Magnetism in Low-Dimensional Systems

Size: px
Start display at page:

Download "Magnetism in Low-Dimensional Systems"

Transcription

1 From Frustration to Complex Order Volker Eyert Center for Electronic Correlations and Magnetism Institute for Physics, University of Augsburg April 18, 29

2 Outline Cool-down 1 Cool-down 2 3 Volker@Eyertde

3 Outline Cool-down 1 Cool-down 2 3 Volker@Eyertde

4 Outline Cool-down 1 Cool-down 2 3 Volker@Eyertde

5 Outline Cool-down 1 Cool-down 2 3 Volker@Eyertde

6 Delafossites ABO 2 Delafossite Structure Building Blocks rhombohedral lattice triangular A-atom layers BO 2 sandwich layers B-atoms octahedrally coordinated linear O A O bonds Volker@Eyertde

7 Delafossites ABO 2 Delafossite Structure Building Blocks rhombohedral lattice triangular A-atom layers BO 2 sandwich layers B-atoms octahedrally coordinated linear O A O bonds Issues dimensionality frustration effects play chemistry Volker@Eyertde

8 Delafossites ABO 2 Delafossite Structure Prototype Materials CuFeO 2, CuCrO 2 CuCoO 2, CuRhO 2 CuAlO 2, CuGaO 2, CuInO 2, PdCrO 2, PdCoO 2, PdRhO 2, PtCoO 2 Properties semiconductors, AF interactions, (distorted) triangular non-mag semicond, high TEP wide-gap semicond, p-type TCO very good metals, highly anisotropic Volker@Eyertde

9 Delafossites ABO 2 Delafossite Structure Prototype Materials CuFeO 2, CuCrO 2 CuCoO 2, CuRhO 2 CuAlO 2, CuGaO 2, CuInO 2, PdCrO 2, PdCoO 2, PdRhO 2, PtCoO 2 Properties semiconductors, AF interactions, (distorted) triangular non-mag semicond, high TEP wide-gap semicond, p-type TCO very good metals, highly anisotropic Volker@Eyertde

10 Delafossites ABO 2 Delafossite Structure Prototype Materials CuFeO 2, CuCrO 2 CuCoO 2, CuRhO 2 CuAlO 2, CuGaO 2, CuInO 2, PdCrO 2, PdCoO 2, PdRhO 2, PtCoO 2 Properties semiconductors, AF interactions, (distorted) triangular non-mag semicond, high TEP wide-gap semicond, p-type TCO very good metals, highly anisotropic Volker@Eyertde

11 Delafossites ABO 2 Delafossite Structure Prototype Materials CuFeO 2, CuCrO 2 CuCoO 2, CuRhO 2 CuAlO 2, CuGaO 2, CuInO 2, PdCrO 2, PdCoO 2, PdRhO 2, PtCoO 2 Properties semiconductors, AF interactions, (distorted) triangular non-mag semicond, high TEP wide-gap semicond, p-type TCO very good metals, highly anisotropic Volker@Eyertde

12 PdCoO 2 and PtCoO 2 Delafossite Structure Facts very low resistivity anisotropy factor 2 PES: only Pd 4d states at E F PES/IPES: E F in shallow DOS minimum Volker@Eyertde

13 PdCoO 2 and PtCoO 2 Delafossite Structure Facts very low resistivity anisotropy factor 2 PES: only Pd 4d states at E F PES/IPES: E F in shallow DOS minimum Open Issues role of Pd 4d orbitals? role of Co 3d and O 2p orbitals? Volker@Eyertde

14 Electronic Properties of PdCoO 2 Partial Densities of States DOS (1/eV) Pd 4d Co 3d t 2g Co 3d e g O 2p (E - E F ) (ev) Results Co 3d-O 2p hybridization CoO 6 octahedra: Co 3d t 2g and e g Co 3d 6 (Co 3+ ) LS Co 3d, O 2p: very small DOS at E F Pd 4d 9 (Pd 1+ ) VE, R Frésard, A Maignan, Chem Mat 2, 237 (28) Volker@Eyertde

15 Electronic Properties of PdCoO 2 Partial Densities of States DOS (1/eV) Pd 4d xy,x 2 -y 2 Pd 4d xz,yz Pd 4d 3z 2 -r 2 O 2p z (E - E F ) (ev) Results Pd 4d-O 2p hybridization broad Pd d xy,x 2 y 2 bands states at E F : Pd d xy,x 2 y 2, d 3z 2 r 2 VE, R Frésard, A Maignan, Chem Mat 2, 237 (28) Volker@Eyertde

16 Cool-down Electronic Properties of PdCoO 2 Band Structure (E - E F ) (ev) Results quasi-2d single band crossing E F Brillouin Zone k z -6 L u ua H u -8-1 Γ M K Γ A L H A k x u M u uk k y VE, R Frésard, A Maignan, Chem Mat 2, 237 (28) Volker@Eyertde

17 Electronic Properties of PdCoO 2 Fermi Surface Results strong anisotropy but: bands below E F disperse along Γ-A VE, R Frésard, A Maignan, Chem Mat 2, 237 (28) Volker@Eyertde

18 The Fingerprint of Dimensionality Band Dispersions 6 4 Pd 4dxy,x 2 y 2 2 EF E -2 ev Γ M K Γ A L H A 6 4 Pd 4d3z 2 r 2 2 EF E -2 ev Γ M K Γ A L H A Volker@Eyertde

19 The Fingerprint of Dimensionality Free Electron Density of States ρ(e) d d k δ (E 2 k 2 ) Ω BZ 2m ( ) 2mE d k k d 1 δ k Ω BZ 2 m d 2 2mE 2 2 Volker@Eyertde

