CS246: Mining Massive Datasets Jure Leskovec, Stanford University

Size: px
Start display at page:

Download "CS246: Mining Massive Datasets Jure Leskovec, Stanford University"

Transcription

1 CS246: Mining Massive Datasets Jure Leskovec, Stanford University

2 2/7/2012 Jure Leskovec, Stanford C246: Mining Massive Datasets 2 Web pages are not equally important vs. We already know: Since there is large diversity in the connectivity of the webgraph we can rank the pages by the link structure vs.

3 2/7/2012 Jure Leskovec, Stanford C246: Mining Massive Datasets 3 We will cover the following Link Analysis approaches to computing importances of nodes in a graph: Page Rank Hubs and Authorities (HITS) Topic-Specific (Personalized) Page Rank Web Spam Detection Algorithms

4 2/7/2012 Jure Leskovec, Stanford C246: Mining Massive Datasets 4 Idea: Links as votes Page is more important if it has more links In-coming links? Out-going links? Think of in-links as votes: has 23,400 inlinks has 1 inlink Are all in-links are equal? Links from important pages count more Recursive question!

5 2/7/2012 Jure Leskovec, Stanford C246: Mining Massive Datasets 5 Each link s vote is proportional to the importance of its source page If page p with importance x has n out-links, each link gets x/n votes Page p s own importance is the sum of the votes on its in-links p

6 2/7/2012 Jure Leskovec, Stanford C246: Mining Massive Datasets 6 A vote from an important page is worth more A page is important if it is pointed to by other important pages Define a rank r j for node j r j = i j r i d out (i) a/2 a The web in 1839 a/2 y/2 y y/2 m Flow equations: r y = r y /2 + r a /2 r a = r y /2 + r m r m = r a /2 m

7 2/7/2012 Jure Leskovec, Stanford C246: Mining Massive Datasets 7 3 equations, 3 unknowns, no constants No unique solution All solutions equivalent modulo scale factor Additional constraint forces uniqueness y + a + m = 1 y = 2/5, a = 2/5, m = 1/5 Flow equations: r y = r y /2 + r a /2 r a = r y /2 + r m r m = r a /2 Gaussian elimination method works for small examples, but we need a better method for large web-size graphs

8 2/7/2012 Jure Leskovec, Stanford C246: Mining Massive Datasets 8 Stochastic adjacency matrix M Let page j has d j out-links If j i, then M ij = 1/d j else M ij = 0 M is a column stochastic matrix Columns sum to 1 Rank vector r: vector with an entry per page r i is the importance score of page i i r i = 1 The flow equations can be written r = M r

9 2/7/2012 Jure Leskovec, Stanford C246: Mining Massive Datasets 9 Suppose page j links to 3 pages, including i j i 1/3 = i M r r

10 2/7/2012 Jure Leskovec, Stanford C246: Mining Massive Datasets 10 The flow equations can be written r = M r So the rank vector is an eigenvector of the stochastic web matrix In fact, its first or principal eigenvector, with corresponding eigenvalue 1

11 2/7/2012 Jure Leskovec, Stanford C246: Mining Massive Datasets 11 a y m y a m y ½ ½ 0 a ½ 0 1 m 0 ½ 0 r = Mr r y = r y /2 + r a /2 r a = r y /2 + r m r m = r a /2 y ½ ½ 0 y a = ½ 0 1 a m 0 ½ 0 m

12 2/7/2012 Jure Leskovec, Stanford C246: Mining Massive Datasets 12 Given a web graph with n nodes, where the nodes are pages and edges are hyperlinks Power iteration: a simple iterative scheme Suppose there are N web pages Initialize: r (0) = [1/N,.,1/N] T Iterate: r (t+1) = M r (t) Stop when r (t+1) r (t) 1 < ε x 1 = 1 i N x i is the L1 norm Can use any other vector norm e.g., Euclidean r ( t+ 1) j = i j ( t) i r d d i. out-degree of node i i

13 2/7/2012 Jure Leskovec, Stanford C246: Mining Massive Datasets 13 Power Iteration: Set r j = 1/N r j = i j r i d i And iterate r i = j M ij r j Example: r y 1/3 1/3 5/12 9/24 6/15 r a = 1/3 3/6 1/3 11/24 6/15 r m 1/3 1/6 3/12 1/6 3/15 Iteration 0, 1, 2, a y m y a m y ½ ½ 0 a ½ 0 1 m 0 ½ 0 r y = r y /2 + r a /2 r a = r y /2 + r m r m = r a /2

14 2/7/2012 Jure Leskovec, Stanford C246: Mining Massive Datasets 14 Imagine a random web surfer: At any time t, surfer is on some page u At time t+1, the surfer follows an out-link from u uniformly at random Ends up on some page v linked from u Process repeats indefinitely Let: p(t) vector whose i th coordinate is the prob. that the surfer is at page i at time t p(t) is a probability distribution over pages r j i 1 i 2 i 3 = j i j d out ri (i)

15 2/7/2012 Jure Leskovec, Stanford C246: Mining Massive Datasets 15 Where is the surfer at time t+1? Follows a link uniformly at random p(t+1) = M p(t) Suppose the random walk reaches a state p(t+1) = M p(t) = p(t) then p(t) is stationary distribution of a random walk Our rank vector r satisfies r = M r So, it is a stationary distribution for the random walk i 1 i 2 i 3 j p( t + 1) = M p( t)

16 2/7/2012 Jure Leskovec, Stanford C246: Mining Massive Datasets 16 r ( t+ 1) j = i j r ( t) i d i or equivalently r = Mr Does this converge? Does it converge to what we want? Are results reasonable?

