Conceptual Exercises 11. In order of increasing magnitude of the net force (from smallest net force to biggest net force), it s C, then A, then B.

Size: px
Start display at page:

Download "Conceptual Exercises 11. In order of increasing magnitude of the net force (from smallest net force to biggest net force), it s C, then A, then B."

Transcription

1 Physics 140 Conceptual Questions 3. Rubbing the comb through your hair strips trons off of your hair and deposits them on the comb so that the comb acuires a net negative charge. When this negatively charged comb is brought near the bits of (trically neutral) paper, trons in the atoms making up the paper are repelled by the comb. These trons are thus a little bit farther away from the comb, on average, than the positively charged nuclei of the atoms in the paper. Therefore, the trical force of attraction between the comb and the positively charged nuclei is a little bit stronger than the trical force of repulsion between the comb and the trons surrounding the nuclei in the comb. This leads to a net force of attraction between the bits of paper and the comb. It s important to point out here that neither the trons in the paper nor the positively charged nuclei in the paper actually move appreciably throughout the paper. In a solid, the nuclei are held in fixed positions by very strong interatomic and intermolecular forces. The trons surrounding a particular nucleus are still constrained to the volume around that nucleus. The force of repulsion that the comb exerts on the trons is not enough to allow them to break free from this nucleus and go wandering off throughout the paper. Also, it s important to observe here that nothing in this process changes the net charge of the bits of paper. They remain trically neutral. Conceptual Exercises 11. In order of increasing magnitude of the net force (from smallest net force to biggest net force), it s C, then A, then B. Charge A experiences a force of attraction from charge B and from C. The magnitude of the net force on Charge A is therefore 5 ( ) = + = A d ( d ) 4d Charge B experiences a force of attraction from Charge A and a force of repulsion from Charge C. The magnitude of the net force on B is therefore ( ) = + = B d d d Charge C experiences a force of attraction from Charge A and a force of repulsion from Charge B. The magnitude of the net force on C is therefore 3 ( ) = = C d ( d ) 4d Comparing these three results, we see that the net force on C is the smallest. The net force on A is larger. The net force on B is largest. 4. Gauss s law relates the net tric flux through any surface to the net charge enclosed by the surface: Qencl Φ = ε0 So we just need to look at the surfaces A, B, C, and D and figure out the net charge enclosed by each. Looking at the surfaces, I find that the net charges enclosed are as follows: Surface A: Qencl =+ + =+ Surface B: Qencl =+ =+ Surface C: Qencl =+ = 0 Surface D: Qencl = So in order of increasing net tric flux, it s D, then C, then B, then A. 1

2 Physics 140 Problems 7. (a.) Let N e be the number of trons and e N p be the number of protons. Then it must be true that N + N = 155 (1) p Furthermore, the net charge of the whole collection of particles would be Q = N + N, () net e e p p in which e is the charge of each tron and and so () becomes e p p is the charge of each proton. But 19 = e= C 19 =+ e= C, Q = e N N, (3) net p e 17 and we know that this must eual C. Euations (1) and (3) are a pair of simultaneous euations in the two unknowns N p and N e. By the usual procedure for solving a pair of simultaneous euations, I find: Q ( 155) C ( 155)( C net + e + ) N p = = e C and N = 59 p N = 933 e (b.) The mass of the system would be in which m e is the mass of an tron and m sys msys = Neme + Npmp, m p is the mass of a proton. So: ( 933)( kg) ( 59)( kg) = + m sys 5 = kg 8. r = F r = = k F 1 r 1 9 N m C C C 1.77 N r = 1.9 m

3 Physics The charge 1 experiences a force of attraction from and a force of repulsion from 3. The magnitude of the force that exerts on 1 is 1 F1 = k = r1 d The magnitude of the force that 3 exerts on 1 is F31 = k = = r13 ( d ) 4d So the net force on 1 is 3 5 = F1 F31 = = d 4d 4d 9 N m ( 1 10 C) C F net = = 3 N 40.1 m 1. Think of the line the charges are on as being the x axis. Then think of three regions: Region I, to left of 1 ; Region II, between 1 and 3 ; Region III, to the right of 3. If were place in Region I, the forces on due to 1 and 3 would both point to the left. Therefore, there is no way these forces could cancel to make the net force on zero. Similarly, if were placed in Region III, the forces that 1 and 3 exert on it would both point to the right. Therefore, there is no way the net force could be zero. The only region in which the net force can be zero is therefore in Region II. Now imagine that is placed in Region II so that the net force on it is zero. Let the distance that is from 1 be called x. Then the magnitude of the force that 1 exerts on would be F1 = x and the magnitude of the force that 3 exerts on would be If the net force on is to be zero then F = 3 ( 0.3 m x) F1 = F3 = x 0.3 m x 1 = 3 x ( 0.3 m x) and now I just have to do a little algebra to solve this for x. In general, this is a uadratic. So you could cross-multiply, gather all the terms on one side, then use the uadratic formula (keeping only the positive solution for x.) One trick to make the algebra a little easier, though, is the following. Rewrite (1) as 0.3 x = 3 x Then take the suare root of both sides. In general, there d be two solutions 0.3 x = ± 3 x (1) 3

4 Physics 140 But I know I want only the positive solution. (If x were negative, this would mean that is actually in Region I, and I know that the net force can t be zero there.) So 0.3 x = 3 x 0.3 x = 3x x ( 1+ 3) = x = = 0.1 m Let s define a coordinate system with the origin at the location of, the positive x axis to the right and the positive y axis upward. Then the force that 1 exerts on would be, in component form F1 = yˆ d The force that 3 exerts on would be F3 = xˆ d The force that 4 exerts on would be F4 = ( F4 cos 45 ) xˆ+ ( F4 sin 45 ) yˆ Because 1 cos 45 = sin 45 =, this becomes F4 F4 = ( xˆ+ yˆ) But the magnitude of F 4 is 8 F4 =, r4 and from the figure, So r 4 = d 8 4 F4 = = ( d ) d and 4 d 4 ( ) F4 = ( xˆ+ yˆ) = ( xˆ+ yˆ) = xˆ+ yˆ d d The net force exerted on 1 is then = F1 + F3 + F4 ( ) = yˆ xˆ ( xˆ yˆ ) + + d d d 4

