Anomaly Detection. Lecture Notes for Chapter 9. Introduction to Data Mining, 2 nd Edition by Tan, Steinbach, Karpatne, Kumar

Size: px
Start display at page:

Download "Anomaly Detection. Lecture Notes for Chapter 9. Introduction to Data Mining, 2 nd Edition by Tan, Steinbach, Karpatne, Kumar"

Transcription

1 Anomaly eecon Lecure Noes for Chaper 9 Inroducon o aa Mnng, 2 nd Edon by Tan, Senbach, Karpane, Kumar 2/14/18 Inroducon o aa Mnng, 2nd Edon 1 Anomaly/Ouler eecon Wha are anomales/oulers? The se of daa pons ha are consderably dfferen han he remander of he daa Naural mplcaon s ha anomales are relavely rare One n a housand occurs ofen f you have los of daa Cone s mporan, e.g., freezng emps n July Can be mporan or a nusance 10 foo all 2 year old Unusually hgh blood pressure 2/14/18 Inroducon o aa Mnng, 2nd Edon 2

2 Imporance of Anomaly eecon Ozone epleon Hsory In 1985 hree researchers (Farman, Gardnar and Shankln were puzzled by daa gahered by he Brsh Anarcc Survey showng ha ozone levels for Anarcca had dropped 10% below normal levels Why dd he Nmbus 7 saelle, whch had nsrumens aboard for recordng ozone levels, no record smlarly low ozone concenraons? The ozone concenraons recorded by he saelle were so low hey were beng reaed as oulers by a compuer program and dscarded! Sources: hp://eplorngdaa.cqu.edu.au/ozone.hml hp:// 2/14/18 Inroducon o aa Mnng, 2nd Edon 3 Causes of Anomales aa from dfferen classes Measurng he weghs of oranges, bu a few grapefru are med n Naural varaon Unusually all people aa errors 200 pound 2 year old 2/14/18 Inroducon o aa Mnng, 2nd Edon 4

3 sncon Beween Nose and Anomales Nose s erroneous, perhaps random, values or conamnang objecs Wegh recorded ncorrecly Grapefru med n wh he oranges Nose doesn necessarly produce unusual values or objecs Nose s no neresng Anomales may be neresng f hey are no a resul of nose Nose and anomales are relaed bu dsnc conceps 2/14/18 Inroducon o aa Mnng, 2nd Edon 5 General Issues: Number of Arbues Many anomales are defned n erms of a sngle arbue Hegh Shape Color Can be hard o fnd an anomaly usng all arbues Nosy or rrelevan arbues Objec s only anomalous wh respec o some arbues However, an objec may no be anomalous n any one arbue 2/14/18 Inroducon o aa Mnng, 2nd Edon 6

4 General Issues: Anomaly Scorng Many anomaly deecon echnques provde only a bnary caegorzaon An objec s an anomaly or sn Ths s especally rue of classfcaon-based approaches Oher approaches assgn a score o all pons Ths score measures he degree o whch an objec s an anomaly Ths allows objecs o be ranked In he end, you ofen need a bnary decson Should hs cred card ransacon be flagged? Sll useful o have a score How many anomales are here? 2/14/18 Inroducon o aa Mnng, 2nd Edon 7 Oher Issues for Anomaly eecon Fnd all anomales a once or one a a me Swampng Maskng Evaluaon How do you measure performance? Supervsed vs. unsupervsed suaons Effcency Cone Professonal baskeball eam 2/14/18 Inroducon o aa Mnng, 2nd Edon 8

5 Varans of Anomaly eecon Problems Gven a daa se, fnd all daa pons wh anomaly scores greaer han some hreshold Gven a daa se, fnd all daa pons havng he op-n larges anomaly scores Gven a daa se, conanng mosly normal (bu unlabeled daa pons, and a es pon, compue he anomaly score of wh respec o 2/14/18 Inroducon o aa Mnng, 2nd Edon 9 Model-Based Anomaly eecon Buld a model for he daa and see Unsupervsed u Anomales are hose pons ha don f well u Anomales are hose pons ha dsor he model u Eamples: Sascal dsrbuon Clusers Regresson Geomerc Graph Supervsed u Anomales are regarded as a rare class u Need o have ranng daa 2/14/18 Inroducon o aa Mnng, 2nd Edon 10

6 Addonal Anomaly eecon Technques Promy-based Anomales are pons far away from oher pons Can deec hs graphcally n some cases ensy-based Low densy pons are oulers Paern machng Creae profles or emplaes of aypcal bu mporan evens or objecs Algorhms o deec hese paerns are usually smple and effcen 2/14/18 Inroducon o aa Mnng, 2nd Edon 11 Vsual Approaches Boplos or scaer plos Lmaons No auomac Subjecve 2/14/18 Inroducon o aa Mnng, 2nd Edon 12

7 y Sascal Approaches Probablsc defnon of an ouler: An ouler s an objec ha has a low probably wh respec o a probably dsrbuon model of he daa. Usually assume a paramerc model descrbng he dsrbuon of he daa (e.g., normal dsrbuon Apply a sascal es ha depends on aa dsrbuon Parameers of dsrbuon (e.g., mean, varance Number of epeced oulers (confdence lm Issues Idenfyng he dsrbuon of a daa se u Heavy aled dsrbuon Number of arbues Is he daa a mure of dsrbuons? 2/14/18 Inroducon o aa Mnng, 2nd Edon 13 Normal srbuons One-dmensonal Gaussan probably densy Two-dmensonal Gaussan /14/18 Inroducon o aa Mnng, 2nd Edon 14

8 Grubbs Tes eec oulers n unvarae daa Assume daa comes from normal dsrbuon eecs one ouler a a me, remove he ouler, and repea H 0 : There s no ouler n daa H A : There s a leas one ouler Grubbs es sasc: X X G = ma s Rejec H 0 f: ( N 1 G > N 2 ( α / N, N 2 N ( α / N, N 2 2/14/18 Inroducon o aa Mnng, 2nd Edon 15 Sascal-based Lkelhood Approach Assume he daa se conans samples from a mure of wo probably dsrbuons: M (majory dsrbuon A (anomalous dsrbuon General Approach: Inally, assume all he daa pons belong o M Le L ( be he log lkelhood of a me For each pon ha belongs o M, move o A u Le L +1 ( be he new log lkelhood. u Compue he dfference, Δ = L ( L +1 ( u If Δ > c (some hreshold, hen s declared as an anomaly and moved permanenly from M o A 2/14/18 Inroducon o aa Mnng, 2nd Edon 16

