Halliday/Resnick/Walker 7e Chapter 22 Electric Fields

Size: px
Start display at page:

Download "Halliday/Resnick/Walker 7e Chapter 22 Electric Fields"

Transcription

1 HRW 7e Chapter Page 1 of 9 Halliday/Resnick/Walker 7e Chapter lectric ields 1. We note that the symbol is used in the problem statement to mean the absolute value of the negative charge which resides on the larger shell. The following sketch is for. 1 The following two sketches are for the cases 1 > (left figure) and 1 < (right figure).. Since the magnitude of the electric field produced by a point charge is given by /4πε 0r, where r is the distance from the charge to the point where the field has magnitude, the magnitude of the charge is ( 0.0m) (.0 N C) 11 4π ε0r.6 10 C N m C 6. With x cm and x 1.00 cm, the point midway between the two charges is located at x 1. cm. The values of the charge are C, and the magnitudes and directions of the individual fields are given by: 1 1 ˆi ( N C)i ˆ 4 πε0( x x1) ˆ i ( N C) 4 πε0( x x1) ˆi Thus, the net electric field is

2 HRW 7e Chapter Page of 9 + net 1 8. (a) The individual magnitudes 1 and ( N C)i ˆ are figured from. -, where the absolute value signs for are unnecessary since this charge is positive. Whether we add the magnitudes or subtract them depends on if is in the same, or opposite, direction as 1. At points left of 1 (on the x axis) the fields point in opposite directions, but there is no possibility of cancellation (zero net field) since 1 is everywhere bigger than in this region. In the region between the charges (0 < x < L) both fields point leftward and there is no possibility of cancellation. At points to the right of (where x > L), 1 points leftward and points rightward so the net field in this range is ˆi. ( ) net 1 Although 1 > there is the possibility of net 0 since these points are closer to than to 1. Thus, we look for the zero net field point in the x > L region: which leads to πε0 x 4πε0 x L ( ) x L x. 1 L Thus, we obtain x.7l. 1 (b) A sketch of the field lines is shown in the figure below: 9. At points between the charges, the individual electric fields are in the same direction and do not cancel. Since charge located at x 70 cm has a greater magnitude than 1.1

3 HRW 7e Chapter Page of C located at x 1 0 cm, a point of zero field must be closer to 1 than to. It must be to the left of 1. Let x be the coordinate of P, the point where the field vanishes. Then, the total electric field at P is given by If the field is to vanish, then 1 4 πε ( ) 1 0 x x ( x x1 ). ( x x ) ( x x ) 1. ( x x1) 1 ( x x1) Taking the suare root of both sides, noting that / 1 4, we obtain x 70 ±.0. x 0 Choosing.0 for consistency, the value of x is found to be x 0 cm. 10. We place the origin of our coordinate system at point P and orient our y axis in the direction of the 4 1 charge (passing through the + charge). The x axis is perpendicular to the y axis, and thus passes through the identical 1 + charges. The individual magnitudes 1,,, and 4 are figured from. -, where the absolute value signs for 1,, and are unnecessary since those charges are positive (assuming > 0). We note that the contribution from 1 cancels that of (that is, 1 ), and the net field (if there is any) should be along the y axis, with magnitude eual to HG b g I KJ 1 4 net 1 1 j j 4 d d 4 4d pε pε d 0 which is seen to be zero. A rough sketch of the field lines is shown below: 0 HG I K J

4 HRW 7e Chapter Page 4 of The x component of the electric field at the center of the suare is given by x pε0 ( a/ ) ( a/ ) ( a/ ) ( a/ ) ( ) pε0 a / 0. Similarly, the y component of the electric field is y πε0 ( a/ ) ( a/ ) ( a/ ) ( a/ ) ( ) ( ) πε0 a / N m / C (.0 10 C) 1 (0.00 m) / cos 4 cos N/C. Thus, the electric field at the center of the suare is ˆ y j ( N/C)j. ˆ 19. Consider the figure below. (a) The magnitude of the net electric field at point P is or r 1 d/ 1 d sinθ 4 ( d/ ) + r ( d/ ) + r 4 πε ( d/) + r net 1 / πε0 0 >> d, we write [(d/) + r ] / r so the expression above reduces to 1 d. net 4πε0 r (b) rom the figure, it is clear that the net electric field at point P points in the j direction, or 90 from the +x axis.

5 HRW 7e Chapter Page of 9 4. (a) Vertical euilibrium of forces leads to the euality mg mg. e Using the mass given in the problem, we obtain N C. (b) Since the force of gravity is downward, then must point upward. Since > 0 in this situation, this implies must itself point upward.. The magnitude of the force acting on the electron is e, where is the magnitude of the electric field at its location. The acceleration of the electron is given by Newton s second law: a e m m 4 c Chc N Ch ms kg 8. (a) e e ( N/C)( C) N. (b) i ion e N. 9. (a) The magnitude of the force on the particle is given by, where is the magnitude of the charge carried by the particle and is the magnitude of the electric field at the location of the particle. Thus, N C NC. The force points downward and the charge is negative, so the field points upward. (b) The magnitude of the electrostatic force on a proton is el ( ) ( ) e C N C.4 10 N. (c) A proton is positively charged, so the force is in the same direction as the field, upward. (d) The magnitude of the gravitational force on the proton is g The force is downward. (e) The ratio of the forces is ( ) ( ) mg kg 9.8 m s N.

