CS 536: Machine Learning. Nonparametric Density Estimation Unsupervised Learning - Clustering

Size: px
Start display at page:

Download "CS 536: Machine Learning. Nonparametric Density Estimation Unsupervised Learning - Clustering"

Transcription

1 CS 536: Machne Learnng Nonparamerc Densy Esmaon Unsupervsed Learnng - Cluserng Fall 2005 Ahmed Elgammal Dep of Compuer Scence Rugers Unversy CS 536 Densy Esmaon - Cluserng - 1 Oulnes Densy esmaon Nonparamerc kernel densy esmaon Mure Denses Unsupervsed Learnng - Cluserng: Herarchcal Cluserng K-means Cluserng Mean Shf Cluserng Specral Cluserng Graph Cus Applcaon o Image Segmenaon CS 536 Densy Esmaon - Cluserng - 2

2 Densy Esmaon Paramerc: Assume a sngle model for p ( C (Chaper 4 and 5 Semparamerc: p ( C s a mure of denses Mulple possble eplanaons/prooypes: Dfferen handwrng syles, accens n speech Nonparamerc: No model; daa speaks for self (Chaper 8 CS 536 Densy Esmaon - Cluserng - 3 Nonparamerc Densy Esmaon Densy Esmaon: Gven a sample S={ } =1..N from a dsrbuon oban an esmae of he densy funcon f ( a any pon. Paramerc : Assume a paramerc densy famly f (. θ, (e. N(µ,σ 2 and oban he bes esmaor θ of θ Advanages: Effcen Robus o nose: robus esmaors can be used Problem wh paramerc mehods An ncorrecly specfed paramerc model has a bas ha canno be removed even by large number of samples. Nonparamerc : drecly oban a good esmae f ( of he enre densy f ( from he sample. Mos famous eample: Hsogram CS 536 Densy Esmaon - Cluserng - 4

3 Kernel Densy Esmaon 1950s + (F & Hodges 51, Rosenbla 56, Parzen 62, Cencov 62 Gven a se of samples S={ } =1..N we can oban an esmae for he densy a as: N N 1 1 f ( = K ( = K Nh h N = 1 = 1 h ( CS 536 Densy Esmaon - Cluserng - 5 N N 1 1 f ( = K ( = K Nh h N = 1 = 1 ( where K h (=K(/h/h called kernel funcon (wndow funcon h : scale or bandwdh K sasfes ceran condons, e.g.: K ( d h =1 K h ( 0 h CS 536 Densy Esmaon - Cluserng - 6

4 Kernel Esmaon A varey of kernel shapes wh dfferen properes. Gaussan kernel s ypcally used for s connuy and dfferenably. Mulvarae case: Kernel Produc Use same kernel funcon wh dfferen bandwdh h for each dmenson. General form: avod o sore all he samples N f ( = α K = 1 h ( 1 f ( = N N d = 1 = 1 K h ( CS 536 Densy Esmaon - Cluserng - 7 Kernel Densy Esmaon Advanages: Converge o any densy shape wh suffcen samples. asympocally he esmae converges o any densy. No need for model specfcaon. Unlke hsograms, densy esmaes are smooh, connuous and dfferenable. Easly generalze o hgher dmensons. All oher paramerc/nonparamerc densy esmaon mehods, e.g., hsograms, are asympocally kernel mehods. In many applcaons, he denses are mulvarae and mulmodal wh rregular cluser shapes. CS 536 Densy Esmaon - Cluserng - 8

5 Eample: color clusers Cluser shapes are rregular Cluser boundares are no well defned. rom omancu and eer ean shf robus approach oward feaure space analyss CS 536 Densy Esmaon - Cluserng - 9 Converson - KDE Esmaon usng Gaussan Kernel Esmaon usng Unform Kernel CS 536 Densy Esmaon - Cluserng - 10

6 Converson - KDE Esmaon usng Gaussan Kernel Esmaon usng Unform Kernel CS 536 Densy Esmaon - Cluserng - 11 Scale selecon Imporan problem. Large leraure. Small h resuls n ragged denses. Large h resuls n over smoohng. Bes choce for h depends on he number of samples: small n, wde kernels large n, Narrow kernels lm h( n = 0 n CS 536 Densy Esmaon - Cluserng - 12

7 Opmal scale Opmal kernel and opmal scale can be acheved by mnmzng he mean negraed square error f we know he densy! Normal reference rule: h op = (4 / 3 σ n 1.06σ n 1/ 5 1/5 ˆ 1/ 5 CS 536 Densy Esmaon - Cluserng - 13 Scale selecon CS 536 Densy Esmaon - Cluserng - 14

8 From R. O. Duda, P. E. Har, and D. G. Sork. Paern Classfcaon Wley, New York, 2nd edon, 2000 CS 536 Densy Esmaon - Cluserng - 15 Densy Esmaon Paramerc: Assume a sngle model for p ( C (Chaper 4 and 5 Semparamerc: p ( C s a mure of denses Mulple possble eplanaons/prooypes: Dfferen handwrng syles, accens n speech Nonparamerc: No model; daa speaks for self (Chaper 8 CS 536 Densy Esmaon - Cluserng - 16

9 Mure Denses p ( = p( G P( G = 1 where G he componens/groups/clusers, P ( G mure proporons (prors, p ( G componen denses k Gaussan mure where p( G ~ N ( µ, parameers Φ = {P ( G, µ, } k =1 unlabeled sample X={ } (unsupervsed learnng CS 536 Densy Esmaon - Cluserng - 17 Classes vs. Clusers Supervsed: X = {,r } Classes C =1,...,K p ( = p( C P( C = 1 where p ( C ~ N ( µ, Φ = {P (C, µ, } K =1 Pˆ ( C S = K r r = m = N r r ( ( m m r T Unsupervsed : X = { } Clusers G =1,...,k p k ( = p( G P( G = 1 where p ( G ~ N ( µ, Φ = {P ( G, µ, } k =1 Labels, r? CS 536 Densy Esmaon - Cluserng - 18

10 k-means Cluserng Fnd k reference vecors (prooypes/codebook vecors/codewords whch bes represen daa Reference vecors, m, =1,...,k Use neares (mos smlar reference: m = mn m Reconsrucon error E b k ({ m } X = = 1 1 = 0 f m oherwse b m = mn m CS 536 Densy Esmaon - Cluserng - 19 Encodng/Decodng b = 1 f m = mn m 0 oherwse CS 536 Densy Esmaon - Cluserng - 20

11 k-means Cluserng CS 536 Densy Esmaon - Cluserng - 21 CS 536 Densy Esmaon - Cluserng - 22

12 Image Clusers on nensy Clusers on color K-means cluserng usng nensy alone and color alone K=5 segmened mage s labeled wh cluser means CS 536 Densy Esmaon - Cluserng - 23 Image Clusers on color K-means usng color alone, 11 segmens CS 536 Densy Esmaon - Cluserng - 24

13 K-means usng color alone, 11 segmens. CS 536 Densy Esmaon - Cluserng - 25 K-means usng color and poson, 20 segmens CS 536 Densy Esmaon - Cluserng - 26