17 2/7/2012 Jure Leskovec, Stanford C246: Mining Massive Datasets 17 a b Example: r a = r b Iteration 0, 1, 2, r ( t+ 1) j = i j r ( t) i d i

18 2/7/2012 Jure Leskovec, Stanford C246: Mining Massive Datasets 18 a b Example: r a = r b r ( t+ 1) j = i j r ( t) i d i Iteration 0, 1, 2,

19 2/7/2012 Jure Leskovec, Stanford C246: Mining Massive Datasets 19 2 problems: Some pages are dead ends (have no out-links) Such pages cause importance to leak out Spider traps (all out links are within the group) Eventually spider traps absorb all importance

20 2/7/2012 Jure Leskovec, Stanford C246: Mining Massive Datasets 20 Power Iteration: Set r j = 1 r j = i j r i d i And iterate a y m y a m y ½ ½ 0 a ½ 0 0 m 0 ½ 1 r y = r y /2 + r a /2 r a = r y /2 Example: r y 1/3 2/6 3/12 5/24 0 r a = 1/3 1/6 2/12 3/24 0 r m 1/3 3/6 7/12 16/24 1 Iteration 0, 1, 2, r m = r a /2 + r m

21 2/7/2012 Jure Leskovec, Stanford C246: Mining Massive Datasets 21 The Google solution for spider traps: At each time step, the random surfer has two options: With probability β, follow a link at random With probability 1-β, jump to some page uniformly at random Common values for β are in the range 0.8 to 0.9 Surfer will teleport out of spider trap within a few time steps y y a m a m

22 2/7/2012 Jure Leskovec, Stanford C246: Mining Massive Datasets 22 Power Iteration: Set r j = 1 r j = i j r i d i And iterate Example: r y 1/3 2/6 3/12 5/24 0 r a = 1/3 1/6 2/12 3/24 0 r m 1/3 1/6 1/12 2/24 0 Iteration 0, 1, 2, a y m y a m y ½ ½ 0 a ½ 0 0 m 0 ½ 0 r y = r y /2 + r a /2 r a = r y /2 r m = r a /2

23 2/7/2012 Jure Leskovec, Stanford C246: Mining Massive Datasets 23 Teleports: Follow random teleport links with probability 1.0 from dead-ends Adjust matrix accordingly y y a m a m y a m y ½ ½ 0 a ½ 0 0 m 0 ½ 0 y a m y ½ ½ ⅓ a ½ 0 ⅓ m 0 ½ ⅓

24 2/7/2012 Jure Leskovec, Stanford C246: Mining Massive Datasets 24 r + = Mr ( t 1) ( t ) Markov Chains Set of states X Transition matrix P where P ij = P(X t =i X t-1 =j) π specifying the probability of being at each state x X Goal is to find π such that π = P π

25 2/7/2012 Jure Leskovec, Stanford C246: Mining Massive Datasets 25 Theory of Markov chains Fact: For any start vector, the power method applied to a Markov transition matrix P will converge to a unique positive stationary vector as long as P is stochastic, irreducible and aperiodic.

26 2/7/2012 Jure Leskovec, Stanford C246: Mining Massive Datasets 26 Stochastic: Every column sums to 1 A possible solution: Add green links S = M + a T ) a y m y a m y ½ ½ 1/3 a ½ 0 1/3 m 0 ½ 1/3 1 ( 1 n a i =1 if node i has out deg 0, =0 else 1 vector of all 1s r y = r y /2 + r a /2 + r m /3 r a = r y /2+ r m /3 r m = r a /2 + r m /3

27 2/7/2012 Jure Leskovec, Stanford C246: Mining Massive Datasets 27 A chain is periodic if there exists k > 1 such that the interval between two visits to some state s is always a multiple of k. A possible solution: Add green links y a m

28 2/7/2012 Jure Leskovec, Stanford C246: Mining Massive Datasets 28 From any state, there is a non-zero probability of going from any one state to any another A possible solution: Add green links y a m

29 2/7/2012 Jure Leskovec, Stanford C246: Mining Massive Datasets 29 Google s solution that does it all: Makes M stochastic, aperiodic, irreducible At each step, random surfer has two options: With probability 1-β, follow a link at random With probability β, jump to some random page PageRank equation [Brin-Page, 98] r j = (1 β) r i i j d i Assuming we follow random teleport links with probability 1.0 from dead-ends + β 1 n d i out-degree of node i

30 2/7/2012 Jure Leskovec, Stanford C246: Mining Massive Datasets 30 PageRank equation [Brin-Page, 98] r j = (1 β) r i d i i j The Google Matrix A: + β 1 n A = 1 β S + β 1 1 1T n G is stochastic, aperiodic and irreducible, so r (t+1) = A r (t) What is β? In practice β =0.15 (make 5 steps and jump)

31 2/7/2012 Jure Leskovec, Stanford C246: Mining Massive Datasets 31 y 0.8 ½+0.2 ⅓ S 1/2 1/ / /2 1 1/n 1 1 T 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 a m ⅓ y 7/15 7/15 1/15 a 7/15 1/15 1/15 m 1/15 7/15 13/15 A y a = m 1/3 1/3 1/ /33 5/33 21/33

32 Suppose there are N pages Consider a page j, with set of out-links O(j) We have M ij = 1/ O(j) when j i and M ij = 0 otherwise The random teleport is equivalent to Adding a teleport link from j to every other page with probability (1-β)/N Reducing the probability of following each out-link from 1/ O(j) to β/ O(j) Equivalent: Tax each page a fraction (1-β) of its score and redistribute evenly 2/7/2012 Jure Leskovec, Stanford C246: Mining Massive Datasets 32

33 2/7/2012 Jure Leskovec, Stanford C246: Mining Massive Datasets 33 Construct the N x N matrix A as follows A ij = β M ij + (1-β)/N Verify that A is a stochastic matrix The page rank vector r is the principal eigenvector of this matrix A satisfying r = A r Equivalently, r is the stationary distribution of the random walk with teleports

34 2/7/2012 Jure Leskovec, Stanford C246: Mining Massive Datasets 34 Key step is matrix-vector multiplication r new = A r old Easy if we have enough main memory to hold A, r old, r new Say N = 1 billion pages We need 4 bytes for each entry (say) 2 billion entries for vectors, approx 8GB Matrix A has N 2 entries is a large number! A = A = β M + (1-β) [1/N] NxN ½ ½ 0 ½ ½ = 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 7/15 7/15 1/15 7/15 1/15 1/15 1/15 7/15 13/15

35 2/7/2012 Jure Leskovec, Stanford C246: Mining Massive Datasets 35 r = A r, where A ii = β M ii + 1 β N r i = j=1 A ii r j r i = N β M ii + 1 β j=1 r N j = N β M ii r j + 1 β j=1 N r N j=1 j = N β M ii r j + 1 β j=1, since r N j = 1 So, r = β M r + 1 β N N N [x] N a vector of length N with all entries x