6 HRW 7e Chapter Page 6 of 9 el g N N 40. (a) The initial direction of motion is taken to be the +x direction (this is also the direction of ). We use vf vi a x with vf 0 and a m e m e to solve for distance x: vi mv e i x a e kg m s C N C 1 c hc h c hc h m. (b). -17 leads to t x x m 6 v ms avg v i c h s. (c) Using v a x with the new value of x, we find ( mv e ) 1 K v a x e x K m v v v m v 1 i e i i i e i ( )( )( ) 1 6 ( kg)( m s) C N C m Thus, the fraction of the initial kinetic energy lost in the region is 0.11 or 11.%. 41. (a) The magnitude of the force acting on the proton is e, where is the magnitude of the electric field. According to Newton s second law, the acceleration of the proton is a /m e/m, where m is the mass of the proton. Thus, 4 c Chc N Ch 1 a ms kg (b) We assume the proton starts from rest and use the kinematic euation v v + ax (or else x 1 at and v at) to show that 4. (a) We use x v avg t vt/: d ib g 1 v ax ms m ms. c mh 8 x v t s ms. 0

7 HRW 7e Chapter Page 7 of 9 (b) We use x 1 at and /e ma/e: c hc h c hc h ma 1 xm m kg e et C s NC. 4. We take the positive direction to be to the right in the figure. The acceleration of the proton is a p e/m p and the acceleration of the electron is a e e/m e, where is the magnitude of the electric field, m p is the mass of the proton, and m e is the mass of the electron. We take the origin to be at the initial position of the proton. Then, the coordinate of the proton at time t is x apt and the coordinate of the electron is x L+ 1 aet. They pass each other when their coordinates are the same, or 1 1 at p L+ at e. This means t L/(a p a e ) and 1 ap e mp me x L L a a m + m ( e mp) + ( e me) p e e p kg kg kg.7 10 m. ( 0.00m) L 9. The distance from Q to P is a, and the distance from to P is a. Therefore, the magnitudes of the individual electric fields are, using. - (writing 1/4πε 0 k), Q kq k,. a 9 a We note that is along the y axis (directed towards ±y in accordance with the sign of ), and Q has x and y components, with ± 4 and (signs corresponding to the Qx Q Qy ± sign of Q). Conseuently, we can write the addition of components in a simple way (basically, by dropping the absolute values): net x net y 4 kq 1 a kq k + 1 a 9 a (a) uating net x and net y, it is straightforward to solve for the relation between Q and. We obtain Q/ 1/ (b) We set net y Q/ 1/ and find the necessary relation between Q and. We obtain Q

8 HRW 7e Chapter Page 8 of The two closest charges produce fields at the midpoint which cancel each other out. Thus, the only significant contribution is from the furthest charge, which is a distance r d/ away from that midpoint. Plugging this into. - immediately gives the result: Q Q 4πε o r πε o d. 7. (a) Using the density of water (ρ 1000 kg/m ), the weight mg of the spherical drop (of radius r m) is c h I HG c h K J c h 4p 7 1 W ρvg 1000 kg m m 98. m s N. (b) Vertical euilibrium of forces leads to mg ne, which we solve for n, the number of excess electrons: n mg e N 10. c Chb46 N Cg 79. (a) We combine. -8 (in absolute value) with Newton s second law: HG a m C kg I NI. KJ HG K J. C c (b) With v m s, we use. -11 to find ms v v t 7 o s. 17 a (c). -16 gives v x v a c c h h 7 o m. 8. We consider pairs of diametrically opposed charges. The net field due to just the charges in the one o clock ( ) and seven o clock ( 7) positions is clearly euivalent to that of a single 6 charge sitting at the seven o clock position. Similarly, the net field due to just the charges in the six o clock ( 6) and twelve o clock ( 1) positions is the same as that due to a single 6 charge sitting at the twelve o clock position. Continuing with this line of reasoning, we see that there are six eual-magnitude electric field vectors pointing at the seven o clock, eight o clock twelve o clock positions. Thus, the resultant field of all of these points, by symmetry, is directed toward the position midway between seven and twelve o clock. Therefore, resultant points towards the nine-thirty position.

9 HRW 7e Chapter Page 9 of 9

Electrostatics AP Study guide

Electrostatics AP Study guide Electrostatics AP Study guide 1) Know how charges interact Coulomb s Law (pg. 565 57) (Practice questions Ch. 1: Q1-4, Q6-1) (Practice problems Ch. 1: P1 P3) Positive and negative How to calculate the

More information

1. (a) With a understood to mean the magnitude of acceleration, Newton s second and third laws lead to. kg.

1. (a) With a understood to mean the magnitude of acceleration, Newton s second and third laws lead to. kg. 1. (a) With a understood to mean the magnitude of acceleration, Newton s second and third laws lead to ma = ma m = 1 1 7 c63. 10 kghc70. m s h 90. ms (b) The magnitude of the (only) force on particle 1

More information

1. (a) +EA; (b) EA; (c) 0; (d) 0 2. (a) 2; (b) 3; (c) 1 3. (a) equal; (b) equal; (c) equal e; (b) 150e 5. 3 and 4 tie, then 2, 1

1. (a) +EA; (b) EA; (c) 0; (d) 0 2. (a) 2; (b) 3; (c) 1 3. (a) equal; (b) equal; (c) equal e; (b) 150e 5. 3 and 4 tie, then 2, 1 CHAPTER 24 GAUSS LAW 659 CHAPTER 24 Answer to Checkpoint Questions 1. (a) +EA; (b) EA; (c) ; (d) 2. (a) 2; (b) 3; (c) 1 3. (a) eual; (b) eual; (c) eual 4. +5e; (b) 15e 5. 3 and 4 tie, then 2, 1 Answer

More information

PHYSICS 12 NAME: Electrostatics Review

PHYSICS 12 NAME: Electrostatics Review NAME: Electrostatics Review 1. The diagram below shows two positive charges of magnitude Q and 2Q. Which vector best represents the direction of the electric field at point P, which is equidistant from

