties of molecules. An electon in n obitl ψ = c φ hs density distibution

More information

Physics 11b Lecture #11

Physics 11b Lecture #11 Physics 11b Lectue #11 Mgnetic Fields Souces of the Mgnetic Field S&J Chpte 9, 3 Wht We Did Lst Time Mgnetic fields e simil to electic fields Only diffeence: no single mgnetic pole Loentz foce Moving chge

More information

Discrete Model Parametrization

Discrete Model Parametrization Poceedings of Intentionl cientific Confeence of FME ession 4: Automtion Contol nd Applied Infomtics Ppe 9 Discete Model Pmetition NOKIEVIČ, Pet Doc,Ing,Cc Deptment of Contol ystems nd Instumenttion, Fculty

More information

arxiv: v1 [hep-th] 6 Jul 2016

arxiv: v1 [hep-th] 6 Jul 2016 INR-TH-2016-021 Instbility of Sttic Semi-Closed Wolds in Genelized Glileon Theoies Xiv:1607.01721v1 [hep-th] 6 Jul 2016 O. A. Evseev, O. I. Melichev Fculty of Physics, M V Lomonosov Moscow Stte Univesity,

More information

Language Processors F29LP2, Lecture 5

Language Processors F29LP2, Lecture 5 Lnguge Pocessos F29LP2, Lectue 5 Jmie Gy Feuy 2, 2014 1 / 1 Nondeteministic Finite Automt (NFA) NFA genelise deteministic finite utomt (DFA). They llow sevel (0, 1, o moe thn 1) outgoing tnsitions with

More information

The final exam will take place on Friday May 11th from 8am 11am in Evans room 60.

The final exam will take place on Friday May 11th from 8am 11am in Evans room 60. Mth 104: finl informtion The finl exm will tke plce on Fridy My 11th from 8m 11m in Evns room 60. The exm will cover ll prts of the course with equl weighting. It will cover Chpters 1 5, 7 15, 17 21, 23

More information

A Bijective Approach to the Permutational Power of a Priority Queue

A Bijective Approach to the Permutational Power of a Priority Queue A Bijective Appoach to the Pemutational Powe of a Pioity Queue Ia M. Gessel Kuang-Yeh Wang Depatment of Mathematics Bandeis Univesity Waltham, MA 02254-9110 Abstact A pioity queue tansfoms an input pemutation

More information

Abstract inner product spaces

Abstract inner product spaces WEEK 4 Abstrct inner product spces Definition An inner product spce is vector spce V over the rel field R equipped with rule for multiplying vectors, such tht the product of two vectors is sclr, nd the

More information

Section 35 SHM and Circular Motion

Section 35 SHM and Circular Motion Section 35 SHM nd Cicul Motion Phsics 204A Clss Notes Wht do objects do? nd Wh do the do it? Objects sometimes oscillte in simple hmonic motion. In the lst section we looed t mss ibting t the end of sping.

More information

On Some Hadamard-Type Inequalıtıes for Convex Functıons

On Some Hadamard-Type Inequalıtıes for Convex Functıons Aville t htt://vuedu/ Al Al Mth ISSN: 93-9466 Vol 9, Issue June 4, 388-4 Alictions nd Alied Mthetics: An Intentionl Jounl AAM On Soe Hdd-Tye Inequlıtıes o, Convex Functıons M Ein Özdei Detent o Mthetics

More information

Probabilistic Retrieval

Probabilistic Retrieval CS 630 Lectue 4: 02/07/2006 Lectue: Lillin Lee Scibes: Pete Bbinski, Dvid Lin Pobbilistic Retievl I. Nïve Beginnings. Motivtions b. Flse Stt : A Pobbilistic Model without Vition? II. Fomultion. Tems nd

More information

CHAPTER 18: ELECTRIC CHARGE AND ELECTRIC FIELD

CHAPTER 18: ELECTRIC CHARGE AND ELECTRIC FIELD ollege Physics Student s Mnul hpte 8 HAPTR 8: LTRI HARG AD LTRI ILD 8. STATI LTRIITY AD HARG: OSRVATIO O HARG. ommon sttic electicity involves chges nging fom nnocoulombs to micocoulombs. () How mny electons

More information

Electronic Companion for Optimal Design of Co-Productive Services: Interaction and Work Allocation

Electronic Companion for Optimal Design of Co-Productive Services: Interaction and Work Allocation Submitted to Mnufctuing & Sevice Oetions Mngement mnuscit Electonic Comnion fo Otiml Design of Co-Poductive Sevices: Intection nd Wok Alloction Guillume Roels UCLA Andeson School of Mngement, 110 Westwood