5 Physics 140 ( ) ( ) = + xˆ+ + yˆ d d d d ( + ) ( ) = xˆ+ yˆ d d = { ( + ) xˆ+ ( ) yˆ} d Plugging in numbers, I get 9 ( )(.4 10 ) = ( + ) xˆ+ ( ) yˆ ( 0.33) = ( 4.0 N) xˆ+ ( N) yˆ The magnitude of the net force is therefore F = F, + F, = ( 4.0 N) + ( N) = 4. N net net x net y { } To specify the direction, let s call the angle that F net makes with the x axis φ. Then φ = tan = If we call θ the angle that F net makes with the +x axis, then θ = 180 φ = (a.) The tric fields due to 1 and are eual in magnitude and opposite in direction. Therefore, they cancel. The net tric field is then just the tric field due to 3. The magnitude of this field is Enet = E3 =, r3 in which r 3 is the distance from 3 to the midpoint between 1 and. From the figure, this distance is Therefore Plugging in numbers, I get d 3d r3 = d = 4 E net 4 = = 3d 3d 4 E net = N/C (b.) greater. At the point described, the tric fields due to and 3 do not cancel, as the fields due to 1 and did in Part (a.). (c.) Let s define a coordinate system with the +x axis pointing along the line from to 3 and the +y direction pointing along the line from 1 to the midpoint between and 3. Then the fields due to and 3 will be: 7 5

6 Physics 140 The field due to 1 will be 4 E = E3 = xˆ = xˆ ( d /) d E1 = yˆ, r 1 in which r 1 is the distance from 1 to the midpoint between and 3. From the figure, 3d r1 = d ( d /) = 4 So 4 E1 = yˆ = yˆ 3d 3d 4 And the net tric field is then Enet = E1+ E + E3 = xˆ yˆ xˆ yˆ + + = + d d 3d d 3d Plugging in numbers E ( N/C) ˆ ( net = x+ N/C) yˆ The magnitude of this is E = N/C N/C = N/C net 41. (a.) 1 and 3 are positive, because the field lines go away from them. (b.) There are 8 lines leaving 1 and 1 lines terminating on. Therefore = 1 = 1 1 = = 5.00 µ C 1 = µ C (c.) By exactly the same arguments I just made in Part (b.), 3 = 1 = µ C Gauss s law says Q encl Φ = = ε ( ) ( C C) + ( C) C Nm 5 Φ =.8 10 Wb 0 1 Q Φ = ε encl 0

7 Physics 140 In Gauss s law, Φ is the net tric flux through the entire closed surface. If the surface has six sides, then Φ is the sum of the fluxes through the individual sides: Φ =Φ 1+Φ +Φ 3 +Φ 4 +Φ 4 +Φ Plugging in the numbers they gave me, I get Φ = Wb So 1 C 9 Qencl = ε0φ = ( Wb) = C = 5.09 nc N m 55. Gauss s law says Q Φ = ε Φ means the net flux through the entire closed Gaussian cylinder shown. This is, strictly speaking, the flux through the lateral surface plus the flux through the encaps: Φ =Φ +Φ +Φ encl left lateral right endcap surface endcap But everywhere on the left and right endcaps, E has no component perpendicular to the area, so the flux is zero. This leaves Φ =Φ = EA = E π rl, lateral lateral surface surface 0 in which I ve used the fact that the area of the lateral surface of a right circular cylinder of radius r and height L is π rl. So Gauss s law becomes ( π rl) E = ε0 But what s Q encl? Well, I figure that it s the charge per unit length on the wire times the length of the wire enclosed: charge Qencl = ( length enclosed) = λl unit length Putting this into Gauss s law gives λl E( π rl) = ε0 So λ E =, πε 0r as we wanted to show. Q encl 7

8 Physics (a.) Consider the free-body diagram (FBD) for the negative charge: y T 0 70 F x mg From this picture, it follows that F = Tcos 70 But what s T? Well, thinking about the forces in the y direction, I get Tsin 70 = mg The tension is therefore mg ( kg)( 9.81 m/s ) 3 T = = = N sin 70 sin 70 (1) Plugging this back into (1), I get F 3 4 = N cos 70 = N (b.) (c.) I just answered this in Part (a.) F F = ( m) ( m) ( N)( m) = = = C k 9 N m C (a.) Imagine a coordinate system with the origin at the initial location of the tron, the +x axis to the right, and the +y axis downward. Once the tron enters the region between the plates of the capacitor, it experiences a downward force of magnitude F = ee, in which e is the magnitude of the charge of the tron. The tric field is constant; therefore the force is constant. Furthermore, this force has no x component! Therefore, there is no acceleration in the x direction and the x component of the tron s velocity is therefore constant. Let t be the time when the particle emerges from the other side of the capacitor. Call the tron s x component of velocity v x. Then 0.05 m v x =, t 8

9 Physics 140 and vx = v0x = m/s. So the time when the tron emerges from the other side is 0.05 m 9 t = = s m/s At this time, y = m. Now, recalling the euations of kinematics for motion with constant acceleration (from Physics 1401): 1 y = y0 + v0yt+ ayt Because of the way I chose the origin, y 0 = 0. And because particle was shot in horizontally, v 0 y = 0. So I have 1 y = a t From Newton s second law so I have Solving this for E, I get Plugging in y = m at t a y y = F ee m = m, 1 ee y = t m my E = et 9 = s, I get 31 ( ) kg m 3 E = = N/C ( C)( s) (b.) The speed of the tron when it leaves the cap is the magnitude of its velocity vector at that time x y v = v + v But we already know one of the two components of the velocity. Specifically, we know that vx = v0 x = m/s We just need to find v y. Well, recalling the euations of kinematics for constant acceleration from Physics 1401 again, ( C)( N/C) ee ( 9 vy = v0 y + at y = 0+ at y = t = s -31 m kg ) v y = m/s Plugging this into the expression for v, I get v =. 10 m/s 9

