An introduction to Support Vector Machine

Size: px
Start display at page:

Download "An introduction to Support Vector Machine"

Transcription

1 An nroducon o Suppor Vecor Machne 報告者 : 黃立德 References: Smon Haykn, "Neural Neworks: a comprehensve foundaon, second edon, 999, Chaper 2,6 Nello Chrsann, John Shawe-Tayer, An Inroducon o Suppor Vecor Machnes, 2000, Chaper 3~6

2 Oulne Drawbacks of learnng Overvew of SVM The Emprcal Rsk Mnmzaon Prncple VC-dmenson Srucural Rsk Mnmzaon Lnearly separable paerns Non-lnearly separable paerns How o buld a SVM for paern recognon Example: XOR problem Properes and expansons of SVM Concluson Applcaons of SVM LIBSVM 2

3 Drawbacks of learnng The choce of he class of funcons from whch he npu/oupu mappng mus be sough. Learnng n hree-node neural neworks s known o be NP-complee 3

4 Drawbacks of learnng (con.) In pracce, here are followng problems The learnng algorhm may prove neffcen as for example n he case of local mnma The sze of oupu hypohess can frequenly become very large and mpraccal If here are only a lmed number of ranng examples, he hypohess found by learnng algorhm wll lead o overfng and hence poor generalzaon The learnng algorhm s usually conrolled by a large number of parameers ha are ofen chosen by urnng heurscs, makng he sysem dffcul and unrelable o use 4

5 Overvew of SVM Wha s SVM? A lnear machne wh some very nce properes The goal s o consruc a decson surface such ha he margn of separaon beween posve and negave samples s maxmzed. SVM s a learnng sysem ha uses a hypohess space of lnear funcons n a hgh dmensonal feaure space, raned wh a learnng algorhm from opmzaon heory ha mplemens a learnng bas derved from sascal learnng heory 5

6 The Emprcal Rsk Mnmzaon Prncple Gven a se of daa ( ) ( ) n x y,..., x, y, x R, y {, }, N N Also gven a se of decson funcons { } n f : λ I, where f : R {, } λ The expeced rsk s ( λ) = f ( x) y dp( x y) λ R, λ 6

7 The Emprcal Rsk Mnmzaon Prncple (con.) The approxmaon (emprcal rsk) R emp N N ( λ) = f ( x ) λ = y Theory of unform convergence n probably { } lm P sup( R( λ) R ( λ)) > ε = 0, ε > 0 N λ I emp 7

8 Vapnk-Chervonenks dmenson VC-dmenson I s a measure of he capacy or expressve power of he famly of classfcaon funcons realzed by he learnng machne 8

9 Srucure Rsk Mnmzaon Le I be a subse of I k S { } k = fλ : λ Ik Defne a srucure of nesed subse S S2... S n... Each subse sasfes he condon h h2... h n..., h : VC dmenson 9

10 Srucure Rsk Mnmzaon (con.) Implemenng SRM can be dffcul because he VC dmenson of S n could be hard o compue. hn mn Remp ( λ) + N Suppor Vecor Machne, SVM, are able o acheve he goal of mnmzng he upper bound of R( λ) by mnmzng a bound on he VC dmenson h and R λ a he same me. emp ( ) 0

11 Conceps of SVM SVM s an approxmae mplemenaon of he mehod of srucural rsk mnmzaon I does no ncorporae problem-doman knowledge

12 Lnearly separable paerns A ranng sample ( x, ) N d = The paerns are lnear separable. The equaon of a decson surface ha does he separaon s wx And we can wre wx b 0 wx b 0 { } + b= 0 + for d = + + < for d = d ( w x + b) for =, 2,..., N 2

13 Lnearly separable paerns (con.) The dscrmnan funcon of he opmal hyperplane s gx ( ) = wx+ b 0 0 Maxmum Margn Rule We selec he hyperplane wh maxmum neares he daa pon (suppor vecors). 3

14 Lnearly separable paerns (con.) w x 0 + b0 = 0 w x 0 + b0 = Margn : 2 w 0 w x 0 + b0 = 4

15 Lnearly separable paerns (con.) The fnal goal s o mnmzes he cos funcon Φ ( w) = w w 2 We may solve he consraned opmzaon problem usng he mehod of Lagrange mulplers. Lagrangan funcon N J( w, b, α) = w w α d( w w + b) 2 = 5 α : Lagrange mulplers

16 Lnearly separable paerns (con.) dual form {( x, d )} N = Gven he ranng sample,fnd he Lagrange mulplers { } N α ha maxmze he = objecve funcon Q( α) = α αα N N N jdd j x xj = 2 = j= subjec o he consrans () (2) N = α d = 0 α 0 for =,2,..., N 6

17 Lnearly separable paerns (con.) Havng deermned he opmum Lagrange mulplers, we can compue he opmum wegh vecor and bas. w N = α d x 0 o, = b w x for d ( s) ( s) 0 = 0 = 7

18 Non-lnearly separable paerns allow ranng errors The defnon of decson surface s d ( w x + b) ξ for =,2,..., N A las, we only have o mnmzng he followng funcon N Φ ( w, ξ ) = w w+ C ξ 2 = 8

19 Non-lnearly separable paerns (con.) dual form {( x, d )} N = Gven he ranng sample,fnd he Lagrange mulplers { α } N ha maxmze he = objecve funcon N N N Q( α) = α αα jdd j x xj = 2 = j= subjec o he consrans () (2) N = α d = 0 0 α C for =,2,..., N where C s a user-specfed posve parameer 9

20 Non-lnearly separable paerns (con.) Afer he opmum Lagrange mulplers have deermned, we can compue he opmum wegh vecor and bas. w N s = α d x 0 o, = b w x for d ( s) ( s) 0 = 0 = 20

21 How o buld a SVM for paern recognon Seps for consrucng a SVM Nonlnear mappng of npu vecors no a hgh dmensonal feaure space ha s hdden from boh he npu and oupu. Consrucon of an opmal hyperplane for separang he feaures. 2

22 How o buld a SVM for paern recognon (con.) x denoes a vecor from he npu space. { ϕ ( ) } m j x j= denoes a se of nonlnear mappng from he npu space o he feaure space. Defne a hyperplane as followng m j= wϕ ( x) + b= 0 j Defne he vecor j ϕ( x) ϕ ( x), ϕ ( x),..., ϕ ( x) = 0 m m j= 0 wϕ ( x) = 0 j j 22