More information

Practice Problem Solutions

Practice Problem Solutions Chapter 14 Fields and Forces Practice Problem Solutions Student Textbook page 638 1. Conceptualize the Problem - Force, charge and distance are related by Coulomb s law. The electrostatic force, F, between

More information

= C. on q 1 to the left. Using Coulomb s law, on q 2 to the right, and the charge q 2 exerts a force F 2 on 1 ( )

= C. on q 1 to the left. Using Coulomb s law, on q 2 to the right, and the charge q 2 exerts a force F 2 on 1 ( ) Phsics Solutions to Chapter 5 5.. Model: Use the charge model. Solve: (a) In the process of charging b rubbing, electrons are removed from one material and transferred to the other because the are relativel

More information

HOMEWORK 1 SOLUTIONS

HOMEWORK 1 SOLUTIONS HOMEWORK 1 SOLUTIONS CHAPTER 18 3. REASONING AND SOLUTION The total charge to be removed is 5.0 µc. The number of electrons corresponding to this charge is N = ( 5.0 10 6 C)/( 1.60 10 19 C) = 3.1 10 13

More information

CHAPTER 22. Answer to Checkpoint Questions

CHAPTER 22. Answer to Checkpoint Questions 60 CHAPTER ELECTRIC CHARGE CHAPTER Answer to Checkpoint Questions. C and D attract; B and D attract. (a) leftward; (b) leftward; (c) leftward 3. (a) a, c, b; (b) less than 4. 5e (net charge of 30e is equally

More information

Physics 4B. Question 24-4 (a) 2, 4, and then a tie of 1, 3, and 5 (where E = 0); (b) negative x direction; (c) positive x direction.

Physics 4B. Question 24-4 (a) 2, 4, and then a tie of 1, 3, and 5 (where E = 0); (b) negative x direction; (c) positive x direction. Physics Solutions to Chapter HW Chapter : Questions:, 6, Problems:, 9, 5, 33, 35, 53, 5, 67, 99 Question - (a),, and then a tie of, 3, and 5 (where E = ); (b) negative x direction; (c) positive x direction

More information

PHYSICS 12 NAME: Electrostatics Review

PHYSICS 12 NAME: Electrostatics Review NAME: Electrostatics Review 1. The diagram below shows two positive charges of magnitude Q and 2Q. Which vector best represents the direction of the electric field at point P, which is equidistant from

More information

Conceptual Exercises 11. In order of increasing magnitude of the net force (from smallest net force to biggest net force), it s C, then A, then B.

Conceptual Exercises 11. In order of increasing magnitude of the net force (from smallest net force to biggest net force), it s C, then A, then B. Physics 140 Conceptual Questions 3. Rubbing the comb through your hair strips trons off of your hair and deposits them on the comb so that the comb acuires a net negative charge. When this negatively charged

More information

Physics 2049 Exam 1 Solutions Fall 2002

Physics 2049 Exam 1 Solutions Fall 2002 Physics 2049 xam 1 Solutions Fall 2002 1. A metal ball is suspended by a string. A positively charged plastic ruler is placed near the ball, which is observed to be attracted to the ruler. What can we

More information

Electric Charge and Electric Field AP Physics 4 Lecture Notes

Electric Charge and Electric Field AP Physics 4 Lecture Notes Electric Charge and Electric Field AP Physics 4 Lecture Notes Coulomb s Law The Electric Field Field Lines Electric Fields and Conductors Coulomb s law: Coulomb s Law Force (N) F F F k r F F F r Charge

More information

Reading: Chapter 28. 4πε r. For r > a. Gauss s Law

Reading: Chapter 28. 4πε r. For r > a. Gauss s Law Reading: Chapter 8 Q 4πε r o k Q r e For r > a Gauss s Law 1 Chapter 8 Gauss s Law lectric Flux Definition: lectric flux is the product of the magnitude of the electric field and the surface area, A, perpendicular

More information

(a) What is the magnitude of the electric force between the proton and the electron?

(a) What is the magnitude of the electric force between the proton and the electron? .3 Solved Problems.3. Hydrogen Atom In the classical model of the hydrogen atom, the electron revolves around the proton with a radius of r = 053. 0 0 m. The magnitude of the charge of the electron and

More information

SPH 4U: Unit 3 - Electric and Magnetic Fields

SPH 4U: Unit 3 - Electric and Magnetic Fields Name: Class: _ Date: _ SPH 4U: Unit 3 - Electric and Magnetic Fields Modified True/False (1 point each) Indicate whether the statement is true or false. If false, change the identified word or phrase to

More information

Phys222 W16 Exam 2: Chapters Key. Name:

Phys222 W16 Exam 2: Chapters Key. Name: Name: Please mark your answer here and in the scantron. A positively charged particle is moving in the +y-direction when it enters a region with a uniform electric field pointing in the +y-direction. Which

More information

PHYSICS 12 NAME: Electrostatics Review

PHYSICS 12 NAME: Electrostatics Review NAME: Electrostatics Review 1. An electron orbits a nucleus which carries a charge of +9.6 x10-19 C. If the electron s orbital radius is 2.0 x10-10 m, what is its electric potential energy? A. -6.9 x10-18

More information

Force 10/01/2010. (Weight) MIDTERM on 10/06/10 7:15 to 9:15 pm Bentley 236. (Tension)

Force 10/01/2010. (Weight) MIDTERM on 10/06/10 7:15 to 9:15 pm Bentley 236. (Tension) Force 10/01/2010 = = Friction Force (Weight) (Tension), coefficient of static and kinetic friction MIDTERM on 10/06/10 7:15 to 9:15 pm Bentley 236 2008 midterm posted for practice. Help sessions Mo, Tu

More information

The World According to Physics 121

The World According to Physics 121 The World According to Physics Objects Forces Specified by geometry and mass Gravity: F = G m m r m Others: Tension, Normal, Friction Space and Time uclidean with Galilean Invariance ordinary 3D space;;

More information

Solution. ANSWERS - AP Physics Multiple Choice Practice Electrostatics. Answer

Solution. ANSWERS - AP Physics Multiple Choice Practice Electrostatics. Answer NSWRS - P Physics Multiple hoice Practice lectrostatics Solution nswer 1. y definition. Since charge is free to move around on/in a conductor, excess charges will repel each other to the outer surface

More information

Laboratory 9: Work and Kinetic Energy

Laboratory 9: Work and Kinetic Energy Phys 131L Fall 2017 Laboratory 9: Work and Kinetic Energy Newton s Laws of motion relate forces and accelerations and, in principle, using these suffices for analyzing any classical mechanics situation.