9 Sascal-based Lkelhood Approach aa dsrbuon, = (1 λ M + λ A M s a probably dsrbuon esmaed from daa Can be based on any modelng mehod (naïve Bayes, mamum enropy, ec A s nally assumed o be unform dsrbuon Lkelhood a me : = = = = A A M M A A A M M M N P A P M LL P P P L ( log log ( log log(1 ( ( ( (1 ( ( 1 λ λ λ λ 2/14/18 Inroducon o aa Mnng, 2nd Edon 17 Srenghs/Weaknesses of Sascal Approaches Frm mahemacal foundaon Can be very effcen Good resuls f dsrbuon s known In many cases, daa dsrbuon may no be known For hgh dmensonal daa, may be dffcul o esmae he rue dsrbuon Anomales can dsor he parameers of he dsrbuon 2/14/18 Inroducon o aa Mnng, 2nd Edon 18

10 sance-based Approaches Several dfferen echnques An objec s an ouler f a specfed fracon of he objecs s more han a specfed dsance away (Knorr, Ng 1998 Some sascal defnons are specal cases of hs The ouler score of an objec s he dsance o s kh neares neghbor 2/14/18 Inroducon o aa Mnng, 2nd Edon 19 One Neares Neghbor - One Ouler Ouler Score 2/14/18 Inroducon o aa Mnng, 2nd Edon 20

11 One Neares Neghbor - Two Oulers Ouler Score 2/14/18 Inroducon o aa Mnng, 2nd Edon 21 Fve Neares Neghbors - Small Cluser Ouler Score 2/14/18 Inroducon o aa Mnng, 2nd Edon 22

12 Fve Neares Neghbors - fferng ensy Ouler Score 2/14/18 Inroducon o aa Mnng, 2nd Edon 23 Srenghs/Weaknesses of sance-based Approaches Smple Epensve O(n 2 Sensve o parameers Sensve o varaons n densy sance becomes less meanngful n hghdmensonal space 2/14/18 Inroducon o aa Mnng, 2nd Edon 24

13 ensy-based Approaches ensy-based Ouler: The ouler score of an objec s he nverse of he densy around he objec. Can be defned n erms of he k neares neghbors One defnon: Inverse of dsance o kh neghbor Anoher defnon: Inverse of he average dsance o k neghbors BSCAN defnon If here are regons of dfferen densy, hs approach can have problems 2/14/18 Inroducon o aa Mnng, 2nd Edon 25 Relave ensy Consder he densy of a pon relave o ha of s k neares neghbors 2/14/18 Inroducon o aa Mnng, 2nd Edon 26

14 Relave ensy Ouler Scores C A 2 1 Ouler Score 2/14/18 Inroducon o aa Mnng, 2nd Edon 27 ensy-based: LOF approach For each pon, compue he densy of s local neghborhood Compue local ouler facor (LOF of a sample p as he average of he raos of he densy of sample p and he densy of s neares neghbors Oulers are pons wh larges LOF value p 2 p 1 In he NN approach, p 2 s no consdered as ouler, whle LOF approach fnd boh p 1 and p 2 as oulers 2/14/18 Inroducon o aa Mnng, 2nd Edon 28

15 Srenghs/Weaknesses of ensy-based Approaches Smple Epensve O(n 2 Sensve o parameers ensy becomes less meanngful n hghdmensonal space 2/14/18 Inroducon o aa Mnng, 2nd Edon 29 Cluserng-Based Approaches Cluserng-based Ouler: An objec s a cluser-based ouler f does no srongly belong o any cluser For prooype-based clusers, an objec s an ouler f s no close enough o a cluser cener For densy-based clusers, an objec s an ouler f s densy s oo low For graph-based clusers, an objec s an ouler f s no well conneced Oher ssues nclude he mpac of oulers on he clusers and he number of clusers 2/14/18 Inroducon o aa Mnng, 2nd Edon 30

16 sance of Pons from Closes Cenrods C A Ouler Score 2/14/18 Inroducon o aa Mnng, 2nd Edon 31 Relave sance of Pons from Closes Cenrod Ouler Score 2/14/18 Inroducon o aa Mnng, 2nd Edon 32

17 Srenghs/Weaknesses of sance-based Approaches Smple Many cluserng echnques can be used Can be dffcul o decde on a cluserng echnque Can be dffcul o decde on number of clusers Oulers can dsor he clusers 2/14/18 Inroducon o aa Mnng, 2nd Edon 33

Clustering (Bishop ch 9)

Clustering (Bishop ch 9) Cluserng (Bshop ch 9) Reference: Daa Mnng by Margare Dunham (a slde source) 1 Cluserng Cluserng s unsupervsed learnng, here are no class labels Wan o fnd groups of smlar nsances Ofen use a dsance measure

More information

CHAPTER 10: LINEAR DISCRIMINATION

CHAPTER 10: LINEAR DISCRIMINATION CHAPER : LINEAR DISCRIMINAION Dscrmnan-based Classfcaon 3 In classfcaon h K classes (C,C,, C k ) We defned dscrmnan funcon g j (), j=,,,k hen gven an es eample, e chose (predced) s class label as C f g

More information

Bayes rule for a classification problem INF Discriminant functions for the normal density. Euclidean distance. Mahalanobis distance

Bayes rule for a classification problem INF Discriminant functions for the normal density. Euclidean distance. Mahalanobis distance INF 43 3.. Repeon Anne Solberg (anne@f.uo.no Bayes rule for a classfcaon problem Suppose we have J, =,...J classes. s he class label for a pxel, and x s he observed feaure vecor. We can use Bayes rule

More information

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 4

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 4 CS434a/54a: Paern Recognon Prof. Olga Veksler Lecure 4 Oulne Normal Random Varable Properes Dscrmnan funcons Why Normal Random Varables? Analycally racable Works well when observaon comes form a corruped

More information

CHAPTER 5: MULTIVARIATE METHODS

CHAPTER 5: MULTIVARIATE METHODS CHAPER 5: MULIVARIAE MEHODS Mulvarae Daa 3 Mulple measuremens (sensors) npus/feaures/arbues: -varae N nsances/observaons/eamples Each row s an eample Each column represens a feaure X a b correspons o he

More information

( t) Outline of program: BGC1: Survival and event history analysis Oslo, March-May Recapitulation. The additive regression model

( t) Outline of program: BGC1: Survival and event history analysis Oslo, March-May Recapitulation. The additive regression model BGC1: Survval and even hsory analyss Oslo, March-May 212 Monday May 7h and Tuesday May 8h The addve regresson model Ørnulf Borgan Deparmen of Mahemacs Unversy of Oslo Oulne of program: Recapulaon Counng