14 Herarchcal Cluserng Cluser based on smlares/dsances Dsance measure beween nsances r and s Mnkowsk (L p (Eucldean for p = 2 d m Cy-block dsance p 1/ [ ] p r s d r s (, = = ( 1 d cb r s d r (, = = 1 s CS 536 Densy Esmaon - Cluserng - 27 Herarchcal Cluserng: Agglomerave cluserng cluserng by mergng boom-up Each daa pon s assumed o be a cluser Recursvely merge clusers Algorhm: Make each pon a separae cluser Unl he cluserng s sasfacory Merge he wo clusers wh he smalles ner-cluser dsance Dvsve cluserng cluserng by splng op-down The enre daa se s regarded as a cluser Recursvely spl clusers Algorhm: Consruc a sngle cluser conanng all pons Unl he cluserng s sasfacory Spl he cluser ha yelds he wo componens wh he larges ner-cluser dsance CS 536 Densy Esmaon - Cluserng - 28

15 Herarchcal Cluserng: Two man ssues: Wha s a good ner-cluser dsance sngle-lnk cluserng: dsance beween he closes elemens -> eended clusers complee-lnk cluserng: he mamum dsance beween elemens > rounded clusers group-average cluserng: Average dsance beween elemens rounded clusers How many clusers are here (model selecon Dendrograms yeld a pcure of oupu as cluserng process connues CS 536 Densy Esmaon - Cluserng - 29 Agglomerave Cluserng Sar wh N groups each wh one nsance and merge wo closes groups a each eraon Dsance beween wo groups G and G : Sngle-lnk: Complee-lnk: d d Average-lnk, cenrod r s ( G, G = mn d (, r G, G r s ( G, G = ma d (, r s G, G s CS 536 Densy Esmaon - Cluserng - 30

16 Eample: Sngle-Lnk Cluserng Dendrogram CS 536 Densy Esmaon - Cluserng - 31 Choosng k Defned by he applcaon, e.g., mage quanzaon Plo daa (afer PCA and check for clusers Incremenal (leader-cluser algorhm: Add one a a me unl elbow (reconsrucon error/log lkelhood/nergroup dsances Manual check for meanng CS 536 Densy Esmaon - Cluserng - 32

17 CS 536 Densy Esmaon - Cluserng - 33 Mean Shf Gven a sample S={s :s R n } and a kernel K, he sample mean usng K a pon : m( = s K( s Ieraon of he form m( wll lead o he densy local mode Le s he cener of he wndow Ierae unl converson. Compue he sample mean m( from he samples nsde he wndow. Replace wh m( K( s CS 536 Densy Esmaon - Cluserng - 34

18 CS 536 Densy Esmaon - Cluserng - 35 Mean Shf Gven a sample S={s :s R n } and a kernel K, he sample mean usng K a pon : Fukunaga and Hosler 1975 nroduced he mean shf as he dfference m(- usng a fla kernel. Ieraon of he form m( wll lead o he densy mode Cheng 1995 generalzed he defnon usng general kernels and weghed daa Recenly popularzed by D. Comancu and P. Meer 99+ Applcaons: Cluserng[Cheng,Fu 85], mage flerng, segmenaon[meer 99] and rackng [Meer 00]. = s K s K s m ( ( ( ( ( ( ( ( s w s K s w s K s m = CS 536 Densy Esmaon - Cluserng - 36 Mean Shf Ieraons of he form m( are called mean shf algorhm. If K s a Gaussan (e.g. and he densy esmae usng K s Usng Gaussan Kernel K σ (, he dervave s we can show ha: he mean shf s n he graden drecon of he densy esmae. = s w s K C P ( ( ˆ( m P P = ( ˆ( ˆ( ( ( 2 K K σ σ σ =

19 Mean Shf The mean shf s n he graden drecon of he densy esmae. Successve eraons would converge o a local mama of he densy,.e., a saonary pon: m(=. Mean shf s a seepes-ascen lke procedure wh varable sze seps ha leads o fas convergence well-adused seepes ascen. CS 536 Densy Esmaon - Cluserng - 37 CS 536 Densy Esmaon - Cluserng - 38

20 Mean shf and Image Flerng Dsconnuy preservng smoohng Recall, average or Gaussan flers blur mages and do no preserve regon boundares. Mean shf applcaon: Represen each pel as spaal locaon s and range r (color, nensy Look for modes n he on spaal-range space Use a produc of wo kernels: a spaal kernel wh bandwdh h s and a range kernel wh bandwdh h r K ( k ( s r h, hr hs hr Algorhm: For each pel =( s, r apply mean shf unl converson. Le he converson pon be (y s,y r Assgn z = ( s,y r as fler oupu Resuls: see he paper. s = k CS 536 Densy Esmaon - Cluserng - 39 CS 536 Densy Esmaon - Cluserng - 40

21 Graph Cu Wha s a Graph Cu: We have undreced, weghed graph G=(V,E Remove a subse of edges o paron he graph no wo dson ses of verces A,B (wo sub graphs: A B = V, A B = Φ CS 536 Densy Esmaon - Cluserng - 42 Graph Cu Each cu corresponds o some cos (cu: sum of he weghs for he edges ha have been removed. cu( A, B = u A, v B w( u, v A B CS 536 Densy Esmaon - Cluserng - 43

22 Graph Cu In many applcaons s desred o fnd he cu wh mnmum cos: mnmum cu Well suded problem n graph heory, wh many applcaons There ess effcen algorhms for fndng mnmum cus cu( A, B = u A, v B A w( u, v B CS 536 Densy Esmaon - Cluserng - 44 Graph heorec cluserng Represen okens usng a weghed graph Weghs reflecs smlary beween okens affny mar Cu up hs graph o ge subgraphs such ha: Smlary whn ses mamum. Smlary beween ses mnmum. Mnmum cu CS 536 Densy Esmaon - Cluserng - 45

23 CS 536 Densy Esmaon - Cluserng - 46 Use eponenal funcon for edge weghs d( : feaure dsance w( = e ( d ( / σ 2 CS 536 Densy Esmaon - Cluserng - 47

24 Scale affecs affny w( = e ( d ( / σ 2 σ=0.1 σ=0.2 σ=1 CS 536 Densy Esmaon - Cluserng - 48 Egenvecors and cluserng Smples dea: we wan a vecor w gvng he assocaon beween each elemen and a cluser We wan elemens whn hs cluser o, on he whole, have srong affny wh one anoher We could mamze w Sum of T w n Awn Assocaon of elemen wh cluser n Affny beween and Assocaon of elemen wh cluser n CS 536 Densy Esmaon - Cluserng - 49

25 Egenvecors and cluserng We could mamze Bu need he consran Usng Lagrange mulpler λ w T Aw n n T w n wn = 1 Dfferenaon w T n Aw n + n n T λ( w w 1 Aw = λ n w n Ths s an egenvalue problem - choose he egenvecor of A wh larges egenvalue CS 536 Densy Esmaon - Cluserng - 50 Eample egenvecor pons egenvecor mar CS 536 Densy Esmaon - Cluserng - 51

26 Eample egenvecor pons mar Frs egenvecors The hree egenvecors correspondng o he ne hree egenvalues of he affny mar CS 536 Densy Esmaon - Cluserng - 52 Too many clusers! More obvous clusers egenvalues for hree dfferen scales for he affny mar CS 536 Densy Esmaon - Cluserng - 53