23 How o buld a SVM for paern recognon (con.) We can wre he equaon n he compac form. w ϕ ( x) = 0 Because he feaures are lnear separable, we may wre N α dϕ( x ) w = = Subsung Eq.2 n Eq.,we ge N = α dϕ ( x ) ϕ( x) =

24 How o buld a SVM for paern recognon (con.) Defne he nner-produc kernel denoed by K( x, x ) = ϕ ( x) ϕ( x ) m = j j = j= 0 ϕ ( x) ϕ ( x ) for,..., N Now, we may use he nner-produc kernel o consruc he opmal decson surface n he feaure space whou consderng he feaure space n explc form. N = α dk( x, x) = 0 24

25 How o buld a SVM for paern recognon (con.) Opmum desgn of a SVM (dual form) {( x, d )} N = Gven he ranng sample,fnd he Lagrange mulplers { α } N ha maxmze he = objecve funcon N N N Q( α) = α αα jdd jk( x, xj ) = 2 = j= subjec o he consrans () (2) N = α d = 0 0 α C for =,2,..., N where C s a user-specfed posve parameer 25

26 How o buld a SVM for paern recognon (con.) We may vew K( x as he j-h elemen, xj) of a symmerc N-by-N marx K K = { K x } xj (, j ) = (, ) N Havng found he opmum values of α o,, we can ge w N = α dϕ( x ) o o, = 26

27 How o buld a SVM for paern recognon (con.) 27

28 Example: XOR problem Frs, we choose kernel as K( xx, ) = + ( xx) 2 = [ ] [ ] Wh x x, x2 and x = x, x,we ge 2 K( x, x ) = + x x + 2x x x x + x x + 2x x + 2x x = ϕ( x), x, 2 x x, x, 2 x, 2x 2 2 ϕ( x) =, x, 2 x x2, x2, 2 x, 2 x 2, =, 2, 3, 4 28

29 Example: XOR problem (con.) We also fnd ha K 9 9 = 9 9 The objecve funcon for he dual form s 2 Q( α) = α+ α2 + α3+ α4 (9α 2αα 2 2αα 3+ 2αα α + 2αα 2αα + 9α 2αα + 9 α )

30 Example: XOR problem (con.) Opmzng Q( α) Q( α) α Q( α) α 2 Q( α) α 3 Q( α) α 4 9α α α + α = α + 9α + α α = α + α + 9α α = α α α + 9α =

31 Example: XOR problem (con.) The opmum values of α o, are α = α = α = α = o, o,2 o,3 o,4 8 Q ( α ) = o 4 2 wo = wo =

32 Example: XOR problem (con.) We fnd ha he opmum wegh vecor s wo = x + x + x x 8 [ ϕ( ) ϕ( ) ϕ( ) ϕ( )] = + + =

33 Example: XOR problem (con.) The opmal hyperplane s defned by w o ϕ ( x) = 0 2 x 2xx 2 0,0,,0,0,0 2 = 0 2 x2 2x 2x 2 xx 2= 0 33

34 Properes and expansons of SVM Two mporan feaures: Dualy s he frs feaure of SVM Operae n a kernel nduced feaure space Several expansons of SVM: C-Suppor Vecor Classfcaon (bnary case) v-suppor Vecor Classfcaon (bnary case) Dsrbuon Esmaon (one-class SVM) ε -Suppor Vecor Regresson ( -SVR) v-suppor Vecor Regresson (v-svr) ε 34

35 Concluson The SVM s an elegan and hghly prncpled learnng mehod for he desgn of classfyng nonlnear npu daa. Compared wh back-propagaon algorhm Only operae n a bach mode Whaever he learnng ask, provde a mehod for conrollng model complexy ndependenly of dmensonaly I s guaraneed o fnd a global exremum of he error surface The compuaon can be performed effcenly By usng a suable nner-produc kernel, he SVM compues all he mporan nework parameers auomacally. 35

36 Applcaons of SVM Classfcaon Regresson Recognon Bonformacs 36

37 LIBSVM A Lbrary for Suppor Vecor Machnes Made by Chh-Jen Ln and Chh-Chung Chang Boh C++ and Java sources hp:// 37

Lecture 11 SVM cont

Lecture 11 SVM cont Lecure SVM con. 0 008 Wha we have done so far We have esalshed ha we wan o fnd a lnear decson oundary whose margn s he larges We know how o measure he margn of a lnear decson oundary Tha s: he mnmum geomerc

More information

Introduction to Boosting

Introduction to Boosting Inroducon o Boosng Cynha Rudn PACM, Prnceon Unversy Advsors Ingrd Daubeches and Rober Schapre Say you have a daabase of news arcles, +, +, -, -, +, +, -, -, +, +, -, -, +, +, -, + where arcles are labeled

More information

Robust and Accurate Cancer Classification with Gene Expression Profiling

Robust and Accurate Cancer Classification with Gene Expression Profiling Robus and Accurae Cancer Classfcaon wh Gene Expresson Proflng (Compuaonal ysems Bology, 2005) Auhor: Hafeng L, Keshu Zhang, ao Jang Oulne Background LDA (lnear dscrmnan analyss) and small sample sze problem

More information

EEL 6266 Power System Operation and Control. Chapter 5 Unit Commitment

EEL 6266 Power System Operation and Control. Chapter 5 Unit Commitment EEL 6266 Power Sysem Operaon and Conrol Chaper 5 Un Commmen Dynamc programmng chef advanage over enumeraon schemes s he reducon n he dmensonaly of he problem n a src prory order scheme, here are only N

More information

CHAPTER 10: LINEAR DISCRIMINATION

CHAPTER 10: LINEAR DISCRIMINATION CHAPER : LINEAR DISCRIMINAION Dscrmnan-based Classfcaon 3 In classfcaon h K classes (C,C,, C k ) We defned dscrmnan funcon g j (), j=,,,k hen gven an es eample, e chose (predced) s class label as C f g

More information

( ) [ ] MAP Decision Rule

( ) [ ] MAP Decision Rule Announcemens Bayes Decson Theory wh Normal Dsrbuons HW0 due oday HW o be assgned soon Proec descrpon posed Bomercs CSE 90 Lecure 4 CSE90, Sprng 04 CSE90, Sprng 04 Key Probables 4 ω class label X feaure

More information

Advanced Machine Learning & Perception

Advanced Machine Learning & Perception Advanced Machne Learnng & Percepon Insrucor: Tony Jebara SVM Feaure & Kernel Selecon SVM Eensons Feaure Selecon (Flerng and Wrappng) SVM Feaure Selecon SVM Kernel Selecon SVM Eensons Classfcaon Feaure/Kernel