More information

Advanced Machine Learning & Perception

Advanced Machine Learning & Perception Advanced Machne Learnng & Percepon Insrucor: Tony Jebara SVM Feaure & Kernel Selecon SVM Eensons Feaure Selecon (Flerng and Wrappng) SVM Feaure Selecon SVM Kernel Selecon SVM Eensons Classfcaon Feaure/Kernel

More information

( ) [ ] MAP Decision Rule

( ) [ ] MAP Decision Rule Announcemens Bayes Decson Theory wh Normal Dsrbuons HW0 due oday HW o be assgned soon Proec descrpon posed Bomercs CSE 90 Lecure 4 CSE90, Sprng 04 CSE90, Sprng 04 Key Probables 4 ω class label X feaure

More information

Variants of Pegasos. December 11, 2009

Variants of Pegasos. December 11, 2009 Inroducon Varans of Pegasos SooWoong Ryu bshboy@sanford.edu December, 009 Youngsoo Cho yc344@sanford.edu Developng a new SVM algorhm s ongong research opc. Among many exng SVM algorhms, we wll focus on

More information

Math 128b Project. Jude Yuen

Math 128b Project. Jude Yuen Mah 8b Proec Jude Yuen . Inroducon Le { Z } be a sequence of observed ndependen vecor varables. If he elemens of Z have a on normal dsrbuon hen { Z } has a mean vecor Z and a varancecovarance marx z. Geomercally

More information

CS 536: Machine Learning. Nonparametric Density Estimation Unsupervised Learning - Clustering

CS 536: Machine Learning. Nonparametric Density Estimation Unsupervised Learning - Clustering CS 536: Machne Learnng Nonparamerc Densy Esmaon Unsupervsed Learnng - Cluserng Fall 2005 Ahmed Elgammal Dep of Compuer Scence Rugers Unversy CS 536 Densy Esmaon - Cluserng - 1 Oulnes Densy esmaon Nonparamerc

More information

Econ107 Applied Econometrics Topic 5: Specification: Choosing Independent Variables (Studenmund, Chapter 6)

Econ107 Applied Econometrics Topic 5: Specification: Choosing Independent Variables (Studenmund, Chapter 6) Econ7 Appled Economercs Topc 5: Specfcaon: Choosng Independen Varables (Sudenmund, Chaper 6 Specfcaon errors ha we wll deal wh: wrong ndependen varable; wrong funconal form. Ths lecure deals wh wrong ndependen

More information

Department of Economics University of Toronto

Department of Economics University of Toronto Deparmen of Economcs Unversy of Torono ECO408F M.A. Economercs Lecure Noes on Heeroskedascy Heeroskedascy o Ths lecure nvolves lookng a modfcaons we need o make o deal wh he regresson model when some of

More information

An introduction to Support Vector Machine

An introduction to Support Vector Machine An nroducon o Suppor Vecor Machne 報告者 : 黃立德 References: Smon Haykn, "Neural Neworks: a comprehensve foundaon, second edon, 999, Chaper 2,6 Nello Chrsann, John Shawe-Tayer, An Inroducon o Suppor Vecor Machnes,

More information

Lecture VI Regression

Lecture VI Regression Lecure VI Regresson (Lnear Mehods for Regresson) Conens: Lnear Mehods for Regresson Leas Squares, Gauss Markov heorem Recursve Leas Squares Lecure VI: MLSC - Dr. Sehu Vjayakumar Lnear Regresson Model M

More information

In the complete model, these slopes are ANALYSIS OF VARIANCE FOR THE COMPLETE TWO-WAY MODEL. (! i+1 -! i ) + [(!") i+1,q - [(!

In the complete model, these slopes are ANALYSIS OF VARIANCE FOR THE COMPLETE TWO-WAY MODEL. (! i+1 -! i ) + [(!) i+1,q - [(! ANALYSIS OF VARIANCE FOR THE COMPLETE TWO-WAY MODEL The frs hng o es n wo-way ANOVA: Is here neracon? "No neracon" means: The man effecs model would f. Ths n urn means: In he neracon plo (wh A on he horzonal

More information

CHAPTER 7: CLUSTERING

CHAPTER 7: CLUSTERING CHAPTER 7: CLUSTERING Semparamerc Densy Esmaon 3 Paramerc: Assume a snge mode for p ( C ) (Chapers 4 and 5) Semparamerc: p ( C ) s a mure of denses Mupe possbe epanaons/prooypes: Dfferen handwrng syes,

More information

J i-1 i. J i i+1. Numerical integration of the diffusion equation (I) Finite difference method. Spatial Discretization. Internal nodes.

J i-1 i. J i i+1. Numerical integration of the diffusion equation (I) Finite difference method. Spatial Discretization. Internal nodes. umercal negraon of he dffuson equaon (I) Fne dfference mehod. Spaal screaon. Inernal nodes. R L V For hermal conducon le s dscree he spaal doman no small fne spans, =,,: Balance of parcles for an nernal

More information

TSS = SST + SSE An orthogonal partition of the total SS

TSS = SST + SSE An orthogonal partition of the total SS ANOVA: Topc 4. Orhogonal conrass [ST&D p. 183] H 0 : µ 1 = µ =... = µ H 1 : The mean of a leas one reamen group s dfferen To es hs hypohess, a basc ANOVA allocaes he varaon among reamen means (SST) equally

More information

Lecture 6: Learning for Control (Generalised Linear Regression)

Lecture 6: Learning for Control (Generalised Linear Regression) Lecure 6: Learnng for Conrol (Generalsed Lnear Regresson) Conens: Lnear Mehods for Regresson Leas Squares, Gauss Markov heorem Recursve Leas Squares Lecure 6: RLSC - Prof. Sehu Vjayakumar Lnear Regresson

More information

PHYS 1443 Section 001 Lecture #4

PHYS 1443 Section 001 Lecture #4 PHYS 1443 Secon 001 Lecure #4 Monda, June 5, 006 Moon n Two Dmensons Moon under consan acceleraon Projecle Moon Mamum ranges and heghs Reerence Frames and relae moon Newon s Laws o Moon Force Newon s Law

More information

Solution in semi infinite diffusion couples (error function analysis)

Solution in semi infinite diffusion couples (error function analysis) Soluon n sem nfne dffuson couples (error funcon analyss) Le us consder now he sem nfne dffuson couple of wo blocks wh concenraon of and I means ha, n a A- bnary sysem, s bondng beween wo blocks made of

More information

Machine Learning 2nd Edition

Machine Learning 2nd Edition INTRODUCTION TO Lecure Sldes for Machne Learnng nd Edon ETHEM ALPAYDIN, modfed by Leonardo Bobadlla and some pars from hp://www.cs.au.ac.l/~aparzn/machnelearnng/ The MIT Press, 00 alpaydn@boun.edu.r hp://www.cmpe.boun.edu.r/~ehem/mle