27 More han wo segmens Two opons Recursvely spl each sde o ge a ree, connung ll he egenvalues are oo small Use he oher egenvecors Algorhm Consruc an Affny mar A Compuer he egenvalues and egenvecors of A Unl here are suffcen clusers Take he egenvecor correspondng o he larges unprocessed egenvalue; zero all componens for elemens already clusered, and hreshold he remanng componens o deermne whch elemen belongs o hs cluser, (you can choose a hreshold by cluserng he componens, or use a fed hreshold. If all elemens are accouned for, here are suffcen clusers CS 536 Densy Esmaon - Cluserng - 54 We can end up wh egenvecors ha do no spl clusers because any lnear combnaon of egenvecors wh he same egenvalue s also an egenvecor. CS 536 Densy Esmaon - Cluserng - 55

28 Sources R. O. Duda, P. E. Har, and D. G. Sork. Paern Classfcaon. Wley, New York, 2nd edon, 2000 Ehem Alpaydn Inroducon o Machne Learnng Chaper 7 Forsyh and Ponce, Compuer Vson a Modern approach: chaper 14: 14.1,14.2,14.4. Sldes by D. Berkeley Sldes by Ehem Alpaydn CS 536 Densy Esmaon - Cluserng - 73

CHAPTER 7: CLUSTERING

CHAPTER 7: CLUSTERING CHAPTER 7: CLUSTERING Semparamerc Densy Esmaon 3 Paramerc: Assume a snge mode for p ( C ) (Chapers 4 and 5) Semparamerc: p ( C ) s a mure of denses Mupe possbe epanaons/prooypes: Dfferen handwrng syes,

More information

Clustering (Bishop ch 9)

Clustering (Bishop ch 9) Cluserng (Bshop ch 9) Reference: Daa Mnng by Margare Dunham (a slde source) 1 Cluserng Cluserng s unsupervsed learnng, here are no class labels Wan o fnd groups of smlar nsances Ofen use a dsance measure

More information

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 4

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 4 CS434a/54a: Paern Recognon Prof. Olga Veksler Lecure 4 Oulne Normal Random Varable Properes Dscrmnan funcons Why Normal Random Varables? Analycally racable Works well when observaon comes form a corruped

More information

Lecture Slides for INTRODUCTION TO. Machine Learning. ETHEM ALPAYDIN The MIT Press,

Lecture Slides for INTRODUCTION TO. Machine Learning. ETHEM ALPAYDIN The MIT Press, Lecure Sdes for INTRODUCTION TO Machne Learnng ETHEM ALPAYDIN The MIT Press, 2004 aaydn@boun.edu.r h://www.cme.boun.edu.r/~ehem/2m CHAPTER 7: Cuserng Semaramerc Densy Esmaon Paramerc: Assume a snge mode

More information

Machine Learning 2nd Edition

Machine Learning 2nd Edition INTRODUCTION TO Lecure Sldes for Machne Learnng nd Edon ETHEM ALPAYDIN, modfed by Leonardo Bobadlla and some pars from hp://www.cs.au.ac.l/~aparzn/machnelearnng/ The MIT Press, 00 alpaydn@boun.edu.r hp://www.cmpe.boun.edu.r/~ehem/mle

More information

Bayes rule for a classification problem INF Discriminant functions for the normal density. Euclidean distance. Mahalanobis distance

Bayes rule for a classification problem INF Discriminant functions for the normal density. Euclidean distance. Mahalanobis distance INF 43 3.. Repeon Anne Solberg (anne@f.uo.no Bayes rule for a classfcaon problem Suppose we have J, =,...J classes. s he class label for a pxel, and x s he observed feaure vecor. We can use Bayes rule

More information

Advanced Machine Learning & Perception

Advanced Machine Learning & Perception Advanced Machne Learnng & Percepon Insrucor: Tony Jebara SVM Feaure & Kernel Selecon SVM Eensons Feaure Selecon (Flerng and Wrappng) SVM Feaure Selecon SVM Kernel Selecon SVM Eensons Classfcaon Feaure/Kernel

More information

CHAPTER 10: LINEAR DISCRIMINATION

CHAPTER 10: LINEAR DISCRIMINATION CHAPER : LINEAR DISCRIMINAION Dscrmnan-based Classfcaon 3 In classfcaon h K classes (C,C,, C k ) We defned dscrmnan funcon g j (), j=,,,k hen gven an es eample, e chose (predced) s class label as C f g

More information

( ) [ ] MAP Decision Rule

( ) [ ] MAP Decision Rule Announcemens Bayes Decson Theory wh Normal Dsrbuons HW0 due oday HW o be assgned soon Proec descrpon posed Bomercs CSE 90 Lecure 4 CSE90, Sprng 04 CSE90, Sprng 04 Key Probables 4 ω class label X feaure

More information

Anomaly Detection. Lecture Notes for Chapter 9. Introduction to Data Mining, 2 nd Edition by Tan, Steinbach, Karpatne, Kumar

Anomaly Detection. Lecture Notes for Chapter 9. Introduction to Data Mining, 2 nd Edition by Tan, Steinbach, Karpatne, Kumar Anomaly eecon Lecure Noes for Chaper 9 Inroducon o aa Mnng, 2 nd Edon by Tan, Senbach, Karpane, Kumar 2/14/18 Inroducon o aa Mnng, 2nd Edon 1 Anomaly/Ouler eecon Wha are anomales/oulers? The se of daa

More information

( t) Outline of program: BGC1: Survival and event history analysis Oslo, March-May Recapitulation. The additive regression model

( t) Outline of program: BGC1: Survival and event history analysis Oslo, March-May Recapitulation. The additive regression model BGC1: Survval and even hsory analyss Oslo, March-May 212 Monday May 7h and Tuesday May 8h The addve regresson model Ørnulf Borgan Deparmen of Mahemacs Unversy of Oslo Oulne of program: Recapulaon Counng

More information

In the complete model, these slopes are ANALYSIS OF VARIANCE FOR THE COMPLETE TWO-WAY MODEL. (! i+1 -! i ) + [(!") i+1,q - [(!

In the complete model, these slopes are ANALYSIS OF VARIANCE FOR THE COMPLETE TWO-WAY MODEL. (! i+1 -! i ) + [(!) i+1,q - [(! ANALYSIS OF VARIANCE FOR THE COMPLETE TWO-WAY MODEL The frs hng o es n wo-way ANOVA: Is here neracon? "No neracon" means: The man effecs model would f. Ths n urn means: In he neracon plo (wh A on he horzonal

More information

Variants of Pegasos. December 11, 2009

Variants of Pegasos. December 11, 2009 Inroducon Varans of Pegasos SooWoong Ryu bshboy@sanford.edu December, 009 Youngsoo Cho yc344@sanford.edu Developng a new SVM algorhm s ongong research opc. Among many exng SVM algorhms, we wll focus on

More information

An introduction to Support Vector Machine

An introduction to Support Vector Machine An nroducon o Suppor Vecor Machne 報告者 : 黃立德 References: Smon Haykn, "Neural Neworks: a comprehensve foundaon, second edon, 999, Chaper 2,6 Nello Chrsann, John Shawe-Tayer, An Inroducon o Suppor Vecor Machnes,