ELECTRIC FORCES AND ELECTRIC FIELDS

ELECTRIC FORCES AND ELECTRIC FIELDS CHATER 18 ELECTRIC FORCES AND ELECTRIC FIELDS CONCETUAL QUESTIONS 1. REASONING AND SOLUTION In Figure 18.9, the grounding wire is removed first, followed by the rod, and the sphere is left with a positive

More information

1. (a) +EA; (b) EA; (c) 0; (d) 0 2. (a) 2; (b) 3; (c) 1 3. (a) equal; (b) equal; (c) equal e; (b) 150e 5. 3 and 4 tie, then 2, 1

1. (a) +EA; (b) EA; (c) 0; (d) 0 2. (a) 2; (b) 3; (c) 1 3. (a) equal; (b) equal; (c) equal e; (b) 150e 5. 3 and 4 tie, then 2, 1 CHAPTER 24 GAUSS LAW 659 CHAPTER 24 Answer to Checkpoint Questions 1. (a) +EA; (b) EA; (c) ; (d) 2. (a) 2; (b) 3; (c) 1 3. (a) eual; (b) eual; (c) eual 4. +5e; (b) 15e 5. 3 and 4 tie, then 2, 1 Answer

More information

HOMEWORK 1 SOLUTIONS

HOMEWORK 1 SOLUTIONS HOMEWORK 1 SOLUTIONS CHAPTER 18 3. REASONING AND SOLUTION The total charge to be removed is 5.0 µc. The number of electrons corresponding to this charge is N = ( 5.0 10 6 C)/( 1.60 10 19 C) = 3.1 10 13

More information

Chapter 19 Electric Charges, Forces, and Fields

Chapter 19 Electric Charges, Forces, and Fields Chapter 19 Electric Charges, Forces, and Fields Outline 19-1 Electric Charge 19-2 Insulators and Conductors 19-3 Coulomb s Law 19-4 The Electric Field 19-5 Electric Field Lines 19-6 Shield and Charging

More information

Quick Questions. 1. Two charges of +1 µc each are separated by 1 cm. What is the force between them?

Quick Questions. 1. Two charges of +1 µc each are separated by 1 cm. What is the force between them? 92 3.10 Quick Questions 3.10 Quick Questions 1. Two charges of +1 µc each are separated by 1 cm. What is the force between them? 0.89 N 90 N 173 N 15 N 2. The electric field inside an isolated conductor

More information

SPH 4U: Unit 3 - Electric and Magnetic Fields

SPH 4U: Unit 3 - Electric and Magnetic Fields Name: Class: _ Date: _ SPH 4U: Unit 3 - Electric and Magnetic Fields Modified True/False (1 point each) Indicate whether the statement is true or false. If false, change the identified word or phrase to

More information

Physics 2212 K Quiz #1 Solutions Summer q in = ρv = ρah = ρa 4

Physics 2212 K Quiz #1 Solutions Summer q in = ρv = ρah = ρa 4 Physics 2212 K Quiz #1 Solutions Summer 2016 I. (18 points A uniform infinite insulating slab of charge has a positive volume charge density ρ, and a thickness 2t, extending from t to +t in the z direction.

More information

Cutnell/Johnson Physics

Cutnell/Johnson Physics Cutnell/Johnson Physics Classroom Response System Questions Chapter 18 Electric Forces and Electric Fields Interactive Lecture Questions 18.1.1. A brass key has a net positive charge of +1.92 10 16 C.

More information

PHYSICS - CLUTCH CH 22: ELECTRIC FORCE & FIELD; GAUSS' LAW

PHYSICS - CLUTCH CH 22: ELECTRIC FORCE & FIELD; GAUSS' LAW !! www.clutchprep.com CONCEPT: ELECTRIC CHARGE e Atoms are built up of protons, neutrons and electrons p, n e ELECTRIC CHARGE is a property of matter, similar to MASS: MASS (m) ELECTRIC CHARGE (Q) - Mass

More information

Chapters 21 and 22: Giancoli, 4 th Edition Electrostatics

Chapters 21 and 22: Giancoli, 4 th Edition Electrostatics Chapters 21 and 22: Giancoli, 4 th Edition Electrostatics Electric Charges Coulomb s Law and Electric force The Electric Field Electric Field Lines Electric flux Gauss Law and applications of Gauss Law

More information

To receive full credit, you must show your work (including calculations and formulas used).

To receive full credit, you must show your work (including calculations and formulas used). Page Score Problem : Problem 2: Problem 3: Problem 4: Problem 5: TOTAL: (25 pts) To receive full credit, you must show your work (including calculations and formulas used). If you do not wish your quiz

More information

PHYS 1441 Section 002 Lecture #6

PHYS 1441 Section 002 Lecture #6 PHYS 1441 Section 002 Lecture #6 Monday, Sept. 18, 2017 Chapter 21 Motion of a Charged Particle in an Electric Field Electric Dipoles Chapter 22 Electric Flux Gauss Law with many charges What is Gauss

More information

CPS lesson Electric Field ANSWER KEY

CPS lesson Electric Field ANSWER KEY CPS lesson Electric Field ANSWER KEY 1. A positively charged rod is brought near a conducting sphere on an insulated base. The opposite side of the sphere is briefly grounded. If the rod is now withdrawn,

More information

Downloaded from

Downloaded from Question 1.1: What is the force between two small charged spheres having charges of 2 10 7 C and 3 10 7 C placed 30 cm apart in air? Repulsive force of magnitude 6 10 3 N Charge on the first sphere, q