36 2/7/2012 Jure Leskovec, Stanford C246: Mining Massive Datasets 36 We can rearrange the PageRank equation r = ββ r + 1 β N N [(1-β)/N] N is an N-vector with all entries (1-β)/N M is a sparse matrix! 10 links per node, approx 10N entries So in each iteration, we need to: Compute r new = β M r old Add a constant value (1-β)/N to each entry in r new

37 2/7/2012 Jure Leskovec, Stanford C246: Mining Massive Datasets 37 Encode sparse matrix using only nonzero entries Space proportional roughly to number of links Say 10N, or 4*10*1 billion = 40GB Still won t fit in memory, but will fit on disk source node degree destination nodes 0 3 1, 5, , 64, 113, 117, , 23

38 Assume enough RAM to fit r new into memory Store r old and matrix M on disk Then 1 step of power-iteration is: Initialize all entries of r new to (1-β)/N For each page p (of out-degree n): Read into memory: p, n, dest 1,,dest n, r old (p) for j = 1 n: r new (dest j ) += β r old (p) / n r new src degree destination 0 3 1, 5, , 64, 113, , 23 2/7/2012 Jure Leskovec, Stanford C246: Mining Massive Datasets 38 r old

39 2/7/2012 Jure Leskovec, Stanford C246: Mining Massive Datasets 39 Assume enough RAM to fit r new into memory Store r old and matrix M on disk In each iteration, we have to: Read r old and M Write r new back to disk IO cost = 2 r + M Question: What if we could not even fit r new in memory?

40 2/7/2012 Jure Leskovec, Stanford C246: Mining Massive Datasets r new src degree destination 0 4 0, 1, 3, , , 4 r old

41 2/7/2012 Jure Leskovec, Stanford C246: Mining Massive Datasets 41 Similar to nested-loop join in databases Break r new into k blocks that fit in memory Scan M and r old once for each block k scans of M and r old k( M + r ) + r = k M + (k+1) r Can we do better? Hint: M is much bigger than r (approx 10-20x), so we must avoid reading it k times per iteration

42 2/7/2012 Jure Leskovec, Stanford C246: Mining Massive Datasets r new src degree destination 0 4 0, r old

43 2/7/2012 Jure Leskovec, Stanford C246: Mining Massive Datasets 43 Break M into stripes Each stripe contains only destination nodes in the corresponding block of r new Some additional overhead per stripe But it is usually worth it Cost per iteration M (1+ε) + (k+1) r

44 2/7/2012 Jure Leskovec, Stanford C246: Mining Massive Datasets 44 Measures generic popularity of a page Biased against topic-specific authorities Solution: Topic-Specific PageRank (next) Uses a single measure of importance Other models e.g., hubs-and-authorities Solution: Hubs-and-Authorities (next) Susceptible to Link spam Artificial link topographies created in order to boost page rank Solution: TrustRank (next)

CS246: Mining Massive Datasets Jure Leskovec, Stanford University.

CS246: Mining Massive Datasets Jure Leskovec, Stanford University. CS246: Mining Massive Datasets Jure Leskovec, Stanford University http://cs246.stanford.edu What is the structure of the Web? How is it organized? 2/7/2011 Jure Leskovec, Stanford C246: Mining Massive

More information

Slides based on those in:

Slides based on those in: Spyros Kontogiannis & Christos Zaroliagis Slides based on those in: http://www.mmds.org High dim. data Graph data Infinite data Machine learning Apps Locality sensitive hashing PageRank, SimRank Filtering

More information

Slide source: Mining of Massive Datasets Jure Leskovec, Anand Rajaraman, Jeff Ullman Stanford University.

Slide source: Mining of Massive Datasets Jure Leskovec, Anand Rajaraman, Jeff Ullman Stanford University. Slide source: Mining of Massive Datasets Jure Leskovec, Anand Rajaraman, Jeff Ullman Stanford University http://www.mmds.org #1: C4.5 Decision Tree - Classification (61 votes) #2: K-Means - Clustering

More information

Link Mining PageRank. From Stanford C246

Link Mining PageRank. From Stanford C246 Link Mining PageRank From Stanford C246 Broad Question: How to organize the Web? First try: Human curated Web dictionaries Yahoo, DMOZ LookSmart Second try: Web Search Information Retrieval investigates

More information

Data and Algorithms of the Web

Data and Algorithms of the Web Data and Algorithms of the Web Link Analysis Algorithms Page Rank some slides from: Anand Rajaraman, Jeffrey D. Ullman InfoLab (Stanford University) Link Analysis Algorithms Page Rank Hubs and Authorities

More information

CS345a: Data Mining Jure Leskovec and Anand Rajaraman Stanford University

CS345a: Data Mining Jure Leskovec and Anand Rajaraman Stanford University CS345a: Data Mining Jure Leskovec and Anand Rajaraman Stanford University TheFind.com Large set of products (~6GB compressed) For each product A=ributes Related products Craigslist About 3 weeks of data

More information

CS6220: DATA MINING TECHNIQUES

CS6220: DATA MINING TECHNIQUES CS6220: DATA MINING TECHNIQUES Mining Graph/Network Data Instructor: Yizhou Sun yzsun@ccs.neu.edu November 16, 2015 Methods to Learn Classification Clustering Frequent Pattern Mining Matrix Data Decision

More information

Thanks to Jure Leskovec, Stanford and Panayiotis Tsaparas, Univ. of Ioannina for slides

Thanks to Jure Leskovec, Stanford and Panayiotis Tsaparas, Univ. of Ioannina for slides Thanks to Jure Leskovec, Stanford and Panayiotis Tsaparas, Univ. of Ioannina for slides Web Search: How to Organize the Web? Ranking Nodes on Graphs Hubs and Authorities PageRank How to Solve PageRank

More information

Thanks to Jure Leskovec, Stanford and Panayiotis Tsaparas, Univ. of Ioannina for slides

Thanks to Jure Leskovec, Stanford and Panayiotis Tsaparas, Univ. of Ioannina for slides Thanks to Jure Leskovec, Stanford and Panayiotis Tsaparas, Univ. of Ioannina for slides Web Search: How to Organize the Web? Ranking Nodes on Graphs Hubs and Authorities PageRank How to Solve PageRank