More information

Computing Relevance, Similarity: The Vector Space Model

Computing Relevance, Similarity: The Vector Space Model Compung Relevance, Smlary: The Vecor Space Model Based on Larson and Hears s sldes a UC-Bereley hp://.sms.bereley.edu/courses/s0/f00/ aabase Managemen Sysems, R. Ramarshnan ocumen Vecors v ocumens are

More information

An Effective TCM-KNN Scheme for High-Speed Network Anomaly Detection

An Effective TCM-KNN Scheme for High-Speed Network Anomaly Detection Vol. 24, November,, 200 An Effecve TCM-KNN Scheme for Hgh-Speed Nework Anomaly eecon Yang L Chnese Academy of Scences, Bejng Chna, 00080 lyang@sofware.c.ac.cn Absrac. Nework anomaly deecon has been a ho

More information

Machine Learning Linear Regression

Machine Learning Linear Regression Machne Learnng Lnear Regresson Lesson 3 Lnear Regresson Bascs of Regresson Leas Squares esmaon Polynomal Regresson Bass funcons Regresson model Regularzed Regresson Sascal Regresson Mamum Lkelhood (ML)

More information

V.Abramov - FURTHER ANALYSIS OF CONFIDENCE INTERVALS FOR LARGE CLIENT/SERVER COMPUTER NETWORKS

V.Abramov - FURTHER ANALYSIS OF CONFIDENCE INTERVALS FOR LARGE CLIENT/SERVER COMPUTER NETWORKS R&RATA # Vol.) 8, March FURTHER AALYSIS OF COFIDECE ITERVALS FOR LARGE CLIET/SERVER COMPUTER ETWORKS Vyacheslav Abramov School of Mahemacal Scences, Monash Unversy, Buldng 8, Level 4, Clayon Campus, Wellngon

More information

Chapter 4. Neural Networks Based on Competition

Chapter 4. Neural Networks Based on Competition Chaper 4. Neural Neworks Based on Compeon Compeon s mporan for NN Compeon beween neurons has been observed n bologcal nerve sysems Compeon s mporan n solvng many problems To classfy an npu paern _1 no

More information

Outline. Probabilistic Model Learning. Probabilistic Model Learning. Probabilistic Model for Time-series Data: Hidden Markov Model

Outline. Probabilistic Model Learning. Probabilistic Model Learning. Probabilistic Model for Time-series Data: Hidden Markov Model Probablsc Model for Tme-seres Daa: Hdden Markov Model Hrosh Mamsuka Bonformacs Cener Kyoo Unversy Oulne Three Problems for probablsc models n machne learnng. Compung lkelhood 2. Learnng 3. Parsng (predcon

More information

Mechanics Physics 151

Mechanics Physics 151 Mechancs Physcs 5 Lecure 9 Hamlonan Equaons of Moon (Chaper 8) Wha We Dd Las Tme Consruced Hamlonan formalsm H ( q, p, ) = q p L( q, q, ) H p = q H q = p H = L Equvalen o Lagrangan formalsm Smpler, bu

More information

Introduction to Boosting

Introduction to Boosting Inroducon o Boosng Cynha Rudn PACM, Prnceon Unversy Advsors Ingrd Daubeches and Rober Schapre Say you have a daabase of news arcles, +, +, -, -, +, +, -, -, +, +, -, -, +, +, -, + where arcles are labeled

More information

Robust and Accurate Cancer Classification with Gene Expression Profiling

Robust and Accurate Cancer Classification with Gene Expression Profiling Robus and Accurae Cancer Classfcaon wh Gene Expresson Proflng (Compuaonal ysems Bology, 2005) Auhor: Hafeng L, Keshu Zhang, ao Jang Oulne Background LDA (lnear dscrmnan analyss) and small sample sze problem

More information

Robustness Experiments with Two Variance Components

Robustness Experiments with Two Variance Components Naonal Insue of Sandards and Technology (NIST) Informaon Technology Laboraory (ITL) Sascal Engneerng Dvson (SED) Robusness Expermens wh Two Varance Componens by Ana Ivelsse Avlés avles@ns.gov Conference

More information

Mechanics Physics 151

Mechanics Physics 151 Mechancs Physcs 5 Lecure 9 Hamlonan Equaons of Moon (Chaper 8) Wha We Dd Las Tme Consruced Hamlonan formalsm Hqp (,,) = qp Lqq (,,) H p = q H q = p H L = Equvalen o Lagrangan formalsm Smpler, bu wce as

More information

Normal Random Variable and its discriminant functions

Normal Random Variable and its discriminant functions Noral Rando Varable and s dscrnan funcons Oulne Noral Rando Varable Properes Dscrnan funcons Why Noral Rando Varables? Analycally racable Works well when observaon coes for a corruped snle prooype 3 The

More information

ON THE WEAK LIMITS OF SMOOTH MAPS FOR THE DIRICHLET ENERGY BETWEEN MANIFOLDS

ON THE WEAK LIMITS OF SMOOTH MAPS FOR THE DIRICHLET ENERGY BETWEEN MANIFOLDS ON THE WEA LIMITS OF SMOOTH MAPS FOR THE DIRICHLET ENERGY BETWEEN MANIFOLDS FENGBO HANG Absrac. We denfy all he weak sequenal lms of smooh maps n W (M N). In parcular, hs mples a necessary su cen opologcal

More information

Cubic Bezier Homotopy Function for Solving Exponential Equations

Cubic Bezier Homotopy Function for Solving Exponential Equations Penerb Journal of Advanced Research n Compung and Applcaons ISSN (onlne: 46-97 Vol. 4, No.. Pages -8, 6 omoopy Funcon for Solvng Eponenal Equaons S. S. Raml *,,. Mohamad Nor,a, N. S. Saharzan,b and M.