More information

Bayes rule for a classification problem INF Discriminant functions for the normal density. Euclidean distance. Mahalanobis distance

Bayes rule for a classification problem INF Discriminant functions for the normal density. Euclidean distance. Mahalanobis distance INF 43 3.. Repeon Anne Solberg (anne@f.uo.no Bayes rule for a classfcaon problem Suppose we have J, =,...J classes. s he class label for a pxel, and x s he observed feaure vecor. We can use Bayes rule

More information

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 4

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 4 CS434a/54a: Paern Recognon Prof. Olga Veksler Lecure 4 Oulne Normal Random Varable Properes Dscrmnan funcons Why Normal Random Varables? Analycally racable Works well when observaon comes form a corruped

More information

Machine Learning 2nd Edition

Machine Learning 2nd Edition INTRODUCTION TO Lecure Sldes for Machne Learnng nd Edon ETHEM ALPAYDIN, modfed by Leonardo Bobadlla and some pars from hp://www.cs.au.ac.l/~aparzn/machnelearnng/ The MIT Press, 00 alpaydn@boun.edu.r hp://www.cmpe.boun.edu.r/~ehem/mle

More information

Chapter 6: AC Circuits

Chapter 6: AC Circuits Chaper 6: AC Crcus Chaper 6: Oulne Phasors and he AC Seady Sae AC Crcus A sable, lnear crcu operang n he seady sae wh snusodal excaon (.e., snusodal seady sae. Complee response forced response naural response.

More information

Clustering (Bishop ch 9)

Clustering (Bishop ch 9) Cluserng (Bshop ch 9) Reference: Daa Mnng by Margare Dunham (a slde source) 1 Cluserng Cluserng s unsupervsed learnng, here are no class labels Wan o fnd groups of smlar nsances Ofen use a dsance measure

More information

Outline. Probabilistic Model Learning. Probabilistic Model Learning. Probabilistic Model for Time-series Data: Hidden Markov Model

Outline. Probabilistic Model Learning. Probabilistic Model Learning. Probabilistic Model for Time-series Data: Hidden Markov Model Probablsc Model for Tme-seres Daa: Hdden Markov Model Hrosh Mamsuka Bonformacs Cener Kyoo Unversy Oulne Three Problems for probablsc models n machne learnng. Compung lkelhood 2. Learnng 3. Parsng (predcon

More information

Lecture 6: Learning for Control (Generalised Linear Regression)

Lecture 6: Learning for Control (Generalised Linear Regression) Lecure 6: Learnng for Conrol (Generalsed Lnear Regresson) Conens: Lnear Mehods for Regresson Leas Squares, Gauss Markov heorem Recursve Leas Squares Lecure 6: RLSC - Prof. Sehu Vjayakumar Lnear Regresson

More information

On One Analytic Method of. Constructing Program Controls

On One Analytic Method of. Constructing Program Controls Appled Mahemacal Scences, Vol. 9, 05, no. 8, 409-407 HIKARI Ld, www.m-hkar.com hp://dx.do.org/0.988/ams.05.54349 On One Analyc Mehod of Consrucng Program Conrols A. N. Kvko, S. V. Chsyakov and Yu. E. Balyna

More information

Robustness Experiments with Two Variance Components

Robustness Experiments with Two Variance Components Naonal Insue of Sandards and Technology (NIST) Informaon Technology Laboraory (ITL) Sascal Engneerng Dvson (SED) Robusness Expermens wh Two Varance Componens by Ana Ivelsse Avlés avles@ns.gov Conference

More information

Introduction ( Week 1-2) Course introduction A brief introduction to molecular biology A brief introduction to sequence comparison Part I: Algorithms

Introduction ( Week 1-2) Course introduction A brief introduction to molecular biology A brief introduction to sequence comparison Part I: Algorithms Course organzaon Inroducon Wee -2) Course nroducon A bref nroducon o molecular bology A bref nroducon o sequence comparson Par I: Algorhms for Sequence Analyss Wee 3-8) Chaper -3, Models and heores» Probably

More information

Single-loop System Reliability-Based Design & Topology Optimization (SRBDO/SRBTO): A Matrix-based System Reliability (MSR) Method

Single-loop System Reliability-Based Design & Topology Optimization (SRBDO/SRBTO): A Matrix-based System Reliability (MSR) Method 10 h US Naonal Congress on Compuaonal Mechancs Columbus, Oho 16-19, 2009 Sngle-loop Sysem Relably-Based Desgn & Topology Opmzaon (SRBDO/SRBTO): A Marx-based Sysem Relably (MSR) Mehod Tam Nguyen, Junho

More information

John Geweke a and Gianni Amisano b a Departments of Economics and Statistics, University of Iowa, USA b European Central Bank, Frankfurt, Germany

John Geweke a and Gianni Amisano b a Departments of Economics and Statistics, University of Iowa, USA b European Central Bank, Frankfurt, Germany Herarchcal Markov Normal Mxure models wh Applcaons o Fnancal Asse Reurns Appendx: Proofs of Theorems and Condonal Poseror Dsrbuons John Geweke a and Gann Amsano b a Deparmens of Economcs and Sascs, Unversy

More information

Natural Language Processing and Information Retrieval

Natural Language Processing and Information Retrieval Natural Language Processng and Informaton Retreval Support Vector Machnes Alessandro Moschtt Department of nformaton and communcaton technology Unversty of Trento Emal: moschtt@ds.untn.t Summary Support

More information

Graduate Macroeconomics 2 Problem set 5. - Solutions

Graduate Macroeconomics 2 Problem set 5. - Solutions Graduae Macroeconomcs 2 Problem se. - Soluons Queson 1 To answer hs queson we need he frms frs order condons and he equaon ha deermnes he number of frms n equlbrum. The frms frs order condons are: F K

More information

CHAPTER 2: Supervised Learning

CHAPTER 2: Supervised Learning HATER 2: Supervsed Learnng Learnng a lass from Eamples lass of a famly car redcon: Is car a famly car? Knowledge eracon: Wha do people epec from a famly car? Oupu: osve (+) and negave ( ) eamples Inpu

More information

The Analysis of the Thickness-predictive Model Based on the SVM Xiu-ming Zhao1,a,Yan Wang2,band Zhimin Bi3,c

The Analysis of the Thickness-predictive Model Based on the SVM Xiu-ming Zhao1,a,Yan Wang2,band Zhimin Bi3,c h Naonal Conference on Elecrcal, Elecroncs and Compuer Engneerng (NCEECE The Analyss of he Thcknesspredcve Model Based on he SVM Xumng Zhao,a,Yan Wang,band Zhmn B,c School of Conrol Scence and Engneerng,