More information

P Q 2 = -3.0 x 10-6 C

P Q 2 = -3.0 x 10-6 C 1. Which one of the following represents correct units for electric field strength? A. T B. N/C C. J / C D. N m 2 /C 2 2. The diagram below shows two positive charges of magnitude Q and 2Q. P Q 2Q Which

More information

PHY 2049 FALL 2000 EXAM 1

PHY 2049 FALL 2000 EXAM 1 PHY 09 FALL 000 EXAM 1 1. Figure below shows three arrangements of electric field lines. A proton is released from point X. It is accelerated by the electric field toward point Y. Points X and Y have eual

More information

Chapter 17. Electric Potential Energy and the Electric Potential

Chapter 17. Electric Potential Energy and the Electric Potential Chapter 17 Electric Potential Energy and the Electric Potential Consider gravity near the surface of the Earth The gravitational field is uniform. This means it always points in the same direction with

More information

Physics 4A Solutions to Chapter 9 Homework

Physics 4A Solutions to Chapter 9 Homework Physics 4A Solutions to Chapter 9 Homework Chapter 9 Questions:, 10, 1 Exercises & Problems: 3, 19, 33, 46, 51, 59, 86, 90, 100, 104 Answers to Questions: Q 9- (a) ac, cd, bc (b) bc (c) bd, ad Q 9-10 a,

More information

= v 0 x. / t = 1.75m / s 2.25s = 0.778m / s 2 nd law taking left as positive. net. F x ! F

= v 0 x. / t = 1.75m / s 2.25s = 0.778m / s 2 nd law taking left as positive. net. F x ! F Multiple choice Problem 1 A 5.-N bos sliding on a rough horizontal floor, and the only horizontal force acting on it is friction. You observe that at one instant the bos sliding to the right at 1.75 m/s

More information

4 r 2. r 2. Solved Problems

4 r 2. r 2. Solved Problems CHAP. 24] COULOMB'S LAW AND ELECTRIC FIELDS 233 AN ELECTRIC FIELD is said to exist at any point in space when a test charge, placed at that point, experiences an electrical force. The direction of the

More information

Description / Instructions: Covers 9th edition chapters and

Description / Instructions: Covers 9th edition chapters and Description / Instructions: Covers 9th edition chapters 21-1 -- 21-6 and 22-1 -- 22-4. Question 1 Figure 21-14 shows four situations in which charged particles are fixed in place on an axis. In which situations

More information

Conductors and Insulators

Conductors and Insulators Conductors and Insulators Lecture 11: Electromagnetic Theory Professor D. K. Ghosh, Physics Department, I.I.T., Bombay Self Energy of a Charge Distribution : In Lecture 1 we briefly discussed what we called

More information

Design a Rollercoaster

Design a Rollercoaster Design a Rollercoaster This activity has focussed on understanding circular motion, applying these principles to the design of a simple rollercoaster. I hope you have enjoyed this activity. Here is my

More information

Essentially, the amount of work accomplished can be determined two ways:

Essentially, the amount of work accomplished can be determined two ways: 1 Work and Energy Work is done on an object that can exert a resisting force and is only accomplished if that object will move. In particular, we can describe work done by a specific object (where a force

More information

Profs. D. Acosta, A. Rinzler, S. Hershfield. Exam 1 Solutions

Profs. D. Acosta, A. Rinzler, S. Hershfield. Exam 1 Solutions PHY2049 Spring 2009 Profs. D. Acosta, A. Rinzler, S. Hershfield Exam 1 Solutions 1. What is the flux through the right side face of the shown cube if the electric field is given by E = 2xî + 3yĵ and the

More information

1/11/12. A Scalar Field. The Electric Field + + A Vector Field

1/11/12. A Scalar Field. The Electric Field + + A Vector Field The lectric ield q Coulomb s Law of lectro-static orce: qq k r How does q know of the presence of q? q rˆ A Scalar ield 77 7 7 75 8 7 84 77 8 68 64 8 8 55 7 66 75 8 8 9 9 9 These isolated temperatures

More information

CHAPTER 19 - ELECTRIC POTENTIAL ENERGY AND ELECTRIC POTENTIAL. Sections 1-5

CHAPTER 19 - ELECTRIC POTENTIAL ENERGY AND ELECTRIC POTENTIAL. Sections 1-5 CHAPTER 19 - ELECTRIC POTENTIAL ENERGY AND ELECTRIC POTENTIAL Sections 1-5 Objectives: After completing this unit, you should be able to: Understand an apply the concepts of electric potential energy,

More information

Turn in scantron You keep these question sheets

Turn in scantron You keep these question sheets Exam 1 on FEB. 20. 2018 - Physics 106 R. Schad YOUR NAME ¼À Turn in scantron You keep these question sheets 1) Electric flux through a spherical surface of radius 1m dueto a charge inside [which is the

More information

Ch 25 Electric Potential! Electric Energy, Electric Potential!