More information

Outline. Probabilistic Model Learning. Probabilistic Model Learning. Probabilistic Model for Time-series Data: Hidden Markov Model

Outline. Probabilistic Model Learning. Probabilistic Model Learning. Probabilistic Model for Time-series Data: Hidden Markov Model Probablsc Model for Tme-seres Daa: Hdden Markov Model Hrosh Mamsuka Bonformacs Cener Kyoo Unversy Oulne Three Problems for probablsc models n machne learnng. Compung lkelhood 2. Learnng 3. Parsng (predcon

More information

Solution in semi infinite diffusion couples (error function analysis)

Solution in semi infinite diffusion couples (error function analysis) Soluon n sem nfne dffuson couples (error funcon analyss) Le us consder now he sem nfne dffuson couple of wo blocks wh concenraon of and I means ha, n a A- bnary sysem, s bondng beween wo blocks made of

More information

CH.3. COMPATIBILITY EQUATIONS. Continuum Mechanics Course (MMC) - ETSECCPB - UPC

CH.3. COMPATIBILITY EQUATIONS. Continuum Mechanics Course (MMC) - ETSECCPB - UPC CH.3. COMPATIBILITY EQUATIONS Connuum Mechancs Course (MMC) - ETSECCPB - UPC Overvew Compably Condons Compably Equaons of a Poenal Vecor Feld Compably Condons for Infnesmal Srans Inegraon of he Infnesmal

More information

Lecture VI Regression

Lecture VI Regression Lecure VI Regresson (Lnear Mehods for Regresson) Conens: Lnear Mehods for Regresson Leas Squares, Gauss Markov heorem Recursve Leas Squares Lecure VI: MLSC - Dr. Sehu Vjayakumar Lnear Regresson Model M

More information

Robust and Accurate Cancer Classification with Gene Expression Profiling

Robust and Accurate Cancer Classification with Gene Expression Profiling Robus and Accurae Cancer Classfcaon wh Gene Expresson Proflng (Compuaonal ysems Bology, 2005) Auhor: Hafeng L, Keshu Zhang, ao Jang Oulne Background LDA (lnear dscrmnan analyss) and small sample sze problem

More information

New M-Estimator Objective Function. in Simultaneous Equations Model. (A Comparative Study)

New M-Estimator Objective Function. in Simultaneous Equations Model. (A Comparative Study) Inernaonal Mahemacal Forum, Vol. 8, 3, no., 7 - HIKARI Ld, www.m-hkar.com hp://dx.do.org/.988/mf.3.3488 New M-Esmaor Objecve Funcon n Smulaneous Equaons Model (A Comparave Sudy) Ahmed H. Youssef Professor

More information

Discrete Markov Process. Introduction. Example: Balls and Urns. Stochastic Automaton. INTRODUCTION TO Machine Learning 3rd Edition

Discrete Markov Process. Introduction. Example: Balls and Urns. Stochastic Automaton. INTRODUCTION TO Machine Learning 3rd Edition EHEM ALPAYDI he MI Press, 04 Lecure Sldes for IRODUCIO O Machne Learnng 3rd Edon alpaydn@boun.edu.r hp://www.cmpe.boun.edu.r/~ehem/ml3e Sldes from exboo resource page. Slghly eded and wh addonal examples

More information

V.Abramov - FURTHER ANALYSIS OF CONFIDENCE INTERVALS FOR LARGE CLIENT/SERVER COMPUTER NETWORKS

V.Abramov - FURTHER ANALYSIS OF CONFIDENCE INTERVALS FOR LARGE CLIENT/SERVER COMPUTER NETWORKS R&RATA # Vol.) 8, March FURTHER AALYSIS OF COFIDECE ITERVALS FOR LARGE CLIET/SERVER COMPUTER ETWORKS Vyacheslav Abramov School of Mahemacal Scences, Monash Unversy, Buldng 8, Level 4, Clayon Campus, Wellngon

More information

CHAPTER 5: MULTIVARIATE METHODS

CHAPTER 5: MULTIVARIATE METHODS CHAPER 5: MULIVARIAE MEHODS Mulvarae Daa 3 Mulple measuremens (sensors) npus/feaures/arbues: -varae N nsances/observaons/eamples Each row s an eample Each column represens a feaure X a b correspons o he

More information

Fall 2010 Graduate Course on Dynamic Learning

Fall 2010 Graduate Course on Dynamic Learning Fall 200 Graduae Course on Dynamc Learnng Chaper 4: Parcle Flers Sepember 27, 200 Byoung-Tak Zhang School of Compuer Scence and Engneerng & Cognve Scence and Bran Scence Programs Seoul aonal Unversy hp://b.snu.ac.kr/~bzhang/

More information

Lecture Slides for INTRODUCTION TO. Machine Learning. ETHEM ALPAYDIN The MIT Press,

Lecture Slides for INTRODUCTION TO. Machine Learning. ETHEM ALPAYDIN The MIT Press, Lecure ldes for INRODUCION O Machne Learnng EHEM ALPAYDIN he MI Press, 004 alpaydn@boun.edu.r hp://.cpe.boun.edu.r/~ehe/l CHAPER 6: Densonaly Reducon Why Reduce Densonaly?. Reduces e copley: Less copuaon.

More information

Chapter 4. Neural Networks Based on Competition

Chapter 4. Neural Networks Based on Competition Chaper 4. Neural Neworks Based on Compeon Compeon s mporan for NN Compeon beween neurons has been observed n bologcal nerve sysems Compeon s mporan n solvng many problems To classfy an npu paern _1 no

More information

Chapter Lagrangian Interpolation

Chapter Lagrangian Interpolation Chaper 5.4 agrangan Inerpolaon Afer readng hs chaper you should be able o:. dere agrangan mehod of nerpolaon. sole problems usng agrangan mehod of nerpolaon and. use agrangan nerpolans o fnd deraes and

More information

Learning Objectives. Self Organization Map. Hamming Distance(1/5) Introduction. Hamming Distance(3/5) Hamming Distance(2/5) 15/04/2015

Learning Objectives. Self Organization Map. Hamming Distance(1/5) Introduction. Hamming Distance(3/5) Hamming Distance(2/5) 15/04/2015 /4/ Learnng Objecves Self Organzaon Map Learnng whou Exaples. Inroducon. MAXNET 3. Cluserng 4. Feaure Map. Self-organzng Feaure Map 6. Concluson 38 Inroducon. Learnng whou exaples. Daa are npu o he syse

More information

Clustering with Gaussian Mixtures

Clustering with Gaussian Mixtures Noe o oher eachers and users of hese sldes. Andrew would be delghed f you found hs source maeral useful n gvng your own lecures. Feel free o use hese sldes verbam, or o modfy hem o f your own needs. PowerPon

More information

Lecture 6: Learning for Control (Generalised Linear Regression)

Lecture 6: Learning for Control (Generalised Linear Regression) Lecure 6: Learnng for Conrol (Generalsed Lnear Regresson) Conens: Lnear Mehods for Regresson Leas Squares, Gauss Markov heorem Recursve Leas Squares Lecure 6: RLSC - Prof. Sehu Vjayakumar Lnear Regresson