More information

a. Since oppositely charged objects always attract each other, the rod and sphere will always experience a mutual attraction.

a. Since oppositely charged objects always attract each other, the rod and sphere will always experience a mutual attraction. 3. REASONING AND SOLUTION When the charged insulating rod is brought near to (but not touching) the sphere, the free electrons in the sphere will move. If the rod is negatively charged, the free electrons

More information

Chapter 21. Electric Fields

Chapter 21. Electric Fields Chapter 21 Electric Fields The Origin of Electricity The electrical nature of matter is inherent in the atoms of all substances. An atom consists of a small relatively massive nucleus that contains particles

More information

Physics 2212 K Quiz #1 Solutions Summer 2015

Physics 2212 K Quiz #1 Solutions Summer 2015 Physics 2212 K Quiz #1 Solutions Summer 2015 e Fundamental charge m e Mass of an electron K Coulomb constant = 1/4πϵ 0 g Magnitude of Free Fall Acceleration Unless otherwise directed, drag should be neglected.

More information

Electrostatics. 4πε 2) + Q / 2 4) 4 Q

Electrostatics. 4πε 2) + Q / 2 4) 4 Q Two spheres A and B of radius a and b respectively are at the same potential The ratio of the surface charge density of A to B is: ) a / b ) b / a a / b b / a Two free protons are separated by a distance

More information

Chapter 1 The Electric Force

Chapter 1 The Electric Force Chapter 1 The Electric Force 1. Properties of the Electric Charges 1- There are two kinds of the electric charges in the nature, which are positive and negative charges. - The charges of opposite sign

More information

Earth as a Magnet. The strength and orientation of the earth s magnetic field varies over time and location.

Earth as a Magnet. The strength and orientation of the earth s magnetic field varies over time and location. Magnetism Magnetic charges Called poles Two types, North and South Like poles repel each other Opposite poles attract each other Found only in North/South pairs (Dipoles) N S Magnetism Magnetic poles Found

More information

Electric Force and Field Chapter Questions

Electric Force and Field Chapter Questions Electric Force and Field Chapter Questions 1. What happens to a plastic rod when it is rubbed with a piece of animal fur? What happens to the piece of fur? 2. How many types of electric charge are there?

More information

Coulomb s Law & Electric Field Intensity

Coulomb s Law & Electric Field Intensity Electromagnetic Fields and Waves Chinnawat, Ph.D. Coulomb s Law & Electric Field Intensity Email: pop@alum.mit.edu L2-1 L2-2 Atoms Atom: smallest constituent unit of ordinary matter Atom = nucleus + surrounding

More information

The third charge has to be along the line joining the two charges, outside the two charges, and closer to the weaker.

The third charge has to be along the line joining the two charges, outside the two charges, and closer to the weaker. Coordinator: Dr. M.F.Al-Kuhaili Thursday, uly 30, 2015 Page: 1 Q1. Two point charges q and 4q are at x = 0 and L, respectively. A third charge q is to be placed such that the net force on it is zero. What

More information

Chapter 24 Solutions The uniform field enters the shell on one side and exits on the other so the total flux is zero cm cos 60.

Chapter 24 Solutions The uniform field enters the shell on one side and exits on the other so the total flux is zero cm cos 60. Chapter 24 Solutions 24.1 (a) Φ E EA cos θ (3.50 10 3 )(0.350 0.700) cos 0 858 N m 2 /C θ 90.0 Φ E 0 (c) Φ E (3.50 10 3 )(0.350 0.700) cos 40.0 657 N m 2 /C 24.2 Φ E EA cos θ (2.00 10 4 N/C)(18.0 m 2 )cos

More information

3/7/2019 N S N S. Magnetism. Magnetism

3/7/2019 N S N S. Magnetism. Magnetism Magnetism Magnetic charges Called poles Two types, North and South Like poles repel each other Opposite poles attract each other Found only in North/South pairs (Dipoles) Magnetism Magnetic poles Found

More information

Chapter 19: Electric Charges, Forces, and Fields

Chapter 19: Electric Charges, Forces, and Fields Ch. 0 Solution PHY 05 Hayel Shehadeh Chapter 9: Electric Charges, Forces, and Fields Answers Conceptual Questions 4. The two like charges, if released, will move away from one another to infinite separation,

More information

Problems. 686 Chapter 24 Gauss s Law

Problems. 686 Chapter 24 Gauss s Law 686 Chapter 24 Gauss s Law (b) 2 (c) 4 (d) 6 (ii) Through how many of the cube s faces is the electric flux zero? Choose from the same possibilities. 6. O A cubical gaussian surface is bisected by a large

More information

= C. on q 1 to the left. Using Coulomb s law, on q 2 to the right, and the charge q 2 exerts a force F 2 on 1 ( )

= C. on q 1 to the left. Using Coulomb s law, on q 2 to the right, and the charge q 2 exerts a force F 2 on 1 ( ) Phsics Solutions to Chapter 5 5.. Model: Use the charge model. Solve: (a) In the process of charging b rubbing, electrons are removed from one material and transferred to the other because the are relativel

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the 1) A small sphere with a mass of 441 g is moving upward along the vertical +y-axis when it encounters

More information

Welcome. to Electrostatics

Welcome. to Electrostatics Welcome to Electrostatics Outline 1. Coulomb s Law 2. The Electric Field - Examples 3. Gauss Law - Examples 4. Conductors in Electric Field Coulomb s Law Coulomb s law quantifies the magnitude of the electrostatic

More information

Where, ε 0 = Permittivity of free space and = Nm 2 C 2 Therefore, force

Where, ε 0 = Permittivity of free space and = Nm 2 C 2 Therefore, force Exercises Question.: What is the force between two small charged spheres having charges of 2 0 7 C and 3 0 7 C placed 30 cm apart in air? Answer.: Repulsive force of magnitude 6 0 3 N Charge on the first

More information

Electric Flux and Gauss Law

Electric Flux and Gauss Law Electric Flux and Gauss Law Gauss Law can be used to find the electric field of complex charge distribution. Easier than treating it as a collection of point charge and using superposition To use Gauss

More information

Conceptual Questions. Fig.8.51 EXERCISES. 8. Why can t electric field lines cross? 9. In which direction do charges always move in an electric field?