20 The Fingerprint of Dimensionality Free Electron Density of States

21 The Fingerprint of Dimensionality Tight-Binding Bands ε k = E + E 1 { } e ik d = 1 d = 2 d = 3 (from: G Czycholl, Theoretische Festkörperphysik, Springer) Volker@Eyertde

22 The Fingerprint of Dimensionality Single-layer SrTiO Ti 3d xy Ti 3d xz,yz Ti 3d 3z 2 -r 2 Ti1 3d x 2 -y 2 DOS (1/eV) d 3z 2 r 2 : d = d xz,yz : d = 1 d xy : d = (E - E V ) (ev) Volker@Eyertde

23 Outline Cool-down 1 Cool-down 2 3 Volker@Eyertde

24 Augmented Spherical Wave (ASW) Method Characteristics a dialect of Andersen s LMTO method different linearization schemes different interstitial energies different implementations Volker@Eyertde

25 Augmented Spherical Wave (ASW) Method Characteristics a dialect of Andersen s LMTO method different linearization schemes different interstitial energies different implementations th Generation (Williams, Kübler, Gelatt, 197s) PRB 19, 694 (1979) Volker@Eyertde

26 Augmented Spherical Wave (ASW) Method 1st Generation (VE, 199s) IJQC 77, 17 (2) monolithic implementation from scratch new algorithms improved accuracy, numerical stability much improved functionality, usability, and portability xanderson convergence acceleration scheme all LDA-parametrizations, most GGA-schemes still based on atomic-sphere approximation

27 ASW Method: Basic Formalism Wave Function Expanded in Basis Functions ψ σ (r) = Lκi c Lκiσ H Lκσ (r i) c Lκiσ determined variationally Volker@Eyertde

28 ASW Method: Basic Formalism Wave Function Expanded in Basis Functions ψ σ (r) = Lκi c Lκiσ H Lκσ (r i) c Lκiσ determined variationally Basis Functions: Augmented Spherical Waves H HLκσ Lκ I (r i) interstitial region (r i) = H Lκσ (r i ) on-centre sphere i J L j L κσ(r j )B L Lκ off-centre spheres j B L Lκ(R j R i ): structure constants ASW classified by atomic site R i, L = (l, m), decay κ, spin σ Volker@Eyertde

29 ASW Method: Basic Formalism Envelope Functions H I Lκ (r i) := iκ l+1 h (1) l (κr i )Y L (ˆr i ) h (1) l (κr i ): spherical Hankel function Volker@Eyertde

30 ASW Method: Basic Formalism Envelope Functions H I Lκ (r i) := iκ l+1 h (1) l (κr i )Y L (ˆr i ) h (1) l (κr i ): spherical Hankel function Augmented Functions H Lκσ (r i ) := h lκσ (r i )Y L (ˆr i ) J L κσ(r j ) := j l κσ(r j )Y L (ˆr j ) h, j: numerical solutions of radial Kohn-Sham equation boundary conditions from envelope functions correspond to ϕ and ϕ of LMTO Volker@Eyertde

31 ASW Method: Basic Formalism Augmented Spherical Waves envelope functions augmented spherical waves A B A B r Volker@Eyertde

32 ASW Method: Further Reading

33 Towards a Full-Potential Spherical-Wave Method Status ASA (space-filling atomic spheres) O(ASA) speed systematic error in total energy non-overlapping muffin-tin spheres prerequisite for accurate total energies larger basis set inefficient Volker@Eyertde

34 Towards a Full-Potential Spherical-Wave Method Status ASA (space-filling atomic spheres) O(ASA) speed systematic error in total energy non-overlapping muffin-tin spheres prerequisite for accurate total energies larger basis set inefficient Requirements restore interstitial region go to non-overlapping muffin-tin spheres go beyond constant-potential approximation inside muffin-tin spheres non-spherical contributions Volker@Eyertde

35 Towards a Full-Potential Spherical-Wave Method Status ASA (space-filling atomic spheres) O(ASA) speed systematic error in total energy non-overlapping muffin-tin spheres prerequisite for accurate total energies larger basis set inefficient Requirements restore interstitial region go to non-overlapping muffin-tin spheres go beyond constant-potential approximation inside muffin-tin spheres non-spherical contributions Volker@Eyertde

36 Towards a Full-Potential Spherical-Wave Method Guidelines interstitial quantities expanded in plane waves straightforward to implement inefficient interstitial quantities expanded in spherical waves elegant, no periodicity required efficient difficult to implement Volker@Eyertde

37 Towards a Full-Potential Spherical-Wave Method Guidelines interstitial quantities expanded in plane waves straightforward to implement inefficient interstitial quantities expanded in spherical waves elegant, no periodicity required efficient difficult to implement Volker@Eyertde

38 Basic Principles Cool-down Steps to be Taken remove total energy error due to overlap of atomic spheres reintroduce non-overlapping muffin-tin spheres restore interstitial region

39 Basic Principles Cool-down Steps to be Taken remove total energy error due to overlap of atomic spheres reintroduce non-overlapping muffin-tin spheres restore interstitial region find representation of electron density and full potential inside muffin-tin spheres in the interstitial region

40 Basic Principles Cool-down Steps to be Taken remove total energy error due to overlap of atomic spheres reintroduce non-overlapping muffin-tin spheres restore interstitial region find representation of electron density and full potential find representation of products of the wave function inside muffin-tin spheres in the interstitial region