More information

New M-Estimator Objective Function. in Simultaneous Equations Model. (A Comparative Study)

New M-Estimator Objective Function. in Simultaneous Equations Model. (A Comparative Study) Inernaonal Mahemacal Forum, Vol. 8, 3, no., 7 - HIKARI Ld, www.m-hkar.com hp://dx.do.org/.988/mf.3.3488 New M-Esmaor Objecve Funcon n Smulaneous Equaons Model (A Comparave Sudy) Ahmed H. Youssef Professor

More information

CHAPTER 2: Supervised Learning

CHAPTER 2: Supervised Learning HATER 2: Supervsed Learnng Learnng a lass from Eamples lass of a famly car redcon: Is car a famly car? Knowledge eracon: Wha do people epec from a famly car? Oupu: osve (+) and negave ( ) eamples Inpu

More information

CHAPTER 10: LINEAR DISCRIMINATION

CHAPTER 10: LINEAR DISCRIMINATION HAPER : LINEAR DISRIMINAION Dscmnan-based lassfcaon 3 In classfcaon h K classes ( k ) We defned dsmnan funcon g () = K hen gven an es eample e chose (pedced) s class label as f g () as he mamum among g

More information

Learning Objectives. Self Organization Map. Hamming Distance(1/5) Introduction. Hamming Distance(3/5) Hamming Distance(2/5) 15/04/2015

Learning Objectives. Self Organization Map. Hamming Distance(1/5) Introduction. Hamming Distance(3/5) Hamming Distance(2/5) 15/04/2015 /4/ Learnng Objecves Self Organzaon Map Learnng whou Exaples. Inroducon. MAXNET 3. Cluserng 4. Feaure Map. Self-organzng Feaure Map 6. Concluson 38 Inroducon. Learnng whou exaples. Daa are npu o he syse

More information

Lecture 11 SVM cont

Lecture 11 SVM cont Lecure SVM con. 0 008 Wha we have done so far We have esalshed ha we wan o fnd a lnear decson oundary whose margn s he larges We know how o measure he margn of a lnear decson oundary Tha s: he mnmum geomerc

More information

UNIVERSITAT AUTÒNOMA DE BARCELONA MARCH 2017 EXAMINATION

UNIVERSITAT AUTÒNOMA DE BARCELONA MARCH 2017 EXAMINATION INTERNATIONAL TRADE T. J. KEHOE UNIVERSITAT AUTÒNOMA DE BARCELONA MARCH 27 EXAMINATION Please answer wo of he hree quesons. You can consul class noes, workng papers, and arcles whle you are workng on he

More information

F-Tests and Analysis of Variance (ANOVA) in the Simple Linear Regression Model. 1. Introduction

F-Tests and Analysis of Variance (ANOVA) in the Simple Linear Regression Model. 1. Introduction ECOOMICS 35* -- OTE 9 ECO 35* -- OTE 9 F-Tess and Analyss of Varance (AOVA n he Smple Lnear Regresson Model Inroducon The smple lnear regresson model s gven by he followng populaon regresson equaon, or

More information

A Novel Object Detection Method Using Gaussian Mixture Codebook Model of RGB-D Information

A Novel Object Detection Method Using Gaussian Mixture Codebook Model of RGB-D Information A Novel Objec Deecon Mehod Usng Gaussan Mxure Codebook Model of RGB-D Informaon Lujang LIU 1, Gaopeng ZHAO *,1, Yumng BO 1 1 School of Auomaon, Nanjng Unversy of Scence and Technology, Nanjng, Jangsu 10094,

More information

Appendix H: Rarefaction and extrapolation of Hill numbers for incidence data

Appendix H: Rarefaction and extrapolation of Hill numbers for incidence data Anne Chao Ncholas J Goell C seh lzabeh L ander K Ma Rober K Colwell and Aaron M llson 03 Rarefacon and erapolaon wh ll numbers: a framewor for samplng and esmaon n speces dversy sudes cology Monographs

More information

Clustering with Gaussian Mixtures

Clustering with Gaussian Mixtures Noe o oher eachers and users of hese sldes. Andrew would be delghed f you found hs source maeral useful n gvng your own lecures. Feel free o use hese sldes verbam, or o modfy hem o f your own needs. PowerPon

More information

. The geometric multiplicity is dim[ker( λi. number of linearly independent eigenvectors associated with this eigenvalue.

. The geometric multiplicity is dim[ker( λi. number of linearly independent eigenvectors associated with this eigenvalue. Lnear Algebra Lecure # Noes We connue wh he dscusson of egenvalues, egenvecors, and dagonalzably of marces We wan o know, n parcular wha condons wll assure ha a marx can be dagonalzed and wha he obsrucons

More information

Linear Response Theory: The connection between QFT and experiments

Linear Response Theory: The connection between QFT and experiments Phys540.nb 39 3 Lnear Response Theory: The connecon beween QFT and expermens 3.1. Basc conceps and deas Q: ow do we measure he conducvy of a meal? A: we frs nroduce a weak elecrc feld E, and hen measure

More information

Lecture 18: The Laplace Transform (See Sections and 14.7 in Boas)

Lecture 18: The Laplace Transform (See Sections and 14.7 in Boas) Lecure 8: The Lalace Transform (See Secons 88- and 47 n Boas) Recall ha our bg-cure goal s he analyss of he dfferenal equaon, ax bx cx F, where we emloy varous exansons for he drvng funcon F deendng on

More information

Fall 2010 Graduate Course on Dynamic Learning

Fall 2010 Graduate Course on Dynamic Learning Fall 200 Graduae Course on Dynamc Learnng Chaper 4: Parcle Flers Sepember 27, 200 Byoung-Tak Zhang School of Compuer Scence and Engneerng & Cognve Scence and Bran Scence Programs Seoul aonal Unversy hp://b.snu.ac.kr/~bzhang/

More information

Comparison of Supervised & Unsupervised Learning in βs Estimation between Stocks and the S&P500

Comparison of Supervised & Unsupervised Learning in βs Estimation between Stocks and the S&P500 Comparson of Supervsed & Unsupervsed Learnng n βs Esmaon beween Socks and he S&P500 J. We, Y. Hassd, J. Edery, A. Becker, Sanford Unversy T I. INTRODUCTION HE goal of our proec s o analyze he relaonshps

More information

Chapters 2 Kinematics. Position, Distance, Displacement

Chapters 2 Kinematics. Position, Distance, Displacement Chapers Knemacs Poson, Dsance, Dsplacemen Mechancs: Knemacs and Dynamcs. Knemacs deals wh moon, bu s no concerned wh he cause o moon. Dynamcs deals wh he relaonshp beween orce and moon. The word dsplacemen

More information

CS286.2 Lecture 14: Quantum de Finetti Theorems II

CS286.2 Lecture 14: Quantum de Finetti Theorems II CS286.2 Lecure 14: Quanum de Fne Theorems II Scrbe: Mara Okounkova 1 Saemen of he heorem Recall he las saemen of he quanum de Fne heorem from he prevous lecure. Theorem 1 Quanum de Fne). Le ρ Dens C 2

More information

Ordinary Differential Equations in Neuroscience with Matlab examples. Aim 1- Gain understanding of how to set up and solve ODE s

Ordinary Differential Equations in Neuroscience with Matlab examples. Aim 1- Gain understanding of how to set up and solve ODE s Ordnary Dfferenal Equaons n Neuroscence wh Malab eamples. Am - Gan undersandng of how o se up and solve ODE s Am Undersand how o se up an solve a smple eample of he Hebb rule n D Our goal a end of class

More information

. The geometric multiplicity is dim[ker( λi. A )], i.e. the number of linearly independent eigenvectors associated with this eigenvalue.