More information

INTRODUCTION TO MACHINE LEARNING 3RD EDITION

INTRODUCTION TO MACHINE LEARNING 3RD EDITION ETHEM ALPAYDIN The MIT Press, 2014 Lecure Sdes for INTRODUCTION TO MACHINE LEARNING 3RD EDITION aaydn@boun.edu.r h://www.ce.boun.edu.r/~ehe/23e CHAPTER 7: CLUSTERING Searaerc Densy Esaon 3 Paraerc: Assue

More information

Objectives. Image R 1. Segmentation. Objects. Pixels R N. i 1 i Fall LIST 2

Objectives. Image R 1. Segmentation. Objects. Pixels R N. i 1 i Fall LIST 2 Image Segmenaon Obecves Image Pels Segmenaon R Obecs R N N R I -Fall LIS Ke Problems Feaure Sace Dsconnu and Smlar Classfer Lnear nonlnear - fuzz arallel seral -Fall LIS 3 Feaure Eracon Image Sace Feaure

More information

Lecture Slides for INTRODUCTION TO. Machine Learning. ETHEM ALPAYDIN The MIT Press,

Lecture Slides for INTRODUCTION TO. Machine Learning. ETHEM ALPAYDIN The MIT Press, Lecure Sldes for INTRDUCTIN T Machne Learnng ETHEM ALAYDIN The MIT ress, 2004 alpaydn@boun.edu.r hp://www.cmpe.boun.edu.r/~ehem/2ml CHATER 3: Hdden Marov Models Inroducon Modelng dependences n npu; no

More information

Lecture 11 SVM cont

Lecture 11 SVM cont Lecure SVM con. 0 008 Wha we have done so far We have esalshed ha we wan o fnd a lnear decson oundary whose margn s he larges We know how o measure he margn of a lnear decson oundary Tha s: he mnmum geomerc

More information

Introduction to Boosting

Introduction to Boosting Inroducon o Boosng Cynha Rudn PACM, Prnceon Unversy Advsors Ingrd Daubeches and Rober Schapre Say you have a daabase of news arcles, +, +, -, -, +, +, -, -, +, +, -, -, +, +, -, + where arcles are labeled

More information

Ordinary Differential Equations in Neuroscience with Matlab examples. Aim 1- Gain understanding of how to set up and solve ODE s

Ordinary Differential Equations in Neuroscience with Matlab examples. Aim 1- Gain understanding of how to set up and solve ODE s Ordnary Dfferenal Equaons n Neuroscence wh Malab eamples. Am - Gan undersandng of how o se up and solve ODE s Am Undersand how o se up an solve a smple eample of he Hebb rule n D Our goal a end of class

More information

FI 3103 Quantum Physics

FI 3103 Quantum Physics /9/4 FI 33 Quanum Physcs Aleander A. Iskandar Physcs of Magnesm and Phooncs Research Grou Insu Teknolog Bandung Basc Conces n Quanum Physcs Probably and Eecaon Value Hesenberg Uncerany Prncle Wave Funcon

More information

CHAPTER 2: Supervised Learning

CHAPTER 2: Supervised Learning HATER 2: Supervsed Learnng Learnng a lass from Eamples lass of a famly car redcon: Is car a famly car? Knowledge eracon: Wha do people epec from a famly car? Oupu: osve (+) and negave ( ) eamples Inpu

More information

Dynamic Team Decision Theory. EECS 558 Project Shrutivandana Sharma and David Shuman December 10, 2005

Dynamic Team Decision Theory. EECS 558 Project Shrutivandana Sharma and David Shuman December 10, 2005 Dynamc Team Decson Theory EECS 558 Proec Shruvandana Sharma and Davd Shuman December 0, 005 Oulne Inroducon o Team Decson Theory Decomposon of he Dynamc Team Decson Problem Equvalence of Sac and Dynamc

More information

Machine Learning Linear Regression

Machine Learning Linear Regression Machne Learnng Lnear Regresson Lesson 3 Lnear Regresson Bascs of Regresson Leas Squares esmaon Polynomal Regresson Bass funcons Regresson model Regularzed Regresson Sascal Regresson Mamum Lkelhood (ML)

More information

Math 128b Project. Jude Yuen

Math 128b Project. Jude Yuen Mah 8b Proec Jude Yuen . Inroducon Le { Z } be a sequence of observed ndependen vecor varables. If he elemens of Z have a on normal dsrbuon hen { Z } has a mean vecor Z and a varancecovarance marx z. Geomercally

More information

Robustness Experiments with Two Variance Components

Robustness Experiments with Two Variance Components Naonal Insue of Sandards and Technology (NIST) Informaon Technology Laboraory (ITL) Sascal Engneerng Dvson (SED) Robusness Expermens wh Two Varance Componens by Ana Ivelsse Avlés avles@ns.gov Conference

More information

Computing Relevance, Similarity: The Vector Space Model

Computing Relevance, Similarity: The Vector Space Model Compung Relevance, Smlary: The Vecor Space Model Based on Larson and Hears s sldes a UC-Bereley hp://.sms.bereley.edu/courses/s0/f00/ aabase Managemen Sysems, R. Ramarshnan ocumen Vecors v ocumens are

More information

Normal Random Variable and its discriminant functions

Normal Random Variable and its discriminant functions Noral Rando Varable and s dscrnan funcons Oulne Noral Rando Varable Properes Dscrnan funcons Why Noral Rando Varables? Analycally racable Works well when observaon coes for a corruped snle prooype 3 The

More information

EEL 6266 Power System Operation and Control. Chapter 5 Unit Commitment

EEL 6266 Power System Operation and Control. Chapter 5 Unit Commitment EEL 6266 Power Sysem Operaon and Conrol Chaper 5 Un Commmen Dynamc programmng chef advanage over enumeraon schemes s he reducon n he dmensonaly of he problem n a src prory order scheme, here are only N

More information

TSS = SST + SSE An orthogonal partition of the total SS

TSS = SST + SSE An orthogonal partition of the total SS ANOVA: Topc 4. Orhogonal conrass [ST&D p. 183] H 0 : µ 1 = µ =... = µ H 1 : The mean of a leas one reamen group s dfferen To es hs hypohess, a basc ANOVA allocaes he varaon among reamen means (SST) equally

More information

Kernel-Based Bayesian Filtering for Object Tracking

Kernel-Based Bayesian Filtering for Object Tracking Kernel-Based Bayesan Flerng for Objec Trackng Bohyung Han Yng Zhu Dorn Comancu Larry Davs Dep. of Compuer Scence Real-Tme Vson and Modelng Inegraed Daa and Sysems Unversy of Maryland Semens Corporae Research

More information

Department of Economics University of Toronto

Department of Economics University of Toronto Deparmen of Economcs Unversy of Torono ECO408F M.A. Economercs Lecure Noes on Heeroskedascy Heeroskedascy o Ths lecure nvolves lookng a modfcaons we need o make o deal wh he regresson model when some of

More information

Notes on the stability of dynamic systems and the use of Eigen Values.