More information

Solution of fuzzy multi-objective nonlinear programming problem using interval arithmetic based alpha-cut

Solution of fuzzy multi-objective nonlinear programming problem using interval arithmetic based alpha-cut Intentionl Jounl of Sttistics nd Applied Mthemtics 016; 1(3): 1-5 ISSN: 456-145 Mths 016; 1(3): 1-5 016 Stts & Mths www.mthsounl.com Received: 05-07-016 Accepted: 06-08-016 C Lognthn Dept of Mthemtics

More information

Physics 111. Uniform circular motion. Ch 6. v = constant. v constant. Wednesday, 8-9 pm in NSC 128/119 Sunday, 6:30-8 pm in CCLIR 468

Physics 111. Uniform circular motion. Ch 6. v = constant. v constant. Wednesday, 8-9 pm in NSC 128/119 Sunday, 6:30-8 pm in CCLIR 468 ics Announcements dy, embe 28, 2004 Ch 6: Cicul Motion - centipetl cceletion Fiction Tension - the mssless sting Help this week: Wednesdy, 8-9 pm in NSC 128/119 Sundy, 6:30-8 pm in CCLIR 468 Announcements

More information

Math& 152 Section Integration by Parts

Math& 152 Section Integration by Parts Mth& 5 Section 7. - Integrtion by Prts Integrtion by prts is rule tht trnsforms the integrl of the product of two functions into other (idelly simpler) integrls. Recll from Clculus I tht given two differentible

More information

ELECTRO - MAGNETIC INDUCTION

ELECTRO - MAGNETIC INDUCTION NTRODUCTON LCTRO - MAGNTC NDUCTON Whenee mgnetic flu linked with cicuit chnges, n e.m.f. is induced in the cicuit. f the cicuit is closed, cuent is lso induced in it. The e.m.f. nd cuent poduced lsts s

More information

SOLUTIONS FOR ANALYSIS QUALIFYING EXAM, FALL (1 + µ(f n )) f(x) =. But we don t need the exact bound.) Set

SOLUTIONS FOR ANALYSIS QUALIFYING EXAM, FALL (1 + µ(f n )) f(x) =. But we don t need the exact bound.) Set SOLUTIONS FOR ANALYSIS QUALIFYING EXAM, FALL 28 Nottion: N {, 2, 3,...}. (Tht is, N.. Let (X, M be mesurble spce with σ-finite positive mesure µ. Prove tht there is finite positive mesure ν on (X, M such

More information

Properties of the Riemann Integral

Properties of the Riemann Integral Properties of the Riemnn Integrl Jmes K. Peterson Deprtment of Biologicl Sciences nd Deprtment of Mthemticl Sciences Clemson University Februry 15, 2018 Outline 1 Some Infimum nd Supremum Properties 2

More information

Math 554 Integration

Math 554 Integration Mth 554 Integrtion Hndout #9 4/12/96 Defn. A collection of n + 1 distinct points of the intervl [, b] P := {x 0 = < x 1 < < x i 1 < x i < < b =: x n } is clled prtition of the intervl. In this cse, we

More information

Plane Wave Expansion Method (PWEM)

Plane Wave Expansion Method (PWEM) /15/18 Instucto D. Rymond Rumpf (915) 747 6958 cumpf@utep.edu EE 5337 Computtionl Electomgnetics Lectue #19 Plne Wve Expnsion Method (PWEM) Lectue 19 These notes my contin copyighted mteil obtined unde

More information

Exam 2, Mathematics 4701, Section ETY6 6:05 pm 7:40 pm, March 31, 2016, IH-1105 Instructor: Attila Máté 1

Exam 2, Mathematics 4701, Section ETY6 6:05 pm 7:40 pm, March 31, 2016, IH-1105 Instructor: Attila Máté 1 Exm, Mthemtics 471, Section ETY6 6:5 pm 7:4 pm, Mrch 1, 16, IH-115 Instructor: Attil Máté 1 17 copies 1. ) Stte the usul sufficient condition for the fixed-point itertion to converge when solving the eqution