Ch 25 Electric Potential! Electric Energy, Electric Potential! Ch 25 Electric Potential Electric Energy, Electric Potential Energy concepts are going to be extremely important to us as we consider the behavior of charges in electric fields. How do energy concepts

More information

Physics 12. June 1997 Provincial Examination

Physics 12. June 1997 Provincial Examination Physics 2 June 997 Provincial Examination ANSWER KEY / SCORING GUIDE TOPICS:. Kinematics and Dynamics 2. Energy and Momentum 3. Equilibrium 4. Circular Motion and Gravitation 5. Electrostatics and Circuitry

More information

Ch 25 Electric Potential

Ch 25 Electric Potential Ch 25 Electric Potential Electric Energy, Electric Potential Energy concepts are going to be extremely important to us as we consider the behavior of charges in electric fields. How do energy concepts

More information

Questions Chapter 13 Gravitation

Questions Chapter 13 Gravitation Questions Chapter 13 Gravitation 13-1 Newton's Law of Gravitation 13-2 Gravitation and Principle of Superposition 13-3 Gravitation Near Earth's Surface 13-4 Gravitation Inside Earth 13-5 Gravitational

More information

Chapter 21. Electric Fields. Lecture 2. Dr. Armen Kocharian

Chapter 21. Electric Fields. Lecture 2. Dr. Armen Kocharian Chapter 21 Electric Fields Lecture 2 Dr. Armen Kocharian Electric Field Introduction The electric force is a field force Field forces can act through space The effect is produced even with no physical

More information

Phys222 S11 Quiz 2: Chapters Name: = 80 nc, and q = 24 nc in the figure, what is the magnitude of the total electric force on q?

Phys222 S11 Quiz 2: Chapters Name: = 80 nc, and q = 24 nc in the figure, what is the magnitude of the total electric force on q? Name: 1. Three point charges are positioned on the x axis. If the charges and corresponding positions are +3 µc at x = 0, +0 µc at x = 40 cm, and 60 µc at x = 60 cm, what is the magnitude of the electrostatic

More information

Quiz Fun! This box contains. 1. a net positive charge. 2. no net charge. 3. a net negative charge. 4. a positive charge. 5. a negative charge.

Quiz Fun! This box contains. 1. a net positive charge. 2. no net charge. 3. a net negative charge. 4. a positive charge. 5. a negative charge. Quiz Fun! This box contains 1. a net positive charge. 2. no net charge. 3. a net negative charge. 4. a positive charge. 5. a negative charge. Quiz Fun! This box contains 1. a net positive charge. 2. no

More information

Ch 7 Electric Potential

Ch 7 Electric Potential Ch 7 Electric Potential Electric Energy, Electric Potential Energy concepts are going to be extremely important to us as we consider the behavior of charges in electric fields. How do energy concepts help

More information

Chapter 4. Dynamics: Newton s Laws of Motion

Chapter 4. Dynamics: Newton s Laws of Motion Chapter 4 Dynamics: Newton s Laws of Motion Types of Forces: An Overview In nature there are two general types of forces, fundamental and nonfundamental. Fundamental Forces -- three have been identified,

More information

Chapter 07: Kinetic Energy and Work

Chapter 07: Kinetic Energy and Work Chapter 07: Kinetic Energy and Work Conservation of Energy is one of Nature s fundamental laws that is not violated. Energy can take on different forms in a given system. This chapter we will discuss work

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the 1) A small sphere with a mass of 441 g is moving upward along the vertical +y-axis when it encounters

More information

Phys 1401: General Physics I

Phys 1401: General Physics I 1. (0 Points) What course is this? a. PHYS 1401 b. PHYS 1402 c. PHYS 2425 d. PHYS 2426 2. (0 Points) Which exam is this? a. Exam 1 b. Exam 2 c. Final Exam 3. (0 Points) What version of the exam is this?

More information

Electrostatics Notes 2 Electric Field on a Single Charge

Electrostatics Notes 2 Electric Field on a Single Charge Electrostatics Notes 2 Electric Field on a Single Charge There are many similarities between gravitational and electrostatic forces. One such similarity is that both forces can be exerted on objects that

More information

Circular Motion.

Circular Motion. 1 Circular Motion www.njctl.org 2 Topics of Uniform Circular Motion (UCM) Kinematics of UCM Click on the topic to go to that section Period, Frequency, and Rotational Velocity Dynamics of UCM Vertical

More information

( ) 2 ( kg) ( 9.80 m/s 2

( ) 2 ( kg) ( 9.80 m/s 2 Chapitre 1 Charges et champs électriques [9 au 1 mai] DEVOIR : 1.78, 1.84, 1.56, 1.90, 1.71 1.1. Charge électrique et structure de la matière À lire rapidement. Concepts déjà familiers. 1.. Conducteurs,

More information

Physics 2211 A & B Quiz #2 Solutions Fall P sin θ = µ k P cos θ + mg

Physics 2211 A & B Quiz #2 Solutions Fall P sin θ = µ k P cos θ + mg Physics 2211 A & B Quiz #2 Solutions Fall 2016 I. (16 points) A block of mass m is sliding up a vertical wall at constant non-zero velocity v 0, due to an applied force P pushing against it at an angle

More information

Electrostatics. 3) positive object: lack of electrons negative object: excess of electrons. Particle Mass Electric Charge. m e = 9.

Electrostatics. 3) positive object: lack of electrons negative object: excess of electrons. Particle Mass Electric Charge. m e = 9. Electrostatics 1) electric charge: 2 types of electric charge: positive and negative 2) charging by friction: transfer of electrons from one object to another 3) positive object: lack of electrons negative

More information

Wiley Plus Reminder! Assignment 1

Wiley Plus Reminder! Assignment 1 Wiley Plus Reminder! Assignment 1 6 problems from chapters and 3 Kinematics Due Monday October 5 Before 11 pm! Chapter 4: Forces and Newton s Laws Force, mass and Newton s three laws of motion Newton s

More information

Quick Questions. 1. Two charges of +1 µc each are separated by 1 cm. What is the force between them?