Notes on the stability of dynamic systems and the use of Eigen Values. Noes on he sabl of dnamc ssems and he use of Egen Values. Source: Macro II course noes, Dr. Davd Bessler s Tme Seres course noes, zarads (999) Ineremporal Macroeconomcs chaper 4 & Techncal ppend, and Hamlon

More information

Single and Multiple Object Tracking Using a Multi-Feature Joint Sparse Representation

Single and Multiple Object Tracking Using a Multi-Feature Joint Sparse Representation Sngle and Mulple Objec Trackng Usng a Mul-Feaure Jon Sparse Represenaon Wemng Hu, We L, and Xaoqn Zhang (Naonal Laboraory of Paern Recognon, Insue of Auomaon, Chnese Academy of Scences, Bejng 100190) {wmhu,

More information

John Geweke a and Gianni Amisano b a Departments of Economics and Statistics, University of Iowa, USA b European Central Bank, Frankfurt, Germany

John Geweke a and Gianni Amisano b a Departments of Economics and Statistics, University of Iowa, USA b European Central Bank, Frankfurt, Germany Herarchcal Markov Normal Mxure models wh Applcaons o Fnancal Asse Reurns Appendx: Proofs of Theorems and Condonal Poseror Dsrbuons John Geweke a and Gann Amsano b a Deparmens of Economcs and Sascs, Unversy

More information

Track Properities of Normal Chain

Track Properities of Normal Chain In. J. Conemp. Mah. Scences, Vol. 8, 213, no. 4, 163-171 HIKARI Ld, www.m-har.com rac Propes of Normal Chan L Chen School of Mahemacs and Sascs, Zhengzhou Normal Unversy Zhengzhou Cy, Hennan Provnce, 4544,

More information

A Tour of Modeling Techniques

A Tour of Modeling Techniques A Tour of Modelng Technques John Hooker Carnege Mellon Unversy EWO Semnar February 8 Slde Oulne Med neger lnear (MILP) modelng Dsuncve modelng Knapsack modelng Consran programmng models Inegraed Models

More information

Linear Response Theory: The connection between QFT and experiments

Linear Response Theory: The connection between QFT and experiments Phys540.nb 39 3 Lnear Response Theory: The connecon beween QFT and expermens 3.1. Basc conceps and deas Q: ow do we measure he conducvy of a meal? A: we frs nroduce a weak elecrc feld E, and hen measure

More information

CS286.2 Lecture 14: Quantum de Finetti Theorems II

CS286.2 Lecture 14: Quantum de Finetti Theorems II CS286.2 Lecure 14: Quanum de Fne Theorems II Scrbe: Mara Okounkova 1 Saemen of he heorem Recall he las saemen of he quanum de Fne heorem from he prevous lecure. Theorem 1 Quanum de Fne). Le ρ Dens C 2

More information

J i-1 i. J i i+1. Numerical integration of the diffusion equation (I) Finite difference method. Spatial Discretization. Internal nodes.

J i-1 i. J i i+1. Numerical integration of the diffusion equation (I) Finite difference method. Spatial Discretization. Internal nodes. umercal negraon of he dffuson equaon (I) Fne dfference mehod. Spaal screaon. Inernal nodes. R L V For hermal conducon le s dscree he spaal doman no small fne spans, =,,: Balance of parcles for an nernal

More information

Cubic Bezier Homotopy Function for Solving Exponential Equations

Cubic Bezier Homotopy Function for Solving Exponential Equations Penerb Journal of Advanced Research n Compung and Applcaons ISSN (onlne: 46-97 Vol. 4, No.. Pages -8, 6 omoopy Funcon for Solvng Eponenal Equaons S. S. Raml *,,. Mohamad Nor,a, N. S. Saharzan,b and M.

More information

Detection of Waving Hands from Images Using Time Series of Intensity Values

Detection of Waving Hands from Images Using Time Series of Intensity Values Deecon of Wavng Hands from Images Usng Tme eres of Inensy Values Koa IRIE, Kazunor UMEDA Chuo Unversy, Tokyo, Japan re@sensor.mech.chuo-u.ac.jp, umeda@mech.chuo-u.ac.jp Absrac Ths paper proposes a mehod

More information

Appendix to Online Clustering with Experts

Appendix to Online Clustering with Experts A Appendx o Onlne Cluserng wh Expers Furher dscusson of expermens. Here we furher dscuss expermenal resuls repored n he paper. Ineresngly, we observe ha OCE (and n parcular Learn- ) racks he bes exper

More information

Single-loop System Reliability-Based Design & Topology Optimization (SRBDO/SRBTO): A Matrix-based System Reliability (MSR) Method

Single-loop System Reliability-Based Design & Topology Optimization (SRBDO/SRBTO): A Matrix-based System Reliability (MSR) Method 10 h US Naonal Congress on Compuaonal Mechancs Columbus, Oho 16-19, 2009 Sngle-loop Sysem Relably-Based Desgn & Topology Opmzaon (SRBDO/SRBTO): A Marx-based Sysem Relably (MSR) Mehod Tam Nguyen, Junho

More information

Chapter 6 DETECTION AND ESTIMATION: Model of digital communication system. Fundamental issues in digital communications are

Chapter 6 DETECTION AND ESTIMATION: Model of digital communication system. Fundamental issues in digital communications are Chaper 6 DEECIO AD EIMAIO: Fundamenal ssues n dgal communcaons are. Deecon and. Esmaon Deecon heory: I deals wh he desgn and evaluaon of decson makng processor ha observes he receved sgnal and guesses

More information

Appendix H: Rarefaction and extrapolation of Hill numbers for incidence data

Appendix H: Rarefaction and extrapolation of Hill numbers for incidence data Anne Chao Ncholas J Goell C seh lzabeh L ander K Ma Rober K Colwell and Aaron M llson 03 Rarefacon and erapolaon wh ll numbers: a framewor for samplng and esmaon n speces dversy sudes cology Monographs

More information

Lecture 2 L n i e n a e r a M od o e d l e s

Lecture 2 L n i e n a e r a M od o e d l e s Lecure Lnear Models Las lecure You have learned abou ha s machne learnng Supervsed learnng Unsupervsed learnng Renforcemen learnng You have seen an eample learnng problem and he general process ha one

More information

Genetic Algorithm in Parameter Estimation of Nonlinear Dynamic Systems

Genetic Algorithm in Parameter Estimation of Nonlinear Dynamic Systems Genec Algorhm n Parameer Esmaon of Nonlnear Dynamc Sysems E. Paeraks manos@egnaa.ee.auh.gr V. Perds perds@vergna.eng.auh.gr Ah. ehagas kehagas@egnaa.ee.auh.gr hp://skron.conrol.ee.auh.gr/kehagas/ndex.hm

More information

DEEP UNFOLDING FOR MULTICHANNEL SOURCE SEPARATION SUPPLEMENTARY MATERIAL

DEEP UNFOLDING FOR MULTICHANNEL SOURCE SEPARATION SUPPLEMENTARY MATERIAL DEEP UNFOLDING FOR MULTICHANNEL SOURCE SEPARATION SUPPLEMENTARY MATERIAL Sco Wsdom, John Hershey 2, Jonahan Le Roux 2, and Shnj Waanabe 2 Deparmen o Elecrcal Engneerng, Unversy o Washngon, Seale, WA, USA

More information

A Principled Approach to MILP Modeling

A Principled Approach to MILP Modeling A Prncpled Approach o MILP Modelng John Hooer Carnege Mellon Unvers Augus 008 Slde Proposal MILP modelng s an ar, bu need no be unprncpled. Slde Proposal MILP modelng s an ar, bu need no be unprncpled.