Conceptual Questions. Fig.8.51 EXERCISES. 8. Why can t electric field lines cross? 9. In which direction do charges always move in an electric field? EXERCISES Conceptual Questions 1. Explain why a neutral object can be attracted to a charged object. Why can this neutral object not be repelled by a charged object? 2. What is the function of an electroscope?

More information

Chapter 23. Electric Fields

Chapter 23. Electric Fields Chapter 23 Electric Fields Electric Charges There are two kinds of electric charges Called positive and negative Negative charges are the type possessed by electrons Positive charges are the type possessed

More information

Class XII Chapter 1 Electric Charges And Fields Physics

Class XII Chapter 1 Electric Charges And Fields Physics Class XII Chapter 1 Electric Charges And Fields Physics Question 1.1: What is the force between two small charged spheres having charges of 2 10 7 C and 3 10 7 C placed 30 cm apart in air? Answer: Repulsive

More information

5 10 C C

5 10 C C Chapter solutions Q.. Reason: (a) Yes, the field would be zero at a point on the line between the two charges, closer to the 1 nc charge. (b) In this case the contributions from the two charges are in

More information

P202 Practice Exam 1 Spring 2004 Instructor: Prof. Sinova

P202 Practice Exam 1 Spring 2004 Instructor: Prof. Sinova P202 Practice Exam 1 Spring 2004 Instructor: Prof. Sinova Name: Date: 1. Each of three objects has a net charge. Objects A and B attract one another. Objects B and C also attract one another, but objects

More information

EL FORCE and EL FIELD HW-PRACTICE 2016

EL FORCE and EL FIELD HW-PRACTICE 2016 1 EL FORCE and EL FIELD HW-PRACTICE 2016 1.A difference between electrical forces and gravitational forces is that electrical forces include a. separation distance. b. repulsive interactions. c. the inverse

More information

Introduction to Charges. BCLN PHYSICS 12 - Rev. Sept/2012

Introduction to Charges. BCLN PHYSICS 12 - Rev. Sept/2012 Electrostatics ~ Learning Guide Name: Instructions: Using a pencil, answer the following questions. The Pre-Reading is marked, based on effort, completeness, and neatness (not accuracy). The rest of the

More information

Chapter 15. Electric Forces and Electric Fields

Chapter 15. Electric Forces and Electric Fields Chapter 15 Electric Forces and Electric Fields First Observations Greeks Observed electric and magnetic phenomena as early as 700 BC Found that amber, when rubbed, became electrified and attracted pieces

More information

Electrostatics. Electrical properties generated by static charges. Introduction

Electrostatics. Electrical properties generated by static charges. Introduction Electrostatics Electrical properties generated by static charges Introduction First Greek discovery Found that amber, when rubbed, became electrified and attracted pieces of straw or feathers Introduction

More information

Chapter 17 & 18. Electric Field and Electric Potential

Chapter 17 & 18. Electric Field and Electric Potential Chapter 17 & 18 Electric Field and Electric Potential Electric Field Maxwell developed an approach to discussing fields An electric field is said to exist in the region of space around a charged object

More information

2: What is the magnitude of the electric charge of an electron? 3: What is the law of conservation of electric charge?

2: What is the magnitude of the electric charge of an electron? 3: What is the law of conservation of electric charge? Chapter 18 Discussion January-03-15 8:58 PM Electric Forces and Electric Fields Reading Review 1: What is the SI unit of electric charge? 2: What is the magnitude of the electric charge of an electron?

More information

Physics 2212 GJ Quiz #1 Solutions Fall 2015

Physics 2212 GJ Quiz #1 Solutions Fall 2015 Physics 2212 GJ Quiz #1 Solutions Fall 2015 I. (14 points) A 2.0 µg dust particle, that has a charge of q = +3.0 nc, leaves the ground with an upward initial speed of v 0 = 1.0 m/s. It encounters a E =

More information

Chapter 15. Electric Forces and Electric Fields

Chapter 15. Electric Forces and Electric Fields Chapter 15 Electric Forces and Electric Fields First Studies Greeks Observed electric and magnetic phenomena as early as 700 BC Found that amber, when rubbed, became electrified and attracted pieces of

More information

OUT OF BOOK QUESTION. Sphere Y is now moved away from X, as in Figure (b).

OUT OF BOOK QUESTION. Sphere Y is now moved away from X, as in Figure (b). X and Y are two uncharged metal spheres on insulating stands, and are in contact with each other. A positively charged rod R is brought close to X as shown in Figure (a). Sphere Y is now moved away from

More information

Lecture 6 - Introduction to Electricity

Lecture 6 - Introduction to Electricity Lecture 6 - Introduction to Electricity A Puzzle... We are all familiar with visualizing an integral as the area under a curve. For example, a b f[x] dx equals the sum of the areas of the rectangles of

More information

PHYS 2426 Brooks INTRODUCTION. Physics for Scientists and Engineers, with Modern Physics, 4 th edition Giancoli

PHYS 2426 Brooks INTRODUCTION.  Physics for Scientists and Engineers, with Modern Physics, 4 th edition Giancoli PHYS 2426 Brooks INTRODUCTION http://iws.ccccd.edu/mbrooks Physics for Scientists and Engineers, with Modern Physics, 4 th edition Giancoli Chapter 21 Electric Charge and Electric Field Static Electricity;