More information

Dynamic Team Decision Theory. EECS 558 Project Shrutivandana Sharma and David Shuman December 10, 2005

Dynamic Team Decision Theory. EECS 558 Project Shrutivandana Sharma and David Shuman December 10, 2005 Dynamc Team Decson Theory EECS 558 Proec Shruvandana Sharma and Davd Shuman December 0, 005 Oulne Inroducon o Team Decson Theory Decomposon of he Dynamc Team Decson Problem Equvalence of Sac and Dynamc

More information

Support Vector Machines. Vibhav Gogate The University of Texas at dallas

Support Vector Machines. Vibhav Gogate The University of Texas at dallas Support Vector Machnes Vbhav Gogate he Unversty of exas at dallas What We have Learned So Far? 1. Decson rees. Naïve Bayes 3. Lnear Regresson 4. Logstc Regresson 5. Perceptron 6. Neural networks 7. K-Nearest

More information

Supervised Learning in Multilayer Networks

Supervised Learning in Multilayer Networks Copyrgh Cambrdge Unversy Press 23. On-screen vewng permed. Prnng no permed. hp://www.cambrdge.org/521642981 You can buy hs book for 3 pounds or $5. See hp://www.nference.phy.cam.ac.uk/mackay/la/ for lnks.

More information

Attribute Reduction Algorithm Based on Discernibility Matrix with Algebraic Method GAO Jing1,a, Ma Hui1, Han Zhidong2,b

Attribute Reduction Algorithm Based on Discernibility Matrix with Algebraic Method GAO Jing1,a, Ma Hui1, Han Zhidong2,b Inernaonal Indusral Informacs and Compuer Engneerng Conference (IIICEC 05) Arbue educon Algorhm Based on Dscernbly Marx wh Algebrac Mehod GAO Jng,a, Ma Hu, Han Zhdong,b Informaon School, Capal Unversy

More information

THE PREDICTION OF COMPETITIVE ENVIRONMENT IN BUSINESS

THE PREDICTION OF COMPETITIVE ENVIRONMENT IN BUSINESS THE PREICTION OF COMPETITIVE ENVIRONMENT IN BUSINESS INTROUCTION The wo dmensonal paral dfferenal equaons of second order can be used for he smulaon of compeve envronmen n busness The arcle presens he

More information

( t) Outline of program: BGC1: Survival and event history analysis Oslo, March-May Recapitulation. The additive regression model

( t) Outline of program: BGC1: Survival and event history analysis Oslo, March-May Recapitulation. The additive regression model BGC1: Survval and even hsory analyss Oslo, March-May 212 Monday May 7h and Tuesday May 8h The addve regresson model Ørnulf Borgan Deparmen of Mahemacs Unversy of Oslo Oulne of program: Recapulaon Counng

More information

Comb Filters. Comb Filters

Comb Filters. Comb Filters The smple flers dscussed so far are characered eher by a sngle passband and/or a sngle sopband There are applcaons where flers wh mulple passbands and sopbands are requred Thecomb fler s an example of

More information

FACIAL IMAGE FEATURE EXTRACTION USING SUPPORT VECTOR MACHINES

FACIAL IMAGE FEATURE EXTRACTION USING SUPPORT VECTOR MACHINES FACIAL IMAGE FEATURE EXTRACTION USING SUPPORT VECTOR MACHINES H. Abrsham Moghaddam K. N. Toos Unversy of Technology, P.O. Box 635-355, Tehran, Iran moghadam@saba.knu.ac.r M. Ghayoum Islamc Azad Unversy,

More information

Lecture VI Regression

Lecture VI Regression Lecure VI Regresson (Lnear Mehods for Regresson) Conens: Lnear Mehods for Regresson Leas Squares, Gauss Markov heorem Recursve Leas Squares Lecure VI: MLSC - Dr. Sehu Vjayakumar Lnear Regresson Model M

More information

Machine Learning Linear Regression

Machine Learning Linear Regression Machne Learnng Lnear Regresson Lesson 3 Lnear Regresson Bascs of Regresson Leas Squares esmaon Polynomal Regresson Bass funcons Regresson model Regularzed Regresson Sascal Regresson Mamum Lkelhood (ML)

More information

FTCS Solution to the Heat Equation

FTCS Solution to the Heat Equation FTCS Soluon o he Hea Equaon ME 448/548 Noes Gerald Reckenwald Porland Sae Unversy Deparmen of Mechancal Engneerng gerry@pdxedu ME 448/548: FTCS Soluon o he Hea Equaon Overvew Use he forward fne d erence

More information

Mechanics Physics 151

Mechanics Physics 151 Mechancs Physcs 5 Lecure 9 Hamlonan Equaons of Moon (Chaper 8) Wha We Dd Las Tme Consruced Hamlonan formalsm H ( q, p, ) = q p L( q, q, ) H p = q H q = p H = L Equvalen o Lagrangan formalsm Smpler, bu

More information

V.Abramov - FURTHER ANALYSIS OF CONFIDENCE INTERVALS FOR LARGE CLIENT/SERVER COMPUTER NETWORKS

V.Abramov - FURTHER ANALYSIS OF CONFIDENCE INTERVALS FOR LARGE CLIENT/SERVER COMPUTER NETWORKS R&RATA # Vol.) 8, March FURTHER AALYSIS OF COFIDECE ITERVALS FOR LARGE CLIET/SERVER COMPUTER ETWORKS Vyacheslav Abramov School of Mahemacal Scences, Monash Unversy, Buldng 8, Level 4, Clayon Campus, Wellngon

More information

Mechanics Physics 151

Mechanics Physics 151 Mechancs Physcs 5 Lecure 9 Hamlonan Equaons of Moon (Chaper 8) Wha We Dd Las Tme Consruced Hamlonan formalsm Hqp (,,) = qp Lqq (,,) H p = q H q = p H L = Equvalen o Lagrangan formalsm Smpler, bu wce as

More information

Dual Approximate Dynamic Programming for Large Scale Hydro Valleys

Dual Approximate Dynamic Programming for Large Scale Hydro Valleys Dual Approxmae Dynamc Programmng for Large Scale Hydro Valleys Perre Carpener and Jean-Phlppe Chanceler 1 ENSTA ParsTech and ENPC ParsTech CMM Workshop, January 2016 1 Jon work wh J.-C. Alas, suppored