41 Basic Principles Cool-down Steps to be Taken remove total energy error due to overlap of atomic spheres reintroduce non-overlapping muffin-tin spheres restore interstitial region find representation of electron density and full potential find representation of products of the wave function find representation of products of the basis functions inside muffin-tin spheres in the interstitial region

42 Basic Principles Cool-down Steps to be Taken remove total energy error due to overlap of atomic spheres reintroduce non-overlapping muffin-tin spheres restore interstitial region find representation of electron density and full potential find representation of products of the wave function find representation of products of the basis functions inside muffin-tin spheres use spherical-harmonics expansions in the interstitial region

43 Basic Principles Cool-down Steps to be Taken remove total energy error due to overlap of atomic spheres reintroduce non-overlapping muffin-tin spheres restore interstitial region find representation of electron density and full potential find representation of products of the wave function find representation of products of the basis functions inside muffin-tin spheres use spherical-harmonics expansions in the interstitial region no exact spherical-wave representation available!

44 From Wave Functions to Electron Density Density inside MT-Spheres (Al) ρ v / au Volker@Eyertde

45 From Wave Functions to Electron Density Products of Basis Functions in Interstitial Region p I (r) = n d n F n (r) d 3 r F n (r)pi (r) = n d n d 3 r F n (r)f n(r) Volker@Eyertde

46 From Wave Functions to Electron Density Products of Basis Functions in Interstitial Region p I (r) = n d n F n (r) d 3 r F n (r)pi (r) = n d n d 3 r F n (r)f n(r) F n (r): plane waves integrals exact inefficient Weyrich 1988, Blöchl 1989, VE 1991, Savrasov 1992, Methfessel 2 Volker@Eyertde

47 From Wave Functions to Electron Density Products of Basis Functions in Interstitial Region p I (r) = n d n F n (r) d 3 r F n (r)pi (r) = n d n d 3 r F n (r)f n(r) F n (r): spherical waves would be efficient integrals not known analytically Springborg/Andersen 1987, Methfessel 1988, VE 22, VE 26 Volker@Eyertde

48 From Wave Functions to Electron Density Products of Basis Functions in Interstitial Region p I (r) = n d n F n (r) d 3 r F n (r)pi (r) = n d n d 3 r F n (r)f n(r) F n (r): spherical waves would be efficient integrals not known analytically Springborg/Andersen 1987, Methfessel 1988, VE 22, VE 26 Methfessel 1988: match values and slopes at MT-sphere surfaces Volker@Eyertde

49 From Wave Functions to Electron Density Density from Value/Slope Matching at MT-Radii (Al) ρ v / au ρ v / au Volker@Eyertde

50 From Electron Density to Full Potential Inside Muffin-Tin Spheres density, Hartree-potential and xc-potential numerically Interstitial Region density from value/slope matching Hartree-potential analytically xc-potential from value/slope matching

51 From Electron Density to Full Potential Inside Muffin-Tin Spheres density, Hartree-potential and xc-potential numerically Interstitial Region density from value/slope matching Hartree-potential analytically xc-potential from value/slope matching

52 From Full Potential to Basis Functions Previous Approaches project full potential to muffin-tin potential construct basis functions from muffin-tin potential no minimal basis set! (large basis set!) Present Approach project full potential to ASA potential construct basis functions from ASA potential minimal basis set!

53 From Full Potential to Basis Functions Previous Approaches project full potential to muffin-tin potential construct basis functions from muffin-tin potential no minimal basis set! (large basis set!) Present Approach project full potential to ASA potential construct basis functions from ASA potential minimal basis set!

54 Comparison of Approaches Ole K Andersen ASA geometry used for basis functions minimal basis set ASA geometry used for density and potential error in total energy good! bad! Volker@Eyertde

55 Comparison of Approaches Ole K Andersen ASA geometry used for basis functions minimal basis set ASA geometry used for density and potential error in total energy Michael S Methfessel MT geometry used for density and potential accurate total energy MT geometry used for basis functions large basis set good! bad! good! bad! Volker@Eyertde

56 Comparison of Approaches Ole K Andersen ASA geometry used for basis functions ASA geometry used for density and potential Michael S Methfessel MT geometry used for density and potential MT geometry used for basis functions present approach ASA geometry used for basis functions minimal basis set O(ASA) speed MT geometry used for density and potential accurate total energy good! bad! good! bad! great! great! Volker@Eyertde

57 2nd Generation ASW (VE, 2s) based on 1st generation code full-potential ASW method electron densities, spin densities electric field gradients elastic properties, phonon spectra optical properties based on linear-response theory direct calculation of Rσ and Iσ no Kramers-Kronig relations needed at O(ASA) speed! transport properties, thermoelectrics LDA+U method all flavours for double-counting terms (AMF, FLL, DFT)

58 2nd Generation ASW (VE, 2s) based on 1st generation code full-potential ASW method electron densities, spin densities electric field gradients elastic properties, phonon spectra optical properties based on linear-response theory direct calculation of Rσ and Iσ no Kramers-Kronig relations needed at O(ASA) speed! transport properties, thermoelectrics LDA+U method all flavours for double-counting terms (AMF, FLL, DFT)

59 2nd Generation ASW (VE, 2s) based on 1st generation code full-potential ASW method electron densities, spin densities electric field gradients elastic properties, phonon spectra optical properties based on linear-response theory direct calculation of Rσ and Iσ no Kramers-Kronig relations needed at O(ASA) speed! transport properties, thermoelectrics LDA+U method all flavours for double-counting terms (AMF, FLL, DFT)