More information

CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University

CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University http://cs224w.stanford.edu How to organize/navigate it? First try: Human curated Web directories Yahoo, DMOZ, LookSmart

More information

CS6220: DATA MINING TECHNIQUES

CS6220: DATA MINING TECHNIQUES CS6220: DATA MINING TECHNIQUES Mining Graph/Network Data Instructor: Yizhou Sun yzsun@ccs.neu.edu March 16, 2016 Methods to Learn Classification Clustering Frequent Pattern Mining Matrix Data Decision

More information

CS249: ADVANCED DATA MINING

CS249: ADVANCED DATA MINING CS249: ADVANCED DATA MINING Graph and Network Instructor: Yizhou Sun yzsun@cs.ucla.edu May 31, 2017 Methods Learnt Classification Clustering Vector Data Text Data Recommender System Decision Tree; Naïve

More information

Google PageRank. Francesco Ricci Faculty of Computer Science Free University of Bozen-Bolzano

Google PageRank. Francesco Ricci Faculty of Computer Science Free University of Bozen-Bolzano Google PageRank Francesco Ricci Faculty of Computer Science Free University of Bozen-Bolzano fricci@unibz.it 1 Content p Linear Algebra p Matrices p Eigenvalues and eigenvectors p Markov chains p Google

More information

Introduction to Data Mining

Introduction to Data Mining Introduction to Data Mining Lecture #9: Link Analysis Seoul National University 1 In This Lecture Motivation for link analysis Pagerank: an important graph ranking algorithm Flow and random walk formulation

More information

Link Analysis. Stony Brook University CSE545, Fall 2016

Link Analysis. Stony Brook University CSE545, Fall 2016 Link Analysis Stony Brook University CSE545, Fall 2016 The Web, circa 1998 The Web, circa 1998 The Web, circa 1998 Match keywords, language (information retrieval) Explore directory The Web, circa 1998

More information

0.1 Naive formulation of PageRank

0.1 Naive formulation of PageRank PageRank is a ranking system designed to find the best pages on the web. A webpage is considered good if it is endorsed (i.e. linked to) by other good webpages. The more webpages link to it, and the more

More information

Online Social Networks and Media. Link Analysis and Web Search

Online Social Networks and Media. Link Analysis and Web Search Online Social Networks and Media Link Analysis and Web Search How to Organize the Web First try: Human curated Web directories Yahoo, DMOZ, LookSmart How to organize the web Second try: Web Search Information

More information

DATA MINING LECTURE 13. Link Analysis Ranking PageRank -- Random walks HITS

DATA MINING LECTURE 13. Link Analysis Ranking PageRank -- Random walks HITS DATA MINING LECTURE 3 Link Analysis Ranking PageRank -- Random walks HITS How to organize the web First try: Manually curated Web Directories How to organize the web Second try: Web Search Information

More information

Statistical Problem. . We may have an underlying evolving system. (new state) = f(old state, noise) Input data: series of observations X 1, X 2 X t

Statistical Problem. . We may have an underlying evolving system. (new state) = f(old state, noise) Input data: series of observations X 1, X 2 X t Markov Chains. Statistical Problem. We may have an underlying evolving system (new state) = f(old state, noise) Input data: series of observations X 1, X 2 X t Consecutive speech feature vectors are related

More information

Online Social Networks and Media. Link Analysis and Web Search

Online Social Networks and Media. Link Analysis and Web Search Online Social Networks and Media Link Analysis and Web Search How to Organize the Web First try: Human curated Web directories Yahoo, DMOZ, LookSmart How to organize the web Second try: Web Search Information

More information

Link Analysis Ranking

Link Analysis Ranking Link Analysis Ranking How do search engines decide how to rank your query results? Guess why Google ranks the query results the way it does How would you do it? Naïve ranking of query results Given query

More information

1998: enter Link Analysis

1998: enter Link Analysis 1998: enter Link Analysis uses hyperlink structure to focus the relevant set combine traditional IR score with popularity score Page and Brin 1998 Kleinberg Web Information Retrieval IR before the Web

More information

A Note on Google s PageRank

A Note on Google s PageRank A Note on Google s PageRank According to Google, google-search on a given topic results in a listing of most relevant web pages related to the topic. Google ranks the importance of webpages according to

More information

Computing PageRank using Power Extrapolation

Computing PageRank using Power Extrapolation Computing PageRank using Power Extrapolation Taher Haveliwala, Sepandar Kamvar, Dan Klein, Chris Manning, and Gene Golub Stanford University Abstract. We present a novel technique for speeding up the computation

More information

PageRank. Ryan Tibshirani /36-662: Data Mining. January Optional reading: ESL 14.10

PageRank. Ryan Tibshirani /36-662: Data Mining. January Optional reading: ESL 14.10 PageRank Ryan Tibshirani 36-462/36-662: Data Mining January 24 2012 Optional reading: ESL 14.10 1 Information retrieval with the web Last time we learned about information retrieval. We learned how to

More information

PageRank algorithm Hubs and Authorities. Data mining. Web Data Mining PageRank, Hubs and Authorities. University of Szeged.

PageRank algorithm Hubs and Authorities. Data mining. Web Data Mining PageRank, Hubs and Authorities. University of Szeged. Web Data Mining PageRank, University of Szeged Why ranking web pages is useful? We are starving for knowledge It earns Google a bunch of money. How? How does the Web looks like? Big strongly connected

More information

Jeffrey D. Ullman Stanford University

Jeffrey D. Ullman Stanford University Jeffrey D. Ullman Stanford University We ve had our first HC cases. Please, please, please, before you do anything that might violate the HC, talk to me or a TA to make sure it is legitimate. It is much

More information

CS 277: Data Mining. Mining Web Link Structure. CS 277: Data Mining Lectures Analyzing Web Link Structure Padhraic Smyth, UC Irvine

CS 277: Data Mining. Mining Web Link Structure. CS 277: Data Mining Lectures Analyzing Web Link Structure Padhraic Smyth, UC Irvine CS 277: Data Mining Mining Web Link Structure Class Presentations In-class, Tuesday and Thursday next week 2-person teams: 6 minutes, up to 6 slides, 3 minutes/slides each person 1-person teams 4 minutes,