. The geometric multiplicity is dim[ker( λi. A )], i.e. the number of linearly independent eigenvectors associated with this eigenvalue. Mah E-b Lecure #0 Noes We connue wh he dscusson of egenvalues, egenvecors, and dagonalzably of marces We wan o know, n parcular wha condons wll assure ha a marx can be dagonalzed and wha he obsrucons are

More information

Including the ordinary differential of distance with time as velocity makes a system of ordinary differential equations.

Including the ordinary differential of distance with time as velocity makes a system of ordinary differential equations. Soluons o Ordnary Derenal Equaons An ordnary derenal equaon has only one ndependen varable. A sysem o ordnary derenal equaons consss o several derenal equaons each wh he same ndependen varable. An eample

More information

Lecture Slides for INTRODUCTION TO. Machine Learning. ETHEM ALPAYDIN The MIT Press,

Lecture Slides for INTRODUCTION TO. Machine Learning. ETHEM ALPAYDIN The MIT Press, Lecure Sdes for INTRODUCTION TO Machne Learnng ETHEM ALPAYDIN The MIT Press, 2004 aaydn@boun.edu.r h://www.cme.boun.edu.r/~ehem/2m CHAPTER 7: Cuserng Semaramerc Densy Esmaon Paramerc: Assume a snge mode

More information

Data Collection Definitions of Variables - Conceptualize vs Operationalize Sample Selection Criteria Source of Data Consistency of Data

Data Collection Definitions of Variables - Conceptualize vs Operationalize Sample Selection Criteria Source of Data Consistency of Data Apply Sascs and Economercs n Fnancal Research Obj. of Sudy & Hypoheses Tesng From framework objecves of sudy are needed o clarfy, hen, n research mehodology he hypoheses esng are saed, ncludng esng mehods.

More information

GMM parameter estimation. Xiaoye Lu CMPS290c Final Project

GMM parameter estimation. Xiaoye Lu CMPS290c Final Project GMM paraeer esaon Xaoye Lu M290c Fnal rojec GMM nroducon Gaussan ure Model obnaon of several gaussan coponens Noaon: For each Gaussan dsrbuon:, s he ean and covarance ar. A GMM h ures(coponens): p ( 2π

More information

Bernoulli process with 282 ky periodicity is detected in the R-N reversals of the earth s magnetic field

Bernoulli process with 282 ky periodicity is detected in the R-N reversals of the earth s magnetic field Submed o: Suden Essay Awards n Magnecs Bernoull process wh 8 ky perodcy s deeced n he R-N reversals of he earh s magnec feld Jozsef Gara Deparmen of Earh Scences Florda Inernaonal Unversy Unversy Park,

More information

Fitting a Conditional Linear Gaussian Distribution

Fitting a Conditional Linear Gaussian Distribution Fng a Condonal Lnear Gaussan Dsrbuon Kevn P. Murphy 28 Ocober 1998 Revsed 29 January 2003 1 Inroducon We consder he problem of fndng he maxmum lkelhood ML esmaes of he parameers of a condonal Gaussan varable

More information

2. SPATIALLY LAGGED DEPENDENT VARIABLES

2. SPATIALLY LAGGED DEPENDENT VARIABLES 2. SPATIALLY LAGGED DEPENDENT VARIABLES In hs chaper, we descrbe a sascal model ha ncorporaes spaal dependence explcly by addng a spaally lagged dependen varable y on he rgh-hand sde of he regresson equaon.

More information

Endogeneity. Is the term given to the situation when one or more of the regressors in the model are correlated with the error term such that

Endogeneity. Is the term given to the situation when one or more of the regressors in the model are correlated with the error term such that s row Endogeney Is he erm gven o he suaon when one or more of he regressors n he model are correlaed wh he error erm such ha E( u 0 The 3 man causes of endogeney are: Measuremen error n he rgh hand sde

More information

Motion in Two Dimensions

Motion in Two Dimensions Phys 1 Chaper 4 Moon n Two Dmensons adzyubenko@csub.edu hp://www.csub.edu/~adzyubenko 005, 014 A. Dzyubenko 004 Brooks/Cole 1 Dsplacemen as a Vecor The poson of an objec s descrbed by s poson ecor, r The

More information

II. Light is a Ray (Geometrical Optics)

II. Light is a Ray (Geometrical Optics) II Lgh s a Ray (Geomercal Opcs) IIB Reflecon and Refracon Hero s Prncple of Leas Dsance Law of Reflecon Hero of Aleandra, who lved n he 2 nd cenury BC, posulaed he followng prncple: Prncple of Leas Dsance:

More information

Tools for Analysis of Accelerated Life and Degradation Test Data

Tools for Analysis of Accelerated Life and Degradation Test Data Acceleraed Sress Tesng and Relably Tools for Analyss of Acceleraed Lfe and Degradaon Tes Daa Presened by: Reuel Smh Unversy of Maryland College Park smhrc@umd.edu Sepember-5-6 Sepember 28-30 206, Pensacola

More information

Comparison of Differences between Power Means 1

Comparison of Differences between Power Means 1 In. Journal of Mah. Analyss, Vol. 7, 203, no., 5-55 Comparson of Dfferences beween Power Means Chang-An Tan, Guanghua Sh and Fe Zuo College of Mahemacs and Informaon Scence Henan Normal Unversy, 453007,

More information

Chapter Lagrangian Interpolation

Chapter Lagrangian Interpolation Chaper 5.4 agrangan Inerpolaon Afer readng hs chaper you should be able o:. dere agrangan mehod of nerpolaon. sole problems usng agrangan mehod of nerpolaon and. use agrangan nerpolans o fnd deraes and

More information

NPTEL Project. Econometric Modelling. Module23: Granger Causality Test. Lecture35: Granger Causality Test. Vinod Gupta School of Management

NPTEL Project. Econometric Modelling. Module23: Granger Causality Test. Lecture35: Granger Causality Test. Vinod Gupta School of Management P age NPTEL Proec Economerc Modellng Vnod Gua School of Managemen Module23: Granger Causaly Tes Lecure35: Granger Causaly Tes Rudra P. Pradhan Vnod Gua School of Managemen Indan Insue of Technology Kharagur,