60 2nd Generation ASW (VE, 2s) based on 1st generation code full-potential ASW method electron densities, spin densities electric field gradients elastic properties, phonon spectra optical properties based on linear-response theory direct calculation of Rσ and Iσ no Kramers-Kronig relations needed at O(ASA) speed! transport properties, thermoelectrics LDA+U method all flavours for double-counting terms (AMF, FLL, DFT)

61 LTO(Γ)-Phonon in Silicon ASA + Code E (Ryd) x Si Bad no stable Si position # nature Volker@Eyertde

62 LTO(Γ)-Phonon in Silicon ASA + Code Full-Potential Code E (Ryd) E (Ryd) x Si x Si New! phonon frequency: f calc = 1534 THz (f exp = 1553 THz) Volker@Eyertde

63 Outline Cool-down 1 Cool-down 2 3 Volker@Eyertde

64 Outline Cool-down 1 Cool-down 2 3 Volker@Eyertde

65 La 2 BaCuO 5 : A D(?) Ferromagnetic Semiconductor Crystal Structure Building Blocks P4/mbm (D 5 4h ) a = Å, c = Å Ba-Cu and La-O1 layers O2 interlayers LaO 8 and BaO 1 polyhedra CuO 4 plaquettes Cu-Cu distance 484 Å chains c in (a,b) planes coupled by La atoms Volker@Eyertde

66 La 2 BaCuO 5 : A D(?) Ferromagnetic Semiconductor Plaquettes x x } } x } } # ## # ## x x xhhhhh x x x((((((( ~ z ~ z ~ z ~ Cu z ~ Ba x x x hhhhh x x x ((((((( O 2 x } x } x } } x (((((((x hhhhh x (((((((x hhhhh # ## La x # x ## O 1 a x x c Building Blocks P4/mbm (D 5 4h ) a = Å, c = Å Ba-Cu and La-O1 layers O2 interlayers LaO 8 and BaO 1 polyhedra CuO 4 plaquettes Cu-Cu distance 484 Å chains c in (a,b) planes coupled by La atoms Volker@Eyertde

67 La 2 BaCuO 5 : A D(?) Ferromagnetic Semiconductor Magnetic Properties T C = 52 K m = 95 µ B /Cu c T > 8 K: Curie-Weiss µ eff = 154 µ B Θ < K T < 8 K: Curie-Weiss Θ = 5 K 3D Spin- 1 2 Heisenberg Model + Ising-like anisotropy Electronic Properties Cu 2+ d 9 Cu d hole ˆ= d x 2 y 2 plaquette orbital Cluster Model ferromagnetic order interference of different exchange paths Volker@Eyertde

68 La 2 BaCuO 5 : A D(?) Ferromagnetic Semiconductor Open Issues Role of Cu 3d, O 2p, La 5d Orbitals? Dimensionality? Effective Magnetic Sites? Exchange Paths? Heisenberg model? Volker@Eyertde

69 La 2 BaCuO 5 : A D(?) Ferromagnetic Semiconductor Open Issues Role of Cu 3d, O 2p, La 5d Orbitals? Dimensionality? Effective Magnetic Sites? Exchange Paths? Heisenberg model? TODOs Spin-Degenerate Calculations Role of Orbitals Chemical Bonding Spin-Polarized Calculations Magnetic Instability Exchange Paths Volker@Eyertde

70 Spin-Degenerate Calculations for La 2 BaCuO 5 Band Structure (E - E F ) (ev) Partial DOS DOS (1/eV) Cu 3d O1 2p O2 2p La 5d -6 Γ M X Γ Z A R Z (E - E F ) (ev) VE, K-H Höck, P S Riseborough, EPL 31, 385 (1995) Volker@Eyertde

71 Spin-Degenerate Calculations for La 2 BaCuO 5 Cu 3d Partial DOS O 2p Partial DOS DOS (1/eV) Cu 3d xy Cu 3d xz,yz Cu 3d 3z 2 -r 2 Cu 3d x 2 -y 2 DOS (1/eV) O2 2p par O2 2p perp O2 2p z (E - E F ) (ev) (E - E F ) (ev) Bonding/Antibonding Splitting from p-d Overlap 25 3 ev for t 2g -like states (π-type) 55 ev for d x 2 y 2/p states (σ-type) = ev for d 3z 2 r 2 states (apex ) Volker@Eyertde

72 Spin-Polarized Calculations for La 2 BaCuO 5 Magnetic Moments (µ B ) ( ) ( ) Cu O La 2 3 Ba -1 O1 fu 1 87 Total Energies (mryd/fu) spin-deg ( ) ( ) Band Gap (ev) spin-deg ( ) ( ) VE, K-H Höck, P S Riseborough, EPL 31, 385 (1995) Volker@Eyertde

73 Spin-Polarized Calculations for La 2 BaCuO 5 Cu 3d Partial DOS O 2p Partial DOS 1 5 Cu 3d xy Cu 3d xz,yz Cu 3d 3z 2 -r 2 Cu 3d x 2 -y O2 2p par O2 2p perp O2 2p z DOS (1/eV) DOS (1/eV) (E - E F ) (ev) (E - E F ) (ev) Results extended localized moments on plaquettes carried by Cu 3d x 2 y and O2 2p 2 states Volker@Eyertde

74 Spin-Polarized Calculations for La 2 BaCuO 5 Electron Density ρ v / au Volker@Eyertde

75 Spin-Polarized Calculations for La 2 BaCuO 5 Electron Density Electron Spin Density ρ v / au ρ 1 v / au Results extended localized moments on plaquettes carried by Cu 3d x2 y and O2 2p 2 states Volker@Eyertde