More information

Linear Classification, SVMs and Nearest Neighbors

Linear Classification, SVMs and Nearest Neighbors 1 CSE 473 Lecture 25 (Chapter 18) Lnear Classfcaton, SVMs and Nearest Neghbors CSE AI faculty + Chrs Bshop, Dan Klen, Stuart Russell, Andrew Moore Motvaton: Face Detecton How do we buld a classfer to dstngush

More information

Anomaly Detection. Lecture Notes for Chapter 9. Introduction to Data Mining, 2 nd Edition by Tan, Steinbach, Karpatne, Kumar

Anomaly Detection. Lecture Notes for Chapter 9. Introduction to Data Mining, 2 nd Edition by Tan, Steinbach, Karpatne, Kumar Anomaly eecon Lecure Noes for Chaper 9 Inroducon o aa Mnng, 2 nd Edon by Tan, Senbach, Karpane, Kumar 2/14/18 Inroducon o aa Mnng, 2nd Edon 1 Anomaly/Ouler eecon Wha are anomales/oulers? The se of daa

More information

Variants of Pegasos. December 11, 2009

Variants of Pegasos. December 11, 2009 Inroducon Varans of Pegasos SooWoong Ryu bshboy@sanford.edu December, 009 Youngsoo Cho yc344@sanford.edu Developng a new SVM algorhm s ongong research opc. Among many exng SVM algorhms, we wll focus on

More information

CROSS ENTROPY METHOD FOR MULTICLASS SUPPORT VECTOR MACHINE

CROSS ENTROPY METHOD FOR MULTICLASS SUPPORT VECTOR MACHINE CROSS ENTROPY METHOD FOR MULTICLASS SUPPORT VECTOR MACHINE Bud Sanosa Deparmen of Indusral Engneerng Insu Teknolog Sepuluh Nopember (ITS) Surabaya ITS Campus Sukollo, Surabaya 60 Indonesa bud_s@e.s.ac.d

More information

Volatility Interpolation

Volatility Interpolation Volaly Inerpolaon Prelmnary Verson March 00 Jesper Andreasen and Bran Huge Danse Mares, Copenhagen wan.daddy@danseban.com brno@danseban.com Elecronc copy avalable a: hp://ssrn.com/absrac=69497 Inro Local

More information

General Weighted Majority, Online Learning as Online Optimization

General Weighted Majority, Online Learning as Online Optimization Sascal Technques n Robocs (16-831, F10) Lecure#10 (Thursday Sepember 23) General Weghed Majory, Onlne Learnng as Onlne Opmzaon Lecurer: Drew Bagnell Scrbe: Nahanel Barshay 1 1 Generalzed Weghed majory

More information

This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore.

This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore. Ths documen s downloaded from DR-NTU, Nanyang Technologcal Unversy Lbrary, Sngapore. Tle A smplfed verb machng algorhm for word paron n vsual speech processng( Acceped verson ) Auhor(s) Foo, Say We; Yong,

More information

Solution in semi infinite diffusion couples (error function analysis)

Solution in semi infinite diffusion couples (error function analysis) Soluon n sem nfne dffuson couples (error funcon analyss) Le us consder now he sem nfne dffuson couple of wo blocks wh concenraon of and I means ha, n a A- bnary sysem, s bondng beween wo blocks made of

More information

CHAPTER 5: MULTIVARIATE METHODS

CHAPTER 5: MULTIVARIATE METHODS CHAPER 5: MULIVARIAE MEHODS Mulvarae Daa 3 Mulple measuremens (sensors) npus/feaures/arbues: -varae N nsances/observaons/eamples Each row s an eample Each column represens a feaure X a b correspons o he

More information

CS 536: Machine Learning. Nonparametric Density Estimation Unsupervised Learning - Clustering

CS 536: Machine Learning. Nonparametric Density Estimation Unsupervised Learning - Clustering CS 536: Machne Learnng Nonparamerc Densy Esmaon Unsupervsed Learnng - Cluserng Fall 2005 Ahmed Elgammal Dep of Compuer Scence Rugers Unversy CS 536 Densy Esmaon - Cluserng - 1 Oulnes Densy esmaon Nonparamerc

More information

Learning Objectives. Self Organization Map. Hamming Distance(1/5) Introduction. Hamming Distance(3/5) Hamming Distance(2/5) 15/04/2015

Learning Objectives. Self Organization Map. Hamming Distance(1/5) Introduction. Hamming Distance(3/5) Hamming Distance(2/5) 15/04/2015 /4/ Learnng Objecves Self Organzaon Map Learnng whou Exaples. Inroducon. MAXNET 3. Cluserng 4. Feaure Map. Self-organzng Feaure Map 6. Concluson 38 Inroducon. Learnng whou exaples. Daa are npu o he syse

More information

GENERATING CERTAIN QUINTIC IRREDUCIBLE POLYNOMIALS OVER FINITE FIELDS. Youngwoo Ahn and Kitae Kim

GENERATING CERTAIN QUINTIC IRREDUCIBLE POLYNOMIALS OVER FINITE FIELDS. Youngwoo Ahn and Kitae Kim Korean J. Mah. 19 (2011), No. 3, pp. 263 272 GENERATING CERTAIN QUINTIC IRREDUCIBLE POLYNOMIALS OVER FINITE FIELDS Youngwoo Ahn and Kae Km Absrac. In he paper [1], an explc correspondence beween ceran

More information

ISSN MIT Publications

ISSN MIT Publications MIT Inernaonal Journal of Elecrcal and Insrumenaon Engneerng Vol. 1, No. 2, Aug 2011, pp 93-98 93 ISSN 2230-7656 MIT Publcaons A New Approach for Solvng Economc Load Dspach Problem Ansh Ahmad Dep. of Elecrcal

More information

WiH Wei He

WiH Wei He Sysem Idenfcaon of onlnear Sae-Space Space Baery odels WH We He wehe@calce.umd.edu Advsor: Dr. Chaochao Chen Deparmen of echancal Engneerng Unversy of aryland, College Par 1 Unversy of aryland Bacground

More information

Lecture 10 Support Vector Machines II

Lecture 10 Support Vector Machines II Lecture 10 Support Vector Machnes II 22 February 2016 Taylor B. Arnold Yale Statstcs STAT 365/665 1/28 Notes: Problem 3 s posted and due ths upcomng Frday There was an early bug n the fake-test data; fxed