More information

The Performance of Optimum Response Surface Methodology Based on MM-Estimator

The Performance of Optimum Response Surface Methodology Based on MM-Estimator The Performance of Opmum Response Surface Mehodology Based on MM-Esmaor Habshah Md, Mohd Shafe Musafa, Anwar Frano Absrac The Ordnary Leas Squares (OLS) mehod s ofen used o esmae he parameers of a second-order

More information

Stochastic Programming handling CVAR in objective and constraint

Stochastic Programming handling CVAR in objective and constraint Sochasc Programmng handlng CVAR n obecve and consran Leondas Sakalaskas VU Inse of Mahemacs and Informacs Lhana ICSP XIII Jly 8-2 23 Bergamo Ialy Olne Inrodcon Lagrangan & KKT condons Mone-Carlo samplng

More information

Single-loop System Reliability-Based Design & Topology Optimization (SRBDO/SRBTO): A Matrix-based System Reliability (MSR) Method

Single-loop System Reliability-Based Design & Topology Optimization (SRBDO/SRBTO): A Matrix-based System Reliability (MSR) Method 10 h US Naonal Congress on Compuaonal Mechancs Columbus, Oho 16-19, 2009 Sngle-loop Sysem Relably-Based Desgn & Topology Opmzaon (SRBDO/SRBTO): A Marx-based Sysem Relably (MSR) Mehod Tam Nguyen, Junho

More information

Foundations of State Estimation Part II

Foundations of State Estimation Part II Foundaons of Sae Esmaon Par II Tocs: Hdden Markov Models Parcle Flers Addonal readng: L.R. Rabner, A uoral on hdden Markov models," Proceedngs of he IEEE, vol. 77,. 57-86, 989. Sequenal Mone Carlo Mehods

More information

Appendix to Online Clustering with Experts

Appendix to Online Clustering with Experts A Appendx o Onlne Cluserng wh Expers Furher dscusson of expermens. Here we furher dscuss expermenal resuls repored n he paper. Ineresngly, we observe ha OCE (and n parcular Learn- ) racks he bes exper

More information

January Examinations 2012

January Examinations 2012 Page of 5 EC79 January Examnaons No. of Pages: 5 No. of Quesons: 8 Subjec ECONOMICS (POSTGRADUATE) Tle of Paper EC79 QUANTITATIVE METHODS FOR BUSINESS AND FINANCE Tme Allowed Two Hours ( hours) Insrucons

More information

THE PREDICTION OF COMPETITIVE ENVIRONMENT IN BUSINESS

THE PREDICTION OF COMPETITIVE ENVIRONMENT IN BUSINESS THE PREICTION OF COMPETITIVE ENVIRONMENT IN BUSINESS INTROUCTION The wo dmensonal paral dfferenal equaons of second order can be used for he smulaon of compeve envronmen n busness The arcle presens he

More information

[Link to MIT-Lab 6P.1 goes here.] After completing the lab, fill in the following blanks: Numerical. Simulation s Calculations

[Link to MIT-Lab 6P.1 goes here.] After completing the lab, fill in the following blanks: Numerical. Simulation s Calculations Chaper 6: Ordnary Leas Squares Esmaon Procedure he Properes Chaper 6 Oulne Cln s Assgnmen: Assess he Effec of Sudyng on Quz Scores Revew o Regresson Model o Ordnary Leas Squares () Esmaon Procedure o he

More information

Kayode Ayinde Department of Pure and Applied Mathematics, Ladoke Akintola University of Technology P. M. B. 4000, Ogbomoso, Oyo State, Nigeria

Kayode Ayinde Department of Pure and Applied Mathematics, Ladoke Akintola University of Technology P. M. B. 4000, Ogbomoso, Oyo State, Nigeria Journal of Mahemacs and Sascs 3 (4): 96-, 7 ISSN 549-3644 7 Scence Publcaons A Comparave Sudy of he Performances of he OLS and some GLS Esmaors when Sochasc egressors are boh Collnear and Correlaed wh

More information

Mechanics Physics 151

Mechanics Physics 151 Mechancs Physcs 5 Lecure 0 Canoncal Transformaons (Chaper 9) Wha We Dd Las Tme Hamlon s Prncple n he Hamlonan formalsm Dervaon was smple δi δ Addonal end-pon consrans pq H( q, p, ) d 0 δ q ( ) δq ( ) δ

More information

Chapter 3: Vectors and Two-Dimensional Motion

Chapter 3: Vectors and Two-Dimensional Motion Chape 3: Vecos and Two-Dmensonal Moon Vecos: magnude and decon Negae o a eco: eese s decon Mulplng o ddng a eco b a scala Vecos n he same decon (eaed lke numbes) Geneal Veco Addon: Tangle mehod o addon

More information

Example: MOSFET Amplifier Distortion

Example: MOSFET Amplifier Distortion 4/25/2011 Example MSFET Amplfer Dsoron 1/9 Example: MSFET Amplfer Dsoron Recall hs crcu from a prevous handou: ( ) = I ( ) D D d 15.0 V RD = 5K v ( ) = V v ( ) D o v( ) - K = 2 0.25 ma/v V = 2.0 V 40V.

More information

Part II CONTINUOUS TIME STOCHASTIC PROCESSES

Part II CONTINUOUS TIME STOCHASTIC PROCESSES Par II CONTINUOUS TIME STOCHASTIC PROCESSES 4 Chaper 4 For an advanced analyss of he properes of he Wener process, see: Revus D and Yor M: Connuous marngales and Brownan Moon Karazas I and Shreve S E:

More information

THEORETICAL AUTOCORRELATIONS. ) if often denoted by γ. Note that

THEORETICAL AUTOCORRELATIONS. ) if often denoted by γ. Note that THEORETICAL AUTOCORRELATIONS Cov( y, y ) E( y E( y))( y E( y)) ρ = = Var( y) E( y E( y)) =,, L ρ = and Cov( y, y ) s ofen denoed by whle Var( y ) f ofen denoed by γ. Noe ha γ = γ and ρ = ρ and because

More information

Attribute Reduction Algorithm Based on Discernibility Matrix with Algebraic Method GAO Jing1,a, Ma Hui1, Han Zhidong2,b

Attribute Reduction Algorithm Based on Discernibility Matrix with Algebraic Method GAO Jing1,a, Ma Hui1, Han Zhidong2,b Inernaonal Indusral Informacs and Compuer Engneerng Conference (IIICEC 05) Arbue educon Algorhm Based on Dscernbly Marx wh Algebrac Mehod GAO Jng,a, Ma Hu, Han Zhdong,b Informaon School, Capal Unversy