76 Spin-Polarized Calculations for La 2 BaCuO 5 Electron Density Electron Spin Density ρ v / au ρ 1 v / au Results extended localized moments on plaquettes carried by Cu 3d x2 y and O2 2p 2 states coupled via La 5d x 2 y states 2 Volker@Eyertde

77 Outline Cool-down 1 Cool-down 2 3 Volker@Eyertde

78 Orbital Ordering Transition in La 2 RuO 5 Semiconductor-Semiconductor Transition at 16 K P Khalifah et al, Science 297, 2237 (22) Volker@Eyertde

79 Orbital Ordering Transition in La 2 RuO 5 Basics Ru 4+ 4d 4 low-spin (S = 1) above 16 K: CW below 16 K: χ χ(h), H < 9 T no supercell reflects no AF order (?) local moments? S = 1, S =? Magnetism, Crystal Structure P Khalifah et al, Science 297, 2237 (22) Volker@Eyertde

80 Orbital Ordering Transition in La 2 RuO 5 HT-Structure Building Blocks RuO 6 octahedra corner-sharing chains c zigzag pattern b double layers b, c LaO 9 tricapped trigonal prisms La 4 O tetrahedra Volker@Eyertde

81 Orbital Ordering Transition in La 2 RuO 5 HT-Structure LT-Structure Volker@Eyertde

82 Orbital Ordering Transition in La 2 RuO 5 HT-Structure monoclinic, P2 1 /c d Ru Ru = 3975 Å d O Ru O Ru O = 7772 Å LT-Structure triclinic, P 1 d Ru(1) Ru(2) = 3868, 445 Å d O Ru(1) O Ru(2) O = 7579, 7977 Å P Khalifah et al, Science 297, 2237 (22) Volker@Eyertde

83 Orbital Ordering Transition in La 2 RuO 5 Where are the Electrons? P Khalifah et al, Science 297, 2237 (22) Volker@Eyertde

84 Spin-Degenerate Calculations for La 2 RuO 5 HT-Structure LT-Structure DOS (1/eV) Ru 4d t 2g Ru 4d e g O(1)-O(4) 2p O(5) 2p La DOS (1/eV) Ru 4d t 2g Ru 4d e g O(1)-O(4) 2p O(5) 2p La (E - E F ) (ev) (E - E F ) (ev) Results quasi-1d dispersion c CEF Ru 4d t 2g /e g Volker@Eyertde strong Ru 4d-O 2p overlap

85 VE, S G Ebbinghaus, Volker@Eyertde T Kopp, PRL Magnetism 96, in25641 Low-Dimensional (26) Systems Cool-down Spin-Degenerate Calculations for La 2 RuO 5 HT-Structure 2 15 Ru 4d xy Ru 4d yz Ru 4d xz NOS (E - E F ) (ev) Results d xy d xz d yz Hund s rule: S = 1

86 Spin-Degenerate Calculations for La 2 RuO 5 HT-Structure LT-Structure Ru 4d xy Ru 4d yz Ru 4d xz 15 Ru(1) 4d xy Ru(1) 4d yz Ru(1) 4d xz NOS 1 NOS (E - E F ) (ev) (E - E F ) (ev) Results d xy d xz d yz Hund s rule: S = 1 Results d xy d yz d 1 xyd 2 xzd 1 yz: S = 1 Volker@Eyertde

87 Spin-Polarized Calculations for La 2 RuO 5 Total Energies (mryd/fu), Moments (µ B ), Band Gaps (ev) structure funct order E m RuO6 E g monoclinic GGA - - monoclinic GGA ferri monoclinic GGA+U ferri triclinic GGA triclinic GGA ferri triclinic GGA+U ferri VE, S G Ebbinghaus, T Kopp, PRL 96, (26) Volker@Eyertde

88 Spin-Polarized Calculations for La 2 RuO 5 LT-Structure Ru(1) 4d xy Ru(1) 4d yz Ru(1) 4d xz 6 4 Ru(2) 4d xy Ru(2) 4d yz Ru(2) 4d xz DOS (1/eV) 2-2 DOS (1/eV) (E - E F ) (ev) (E - E F ) (ev) Results Ru(1) Ru(2) d xy d yz m(ru): d xy and d yz (d 1 xy d 2 xz d 1 yz ) m(ru(1)) m(ru(2)) Volker@Eyertde

89 Scenario for La 2 RuO 5 HT-Structure LT-Structure y x e g t 2g S = 1 dxy dyz d xz S = 1 Spin-Ladders AF couping on rungs m(ru(1)o 6 ) = m(ru(2)o 6 ) VE, S G Ebbinghaus, T Kopp, PRL 96, (26) Volker@Eyertde

90 Outline Cool-down 1 Cool-down 2 3 Volker@Eyertde

91 Magnetic Order in K 2 NiF 4 and K 2 CuF 4 K 2 NiF 4 and K 2 NiF 4 classical two-dimensional systems based on K 2 NiF 4 structure parent compounds of La 2 CuO 4 magnetic semiconductors role of TM 3d and F 2p orbitals? intralayer/interlayer magnetic coupling? antiferromagnetism vs ferromagnetism symmetry breaking by magnetic order vs symmetry breaking by orbital order Volker@Eyertde

92 Magnetic Order in K 2 NiF 4 and K 2 CuF 4 K 2 NiF 4 Structure Ni F K a c Basics I4/mmm (centered tetragonal) NiF 2 planes (ˆ=CuO 2 planes) K and F interlayers corner sharing NiF 6 octahedra d(ni F apex ) < d(ni F plane ) AF order Cmca (side-centered orthorh) a 2a Volker@Eyertde