More information

Lecture 2 [Chapter 21] Tuesday, Jan 17th

Lecture 2 [Chapter 21] Tuesday, Jan 17th Lecture 2 [Chapter 21] Tuesday, Jan 17th Administrative Items Assignments this week: read Ch 21 and Ch 22 in the textbook complete Pre-Lecture Ch22 HW assignment complete Ch 21 HW assignment [Pre-Lecture

More information

Physics 240 Fall 2003: Exam #1. Please print your name: Please list your discussion section number: Please list your discussion instructor:

Physics 240 Fall 2003: Exam #1. Please print your name: Please list your discussion section number: Please list your discussion instructor: Physics 4 Fall 3: Exam #1 Please print your name: Please list your discussion section number: Please list your discussion instructor: Form #1 Instructions 1. Fill in your name above. This will be a 1.5

More information

4 r 2. r 2. Solved Problems

4 r 2. r 2. Solved Problems CHAP. 24] COULOMB'S LAW AND ELECTRIC FIELDS 233 AN ELECTRIC FIELD is said to exist at any point in space when a test charge, placed at that point, experiences an electrical force. The direction of the

More information

PHY102 Electricity Topic 3 (Lectures 4 & 5) Gauss s Law

PHY102 Electricity Topic 3 (Lectures 4 & 5) Gauss s Law PHY1 Electricity Topic 3 (Lectures 4 & 5) Gauss s Law In this topic, we will cover: 1) Electric Flux ) Gauss s Law, relating flux to enclosed charge 3) Electric Fields and Conductors revisited Reading

More information

Electric Flux. To investigate this, we have to understand electric flux.

Electric Flux. To investigate this, we have to understand electric flux. Problem 21.72 A charge q 1 = +5. nc is placed at the origin of an xy-coordinate system, and a charge q 2 = -2. nc is placed on the positive x-axis at x = 4. cm. (a) If a third charge q 3 = +6. nc is now

More information

Electric Charge & Force Problems - 1 v Goodman & Zavorotniy

Electric Charge & Force Problems - 1 v Goodman & Zavorotniy Electric Charge Chapter Questions 1. What happens to a plastic rod when it is rubbed with a piece of animal fur? What happens to the piece of fur? 2. How many types of electric charge are there? What are

More information

Ch 17 Problem Set 31. A toaster is rated at 600 W when connected to a 120-V source. What current does the toaster carry, and what is its resistance?

Ch 17 Problem Set 31. A toaster is rated at 600 W when connected to a 120-V source. What current does the toaster carry, and what is its resistance? Ch 17 Problem Set 31. A toaster is rated at 600 W when connected to a 120-V source. What current does the toaster carry, and what is its resistance? 33. How many 100-W lightbulbs can you use in a 120-V

More information

Chapter 27. Gauss s Law

Chapter 27. Gauss s Law Chapter 27 Gauss s Law Electric Flux Field lines penetrating an area A perpendicular to the field The product of EA is the flux, Φ In general: Φ E = E A sin θ Electric

More information

1. ELECTRIC CHARGES AND FIELDS

1. ELECTRIC CHARGES AND FIELDS 1. ELECTRIC CHARGES AND FIELDS 1. What are point charges? One mark questions with answers A: Charges whose sizes are very small compared to the distance between them are called point charges 2. The net

More information

2R R R 2R. Phys Test 1

2R R R 2R. Phys Test 1 Group test. You want to calculate the electric field at position (x o, 0, z o ) due to a charged ring. The ring is centered at the origin, and lies on the xy plane. ts radius is and its charge density

More information

Electric Force and Electric Field Practice Problems PSI AP Physics 1

Electric Force and Electric Field Practice Problems PSI AP Physics 1 Electric Force and Electric Field Practice Problems PSI AP Physics 1 Name Multiple Choice 1. A plastic rod is rubbed with a piece of wool. During the process the plastic rod acquires a negative charge

More information

1040 Phys Lecture 1. Electric Force. The electromagnetic force between charged particles is one of the fundamental forces of nature.

1040 Phys Lecture 1. Electric Force. The electromagnetic force between charged particles is one of the fundamental forces of nature. Electric Force The electromagnetic force between charged particles is one of the fundamental forces of nature. 1- Properties of Electric Charges A number of simple experiments demonstrate the existence

More information

Physics 212 Exam I Sample Question Bank 2008 Multiple Choice: choose the best answer "none of the above" may can be a valid answer

Physics 212 Exam I Sample Question Bank 2008 Multiple Choice: choose the best answer none of the above may can be a valid answer Multiple Choice: choose the best answer "none of the above" may can be a valid answer The (attempted) demonstration in class with the pith balls and a variety of materials indicated that () there are two

More information

ELECTRICITY 1.1 INTRODUCTION

ELECTRICITY 1.1 INTRODUCTION 1 ELECTRICITY 1.1 INTRODUCTION Electricity is one of the most important sources of energy in the modern world. All appliances such as lights, fans, torch, geysers, air-conditioners, televisions, computers,

More information

Physics 2049 Exam 1 Solutions Fall 2002

Physics 2049 Exam 1 Solutions Fall 2002 Physics 2049 xam 1 Solutions Fall 2002 1. A metal ball is suspended by a string. A positively charged plastic ruler is placed near the ball, which is observed to be attracted to the ruler. What can we

More information

Conductors and Insulators

Conductors and Insulators Conductors and Insulators Lecture 11: Electromagnetic Theory Professor D. K. Ghosh, Physics Department, I.I.T., Bombay Self Energy of a Charge Distribution : In Lecture 1 we briefly discussed what we called

More information

PHYSICS 12 NAME: Electrostatics Review

PHYSICS 12 NAME: Electrostatics Review NAME: Electrostatics Review 1. The diagram below shows two positive charges of magnitude Q and 2Q. Which vector best represents the direction of the electric field at point P, which is equidistant from

More information

Semester 2 Physics (SF 026) Lecture: BP 3 by Yew Sze Fiona Website:

Semester 2 Physics (SF 026) Lecture: BP 3 by Yew Sze Fiona Website: Semester 2 Physics (SF 026) Lecture: BP 3 by Yew Sze Ling @ Fiona Website: http://yslphysics.weebly.com/ Chapter 1: Electrostatics The study of electric charges at rest, the forces between them and the

More information

Electric Charge and Electric Field AP Physics 4 Lecture Notes

Electric Charge and Electric Field AP Physics 4 Lecture Notes Electric Charge and Electric Field AP Physics 4 Lecture Notes Coulomb s Law The Electric Field Field Lines Electric Fields and Conductors Coulomb s law: Coulomb s Law Force (N) F F F k r F F F r Charge

More information

Physics 1214 Chapter 17: Electric Charge and Electric Field

Physics 1214 Chapter 17: Electric Charge and Electric Field Physics 1214 Chapter 17: Electric Charge and Electric Field Introduction electrostatic interactions interactions between electric charges at rest in our frame of reference modeled by Coulomb s equation

More information

Chapter 20: Electric Fields and Forces Solutions

Chapter 20: Electric Fields and Forces Solutions Chapter 0: lectric Fields and Forces Solutions Questions: 5, 9, 13, 14, 0 xercises & Problems: 8, 14, 15, 6, 3, 43, 45, 58 Q0.5: When you take clothes out of the drier right after it stops, the clothes

More information

Chapter 19 Electric Charges, Forces, and Fields

Chapter 19 Electric Charges, Forces, and Fields Chapter 19 Electric Charges, Forces, and Fields 1 Overview of Chapter 19 Electric Charge! Insulators and Conductors! Coulomb s Law! The Electric Field! Electric Field Lines! Shielding and Charging by Induction

More information

Halliday/Resnick/Walker 7e Chapter 22 Electric Fields

Halliday/Resnick/Walker 7e Chapter 22 Electric Fields HRW 7e Chapter Page 1 of 9 Halliday/Resnick/Walker 7e Chapter lectric ields 1. We note that the symbol is used in the problem statement to mean the absolute value of the negative charge which resides on

More information

General Physics II. Electric Charge, Forces & Fields

General Physics II. Electric Charge, Forces & Fields General Physics II Electric Charge, Forces & Fields Electric Charge Recall that fundamental particles carry something called electric charge protons have exactly one unit of positive charge +1.602 x 10-19

More information

Profs. D. Acosta, A. Rinzler, S. Hershfield. Exam 1 Solutions

Profs. D. Acosta, A. Rinzler, S. Hershfield. Exam 1 Solutions PHY2049 Spring 2009 Profs. D. Acosta, A. Rinzler, S. Hershfield Exam 1 Solutions 1. What is the flux through the right side face of the shown cube if the electric field is given by E = 2xî + 3yĵ and the

More information

- Like charges repel Induced Charge. or by induction. Electric charge is conserved

- Like charges repel Induced Charge. or by induction. Electric charge is conserved Course website: http://course.physastro.iastate.edu/phys112/ Here you will find the syllabus, lecture notes and other course information Links to the website are also on Blackboard: Phys 112 (Spring 2017)

More information

Other Formulae for Electromagnetism. Biot's Law Force on moving charges

Other Formulae for Electromagnetism. Biot's Law Force on moving charges Other Formulae for Electromagnetism Biot's Law Force on moving charges 1 Biot's Law. Biot's Law states that the magnetic field strength (B) is directly proportional to the current in a straight conductor,

More information

Gravity and Coulomb s Law

Gravity and Coulomb s Law AP PHYSICS 1 Gravity and Coulomb s Law 016 EDITION Click on the following link or scan the QR code to complete the evaluation for the Study Session https://www.surveymonkey.com/r/s_sss Copyright 016 National

More information

General Physics II Spring Electric Forces and Fields

General Physics II Spring Electric Forces and Fields General Physics II Spring 2008 Electric Forces and Fields 1 Coulomb s Law 2 The direction of the electric force is always along the line joining the two charges. Charges of the same sign repel; charges

More information

(a) What is the magnitude of the electric force between the proton and the electron?

(a) What is the magnitude of the electric force between the proton and the electron? .3 Solved Problems.3. Hydrogen Atom In the classical model of the hydrogen atom, the electron revolves around the proton with a radius of r = 053. 0 0 m. The magnitude of the charge of the electron and

More information

Section 1: Electric Fields

Section 1: Electric Fields PHY 132 Outline of Lecture Notes i Section 1: Electric Fields A property called charge is part of the basic nature of protons and electrons. Large scale objects become charged by gaining or losing electrons.

More information

Coulomb s Law. Phys102 Lecture 2. Key Points. Coulomb s Law The electric field (E is a vector!) References

Coulomb s Law. Phys102 Lecture 2. Key Points. Coulomb s Law The electric field (E is a vector!) References Phys102 Lecture 2 Phys102 Lecture 2-1 Coulomb s Law Key Points Coulomb s Law The electric field (E is a vector!) References SFU Ed: 21-5,6,7,8,9,10. 6 th Ed: 16-6,7,8,9,+. Phys102 Lecture 2 Phys102 Lecture

More information

DAY 2. Summary of Topics Covered in Today s Lecture. Uniform Gravitational and Electric Fields

DAY 2. Summary of Topics Covered in Today s Lecture. Uniform Gravitational and Electric Fields DAY 2 Summary of Topics Covered in Today s Lecture Uniform Gravitational and Electric Fields The gravitational field at the Earth s surface is uniform (constant). This means that wherever you go, the gravitational

More information

SPH4U Sample Test - Electric & Magnetic Fields

SPH4U Sample Test - Electric & Magnetic Fields SPH4U Sample Test - Electric & Magnetic Fields Modified True/False Indicate whether the sentence or statement is true or false. If false, change the identified word or phrase to make the sentence or statement

More information

This is known as charge quantization. Neutral particles, like neutron and photon have zero charge.