More information

IR: Information Retrieval

IR: Information Retrieval / 44 IR: Information Retrieval FIB, Master in Innovation and Research in Informatics Slides by Marta Arias, José Luis Balcázar, Ramon Ferrer-i-Cancho, Ricard Gavaldá Department of Computer Science, UPC

More information

Link Analysis. Leonid E. Zhukov

Link Analysis. Leonid E. Zhukov Link Analysis Leonid E. Zhukov School of Data Analysis and Artificial Intelligence Department of Computer Science National Research University Higher School of Economics Structural Analysis and Visualization

More information

Jeffrey D. Ullman Stanford University

Jeffrey D. Ullman Stanford University Jeffrey D. Ullman Stanford University 2 Web pages are important if people visit them a lot. But we can t watch everybody using the Web. A good surrogate for visiting pages is to assume people follow links

More information

Lecture 12: Link Analysis for Web Retrieval

Lecture 12: Link Analysis for Web Retrieval Lecture 12: Link Analysis for Web Retrieval Trevor Cohn COMP90042, 2015, Semester 1 What we ll learn in this lecture The web as a graph Page-rank method for deriving the importance of pages Hubs and authorities

More information

Web Ranking. Classification (manual, automatic) Link Analysis (today s lesson)

Web Ranking. Classification (manual, automatic) Link Analysis (today s lesson) Link Analysis Web Ranking Documents on the web are first ranked according to their relevance vrs the query Additional ranking methods are needed to cope with huge amount of information Additional ranking

More information

Information Retrieval and Search. Web Linkage Mining. Miłosz Kadziński

Information Retrieval and Search. Web Linkage Mining. Miłosz Kadziński Web Linkage Analysis D24 D4 : Web Linkage Mining Miłosz Kadziński Institute of Computing Science Poznan University of Technology, Poland www.cs.put.poznan.pl/mkadzinski/wpi Web mining: Web Mining Discovery

More information

Introduction to Search Engine Technology Introduction to Link Structure Analysis. Ronny Lempel Yahoo Labs, Haifa

Introduction to Search Engine Technology Introduction to Link Structure Analysis. Ronny Lempel Yahoo Labs, Haifa Introduction to Search Engine Technology Introduction to Link Structure Analysis Ronny Lempel Yahoo Labs, Haifa Outline Anchor-text indexing Mathematical Background Motivation for link structure analysis

More information

ECEN 689 Special Topics in Data Science for Communications Networks

ECEN 689 Special Topics in Data Science for Communications Networks ECEN 689 Special Topics in Data Science for Communications Networks Nick Duffield Department of Electrical & Computer Engineering Texas A&M University Lecture 8 Random Walks, Matrices and PageRank Graphs

More information

Link Analysis. Reference: Introduction to Information Retrieval by C. Manning, P. Raghavan, H. Schutze

Link Analysis. Reference: Introduction to Information Retrieval by C. Manning, P. Raghavan, H. Schutze Link Analysis Reference: Introduction to Information Retrieval by C. Manning, P. Raghavan, H. Schutze 1 The Web as a Directed Graph Page A Anchor hyperlink Page B Assumption 1: A hyperlink between pages

More information

Uncertainty and Randomization

Uncertainty and Randomization Uncertainty and Randomization The PageRank Computation in Google Roberto Tempo IEIIT-CNR Politecnico di Torino tempo@polito.it 1993: Robustness of Linear Systems 1993: Robustness of Linear Systems 16 Years

More information

Lab 8: Measuring Graph Centrality - PageRank. Monday, November 5 CompSci 531, Fall 2018

Lab 8: Measuring Graph Centrality - PageRank. Monday, November 5 CompSci 531, Fall 2018 Lab 8: Measuring Graph Centrality - PageRank Monday, November 5 CompSci 531, Fall 2018 Outline Measuring Graph Centrality: Motivation Random Walks, Markov Chains, and Stationarity Distributions Google

More information

Google Page Rank Project Linear Algebra Summer 2012

Google Page Rank Project Linear Algebra Summer 2012 Google Page Rank Project Linear Algebra Summer 2012 How does an internet search engine, like Google, work? In this project you will discover how the Page Rank algorithm works to give the most relevant

More information

Data Mining and Matrices

Data Mining and Matrices Data Mining and Matrices 10 Graphs II Rainer Gemulla, Pauli Miettinen Jul 4, 2013 Link analysis The web as a directed graph Set of web pages with associated textual content Hyperlinks between webpages

More information

Page rank computation HPC course project a.y

Page rank computation HPC course project a.y Page rank computation HPC course project a.y. 2015-16 Compute efficient and scalable Pagerank MPI, Multithreading, SSE 1 PageRank PageRank is a link analysis algorithm, named after Brin & Page [1], and

More information

How does Google rank webpages?

How does Google rank webpages? Linear Algebra Spring 016 How does Google rank webpages? Dept. of Internet and Multimedia Eng. Konkuk University leehw@konkuk.ac.kr 1 Background on search engines Outline HITS algorithm (Jon Kleinberg)

More information

STA141C: Big Data & High Performance Statistical Computing

STA141C: Big Data & High Performance Statistical Computing STA141C: Big Data & High Performance Statistical Computing Lecture 6: Numerical Linear Algebra: Applications in Machine Learning Cho-Jui Hsieh UC Davis April 27, 2017 Principal Component Analysis Principal

More information

Web Ranking. Classification (manual, automatic) Link Analysis (today s lesson)

Web Ranking. Classification (manual, automatic) Link Analysis (today s lesson) Link Analysis Web Ranking Documents on the web are first ranked according to their relevance vrs the query Additional ranking methods are needed to cope with huge amount of information Additional ranking

More information

IS4200/CS6200 Informa0on Retrieval. PageRank Con+nued. with slides from Hinrich Schütze and Chris6na Lioma

IS4200/CS6200 Informa0on Retrieval. PageRank Con+nued. with slides from Hinrich Schütze and Chris6na Lioma IS4200/CS6200 Informa0on Retrieval PageRank Con+nued with slides from Hinrich Schütze and Chris6na Lioma Exercise: Assump0ons underlying PageRank Assump0on 1: A link on the web is a quality signal the

More information

Lesson Plan. AM 121: Introduction to Optimization Models and Methods. Lecture 17: Markov Chains. Yiling Chen SEAS. Stochastic process Markov Chains