More information

CH.3. COMPATIBILITY EQUATIONS. Continuum Mechanics Course (MMC) - ETSECCPB - UPC

CH.3. COMPATIBILITY EQUATIONS. Continuum Mechanics Course (MMC) - ETSECCPB - UPC CH.3. COMPATIBILITY EQUATIONS Connuum Mechancs Course (MMC) - ETSECCPB - UPC Overvew Compably Condons Compably Equaons of a Poenal Vecor Feld Compably Condons for Infnesmal Srans Inegraon of he Infnesmal

More information

Structural Optimization Using Metamodels

Structural Optimization Using Metamodels Srucural Opmzaon Usng Meamodels 30 Mar. 007 Dep. o Mechancal Engneerng Dong-A Unvers Korea Kwon-Hee Lee Conens. Numercal Opmzaon. Opmzaon Usng Meamodels Impac beam desgn WB Door desgn 3. Robus Opmzaon

More information

Chapter 4. Neural Networks Based on Competition

Chapter 4. Neural Networks Based on Competition Chaper 4. Neural Neworks Based on Compeon Compeon s mporan for NN Compeon beween neurons has been observed n bologcal nerve sysems Compeon s mporan n solvng many problems To classfy an npu paern _1 no

More information

Chapter 6 DETECTION AND ESTIMATION: Model of digital communication system. Fundamental issues in digital communications are

Chapter 6 DETECTION AND ESTIMATION: Model of digital communication system. Fundamental issues in digital communications are Chaper 6 DEECIO AD EIMAIO: Fundamenal ssues n dgal communcaons are. Deecon and. Esmaon Deecon heory: I deals wh he desgn and evaluaon of decson makng processor ha observes he receved sgnal and guesses

More information

Li An-Ping. Beijing , P.R.China

Li An-Ping. Beijing , P.R.China A New Type of Cpher: DICING_csb L An-Png Bejng 100085, P.R.Chna apl0001@sna.com Absrac: In hs paper, we wll propose a new ype of cpher named DICING_csb, whch s derved from our prevous sream cpher DICING.

More information

Advanced Macroeconomics II: Exchange economy

Advanced Macroeconomics II: Exchange economy Advanced Macroeconomcs II: Exchange economy Krzyszof Makarsk 1 Smple deermnsc dynamc model. 1.1 Inroducon Inroducon Smple deermnsc dynamc model. Defnons of equlbrum: Arrow-Debreu Sequenal Recursve Equvalence

More information

January Examinations 2012

January Examinations 2012 Page of 5 EC79 January Examnaons No. of Pages: 5 No. of Quesons: 8 Subjec ECONOMICS (POSTGRADUATE) Tle of Paper EC79 QUANTITATIVE METHODS FOR BUSINESS AND FINANCE Tme Allowed Two Hours ( hours) Insrucons

More information

Support Vector Machines

Support Vector Machines Separatng boundary, defned by w Support Vector Machnes CISC 5800 Professor Danel Leeds Separatng hyperplane splts class 0 and class 1 Plane s defned by lne w perpendcular to plan Is data pont x n class

More information

Which Separator? Spring 1

Which Separator? Spring 1 Whch Separator? 6.034 - Sprng 1 Whch Separator? Mamze the margn to closest ponts 6.034 - Sprng Whch Separator? Mamze the margn to closest ponts 6.034 - Sprng 3 Margn of a pont " # y (w $ + b) proportonal

More information

Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence

Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence Proceedngs of he weny-second Inernaonal Jon Conference on Arfcal Inellgence l, -Norm Regularzed Dscrmnave Feaure Selecon for Unsupervsed Learnng Y Yang, Heng ao Shen, Zhgang Ma, Z Huang, Xaofang Zhou School

More information

Chapter Lagrangian Interpolation

Chapter Lagrangian Interpolation Chaper 5.4 agrangan Inerpolaon Afer readng hs chaper you should be able o:. dere agrangan mehod of nerpolaon. sole problems usng agrangan mehod of nerpolaon and. use agrangan nerpolans o fnd deraes and

More information

Using Fuzzy Pattern Recognition to Detect Unknown Malicious Executables Code

Using Fuzzy Pattern Recognition to Detect Unknown Malicious Executables Code Usng Fuzzy Paern Recognon o Deec Unknown Malcous Execuables Code Boyun Zhang,, Janpng Yn, and Jngbo Hao School of Compuer Scence, Naonal Unversy of Defense Technology, Changsha 40073, Chna hnxzby@yahoo.com.cn

More information

FORECASTING NATURAL GAS CONSUMPTION USING PSO OPTIMIZED LEAST SQUARES SUPPORT VECTOR MACHINES

FORECASTING NATURAL GAS CONSUMPTION USING PSO OPTIMIZED LEAST SQUARES SUPPORT VECTOR MACHINES FORECASING NAURAL GAS CONSUMPION USING PSO OPIMIZED LEAS SQUARES SUPPOR VECOR MACHINES Hossen Iranmanesh 1, Majd Abdollahzade 2 and 3 Arash Mranan 1 Deparmen of Indusral Engneerng, Unversy of ehran & Insue

More information

Reactive Methods to Solve the Berth AllocationProblem with Stochastic Arrival and Handling Times

Reactive Methods to Solve the Berth AllocationProblem with Stochastic Arrival and Handling Times Reacve Mehods o Solve he Berh AllocaonProblem wh Sochasc Arrval and Handlng Tmes Nsh Umang* Mchel Berlare* * TRANSP-OR, Ecole Polyechnque Fédérale de Lausanne Frs Workshop on Large Scale Opmzaon November

More information

A NOVEL NETWORK METHOD DESIGNING MULTIRATE FILTER BANKS AND WAVELETS

A NOVEL NETWORK METHOD DESIGNING MULTIRATE FILTER BANKS AND WAVELETS A NOVEL NEWORK MEHOD DESIGNING MULIRAE FILER BANKS AND WAVELES Yng an Deparmen of Elecronc Engneerng and Informaon Scence Unversy of Scence and echnology of Chna Hefe 37, P. R. Chna E-mal: yan@usc.edu.cn

More information

Introduction to Compact Dynamical Modeling. III.1 Reducing Linear Time Invariant Systems. Luca Daniel Massachusetts Institute of Technology

Introduction to Compact Dynamical Modeling. III.1 Reducing Linear Time Invariant Systems. Luca Daniel Massachusetts Institute of Technology SF & IH Inroducon o Compac Dynamcal Modelng III. Reducng Lnear me Invaran Sysems Luca Danel Massachuses Insue of echnology Course Oulne Quck Sneak Prevew I. Assemblng Models from Physcal Problems II. Smulang

More information

New M-Estimator Objective Function. in Simultaneous Equations Model. (A Comparative Study)