This is known as charge quantization. Neutral particles, like neutron and photon have zero charge. Module 2: Electrostatics Lecture 6: Quantization of Charge Objectives In this lecture you will learn the following Quantization Of Charge and its measurement Coulomb's Law of force between electric charge

More information

P Q 2 = -3.0 x 10-6 C

P Q 2 = -3.0 x 10-6 C 1. Which one of the following represents correct units for electric field strength? A. T B. N/C C. J / C D. N m 2 /C 2 2. The diagram below shows two positive charges of magnitude Q and 2Q. P Q 2Q Which

More information

Unit 3: Gravitational, Electric and Magnetic Fields Unit Test

Unit 3: Gravitational, Electric and Magnetic Fields Unit Test Unit 3: Gravitational, Electric and Magnetic Fields Unit Test Name: Knowledge & Understanding Application Thinking & Inquiry Communication Total 15 18 5 6 44 Part 1: Multiple Choice 1. Two charged spheres

More information

Chapter 24 Gauss Law

Chapter 24 Gauss Law Chapter 24 Gauss Law A charge inside a box can be probed with a test charge q o to measure E field outside the box. The volume (V) flow rate (dv/dt) of fluid through the wire rectangle (a) is va when the

More information

You should be able to demonstrate and show your understanding of:

You should be able to demonstrate and show your understanding of: OCR B Physics H557 Module 6: Field and Particle Physics You should be able to demonstrate and show your understanding of: 6.1: Fields (Charge and Field) Field: A potential gradient Field Strength: Indicates

More information

Electric Fields Part 1: Coulomb s Law

Electric Fields Part 1: Coulomb s Law Electric Fields Part 1: Coulomb s Law F F Last modified: 07/02/2018 Contents Links Electric Charge & Coulomb s Law Electric Charge Coulomb s Law Example 1: Coulomb s Law Electric Field Electric Field Vector

More information

Intermediate Physics PHYS102

Intermediate Physics PHYS102 Intermediate Physics PHYS102 Dr Richard H. Cyburt Assistant Professor of Physics My office: 402c in the Science Building My phone: (304) 384-6006 My email: rcyburt@concord.edu My webpage: www.concord.edu/rcyburt

More information

Practice Problem Solutions

Practice Problem Solutions Chapter 14 Fields and Forces Practice Problem Solutions Student Textbook page 638 1. Conceptualize the Problem - Force, charge and distance are related by Coulomb s law. The electrostatic force, F, between

More information

1-1 Magnetism. q ν B.(1) = q ( ) (2)

1-1 Magnetism. q ν B.(1) = q ( ) (2) 1-1 Magnetism Magnets exert forces on each other just like charges. You can draw magnetic field lines just like you drew electric field lines. Magnetic north and south pole s behavior is not unlike electric

More information

CHAPTER 15 ELECTRIC FORCE & FIELDS

CHAPTER 15 ELECTRIC FORCE & FIELDS CHAPTER 15 ELECTRIC FORCE & FIELDS We will look at the basic properties of electric charge. Electric charge comes in discrete units The total charge in the universe remains constant The force law that

More information

Substituting in the values we have here (and converting the mass from grams to kilograms): B = ( )(9.81)

Substituting in the values we have here (and converting the mass from grams to kilograms): B = ( )(9.81) Chapter 27 : Magnetism (version 1) Key concepts: Cross product: A B produces a vector that is perpendicular to the plane formed by A and B, in a direction that can be determined via the right-hand rule

More information

Physics 212 Question Bank III 2010

Physics 212 Question Bank III 2010 A negative charge moves south through a magnetic field directed north. The particle will be deflected (A) North. () Up. (C) Down. (D) East. (E) not at all.. A positive charge moves West through a magnetic

More information

Chapter 21 Chapter 23 Gauss Law. Copyright 2014 John Wiley & Sons, Inc. All rights reserved.

Chapter 21 Chapter 23 Gauss Law. Copyright 2014 John Wiley & Sons, Inc. All rights reserved. Chapter 21 Chapter 23 Gauss Law Copyright 23-1 What is Physics? Gauss law relates the electric fields at points on a (closed) Gaussian surface to the net charge enclosed by that surface. Gauss law considers

More information

Summary of electrostatics

Summary of electrostatics Summary of electrostatics 1 In electrostatics we deal with the electric effects of charges at rest. Electric charge can be defined as is the intrinsic characteristic that is associated with fundamental

More information

F E = Electric field q T (+ test charge)

F E = Electric field q T (+ test charge) Summary Page week 1 charges opposite attract like repel F = k Q Q r T + Cancelation/screening 1 Coulombs Law vector sum of forces Superposition Principle solution (A+B)= solution (A)+ solution (B) F E

More information

Electric Forces and Electric Fields

Electric Forces and Electric Fields Physics 11 Electric Forces and Electric Fields Atomic Structure nucleus: consists of protons (+ charge) and neutrons (no charge) Atomic Structure Conductors / Insulators Charging an Object Induced Charge

More information

Chapter Electric Forces and Electric Fields. Prof. Armen Kocharian

Chapter Electric Forces and Electric Fields. Prof. Armen Kocharian Chapter 25-26 Electric Forces and Electric Fields Prof. Armen Kocharian First Observations Greeks Observed electric and magnetic phenomena as early as 700 BC Found that amber, when rubbed, became electrified

More information

Electrostatics. Physics 10. Atomic Structure

Electrostatics. Physics 10. Atomic Structure Slide 1 Slide 6 Slide 2 Slide 7 Slide 3 Slide 8 Slide 4 Slide 9 Slide 5 Slide 10 Physics 10 Electrostatics Slide 11 Slide 12 Slide 13 Slide 14 Slide 15 Slide 16 Slide 17 Slide 18 Slide 19 Slide 20 Slide

More information