More information

doi: info:doi/ /

doi: info:doi/ / do: nfo:do/0.063/.322393 nernaonal Conference on Power Conrol and Opmzaon, Bal, ndonesa, -3, June 2009 A COLOR FEATURES-BASED METHOD FOR OBJECT TRACKNG EMPLOYNG A PARTCLE FLTER ALGORTHM Bud Sugand, Hyoungseop

More information

HEAT CONDUCTION PROBLEM IN A TWO-LAYERED HOLLOW CYLINDER BY USING THE GREEN S FUNCTION METHOD

HEAT CONDUCTION PROBLEM IN A TWO-LAYERED HOLLOW CYLINDER BY USING THE GREEN S FUNCTION METHOD Journal of Appled Mahemacs and Compuaonal Mechancs 3, (), 45-5 HEAT CONDUCTION PROBLEM IN A TWO-LAYERED HOLLOW CYLINDER BY USING THE GREEN S FUNCTION METHOD Sansław Kukla, Urszula Sedlecka Insue of Mahemacs,

More information

GENERATING CERTAIN QUINTIC IRREDUCIBLE POLYNOMIALS OVER FINITE FIELDS. Youngwoo Ahn and Kitae Kim

GENERATING CERTAIN QUINTIC IRREDUCIBLE POLYNOMIALS OVER FINITE FIELDS. Youngwoo Ahn and Kitae Kim Korean J. Mah. 19 (2011), No. 3, pp. 263 272 GENERATING CERTAIN QUINTIC IRREDUCIBLE POLYNOMIALS OVER FINITE FIELDS Youngwoo Ahn and Kae Km Absrac. In he paper [1], an explc correspondence beween ceran

More information

Boosted LMS-based Piecewise Linear Adaptive Filters

Boosted LMS-based Piecewise Linear Adaptive Filters 016 4h European Sgnal Processng Conference EUSIPCO) Boosed LMS-based Pecewse Lnear Adapve Flers Darush Kar and Iman Marvan Deparmen of Elecrcal and Elecroncs Engneerng Blken Unversy, Ankara, Turkey {kar,

More information

Scattering at an Interface: Oblique Incidence

Scattering at an Interface: Oblique Incidence Course Insrucor Dr. Raymond C. Rumpf Offce: A 337 Phone: (915) 747 6958 E Mal: rcrumpf@uep.edu EE 4347 Appled Elecromagnecs Topc 3g Scaerng a an Inerface: Oblque Incdence Scaerng These Oblque noes may

More information

Introduction ( Week 1-2) Course introduction A brief introduction to molecular biology A brief introduction to sequence comparison Part I: Algorithms

Introduction ( Week 1-2) Course introduction A brief introduction to molecular biology A brief introduction to sequence comparison Part I: Algorithms Course organzaon Inroducon Wee -2) Course nroducon A bref nroducon o molecular bology A bref nroducon o sequence comparson Par I: Algorhms for Sequence Analyss Wee 3-8) Chaper -3, Models and heores» Probably

More information

Filtrage particulaire et suivi multi-pistes Carine Hue Jean-Pierre Le Cadre and Patrick Pérez

Filtrage particulaire et suivi multi-pistes Carine Hue Jean-Pierre Le Cadre and Patrick Pérez Chaînes de Markov cachées e flrage parculare 2-22 anver 2002 Flrage parculare e suv mul-pses Carne Hue Jean-Perre Le Cadre and Parck Pérez Conex Applcaons: Sgnal processng: arge rackng bearngs-onl rackng

More information

Chapter 6: AC Circuits

Chapter 6: AC Circuits Chaper 6: AC Crcus Chaper 6: Oulne Phasors and he AC Seady Sae AC Crcus A sable, lnear crcu operang n he seady sae wh snusodal excaon (.e., snusodal seady sae. Complee response forced response naural response.

More information

5th International Conference on Advanced Design and Manufacturing Engineering (ICADME 2015)

5th International Conference on Advanced Design and Manufacturing Engineering (ICADME 2015) 5h Inernaonal onference on Advanced Desgn and Manufacurng Engneerng (IADME 5 The Falure Rae Expermenal Sudy of Specal N Machne Tool hunshan He, a, *, La Pan,b and Bng Hu 3,c,,3 ollege of Mechancal and

More information

Machine Vision based Micro-crack Inspection in Thin-film Solar Cell Panel

Machine Vision based Micro-crack Inspection in Thin-film Solar Cell Panel Sensors & Transducers Vol. 179 ssue 9 Sepember 2014 pp. 157-161 Sensors & Transducers 2014 by FSA Publshng S. L. hp://www.sensorsporal.com Machne Vson based Mcro-crack nspecon n Thn-flm Solar Cell Panel

More information

Pattern Classification (III) & Pattern Verification

Pattern Classification (III) & Pattern Verification Preare by Prof. Hu Jang CSE638 --4 CSE638 3. Seech & Language Processng o.5 Paern Classfcaon III & Paern Verfcaon Prof. Hu Jang Dearmen of Comuer Scence an Engneerng York Unversy Moel Parameer Esmaon Maxmum

More information

GMM parameter estimation. Xiaoye Lu CMPS290c Final Project

GMM parameter estimation. Xiaoye Lu CMPS290c Final Project GMM paraeer esaon Xaoye Lu M290c Fnal rojec GMM nroducon Gaussan ure Model obnaon of several gaussan coponens Noaon: For each Gaussan dsrbuon:, s he ean and covarance ar. A GMM h ures(coponens): p ( 2π

More information

On One Analytic Method of. Constructing Program Controls

On One Analytic Method of. Constructing Program Controls Appled Mahemacal Scences, Vol. 9, 05, no. 8, 409-407 HIKARI Ld, www.m-hkar.com hp://dx.do.org/0.988/ams.05.54349 On One Analyc Mehod of Consrucng Program Conrols A. N. Kvko, S. V. Chsyakov and Yu. E. Balyna

More information

WiH Wei He

WiH Wei He Sysem Idenfcaon of onlnear Sae-Space Space Baery odels WH We He wehe@calce.umd.edu Advsor: Dr. Chaochao Chen Deparmen of echancal Engneerng Unversy of aryland, College Par 1 Unversy of aryland Bacground

More information

Let s treat the problem of the response of a system to an applied external force. Again,

Let s treat the problem of the response of a system to an applied external force. Again, Page 33 QUANTUM LNEAR RESPONSE FUNCTON Le s rea he problem of he response of a sysem o an appled exernal force. Agan, H() H f () A H + V () Exernal agen acng on nernal varable Hamlonan for equlbrum sysem

More information

[ ] 2. [ ]3 + (Δx i + Δx i 1 ) / 2. Δx i-1 Δx i Δx i+1. TPG4160 Reservoir Simulation 2018 Lecture note 3. page 1 of 5

[ ] 2. [ ]3 + (Δx i + Δx i 1 ) / 2. Δx i-1 Δx i Δx i+1. TPG4160 Reservoir Simulation 2018 Lecture note 3. page 1 of 5 TPG460 Reservor Smulaon 08 page of 5 DISCRETIZATIO OF THE FOW EQUATIOS As we already have seen, fne dfference appromaons of he paral dervaves appearng n he flow equaons may be obaned from Taylor seres

More information

This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore.