Lesson Plan. AM 121: Introduction to Optimization Models and Methods. Lecture 17: Markov Chains. Yiling Chen SEAS. Stochastic process Markov Chains AM : Introduction to Optimization Models and Methods Lecture 7: Markov Chains Yiling Chen SEAS Lesson Plan Stochastic process Markov Chains n-step probabilities Communicating states, irreducibility Recurrent

More information

Pr[positive test virus] Pr[virus] Pr[positive test] = Pr[positive test] = Pr[positive test]

Pr[positive test virus] Pr[virus] Pr[positive test] = Pr[positive test] = Pr[positive test] 146 Probability Pr[virus] = 0.00001 Pr[no virus] = 0.99999 Pr[positive test virus] = 0.99 Pr[positive test no virus] = 0.01 Pr[virus positive test] = Pr[positive test virus] Pr[virus] = 0.99 0.00001 =

More information

As it is not necessarily possible to satisfy this equation, we just ask for a solution to the more general equation

As it is not necessarily possible to satisfy this equation, we just ask for a solution to the more general equation Graphs and Networks Page 1 Lecture 2, Ranking 1 Tuesday, September 12, 2006 1:14 PM I. II. I. How search engines work: a. Crawl the web, creating a database b. Answer query somehow, e.g. grep. (ex. Funk

More information

Complex Social System, Elections. Introduction to Network Analysis 1

Complex Social System, Elections. Introduction to Network Analysis 1 Complex Social System, Elections Introduction to Network Analysis 1 Complex Social System, Network I person A voted for B A is more central than B if more people voted for A In-degree centrality index

More information

Inf 2B: Ranking Queries on the WWW

Inf 2B: Ranking Queries on the WWW Inf B: Ranking Queries on the WWW Kyriakos Kalorkoti School of Informatics University of Edinburgh Queries Suppose we have an Inverted Index for a set of webpages. Disclaimer Not really the scenario of

More information

How works. or How linear algebra powers the search engine. M. Ram Murty, FRSC Queen s Research Chair Queen s University

How works. or How linear algebra powers the search engine. M. Ram Murty, FRSC Queen s Research Chair Queen s University How works or How linear algebra powers the search engine M. Ram Murty, FRSC Queen s Research Chair Queen s University From: gomath.com/geometry/ellipse.php Metric mishap causes loss of Mars orbiter

More information

Mathematical Properties & Analysis of Google s PageRank

Mathematical Properties & Analysis of Google s PageRank Mathematical Properties & Analysis of Google s PageRank Ilse Ipsen North Carolina State University, USA Joint work with Rebecca M. Wills Cedya p.1 PageRank An objective measure of the citation importance

More information

Data Mining Recitation Notes Week 3

Data Mining Recitation Notes Week 3 Data Mining Recitation Notes Week 3 Jack Rae January 28, 2013 1 Information Retrieval Given a set of documents, pull the (k) most similar document(s) to a given query. 1.1 Setup Say we have D documents

More information

Math 304 Handout: Linear algebra, graphs, and networks.

Math 304 Handout: Linear algebra, graphs, and networks. Math 30 Handout: Linear algebra, graphs, and networks. December, 006. GRAPHS AND ADJACENCY MATRICES. Definition. A graph is a collection of vertices connected by edges. A directed graph is a graph all

More information

Today. Next lecture. (Ch 14) Markov chains and hidden Markov models

Today. Next lecture. (Ch 14) Markov chains and hidden Markov models Today (Ch 14) Markov chains and hidden Markov models Graphical representation Transition probability matrix Propagating state distributions The stationary distribution Next lecture (Ch 14) Markov chains

More information

The Google Markov Chain: convergence speed and eigenvalues

The Google Markov Chain: convergence speed and eigenvalues U.U.D.M. Project Report 2012:14 The Google Markov Chain: convergence speed and eigenvalues Fredrik Backåker Examensarbete i matematik, 15 hp Handledare och examinator: Jakob Björnberg Juni 2012 Department

More information

Link Analysis Information Retrieval and Data Mining. Prof. Matteo Matteucci

Link Analysis Information Retrieval and Data Mining. Prof. Matteo Matteucci Link Analysis Information Retrieval and Data Mining Prof. Matteo Matteucci Hyperlinks for Indexing and Ranking 2 Page A Hyperlink Page B Intuitions The anchor text might describe the target page B Anchor

More information

LINK ANALYSIS. Dr. Gjergji Kasneci Introduction to Information Retrieval WS

LINK ANALYSIS. Dr. Gjergji Kasneci Introduction to Information Retrieval WS LINK ANALYSIS Dr. Gjergji Kasneci Introduction to Information Retrieval WS 2012-13 1 Outline Intro Basics of probability and information theory Retrieval models Retrieval evaluation Link analysis Models

More information

Link Analysis & Ranking CS 224W

Link Analysis & Ranking CS 224W Link Analysis & Ranking CS 224W 1 How to Organize the Web? How to organize the Web? First try: Human curated Web directories Yahoo, DMOZ, LookSmart Second try: Web Search Information Retrieval attempts

More information

INTRODUCTION TO MCMC AND PAGERANK. Eric Vigoda Georgia Tech. Lecture for CS 6505

INTRODUCTION TO MCMC AND PAGERANK. Eric Vigoda Georgia Tech. Lecture for CS 6505 INTRODUCTION TO MCMC AND PAGERANK Eric Vigoda Georgia Tech Lecture for CS 6505 1 MARKOV CHAIN BASICS 2 ERGODICITY 3 WHAT IS THE STATIONARY DISTRIBUTION? 4 PAGERANK 5 MIXING TIME 6 PREVIEW OF FURTHER TOPICS

More information

MultiRank and HAR for Ranking Multi-relational Data, Transition Probability Tensors, and Multi-Stochastic Tensors

MultiRank and HAR for Ranking Multi-relational Data, Transition Probability Tensors, and Multi-Stochastic Tensors MultiRank and HAR for Ranking Multi-relational Data, Transition Probability Tensors, and Multi-Stochastic Tensors Michael K. Ng Centre for Mathematical Imaging and Vision and Department of Mathematics

More information

Web Structure Mining Nodes, Links and Influence

Web Structure Mining Nodes, Links and Influence Web Structure Mining Nodes, Links and Influence 1 Outline 1. Importance of nodes 1. Centrality 2. Prestige 3. Page Rank 4. Hubs and Authority 5. Metrics comparison 2. Link analysis 3. Influence model 1.