Quick Questions. 1. Two charges of +1 µc each are separated by 1 cm. What is the force between them? 92 3.10 Quick Questions 3.10 Quick Questions 1. Two charges of +1 µc each are separated by 1 cm. What is the force between them? 0.89 N 90 N 173 N 15 N 2. The electric field inside an isolated conductor

More information

PHYS102 Previous Exam Problems. Electric Potential

PHYS102 Previous Exam Problems. Electric Potential PHYS102 Previous Exam Problems CHAPTER 24 Electric Potential Electric potential energy of a point charge Calculating electric potential from electric field Electric potential of point charges Calculating

More information

Objects usually are charged up through the transfer of electrons from one object to the other.

Objects usually are charged up through the transfer of electrons from one object to the other. 1 Part 1: Electric Force Review of Vectors Review your vectors! You should know how to convert from polar form to component form and vice versa add and subtract vectors multiply vectors by scalars Find

More information

Topic 10: Fields - AHL 10.1 Describing fields

Topic 10: Fields - AHL 10.1 Describing fields Topic 10.1 is an extension of Topics 5.1 and 6.2. Essential idea: Electric charges and masses each influence the space around them and that influence can be represented through the concept of fields. Nature

More information

week 8 The Magnetic Field

week 8 The Magnetic Field week 8 The Magnetic Field General Principles General Principles Applications Start with magnetic forces on moving charges and currents A positive charge enters a uniform magnetic field as shown. What is

More information

( ) ( ) 2. We apply Newton s second law (specifically, Eq. 5-2). (a) We find the x component of the force is. (b) The y component of the force is

( ) ( ) 2. We apply Newton s second law (specifically, Eq. 5-2). (a) We find the x component of the force is. (b) The y component of the force is 1. We are only concerned with horizontal forces in this problem (gravity plays no direct role). We take East as the +x direction and North as +y. This calculation is efficiently implemented on a vector-capable

More information

Electric Fields, Dipoles and Torque Challenge Problem Solutions

Electric Fields, Dipoles and Torque Challenge Problem Solutions Electric Fields, Dipoles and Torque Challenge Problem Solutions Problem 1: Three charges equal to Q, +Q and +Q are located a distance a apart along the x axis (see sketch). The point P is located on the

More information

A Question about free-body diagrams

A Question about free-body diagrams Free-body Diagrams To help us understand why something moves as it does (or why it remains at rest) it is helpful to draw a free-body diagram. The free-body diagram shows the various forces that act on

More information

A 12-V battery does 1200 J of work transferring charge. How much charge is transferred? A source of 1.0 µc is meters is from a positive test

A 12-V battery does 1200 J of work transferring charge. How much charge is transferred? A source of 1.0 µc is meters is from a positive test 1 A source of 1.0 µc is 0.030 meters is from a positive test charge of 2.0 µc. (a) What is the force on the test charge? (b) What is the potential energy of the test charge? (c) What is the strength of

More information

Spring Not-Break Review Assignment

Spring Not-Break Review Assignment Name AP Physics B Spring Not-Break Review Assignment Date Mrs. Kelly. A kilogram block is released from rest at the top of a curved incline in the shape of a quarter of a circle of radius R. The block

More information

Chapters 21 and 22: Giancoli, 4 th Edition Electrostatics

Chapters 21 and 22: Giancoli, 4 th Edition Electrostatics Chapters 21 and 22: Giancoli, 4 th Edition Electrostatics Electric Charges Coulomb s Law and Electric force The Electric Field Electric Field Lines Electric flux Gauss Law and applications of Gauss Law

More information

Physics Revision Guide Volume 1

Physics Revision Guide Volume 1 Physics Revision Guide Volume 1 "Many people do not plan to fail, they just fail to plan!" Develop a customized success plan Create necessity in you to take action now Boost your confidence in your revision

More information

Flux. Flux = = va. This is the same as asking What is the flux of water through the rectangle? The answer depends on:

Flux. Flux = = va. This is the same as asking What is the flux of water through the rectangle? The answer depends on: Ch. 22: Gauss s Law Gauss s law is an alternative description of Coulomb s law that allows for an easier method of determining the electric field for situations where the charge distribution contains symmetry.

More information

Chapter 19: Electric Charges, Forces, and Fields

Chapter 19: Electric Charges, Forces, and Fields Ch. 0 Solution PHY 05 Hayel Shehadeh Chapter 9: Electric Charges, Forces, and Fields Answers Conceptual Questions 4. The two like charges, if released, will move away from one another to infinite separation,

More information

Chapter 23 Solutions. electrons mol ( ) 2. )( kg) 2 ( m) 2 = N. k e N m 2 /C 2 = 8.

Chapter 23 Solutions. electrons mol ( ) 2. )( kg) 2 ( m) 2 = N. k e N m 2 /C 2 = 8. Chapter 3 Solutions 10.0 grams 3.1 (a) N = 107.87 grams mol 6.0 atoms electrons 103 47.0 =.6 104 mol atom # electrons added = Q e = 1.00 10 3 C 1.60 10-19 = 6.5 1015 C electron or.38 electrons for every

More information

Electric Force. A collection of 4 charges, each with +1e. equivalent to a charge with +4e. Given two objects with charges q 1 & q 2 : k e q 1 q 2

Electric Force. A collection of 4 charges, each with +1e. equivalent to a charge with +4e. Given two objects with charges q 1 & q 2 : k e q 1 q 2 19.4 19.6 Electrostatic Forces; Coulomb s Law Electrostatic Forces from multiple charges Electric Fields: point charges Electric Fields: multiple point charges, continuous charge distributions Electric

More information

Forces and Newton s Laws Reading Notes. Give an example of a force you have experienced continuously all your life.