More information

D-STABLE ROBUST RELIABLE CONTROL FOR UNCERTAIN DELTA OPERATOR SYSTEMS

D-STABLE ROBUST RELIABLE CONTROL FOR UNCERTAIN DELTA OPERATOR SYSTEMS Jounl of Theoeticl nd Applied nfomtion Technology 8 th Febuy 3. Vol. 48 No.3 5-3 JATT & LLS. All ights eseved. SSN: 99-8645 www.jtit.og E-SSN: 87-395 D-STABLE ROBUST RELABLE CONTROL FOR UNCERTAN DELTA

More information

3.1 Magnetic Fields. Oersted and Ampere

3.1 Magnetic Fields. Oersted and Ampere 3.1 Mgnetic Fields Oested nd Ampee The definition of mgnetic induction, B Fields of smll loop (dipole) Mgnetic fields in mtte: ) feomgnetism ) mgnetiztion, (M ) c) mgnetic susceptiility, m d) mgnetic field,

More information

Lectures # He-like systems. October 31 November 4,6

Lectures # He-like systems. October 31 November 4,6 Lectue #5-7 7 Octoe 3 oveme 4,6 Self-conitent field Htee-Foc eqution: He-lie ytem Htee-Foc eqution: cloed-hell hell ytem Chpte 3, pge 6-77, Lectue on Atomic Phyic He-lie ytem H (, h ( + h ( + h ( Z Z:

More information

Lecture 14: Quadrature

Lecture 14: Quadrature Lecture 14: Qudrture This lecture is concerned with the evlution of integrls fx)dx 1) over finite intervl [, b] The integrnd fx) is ssumed to be rel-vlues nd smooth The pproximtion of n integrl by numericl

More information

6. Gravitation. 6.1 Newton's law of Gravitation

6. Gravitation. 6.1 Newton's law of Gravitation Gvittion / 1 6.1 Newton's lw of Gvittion 6. Gvittion Newton's lw of gvittion sttes tht evey body in this univese ttcts evey othe body with foce, which is diectly popotionl to the poduct of thei msses nd

More information

KOEBE DOMAINS FOR THE CLASSES OF FUNCTIONS WITH RANGES INCLUDED IN GIVEN SETS

KOEBE DOMAINS FOR THE CLASSES OF FUNCTIONS WITH RANGES INCLUDED IN GIVEN SETS Jounal of Applied Analysis Vol. 14, No. 1 2008), pp. 43 52 KOEBE DOMAINS FOR THE CLASSES OF FUNCTIONS WITH RANGES INCLUDED IN GIVEN SETS L. KOCZAN and P. ZAPRAWA Received Mach 12, 2007 and, in evised fom,

More information

Numerical Integration

Numerical Integration Chpter 5 Numericl Integrtion Numericl integrtion is the study of how the numericl vlue of n integrl cn be found. Methods of function pproximtion discussed in Chpter??, i.e., function pproximtion vi the

More information

On the integration of the equations of hydrodynamics

On the integration of the equations of hydrodynamics Uebe die Integation de hydodynamischen Gleichungen J f eine u angew Math 56 (859) -0 On the integation of the equations of hydodynamics (By A Clebsch at Calsuhe) Tanslated by D H Delphenich In a pevious

More information

7.5-Determinants in Two Variables

7.5-Determinants in Two Variables 7.-eteminnts in Two Vibles efinition of eteminnt The deteminnt of sque mti is el numbe ssocited with the mti. Eve sque mti hs deteminnt. The deteminnt of mti is the single ent of the mti. The deteminnt

More information

Lecture 11: Potential Gradient and Capacitor Review:

Lecture 11: Potential Gradient and Capacitor Review: Lectue 11: Potentil Gdient nd Cpcito Review: Two wys to find t ny point in spce: Sum o Integte ove chges: q 1 1 q 2 2 3 P i 1 q i i dq q 3 P 1 dq xmple of integting ove distiution: line of chge ing of

More information

Journal of Inequalities in Pure and Applied Mathematics

Journal of Inequalities in Pure and Applied Mathematics Jounal of Inequalities in Pue and Applied Mathematics COEFFICIENT INEQUALITY FOR A FUNCTION WHOSE DERIVATIVE HAS A POSITIVE REAL PART S. ABRAMOVICH, M. KLARIČIĆ BAKULA AND S. BANIĆ Depatment of Mathematics

More information

Physics 1502: Lecture 2 Today s Agenda

Physics 1502: Lecture 2 Today s Agenda 1 Lectue 1 Phsics 1502: Lectue 2 Tod s Agend Announcements: Lectues posted on: www.phs.uconn.edu/~cote/ HW ssignments, solutions etc. Homewok #1: On Mstephsics this Fid Homewoks posted on Msteingphsics

More information