This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore. Ths documen s downloaded from DR-NTU, Nanyang Technologcal Unversy Lbrary, Sngapore. Tle A smplfed verb machng algorhm for word paron n vsual speech processng( Acceped verson ) Auhor(s) Foo, Say We; Yong,

More information

Tight results for Next Fit and Worst Fit with resource augmentation

Tight results for Next Fit and Worst Fit with resource augmentation Tgh resuls for Nex F and Wors F wh resource augmenaon Joan Boyar Leah Epsen Asaf Levn Asrac I s well known ha he wo smple algorhms for he classc n packng prolem, NF and WF oh have an approxmaon rao of

More information

Foundations of State Estimation Part II

Foundations of State Estimation Part II Foundaons of Sae Esmaon Par II Tocs: Hdden Markov Models Parcle Flers Addonal readng: L.R. Rabner, A uoral on hdden Markov models," Proceedngs of he IEEE, vol. 77,. 57-86, 989. Sequenal Mone Carlo Mehods

More information

THE PREDICTION OF COMPETITIVE ENVIRONMENT IN BUSINESS

THE PREDICTION OF COMPETITIVE ENVIRONMENT IN BUSINESS THE PREICTION OF COMPETITIVE ENVIRONMENT IN BUSINESS INTROUCTION The wo dmensonal paral dfferenal equaons of second order can be used for he smulaon of compeve envronmen n busness The arcle presens he

More information

MCs Detection Approach Using Bagging and Boosting Based Twin Support Vector Machine

MCs Detection Approach Using Bagging and Boosting Based Twin Support Vector Machine Proceedngs of he 009 IEEE Inernaonal Conference on Sysems, Man, and Cybernecs San Anono, TX, USA - Ocober 009 MCs Deecon Approach Usng Baggng and Boosng Based Twn Suppor Vecor Machne Xnsheng Zhang School

More information

Comparison of Supervised & Unsupervised Learning in βs Estimation between Stocks and the S&P500

Comparison of Supervised & Unsupervised Learning in βs Estimation between Stocks and the S&P500 Comparson of Supervsed & Unsupervsed Learnng n βs Esmaon beween Socks and he S&P500 J. We, Y. Hassd, J. Edery, A. Becker, Sanford Unversy T I. INTRODUCTION HE goal of our proec s o analyze he relaonshps

More information

Structural Optimization Using Metamodels

Structural Optimization Using Metamodels Srucural Opmzaon Usng Meamodels 30 Mar. 007 Dep. o Mechancal Engneerng Dong-A Unvers Korea Kwon-Hee Lee Conens. Numercal Opmzaon. Opmzaon Usng Meamodels Impac beam desgn WB Door desgn 3. Robus Opmzaon

More information

Sampling Procedure of the Sum of two Binary Markov Process Realizations

Sampling Procedure of the Sum of two Binary Markov Process Realizations Samplng Procedure of he Sum of wo Bnary Markov Process Realzaons YURY GORITSKIY Dep. of Mahemacal Modelng of Moscow Power Insue (Techncal Unversy), Moscow, RUSSIA, E-mal: gorsky@yandex.ru VLADIMIR KAZAKOV

More information

PHYS 1443 Section 001 Lecture #4

PHYS 1443 Section 001 Lecture #4 PHYS 1443 Secon 001 Lecure #4 Monda, June 5, 006 Moon n Two Dmensons Moon under consan acceleraon Projecle Moon Mamum ranges and heghs Reerence Frames and relae moon Newon s Laws o Moon Force Newon s Law

More information

An Affine Symmetric Approach to Natural Image Compression

An Affine Symmetric Approach to Natural Image Compression An Affne Symmerc Approach o Naural Image Compresson Heechan Par, Abhr Bhalerao, Graham Marn and Andy C. Yu Deparmen of Compuer Scence, Unversy of Warwc, UK {heechan abhr grm andycyu}@dcs.warwc.ac.u ABSTRACT

More information

Chapters 2 Kinematics. Position, Distance, Displacement

Chapters 2 Kinematics. Position, Distance, Displacement Chapers Knemacs Poson, Dsance, Dsplacemen Mechancs: Knemacs and Dynamcs. Knemacs deals wh moon, bu s no concerned wh he cause o moon. Dynamcs deals wh he relaonshp beween orce and moon. The word dsplacemen

More information

Object Tracking Based on Visual Attention Model and Particle Filter

Object Tracking Based on Visual Attention Model and Particle Filter Inernaonal Journal of Informaon Technology Vol. No. 9 25 Objec Trackng Based on Vsual Aenon Model and Parcle Fler Long-Fe Zhang, Yuan-Da Cao 2, Mng-Je Zhang 3, Y-Zhuo Wang 4 School of Compuer Scence and

More information

A Deterministic Algorithm for Summarizing Asynchronous Streams over a Sliding Window

A Deterministic Algorithm for Summarizing Asynchronous Streams over a Sliding Window A Deermnsc Algorhm for Summarzng Asynchronous Sreams over a Sldng ndow Cosas Busch Rensselaer Polyechnc Insue Srkana Trhapura Iowa Sae Unversy Oulne of Talk Inroducon Algorhm Analyss Tme C Daa sream: 3

More information

Comb Filters. Comb Filters

Comb Filters. Comb Filters The smple flers dscussed so far are characered eher by a sngle passband and/or a sngle sopband There are applcaons where flers wh mulple passbands and sopbands are requred Thecomb fler s an example of

More information

January Examinations 2012

January Examinations 2012 Page of 5 EC79 January Examnaons No. of Pages: 5 No. of Quesons: 8 Subjec ECONOMICS (POSTGRADUATE) Tle of Paper EC79 QUANTITATIVE METHODS FOR BUSINESS AND FINANCE Tme Allowed Two Hours ( hours) Insrucons

More information

Part II CONTINUOUS TIME STOCHASTIC PROCESSES

Part II CONTINUOUS TIME STOCHASTIC PROCESSES Par II CONTINUOUS TIME STOCHASTIC PROCESSES 4 Chaper 4 For an advanced analyss of he properes of he Wener process, see: Revus D and Yor M: Connuous marngales and Brownan Moon Karazas I and Shreve S E:

More information

Video-Based Face Recognition Using Adaptive Hidden Markov Models

Video-Based Face Recognition Using Adaptive Hidden Markov Models Vdeo-Based Face Recognon Usng Adapve Hdden Markov Models Xaomng Lu and suhan Chen Elecrcal and Compuer Engneerng, Carnege Mellon Unversy, Psburgh, PA, 523, U.S.A. xaomng@andrew.cmu.edu suhan@cmu.edu Absrac

More information

Hidden Markov Models Following a lecture by Andrew W. Moore Carnegie Mellon University

Hidden Markov Models Following a lecture by Andrew W. Moore Carnegie Mellon University Hdden Markov Models Followng a lecure by Andrew W. Moore Carnege Mellon Unversy www.cs.cmu.edu/~awm/uorals A Markov Sysem Has N saes, called s, s 2.. s N s 2 There are dscree meseps, 0,, s s 3 N 3 0 Hdden

More information