Forces and Newton s Laws Reading Notes. Give an example of a force you have experienced continuously all your life. Forces and Newton s Laws Reading Notes Name: Section 4-1: Force What is force? Give an example of a force you have experienced continuously all your life. Give an example of a situation where an object

More information

Chapter 4. Forces and Newton s Laws of Motion. continued

Chapter 4. Forces and Newton s Laws of Motion. continued Chapter 4 Forces and Newton s Laws of Motion continued Quiz 3 4.7 The Gravitational Force Newton s Law of Universal Gravitation Every particle in the universe exerts an attractive force on every other

More information

Newton s Three Laws. F = ma. Kinematics. Gravitational force Normal force Frictional force Tension More to come. k k N

Newton s Three Laws. F = ma. Kinematics. Gravitational force Normal force Frictional force Tension More to come. k k N Newton s Three Laws F = ma Gravitational force Normal force Frictional force Tension More to come Kinematics f s,max = µ sfn 0 < fs µ sfn k k N f = µ F Rules for the Application of Newton s Laws of Motion

More information

Welcome. to Electrostatics

Welcome. to Electrostatics Welcome to Electrostatics Outline 1. Coulomb s Law 2. The Electric Field - Examples 3. Gauss Law - Examples 4. Conductors in Electric Field Coulomb s Law Coulomb s law quantifies the magnitude of the electrostatic

More information

PH211 Chapter 4 Solutions

PH211 Chapter 4 Solutions PH211 Chapter 4 Solutions 4.3.IDENTIFY: We know the resultant of two vectors of equal magnitude and want to find their magnitudes. They make the same angle with the vertical. Figure 4.3 SET UP: Take to

More information

HRW 7e Chapter 2 Page 1 of 13

HRW 7e Chapter 2 Page 1 of 13 HRW 7e Chapter Page of 3 Halliday/Resnick/Walker 7e Chapter. Huber s speed is v 0 =(00 m)/(6.509 s)=30.7 m/s = 0.6 km/h, where we have used the conversion factor m/s = 3.6 km/h. Since Whittingham beat

More information

Chapter 21. Electric Fields

Chapter 21. Electric Fields Chapter 21 Electric Fields The Origin of Electricity The electrical nature of matter is inherent in the atoms of all substances. An atom consists of a small relatively massive nucleus that contains particles

More information

One-Dimensional Motion Review IMPORTANT QUANTITIES Name Symbol Units Basic Equation Name Symbol Units Basic Equation Time t Seconds Velocity v m/s

One-Dimensional Motion Review IMPORTANT QUANTITIES Name Symbol Units Basic Equation Name Symbol Units Basic Equation Time t Seconds Velocity v m/s One-Dimensional Motion Review IMPORTANT QUANTITIES Name Symbol Units Basic Equation Name Symbol Units Basic Equation Time t Seconds Velocity v m/s v x t Position x Meters Speed v m/s v t Length l Meters

More information

Pleeeeeeeeeeeeeease mark your UFID, exam number, and name correctly. 20 problems 3 problems from exam 2

Pleeeeeeeeeeeeeease mark your UFID, exam number, and name correctly. 20 problems 3 problems from exam 2 Pleeeeeeeeeeeeeease mark your UFID, exam number, and name correctly. 20 problems 3 problems from exam 1 3 problems from exam 2 6 problems 13.1 14.6 (including 14.5) 8 problems 1.1---9.6 Go through the

More information

Physics 212 Exam I Sample Question Bank 2008 Multiple Choice: choose the best answer "none of the above" may can be a valid answer

Physics 212 Exam I Sample Question Bank 2008 Multiple Choice: choose the best answer none of the above may can be a valid answer Multiple Choice: choose the best answer "none of the above" may can be a valid answer The (attempted) demonstration in class with the pith balls and a variety of materials indicated that () there are two

More information

Chapter 4. Forces and Newton s Laws of Motion. continued

Chapter 4. Forces and Newton s Laws of Motion. continued Chapter 4 Forces and Newton s Laws of Motion continued 4.9 Static and Kinetic Frictional Forces When an object is in contact with a surface forces can act on the objects. The component of this force acting

More information

Electric Potential (Chapter 25)

Electric Potential (Chapter 25) Electric Potential (Chapter 25) Electric potential energy, U Electric potential energy in a constant field Conservation of energy Electric potential, V Relation to the electric field strength The potential

More information

Prof. Dr. I. Nasser T171 Chapter5_I 12/10/2017

Prof. Dr. I. Nasser T171 Chapter5_I 12/10/2017 Prof. Dr. I. Nasser T171 Chapter5_I 1/10/017 Chapter 5 Force and Motion I 5-1 NEWTON S FIRST AND SECOND LAWS Newton s Three Laws Newton s 3 laws define some of the most fundamental things in physics including:

More information

Forces and Motion in One Dimension

Forces and Motion in One Dimension Nicholas J. Giordano www.cengage.com/physics/giordano Forces and Motion in One Dimension Applications of Newton s Laws We will learn how Newton s Laws apply in various situations We will begin with motion

More information

5. Forces and Free-Body Diagrams

5. Forces and Free-Body Diagrams 5. Forces and Free-Body Diagrams A) Overview We will begin by introducing the bulk of the new forces we will use in this course. We will start with the weight of an object, the gravitational force near

More information

Figure 5.1a, b IDENTIFY: Apply to the car. EXECUTE: gives.. EVALUATE: The force required is less than the weight of the car by the factor.