More information

John Geweke a and Gianni Amisano b a Departments of Economics and Statistics, University of Iowa, USA b European Central Bank, Frankfurt, Germany

John Geweke a and Gianni Amisano b a Departments of Economics and Statistics, University of Iowa, USA b European Central Bank, Frankfurt, Germany Herarchcal Markov Normal Mxure models wh Applcaons o Fnancal Asse Reurns Appendx: Proofs of Theorems and Condonal Poseror Dsrbuons John Geweke a and Gann Amsano b a Deparmens of Economcs and Sascs, Unversy

More information

On One Analytic Method of. Constructing Program Controls

On One Analytic Method of. Constructing Program Controls Appled Mahemacal Scences, Vol. 9, 05, no. 8, 409-407 HIKARI Ld, www.m-hkar.com hp://dx.do.org/0.988/ams.05.54349 On One Analyc Mehod of Consrucng Program Conrols A. N. Kvko, S. V. Chsyakov and Yu. E. Balyna

More information

Video-Based Face Recognition Using Adaptive Hidden Markov Models

Video-Based Face Recognition Using Adaptive Hidden Markov Models Vdeo-Based Face Recognon Usng Adapve Hdden Markov Models Xaomng Lu and suhan Chen Elecrcal and Compuer Engneerng, Carnege Mellon Unversy, Psburgh, PA, 523, U.S.A. xaomng@andrew.cmu.edu suhan@cmu.edu Absrac

More information

Introduction ( Week 1-2) Course introduction A brief introduction to molecular biology A brief introduction to sequence comparison Part I: Algorithms

Introduction ( Week 1-2) Course introduction A brief introduction to molecular biology A brief introduction to sequence comparison Part I: Algorithms Course organzaon Inroducon Wee -2) Course nroducon A bref nroducon o molecular bology A bref nroducon o sequence comparson Par I: Algorhms for Sequence Analyss Wee 3-8) Chaper -3, Models and heores» Probably

More information

Kernel-Based Bayesian Filtering for Object Tracking

Kernel-Based Bayesian Filtering for Object Tracking Kernel-Based Bayesan Flerng for Objec Trackng Bohyung Han Yng Zhu Dorn Comancu Larry Davs Dep. of Compuer Scence Real-Tme Vson and Modelng Inegraed Daa and Sysems Unversy of Maryland Semens Corporae Research

More information

Professor Joseph Nygate, PhD

Professor Joseph Nygate, PhD Professor Joseph Nygae, PhD College of Appled Scence and Technology Aprl, 2018 } Wha s AI and Machne Learnng ML) 10 mnues } Eample ML algorhms 15 mnues } Machne Learnng n Telecom 15 mnues } Do Machnes

More information

Sampling Procedure of the Sum of two Binary Markov Process Realizations

Sampling Procedure of the Sum of two Binary Markov Process Realizations Samplng Procedure of he Sum of wo Bnary Markov Process Realzaons YURY GORITSKIY Dep. of Mahemacal Modelng of Moscow Power Insue (Techncal Unversy), Moscow, RUSSIA, E-mal: gorsky@yandex.ru VLADIMIR KAZAKOV

More information

Dynamic Team Decision Theory. EECS 558 Project Shrutivandana Sharma and David Shuman December 10, 2005

Dynamic Team Decision Theory. EECS 558 Project Shrutivandana Sharma and David Shuman December 10, 2005 Dynamc Team Decson Theory EECS 558 Proec Shruvandana Sharma and Davd Shuman December 0, 005 Oulne Inroducon o Team Decson Theory Decomposon of he Dynamc Team Decson Problem Equvalence of Sac and Dynamc

More information

Detection of Waving Hands from Images Using Time Series of Intensity Values

Detection of Waving Hands from Images Using Time Series of Intensity Values Deecon of Wavng Hands from Images Usng Tme eres of Inensy Values Koa IRIE, Kazunor UMEDA Chuo Unversy, Tokyo, Japan re@sensor.mech.chuo-u.ac.jp, umeda@mech.chuo-u.ac.jp Absrac Ths paper proposes a mehod

More information

Density Matrix Description of NMR BCMB/CHEM 8190

Density Matrix Description of NMR BCMB/CHEM 8190 Densy Marx Descrpon of NMR BCMBCHEM 89 Operaors n Marx Noaon Alernae approach o second order specra: ask abou x magnezaon nsead of energes and ranson probables. If we say wh one bass se, properes vary

More information

This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore.

This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore. Ths documen s downloaded from DR-NTU, Nanyang Technologcal Unversy Lbrary, Sngapore. Tle A smplfed verb machng algorhm for word paron n vsual speech processng( Acceped verson ) Auhor(s) Foo, Say We; Yong,

More information

ELASTIC MODULUS ESTIMATION OF CHOPPED CARBON FIBER TAPE REINFORCED THERMOPLASTICS USING THE MONTE CARLO SIMULATION

ELASTIC MODULUS ESTIMATION OF CHOPPED CARBON FIBER TAPE REINFORCED THERMOPLASTICS USING THE MONTE CARLO SIMULATION THE 19 TH INTERNATIONAL ONFERENE ON OMPOSITE MATERIALS ELASTI MODULUS ESTIMATION OF HOPPED ARBON FIBER TAPE REINFORED THERMOPLASTIS USING THE MONTE ARLO SIMULATION Y. Sao 1*, J. Takahash 1, T. Masuo 1,

More information

ACEI working paper series RETRANSFORMATION BIAS IN THE ADJACENT ART PRICE INDEX

ACEI working paper series RETRANSFORMATION BIAS IN THE ADJACENT ART PRICE INDEX ACEI workng paper seres RETRANSFORMATION BIAS IN THE ADJACENT ART PRICE INDEX Andrew M. Jones Robero Zanola AWP-01-2011 Dae: July 2011 Reransformaon bas n he adjacen ar prce ndex * Andrew M. Jones and

More information

Tight results for Next Fit and Worst Fit with resource augmentation

Tight results for Next Fit and Worst Fit with resource augmentation Tgh resuls for Nex F and Wors F wh resource augmenaon Joan Boyar Leah Epsen Asaf Levn Asrac I s well known ha he wo smple algorhms for he classc n packng prolem, NF and WF oh have an approxmaon rao of

More information

Advanced time-series analysis (University of Lund, Economic History Department)

Advanced time-series analysis (University of Lund, Economic History Department) Advanced me-seres analss (Unvers of Lund, Economc Hsor Dearmen) 3 Jan-3 Februar and 6-3 March Lecure 4 Economerc echnues for saonar seres : Unvarae sochasc models wh Box- Jenns mehodolog, smle forecasng

More information