93 K 2 NiF 4 Magnetic Properties T N = 9723 K m = 222 µ B magnetic moments c J/k B 1 K 2D spin-wave dispersion J /J < 37 2D (S = 1) Heisenberg Model + Ising-like anisotropy Volker@Eyertde

94 u u u u u Cool-down K 2 NiF 4 : Spin-Degenerate Calculations Band Structure Partial DOS Ni 3d t 2g Ni 3d 3z 2 -r 2 Ni 3d x 2 -y 2 F1 2p F2 2p (E - E F ) (ev) -2-4 DOS (1/eV) Z Γ X P Γ N (E - E F ) (ev) k z Z Results k x N X P k y E < 4 ev: d-p bonding E > 2 ev: d-p antib 2D dispersion at E F : Ni 3d e g Volker@Eyertde

95 K 2 NiF 4 : Weighted Bands Ni 3d 3z 2 r 2 15 Ni 3d x 2 y 2 15 Ni 3dt 2g E ev Z Γ X P Γ N EF 5 E ev Z Γ X P Γ N EF 5 E ev Z Γ X P Γ N EF Partial DOS DOS (1/eV) Ni 3d t 2g Ni 3d 2 2 3z -r Ni 3d 2 2 x -y F1 2p F2 2p (E - E F ) (ev) Results CEF (t 2g /e g ) 9 ev W(d x 2 y 2) 2 W(d 3z 2 r 2) perfect FS nesting Volker@Eyertde

96 u u u u u u u u Cool-down K 2 NiF 4 : Doubling the Unit Cell centered tetragonal side-centered orthorh 2 2 (E - E F ) (ev) -2-4 (E - E F ) (ev) Z Γ X P Γ N Z Γ X P Γ N X2 kx kz Z Γ X1 ky k y P k x X R N S Z T k z Volker@Eyertde

97 K 2 NiF 4 : Spin-Polarized Calculations Band Structure Partial DOS Ni 3d t 2g Ni 3d 3z 2 -r 2 Ni 3d x 2 -y 2 F1 2p F2 2p (E - E F ) (ev) -2-4 DOS (1/eV) Z Γ X P Γ N (E - E F ) (ev) Moments (µ B ) Ni 128 F2 4 sublattice 138 Results moment: d 3z 2 r 2, d x 2 y 2 E tot = 35 mryd Volker@Eyertde

98 K 2 CuF 4 Magnetic Properties T C = 626 K m = 1 µ B magnetic moments c 2D spin-wave dispersion J /J < 66 3D (S = 1 2 ) Heisenberg Model + 1% XY-like anisotropy J/k B = 112 K Volker@Eyertde

99 K 2 CuF 4 Magnetic Properties T C = 626 K m = 1 µ B magnetic moments c 2D spin-wave dispersion J /J < 66 3D (S = 1 2 ) Heisenberg Model + 1% XY-like anisotropy J/k B = 112 K Early XRD (Knox) K 2 NiF 4 structure d Cu Fapex < d Cu Fplane related Cu-compounds Volker@Eyertde

100 K 2 CuF 4 Khomskii and Kugel Model Heisenberg Hamiltonian + Pseudospin Hamiltonian orbital ordering compressed octahedra ferromagnetic order antiferrodistortive structure proposed side-centered orthorh Early XRD (Knox) K 2 NiF 4 structure d Cu Fapex < d Cu Fplane related Cu-compounds Volker@Eyertde

101 K 2 CuF 4 Khomskii and Kugel Model Heisenberg Hamiltonian + Pseudospin Hamiltonian orbital ordering compressed octahedra ferromagnetic order antiferrodistortive structure proposed side-centered orthorh In-Plane Structure Cu F Volker@Eyertde

102 K 2 CuF 4 In-Plane Structure Cu F NMR (Le Dang Khoi, Veillet) octahedra elongated, long axis c Volker@Eyertde

103 K 2 CuF 4 In-Plane Structure Cu F NMR (Le Dang Khoi, Veillet) octahedra elongated, long axis c XRD (Hidaka et al) Cmca (side-centered orthorh) F at ( 1 4 δ, 1 4 δ, ) δ = 176 Volker@Eyertde

104 u u u u u Cool-down K 2 CuF 4 : Spin-Degenerate Calculations Band Structure Partial DOS Cu 3d t 2g Cu 3d 3z 2 -r 2 Cu 3d x 2 -y 2 F1 2p F2 2p (E - E F ) (ev) -2-4 DOS (1/eV) Z Γ X P Γ N (E - E F ) (ev) k x N k z Z X P k y Results similar to K 2 NiF 4 d-p splitting smaller electron count! Volker@Eyertde

105 K 2 CuF 4 : Weighted Bands Cu 3d 3z 2 r 2 1 Cu 3d x 2 y 2 1 Cu 3dt 2g E ev -1 EF 5-5 E ev -1 EF 5-5 E ev -1 EF Z Γ X P Γ N -25 Z Γ X P Γ N -25 Z Γ X P Γ N Partial DOS DOS (1/eV) Cu 3d t 2g Cu 3d 2 2 3z -r Cu 3d 2 2 x -y F1 2p F2 2p (E - E F ) (ev) Results CEF (t 2g /e g ) 1 ev W(d x 2 y 2) 2 W(d 3z 2 r 2) FS(d x 2 y 2) FS(d 3z 2 r 2) no FS nesting Volker@Eyertde

106 u u u u u u u u Cool-down K 2 CuF 4 : Doubling the Unit Cell Bands: centered tetragonal Bands: side-centered orthorh 2 2 (E - E F ) (ev) -2-4 (E - E F ) (ev) Z Γ X P Γ N -8 Z Γ X P Γ N X2 kx kz Z Γ X1 ky k y P k x X R N S Z T k z Volker@Eyertde