New M-Estimator Objective Function. in Simultaneous Equations Model. (A Comparative Study) Inernaonal Mahemacal Forum, Vol. 8, 3, no., 7 - HIKARI Ld, www.m-hkar.com hp://dx.do.org/.988/mf.3.3488 New M-Esmaor Objecve Funcon n Smulaneous Equaons Model (A Comparave Sudy) Ahmed H. Youssef Professor

More information

Forecasting Using First-Order Difference of Time Series and Bagging of Competitive Associative Nets

Forecasting Using First-Order Difference of Time Series and Bagging of Competitive Associative Nets Forecasng Usng Frs-Order Dfference of Tme Seres and Baggng of Compeve Assocave Nes Shuch Kurog, Ryohe Koyama, Shnya Tanaka, and Toshhsa Sanuk Absrac Ths arcle descrbes our mehod used for he 2007 Forecasng

More information

Approximate Analytic Solution of (2+1) - Dimensional Zakharov-Kuznetsov(Zk) Equations Using Homotopy

Approximate Analytic Solution of (2+1) - Dimensional Zakharov-Kuznetsov(Zk) Equations Using Homotopy Arcle Inernaonal Journal of Modern Mahemacal Scences, 4, (): - Inernaonal Journal of Modern Mahemacal Scences Journal homepage: www.modernscenfcpress.com/journals/jmms.aspx ISSN: 66-86X Florda, USA Approxmae

More information

Normal Random Variable and its discriminant functions

Normal Random Variable and its discriminant functions Noral Rando Varable and s dscrnan funcons Oulne Noral Rando Varable Properes Dscrnan funcons Why Noral Rando Varables? Analycally racable Works well when observaon coes for a corruped snle prooype 3 The

More information

( ) lamp power. dx dt T. Introduction to Compact Dynamical Modeling. III.1 Reducing Linear Time Invariant Systems

( ) lamp power. dx dt T. Introduction to Compact Dynamical Modeling. III.1 Reducing Linear Time Invariant Systems SF & IH Inroducon o Compac Dynamcal Modelng III. Reducng Lnear me Invaran Sysems Luca Danel Massachuses Insue of echnology Movaons dx A x( + b u( y( c x( Suppose: we are jus neresed n ermnal.e. npu/oupu

More information

Equalization on Graphs: Linear Programming and Message Passing

Equalization on Graphs: Linear Programming and Message Passing Equalzaon on Graphs: Lnear Programmng and Message Passng Mohammad H. Taghav and Paul H. Segel Cener for Magnec Recordng Research Unversy of Calforna, San Dego La Jolla, CA 92093-0401, USA Emal: (maghav,

More information

Neural Networks. Understanding the Brain

Neural Networks. Understanding the Brain Threshold uns Graden descen Mullayer neworks Backpropagaon Hdden layer represenaons Example: Face Recognon Advanced opcs Neural Neworks Neural Neworks Neworks of processng uns (neurons) wh connecons (synapses)

More information

Fall 2010 Graduate Course on Dynamic Learning

Fall 2010 Graduate Course on Dynamic Learning Fall 200 Graduae Course on Dynamc Learnng Chaper 4: Parcle Flers Sepember 27, 200 Byoung-Tak Zhang School of Compuer Scence and Engneerng & Cognve Scence and Bran Scence Programs Seoul aonal Unversy hp://b.snu.ac.kr/~bzhang/

More information

Linear Response Theory: The connection between QFT and experiments

Linear Response Theory: The connection between QFT and experiments Phys540.nb 39 3 Lnear Response Theory: The connecon beween QFT and expermens 3.1. Basc conceps and deas Q: ow do we measure he conducvy of a meal? A: we frs nroduce a weak elecrc feld E, and hen measure

More information

SOME NOISELESS CODING THEOREMS OF INACCURACY MEASURE OF ORDER α AND TYPE β

SOME NOISELESS CODING THEOREMS OF INACCURACY MEASURE OF ORDER α AND TYPE β SARAJEVO JOURNAL OF MATHEMATICS Vol.3 (15) (2007), 137 143 SOME NOISELESS CODING THEOREMS OF INACCURACY MEASURE OF ORDER α AND TYPE β M. A. K. BAIG AND RAYEES AHMAD DAR Absrac. In hs paper, we propose

More information

Genetic Algorithm in Parameter Estimation of Nonlinear Dynamic Systems

Genetic Algorithm in Parameter Estimation of Nonlinear Dynamic Systems Genec Algorhm n Parameer Esmaon of Nonlnear Dynamc Sysems E. Paeraks manos@egnaa.ee.auh.gr V. Perds perds@vergna.eng.auh.gr Ah. ehagas kehagas@egnaa.ee.auh.gr hp://skron.conrol.ee.auh.gr/kehagas/ndex.hm

More information

Kernel Methods and SVMs Extension

Kernel Methods and SVMs Extension Kernel Methods and SVMs Extenson The purpose of ths document s to revew materal covered n Machne Learnng 1 Supervsed Learnng regardng support vector machnes (SVMs). Ths document also provdes a general

More information

Dynamic Team Decision Theory

Dynamic Team Decision Theory Dynamc Team Decson Theory EECS 558 Proec Repor Shruvandana Sharma and Davd Shuman December, 005 I. Inroducon Whle he sochasc conrol problem feaures one decson maker acng over me, many complex conrolled

More information

MAXIMIN POWER DESIGNS IN TESTING LACK OF FIT Douglas P. Wiens 1. July 30, 2018

MAXIMIN POWER DESIGNS IN TESTING LACK OF FIT Douglas P. Wiens 1. July 30, 2018 MAXIMIN POWER DESIGNS IN TESTING LACK OF FIT Douglas P. Wens July 3, 28 Absrac In a prevous arcle (Wens, 99) we esablshed a maxmn propery, wh respec o he power of he es for Lack of F, of he absoluely connuous

More information

Boosted LMS-based Piecewise Linear Adaptive Filters

Boosted LMS-based Piecewise Linear Adaptive Filters 016 4h European Sgnal Processng Conference EUSIPCO) Boosed LMS-based Pecewse Lnear Adapve Flers Darush Kar and Iman Marvan Deparmen of Elecrcal and Elecroncs Engneerng Blken Unversy, Ankara, Turkey {kar,

More information

CS 268: Packet Scheduling

CS 268: Packet Scheduling Pace Schedulng Decde when and wha pace o send on oupu ln - Usually mplemened a oupu nerface CS 68: Pace Schedulng flow Ion Soca March 9, 004 Classfer flow flow n Buffer managemen Scheduler soca@cs.bereley.edu