Figure 5.1a, b IDENTIFY: Apply to the car. EXECUTE: gives.. EVALUATE: The force required is less than the weight of the car by the factor. 51 IDENTIFY: for each object Apply to each weight and to the pulley SET UP: Take upward The pulley has negligible mass Let be the tension in the rope and let be the tension in the chain EXECUTE: (a) The

More information

r 2 and the charge on a proton is +e. We never see objects that have a charge which is not a whole number multiple of this number.

r 2 and the charge on a proton is +e. We never see objects that have a charge which is not a whole number multiple of this number. Name: Physics Chapter 16 Study Guide ----------------------------------------------------------------------------------------------------- Useful Information: e = 1.6"10 #19 C mass electron = 9.11"10 #31

More information

Exam 3 Practice Solutions

Exam 3 Practice Solutions Exam 3 Practice Solutions Multiple Choice 1. A thin hoop, a solid disk, and a solid sphere, each with the same mass and radius, are at rest at the top of an inclined plane. If all three are released at

More information

Everyday Forces. MCHS Honors Physics Weight. Weight

Everyday Forces. MCHS Honors Physics Weight. Weight Everyday Forces Weight The Force of Friction Kinetic vs. Static The Coefficient of Friction MCHS Honors Physics 2014-15 Weight The gravitational force exerted on an object by Earth, F g, is a vector quantity,

More information

Chapter 13. Universal Gravitation 13.1: Newton's Law of Universal Gravitation 13.2: Free-Fall Acceleration and the Gravitational Force

Chapter 13. Universal Gravitation 13.1: Newton's Law of Universal Gravitation 13.2: Free-Fall Acceleration and the Gravitational Force Chapter 13 Universal Gravitation 13.1: Newton's Law of Universal Gravitation 13.2: Free-Fall Acceleration and the Gravitational Force 1 Planetary Motion A large amount of data had been collected by 1687.

More information

Newton s Laws and Free-Body Diagrams General Physics I

Newton s Laws and Free-Body Diagrams General Physics I Newton s Laws and Free-Body Diagrams In the next few sections, we will be exploring some of the most fundamental laws of our universe, laws that govern the relationship actions and motion. These laws are

More information

2. We apply Newton s second law (Eq. 5-1 or, equivalently, Eq. 5-2). The net force applied on the chopping block is F F F

2. We apply Newton s second law (Eq. 5-1 or, equivalently, Eq. 5-2). The net force applied on the chopping block is F F F Chapter 5 1. We are only concerned with horizontal forces in this problem (gravity plays no direct role). We take East as the +x direction and North as +y. This calculation is efficiently implemented on

More information

Gravity and Coulomb s Law

Gravity and Coulomb s Law AP PHYSICS 1 Gravity and Coulomb s Law 016 EDITION Click on the following link or scan the QR code to complete the evaluation for the Study Session https://www.surveymonkey.com/r/s_sss Copyright 016 National

More information

LAST Name (print) ALL WORK MUST BE SHOWN FOR THE FREE RESPONSE QUESTION IN ORDER TO RECEIVE FULL CREDIT.

LAST Name (print) ALL WORK MUST BE SHOWN FOR THE FREE RESPONSE QUESTION IN ORDER TO RECEIVE FULL CREDIT. Physics 107 LAST Name (print) First Mid-Term Exam FIRST Name (print) Summer 2013 Signature: July 5 UIN #: Textbooks, cell phones, or any other forms of wireless communication are strictly prohibited in

More information

Phys101 First Major-111 Zero Version Monday, October 17, 2011 Page: 1

Phys101 First Major-111 Zero Version Monday, October 17, 2011 Page: 1 Monday, October 17, 011 Page: 1 Q1. 1 b The speed-time relation of a moving particle is given by: v = at +, where v is the speed, t t + c is the time and a, b, c are constants. The dimensional formulae

More information

Physics 1202: Lecture 3 Today s Agenda

Physics 1202: Lecture 3 Today s Agenda Physics 1202: Lecture 3 Today s Agenda Announcements: Lectures posted on: www.phys.uconn.edu/~rcote/ HW assignments, solutions etc. Homework #1: On Masterphysics: due this coming Friday Go to the syllabus

More information

Frictional Force ( ): The force that occurs when two object rub against one another and always OPPOSES motion. It's not dependent on area of contact.

Frictional Force ( ): The force that occurs when two object rub against one another and always OPPOSES motion. It's not dependent on area of contact. Force Push or pull Law Scientific theory that has been proven for many years (can be changed) Newton's 1 st Law (Law of Inertia): Object at rest stays at rest while an object in motion continues in motion

More information

PY1008 / PY1009 Physics Gravity I

PY1008 / PY1009 Physics Gravity I PY1008 / PY1009 Physics Gravity I M.P. Vaughan Learning Objectives The concept of the centre of mass Fundamental forces Newton s Law of Gravitation Coulomb s Law (electrostatic force) Examples of Newton

More information

CHAPTER 4 NEWTON S LAWS OF MOTION

CHAPTER 4 NEWTON S LAWS OF MOTION 62 CHAPTER 4 NEWTON S LAWS O MOTION CHAPTER 4 NEWTON S LAWS O MOTION 63 Up to now we have described the motion of particles using quantities like displacement, velocity and acceleration. These quantities

More information

Physics 2212 K Quiz #1 Solutions Summer q in = ρv = ρah = ρa 4

Physics 2212 K Quiz #1 Solutions Summer q in = ρv = ρah = ρa 4 Physics 2212 K Quiz #1 Solutions Summer 2016 I. (18 points A uniform infinite insulating slab of charge has a positive volume charge density ρ, and a thickness 2t, extending from t to +t in the z direction.

More information