107 K 2 CuF 4 : Spin-Polarized Calculations Band Structure Partial DOS Cu 3d t 2g Cu 3d 3z 2 -r 2 Cu 3d x 2 -y 2 F1 2p F2 2p (E - E F ) (ev) -2-4 DOS (1/eV) Z Γ X P Γ N (E - E F ) (ev) Moments (µ B ) Cu 7 F1 8 F2 6 sublattice 1 Volker@Eyertde Results moment: d 3z 2 r 2, d x 2 y 2 E tot = 65 mryd

108 K 2 NiF 4 : Orbital and Magnetic Order (E - E F ) (ev) (E - E F ) (ev) 15 δ = Z Γ X P Γ N 15 δ = Z Γ X P Γ N (E - E F ) (ev) (E - E F ) (ev) 15 δ = Z Γ X P Γ N 15 δ = Z Γ X P Γ N Conclusion FS nesting instability δ or m Volker@Eyertde

109 K 2 CuF 4 : Orbital and Magnetic Order (E - E F ) (ev) (E - E F ) (ev) (E - E F ) (ev) 15 δ = Z Γ X P Γ N 15 δ = Z Γ X P Γ N 15 δ = Z Γ X P Γ N (E - E F ) (ev) (E - E F ) (ev) (E - E F ) (ev) 15 δ = Z Γ X P Γ N 15 δ = Z Γ X P Γ N 15 δ = Z Γ X P Γ N Conclusion no FS nesting instability δ and m (E - E F ) (ev) 15 δ = Z Γ X P Γ N Volker@Eyertde

110 K 2 NiF 4 and K 2 CuF 4 : Energies and Moments Total Energies Magnetic Moments E (mryd) K 2 NiF 4 : E af -E nm K 2 CuF 4 : E fe -E nm K 2 CuF 4 : E fe -E nm /E af m (µ B ) K 2 NiF 4 : m af K 2 CuF 4 : m af K 2 CuF 4 : m fe δ δ VE, K-H Höck, JP:CM 5, 2987 (1993) U Schwingenschlögl, VE, JMMM 312, L11 (27) Volker@Eyertde

111 Outline Cool-down 1 Cool-down 2 3 Volker@Eyertde

112 CuFeO 2 Delafossite Structure Basics semiconductor AF interactions triangular lattice Volker@Eyertde

113 CuFeO 2 Delafossite Structure Basics semiconductor AF interactions triangular lattice Open Issues frustration vs long-range order role of Cu 3d orbitals? role of Fe 3d and O 2p orbitals? Volker@Eyertde

114 CuFeO 2 Previous Neutron Data T N1 = 16 K, T N2 = 11 K Θ CW = 9 K magnetic supercells no structural distortion m Fe 3+ = 44 µ B Volker@Eyertde

115 CuFeO 2 Previous Neutron Data T N1 = 16 K, T N2 = 11 K Θ CW = 9 K magnetic supercells no structural distortion m Fe 3+ = 44 µ B Band Calculations rhombohedral structure m Fe = 9 µ B, m Fe = 38 µ B E g = in LDA, GGA PES, XES Volker@Eyertde

116 CuFeO 2 Previous Neutron Data T N1 = 16 K, T N2 = 11 K Θ CW = 9 K magnetic supercells no structural distortion m Fe 3+ = 44 µ B Band Calculations rhombohedral structure m Fe = 9 µ B, m Fe = 38 µ B E g = in LDA, GGA PES, XES New Neutron Data magnetic supercells monoclinic structure below 4 K Volker@Eyertde

117 CuFeO 2 Previous Neutron Data T N1 = 16 K, T N2 = 11 K Θ CW = 9 K magnetic supercells no structural distortion m Fe 3+ = 44 µ B New Neutron Data magnetic supercells monoclinic structure below 4 K Band Calculations rhombohedral structure m Fe = 9 µ B, m Fe = 38 µ B E g = in LDA, GGA PES, XES Open Issues spin-state of Fe? influence of monoc structure? Volker@Eyertde

118 Electronic Properties of CuFeO 2 Partial Densities of States DOS (1/eV) Cu 3d Fe 3d t 2g Fe 3d e g O 2p (E - E F ) (ev) Results Fe 3d-O 2p hybridization FeO 6 octahedra: Fe 3d t 2g and e g Cu 4d 1 (Cu 1+ ) Fe 3d t 2g sharp peak at E F VE, R Frésard, A Maignan, Phys Rev B 78, 5242 (28) Volker@Eyertde

119 Cool-down Electronic Properties of CuFeO 2 Band Structure (E - E F ) (ev) Γ M K Γ A L H A Results quasi-2d k x single band crossing E F L u u M k z ua H u u uk k y VE, R Frésard, A Maignan, Phys Rev B 78, 5242 (28) Volker@Eyertde

120 Electronic Properties of CuFeO 2 Fermi Surface Results strongly 3D FS PdCoO 2 VE, R Frésard, A Maignan, Phys Rev B 78, 5242 (28) Volker@Eyertde

121 Magnetic Properties of CuFeO 2 Total Energies (mryd/fu), Magn Moms (µ B ), Band Gaps (ev) structure magn order E m Fe m O E g rhomb spin-deg - rhomb ferro (LS) rhomb ferro (IS) rhomb ferro (HS) VE, R Frésard, A Maignan, Phys Rev B 78, 5242 (28) Volker@Eyertde