More information

INTRODUCTION TO MCMC AND PAGERANK. Eric Vigoda Georgia Tech. Lecture for CS 6505

INTRODUCTION TO MCMC AND PAGERANK. Eric Vigoda Georgia Tech. Lecture for CS 6505 INTRODUCTION TO MCMC AND PAGERANK Eric Vigoda Georgia Tech Lecture for CS 6505 1 MARKOV CHAIN BASICS 2 ERGODICITY 3 WHAT IS THE STATIONARY DISTRIBUTION? 4 PAGERANK 5 MIXING TIME 6 PREVIEW OF FURTHER TOPICS

More information

Graph Models The PageRank Algorithm

Graph Models The PageRank Algorithm Graph Models The PageRank Algorithm Anna-Karin Tornberg Mathematical Models, Analysis and Simulation Fall semester, 2013 The PageRank Algorithm I Invented by Larry Page and Sergey Brin around 1998 and

More information

Node and Link Analysis

Node and Link Analysis Node and Link Analysis Leonid E. Zhukov School of Applied Mathematics and Information Science National Research University Higher School of Economics 10.02.2014 Leonid E. Zhukov (HSE) Lecture 5 10.02.2014

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning Mark Schmidt University of British Columbia Winter 2019 Last Time: Monte Carlo Methods If we want to approximate expectations of random functions, E[g(x)] = g(x)p(x) or E[g(x)]

More information

Data Mining Techniques

Data Mining Techniques Data Mining Techniques CS 622 - Section 2 - Spring 27 Pre-final Review Jan-Willem van de Meent Feedback Feedback https://goo.gl/er7eo8 (also posted on Piazza) Also, please fill out your TRACE evaluations!

More information

Definition A finite Markov chain is a memoryless homogeneous discrete stochastic process with a finite number of states.

Definition A finite Markov chain is a memoryless homogeneous discrete stochastic process with a finite number of states. Chapter 8 Finite Markov Chains A discrete system is characterized by a set V of states and transitions between the states. V is referred to as the state space. We think of the transitions as occurring

More information

Analysis of Google s PageRank

Analysis of Google s PageRank Analysis of Google s PageRank Ilse Ipsen North Carolina State University Joint work with Rebecca M. Wills AN05 p.1 PageRank An objective measure of the citation importance of a web page [Brin & Page 1998]

More information

6.207/14.15: Networks Lectures 4, 5 & 6: Linear Dynamics, Markov Chains, Centralities

6.207/14.15: Networks Lectures 4, 5 & 6: Linear Dynamics, Markov Chains, Centralities 6.207/14.15: Networks Lectures 4, 5 & 6: Linear Dynamics, Markov Chains, Centralities 1 Outline Outline Dynamical systems. Linear and Non-linear. Convergence. Linear algebra and Lyapunov functions. Markov

More information

Extrapolation Methods for Accelerating PageRank Computations

Extrapolation Methods for Accelerating PageRank Computations Extrapolation Methods for Accelerating PageRank Computations Sepandar D. Kamvar Stanford University sdkamvar@stanford.edu Taher H. Haveliwala Stanford University taherh@cs.stanford.edu Christopher D. Manning

More information

MAE 298, Lecture 8 Feb 4, Web search and decentralized search on small-worlds

MAE 298, Lecture 8 Feb 4, Web search and decentralized search on small-worlds MAE 298, Lecture 8 Feb 4, 2008 Web search and decentralized search on small-worlds Search for information Assume some resource of interest is stored at the vertices of a network: Web pages Files in a file-sharing

More information

eigenvalues, markov matrices, and the power method

eigenvalues, markov matrices, and the power method eigenvalues, markov matrices, and the power method Slides by Olson. Some taken loosely from Jeff Jauregui, Some from Semeraro L. Olson Department of Computer Science University of Illinois at Urbana-Champaign

More information

The Second Eigenvalue of the Google Matrix

The Second Eigenvalue of the Google Matrix The Second Eigenvalue of the Google Matrix Taher H. Haveliwala and Sepandar D. Kamvar Stanford University {taherh,sdkamvar}@cs.stanford.edu Abstract. We determine analytically the modulus of the second

More information

Computational Economics and Finance

Computational Economics and Finance Computational Economics and Finance Part II: Linear Equations Spring 2016 Outline Back Substitution, LU and other decomposi- Direct methods: tions Error analysis and condition numbers Iterative methods:

More information

Applications. Nonnegative Matrices: Ranking

Applications. Nonnegative Matrices: Ranking Applications of Nonnegative Matrices: Ranking and Clustering Amy Langville Mathematics Department College of Charleston Hamilton Institute 8/7/2008 Collaborators Carl Meyer, N. C. State University David

More information

Lecture 15: MCMC Sanjeev Arora Elad Hazan. COS 402 Machine Learning and Artificial Intelligence Fall 2016

Lecture 15: MCMC Sanjeev Arora Elad Hazan. COS 402 Machine Learning and Artificial Intelligence Fall 2016 Lecture 15: MCMC Sanjeev Arora Elad Hazan COS 402 Machine Learning and Artificial Intelligence Fall 2016 Course progress Learning from examples Definition + fundamental theorem of statistical learning,

More information

CS47300: Web Information Search and Management

CS47300: Web Information Search and Management CS473: Web Information Search and Management Using Graph Structure for Retrieval Prof. Chris Clifton 24 September 218 Material adapted from slides created by Dr. Rong Jin (formerly Michigan State, now

More information

The Theory behind PageRank

The Theory behind PageRank The Theory behind PageRank Mauro Sozio Telecom ParisTech May 21, 2014 Mauro Sozio (LTCI TPT) The Theory behind PageRank May 21, 2014 1 / 19 A Crash Course on Discrete Probability Events and Probability

More information

On the mathematical background of Google PageRank algorithm

On the mathematical background of Google PageRank algorithm Working Paper Series Department of Economics University of Verona On the mathematical background of Google PageRank algorithm Alberto Peretti, Alberto Roveda WP Number: 25 December 2014 ISSN: 2036-2919