More information

Approximation Lasso Methods for Language Modeling

Approximation Lasso Methods for Language Modeling Approxmaon Lasso Mehods for Language Modelng Janfeng Gao Mcrosof Research One Mcrosof Way Redmond WA 98052 USA jfgao@mcrosof.com Hsam Suzuk Mcrosof Research One Mcrosof Way Redmond WA 98052 USA hsams@mcrosof.com

More information

Fitting a Conditional Linear Gaussian Distribution

Fitting a Conditional Linear Gaussian Distribution Fng a Condonal Lnear Gaussan Dsrbuon Kevn P. Murphy 28 Ocober 1998 Revsed 29 January 2003 1 Inroducon We consder he problem of fndng he maxmum lkelhood ML esmaes of he parameers of a condonal Gaussan varable

More information

HEAT CONDUCTION PROBLEM IN A TWO-LAYERED HOLLOW CYLINDER BY USING THE GREEN S FUNCTION METHOD

HEAT CONDUCTION PROBLEM IN A TWO-LAYERED HOLLOW CYLINDER BY USING THE GREEN S FUNCTION METHOD Journal of Appled Mahemacs and Compuaonal Mechancs 3, (), 45-5 HEAT CONDUCTION PROBLEM IN A TWO-LAYERED HOLLOW CYLINDER BY USING THE GREEN S FUNCTION METHOD Sansław Kukla, Urszula Sedlecka Insue of Mahemacs,

More information

An Effective TCM-KNN Scheme for High-Speed Network Anomaly Detection

An Effective TCM-KNN Scheme for High-Speed Network Anomaly Detection Vol. 24, November,, 200 An Effecve TCM-KNN Scheme for Hgh-Speed Nework Anomaly eecon Yang L Chnese Academy of Scences, Bejng Chna, 00080 lyang@sofware.c.ac.cn Absrac. Nework anomaly deecon has been a ho

More information

MCs Detection Approach Using Bagging and Boosting Based Twin Support Vector Machine

MCs Detection Approach Using Bagging and Boosting Based Twin Support Vector Machine Proceedngs of he 009 IEEE Inernaonal Conference on Sysems, Man, and Cybernecs San Anono, TX, USA - Ocober 009 MCs Deecon Approach Usng Baggng and Boosng Based Twn Suppor Vecor Machne Xnsheng Zhang School

More information

Ordinary Differential Equations in Neuroscience with Matlab examples. Aim 1- Gain understanding of how to set up and solve ODE s

Ordinary Differential Equations in Neuroscience with Matlab examples. Aim 1- Gain understanding of how to set up and solve ODE s Ordnary Dfferenal Equaons n Neuroscence wh Malab eamples. Am - Gan undersandng of how o se up and solve ODE s Am Undersand how o se up an solve a smple eample of he Hebb rule n D Our goal a end of class

More information

Moving Least Square Method for Reliability-Based Design Optimization

Moving Least Square Method for Reliability-Based Design Optimization Movng Leas Square Mehod for Relably-Based Desgn Opmzaon K.K. Cho, Byeng D. Youn, and Ren-Jye Yang* Cener for Compuer-Aded Desgn and Deparmen of Mechancal Engneerng, he Unversy of Iowa Iowa Cy, IA 52242

More information

Should Exact Index Numbers have Standard Errors? Theory and Application to Asian Growth

Should Exact Index Numbers have Standard Errors? Theory and Application to Asian Growth Should Exac Index umbers have Sandard Errors? Theory and Applcaon o Asan Growh Rober C. Feensra Marshall B. Rensdorf ovember 003 Proof of Proposon APPEDIX () Frs, we wll derve he convenonal Sao-Vara prce

More information

Neural Networks-Based Time Series Prediction Using Long and Short Term Dependence in the Learning Process

Neural Networks-Based Time Series Prediction Using Long and Short Term Dependence in the Learning Process Neural Neworks-Based Tme Seres Predcon Usng Long and Shor Term Dependence n he Learnng Process J. Puchea, D. Paño and B. Kuchen, Absrac In hs work a feedforward neural neworksbased nonlnear auoregresson

More information

( ) () we define the interaction representation by the unitary transformation () = ()

( ) () we define the interaction representation by the unitary transformation () = () Hgher Order Perurbaon Theory Mchael Fowler 3/7/6 The neracon Represenaon Recall ha n he frs par of hs course sequence, we dscussed he chrödnger and Hesenberg represenaons of quanum mechancs here n he chrödnger

More information

Hidden Markov Models Following a lecture by Andrew W. Moore Carnegie Mellon University

Hidden Markov Models Following a lecture by Andrew W. Moore Carnegie Mellon University Hdden Markov Models Followng a lecure by Andrew W. Moore Carnege Mellon Unversy www.cs.cmu.edu/~awm/uorals A Markov Sysem Has N saes, called s, s 2.. s N s 2 There are dscree meseps, 0,, s s 3 N 3 0 Hdden

More information

Tight results for Next Fit and Worst Fit with resource augmentation

Tight results for Next Fit and Worst Fit with resource augmentation Tgh resuls for Nex F and Wors F wh resource augmenaon Joan Boyar Leah Epsen Asaf Levn Asrac I s well known ha he wo smple algorhms for he classc n packng prolem, NF and WF oh have an approxmaon rao of

More information

Technical report a

Technical report a Delf Unversy of Technology Delf Cener for Sysems and Conrol Techncal repor 11-039a A dsrbued opmzaon-based approach for herarchcal model predcve conrol of large-scale sysems wh coupled dynamcs and consrans:

More information

GMM parameter estimation. Xiaoye Lu CMPS290c Final Project

GMM parameter estimation. Xiaoye Lu CMPS290c Final Project GMM paraeer esaon Xaoye Lu M290c Fnal rojec GMM nroducon Gaussan ure Model obnaon of several gaussan coponens Noaon: For each Gaussan dsrbuon:, s he ean and covarance ar. A GMM h ures(coponens): p ( 2π

More information

Joint Channel Estimation and Resource Allocation for MIMO Systems Part I: Single-User Analysis

Joint Channel Estimation and Resource Allocation for MIMO Systems Part I: Single-User Analysis 624 IEEE RANSACIONS ON WIRELESS COUNICAIONS, VOL. 9, NO. 2, FEBRUARY 200 Jon Channel Esmaon and Resource Allocaon for IO Sysems Par I: Sngle-User Analyss Alkan Soysal, ember, IEEE, and Sennur Ulukus, ember,

More information