More information

Machine Learning CPSC 340. Tutorial 12

Machine Learning CPSC 340. Tutorial 12 Machine Learning CPSC 340 Tutorial 12 Random Walk on Graph Page Rank Algorithm Label Propagation on Graph Assume a strongly connected graph G = (V, A) Label Propagation on Graph Assume a strongly connected

More information

Degree Distribution: The case of Citation Networks

Degree Distribution: The case of Citation Networks Network Analysis Degree Distribution: The case of Citation Networks Papers (in almost all fields) refer to works done earlier on same/related topics Citations A network can be defined as Each node is

More information

Updating PageRank. Amy Langville Carl Meyer

Updating PageRank. Amy Langville Carl Meyer Updating PageRank Amy Langville Carl Meyer Department of Mathematics North Carolina State University Raleigh, NC SCCM 11/17/2003 Indexing Google Must index key terms on each page Robots crawl the web software

More information

PageRank: The Math-y Version (Or, What To Do When You Can t Tear Up Little Pieces of Paper)

PageRank: The Math-y Version (Or, What To Do When You Can t Tear Up Little Pieces of Paper) PageRank: The Math-y Version (Or, What To Do When You Can t Tear Up Little Pieces of Paper) In class, we saw this graph, with each node representing people who are following each other on Twitter: Our

More information

Faloutsos, Tong ICDE, 2009

Faloutsos, Tong ICDE, 2009 Large Graph Mining: Patterns, Tools and Case Studies Christos Faloutsos Hanghang Tong CMU Copyright: Faloutsos, Tong (29) 2-1 Outline Part 1: Patterns Part 2: Matrix and Tensor Tools Part 3: Proximity

More information

CS54701 Information Retrieval. Link Analysis. Luo Si. Department of Computer Science Purdue University. Borrowed Slides from Prof.

CS54701 Information Retrieval. Link Analysis. Luo Si. Department of Computer Science Purdue University. Borrowed Slides from Prof. CS54701 Information Retrieval Link Analysis Luo Si Department of Computer Science Purdue University Borrowed Slides from Prof. Rong Jin (MSU) Citation Analysis Web Structure Web is a graph Each web site

More information

CS145: Probability & Computing Lecture 18: Discrete Markov Chains, Equilibrium Distributions

CS145: Probability & Computing Lecture 18: Discrete Markov Chains, Equilibrium Distributions CS145: Probability & Computing Lecture 18: Discrete Markov Chains, Equilibrium Distributions Instructor: Erik Sudderth Brown University Computer Science April 14, 215 Review: Discrete Markov Chains Some

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning Mark Schmidt University of British Columbia Winter 2018 Last Time: Monte Carlo Methods If we want to approximate expectations of random functions, E[g(x)] = g(x)p(x) or E[g(x)]

More information

Data Mining Techniques

Data Mining Techniques Data Mining Techniques CS 6220 - Section 3 - Fall 2016 Lecture 21: Review Jan-Willem van de Meent Schedule Topics for Exam Pre-Midterm Probability Information Theory Linear Regression Classification Clustering

More information

1 Searching the World Wide Web

1 Searching the World Wide Web Hubs and Authorities in a Hyperlinked Environment 1 Searching the World Wide Web Because diverse users each modify the link structure of the WWW within a relatively small scope by creating web-pages on

More information

CS246: Mining Massive Datasets Jure Leskovec, Stanford University

CS246: Mining Massive Datasets Jure Leskovec, Stanford University CS246: Mining Massive Datasets Jure Leskovec, Stanford University http://cs246.stanford.edu 2/26/2013 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 2 More algorithms

More information

CS 188: Artificial Intelligence Spring Announcements

CS 188: Artificial Intelligence Spring Announcements CS 188: Artificial Intelligence Spring 2011 Lecture 18: HMMs and Particle Filtering 4/4/2011 Pieter Abbeel --- UC Berkeley Many slides over this course adapted from Dan Klein, Stuart Russell, Andrew Moore

More information

Node Centrality and Ranking on Networks

Node Centrality and Ranking on Networks Node Centrality and Ranking on Networks Leonid E. Zhukov School of Data Analysis and Artificial Intelligence Department of Computer Science National Research University Higher School of Economics Social

More information

Lecture 7 Mathematics behind Internet Search

Lecture 7 Mathematics behind Internet Search CCST907 Hidden Order in Daily Life: A Mathematical Perspective Lecture 7 Mathematics behind Internet Search Dr. S. P. Yung (907A) Dr. Z. Hua (907B) Department of Mathematics, HKU Outline Google is the

More information

Conditioning of the Entries in the Stationary Vector of a Google-Type Matrix. Steve Kirkland University of Regina

Conditioning of the Entries in the Stationary Vector of a Google-Type Matrix. Steve Kirkland University of Regina Conditioning of the Entries in the Stationary Vector of a Google-Type Matrix Steve Kirkland University of Regina June 5, 2006 Motivation: Google s PageRank algorithm finds the stationary vector of a stochastic

More information

Intelligent Data Analysis. PageRank. School of Computer Science University of Birmingham

Intelligent Data Analysis. PageRank. School of Computer Science University of Birmingham Intelligent Data Analysis PageRank Peter Tiňo School of Computer Science University of Birmingham Information Retrieval on the Web Most scoring methods on the Web have been derived in the context of Information

More information

Powerful tool for sampling from complicated distributions. Many use Markov chains to model events that arise in nature.

Powerful tool for sampling from complicated distributions. Many use Markov chains to model events that arise in nature. Markov Chains Markov chains: 2SAT: Powerful tool for sampling from complicated distributions rely only on local moves to explore state space. Many use Markov chains to model events that arise in nature.

More information

CS246: Mining Massive Data Sets Winter Only one late period is allowed for this homework (11:59pm 2/14). General Instructions

CS246: Mining Massive Data Sets Winter Only one late period is allowed for this homework (11:59pm 2/14). General Instructions CS246: Mining Massive Data Sets Winter 2017 Problem Set 2 Due 11:59pm February 9, 2017 Only one late period is allowed for this homework (11:59pm 2/14). General Instructions Submission instructions: These

More information

To Randomize or Not To

To Randomize or Not To To Randomize or Not To Randomize: Space Optimal Summaries for Hyperlink Analysis Tamás Sarlós, Eötvös University and Computer and Automation Institute, Hungarian Academy of Sciences Joint work with András

More information