122 Magnetic Properties of CuFeO 2 LS Ferromagnet IS Ferromagnet HS Ferromagnet 1 Cu 3d Fe 3d t 2g 1 Cu 3d Fe 3d t 2g 1 Cu 3d Fe 3d t 2g 5 Fe 3d e g O 2p 5 Fe 3d e g O 2p 5 Fe 3d e g O 2p DOS (1/eV) DOS (1/eV) DOS (1/eV) (E - E F ) (ev) (E - E F ) (ev) (E - E F ) (ev) Results LS, IS, HS in rhombohedral structure HS: O 2p polarization via Fe 3d e g VE, R Frésard, A Maignan, Phys Rev B 78, 5242 (28) Volker@Eyertde

123 Magnetic Properties of CuFeO 2 Total Energies (mryd/fu), Magn Moms (µ B ), Band Gaps (ev) structure magn order E m Fe m O E g rhomb spin-deg - rhomb ferro (LS) rhomb ferro (IS) rhomb ferro (HS) monoc spin-deg 6 - monoc ferro (LS) monoc ferro (IS) monoc ferro (HS) VE, R Frésard, A Maignan, Phys Rev B 78, 5242 (28) Volker@Eyertde

124 Magnetic Properties of CuFeO 2 Antiferromagnet DOS (1/eV) Cu 3d Fe 3d t 2g Fe 3d e g O 2p Results monoc structure Fe 3+ HS O 2p polarization via Fe 3d e g E g > in GGA (E - E V ) (ev) VE, R Frésard, A Maignan, Phys Rev B 78, 5242 (28) Volker@Eyertde

125 Magnetic Properties of CuFeO 2 Total Energies (mryd/fu), Magn Moms (µ B ), Band Gaps (ev) structure magn order E m Fe m O E g rhomb spin-deg - rhomb ferro (LS) rhomb ferro (IS) rhomb ferro (HS) monoc spin-deg 6 - monoc ferro (LS) monoc ferro (IS) monoc ferro (HS) monoc antiferro 46 ±372 ±8 5 VE, R Frésard, A Maignan, Phys Rev B 78, 5242 (28) Volker@Eyertde

126 A Short Walk: Fundamental Principles

127 A Short Walk: Fundamental Principles La 2 BaCuO 5 Moments ρ 1 v / au Volker@Eyertde

128 A Short Walk: Fundamental Principles La 2 BaCuO 5 Moments La 2 RuO 5 Orbitals ρ 1 v / au dxy dyz d xz S = 1 Volker@Eyertde

129 A Short Walk: Fundamental Principles La 2 BaCuO 5 Moments La 2 RuO 5 Orbitals ρ 1 v / au dxy dyz d xz S = 1 K 2 NiF 4, K 2 CuF 4 Symmetry -5-1 E (mryd) K 2 NiF 4 : E af -E nm K 2 CuF 4 : E fe -E nm K 2 CuF 4 : E fe -E nm /E af δ Volker@Eyertde

130 A Short Walk: Fundamental Principles La 2 BaCuO 5 Moments La 2 RuO 5 Orbitals ρ 1 v / au dxy dyz d xz S = 1 K 2 NiF 4, K 2 CuF 4 Symmetry CuFeO 2 Structure -5-1 E (mryd) K 2 NiF 4 : E af -E nm K 2 CuF 4 : E fe -E nm K 2 CuF 4 : E fe -E nm /E af δ Volker@Eyertde

131 Acknowledgments Caen R Frésard, S Hébert A Maignan, C Martin Darmstadt P C Schmidt Halle S G Ebbinghaus Augsburg K-H Höck, T Kopp, J Mannhart U Schwingenschlögl Volker@Eyertde

132 Acknowledgments Caen R Frésard, S Hébert A Maignan, C Martin Darmstadt P C Schmidt Halle S G Ebbinghaus Augsburg K-H Höck, T Kopp, J Mannhart U Schwingenschlögl Vienna Thank You for Your Attention! Volker@Eyertde

All-Electron Full-Potential Calculations at O(ASA) Speed A Fata Morgana?

All-Electron Full-Potential Calculations at O(ASA) Speed A Fata Morgana? All-Electron Full-Potential Calculations at O(ASA) Speed A Fata Morgana? Center for Electronic Correlations and Magnetism Institute for Physics, University of Augsburg February 4, 2008 Outline 1 2 3 Outline

More information

All-Electron Full-Potential Calculations at O(ASA) Speed A Fata Morgana?

All-Electron Full-Potential Calculations at O(ASA) Speed A Fata Morgana? All-Electron Full-Potential Calculations at O(ASA) Speed A Fata Morgana? SFB 484, Teilprojekt D6 October 5, 2007 Outline 1 2 3 Outline 1 2 3 Outline 1 2 3 Outline 1 2 3 Back in the 1930 s... John C. Slater

More information

From Quantum Mechanics to Materials Design

From Quantum Mechanics to Materials Design From to Materials Design Volker Eyert Center for Electronic Correlations and Magnetism Institute of Physics, University of Augsburg October 14, 2010 From to Materials Design Outline 1 Density Functional

More information

New Perspectives in ab initio Calculations. Semiconducting Oxides

New Perspectives in ab initio Calculations. Semiconducting Oxides for Semiconducting Oxides Volker Eyert Center for Electronic Correlations and Magnetism Institute of Physics, University of Augsburg October 28, 21 Outline LAOSTO 1 LAOSTO 2 Outline LAOSTO 1 LAOSTO 2 Calculated

More information

Metal-Insulator Transitions of the Vanadates. New Perspectives of an Old Mystery

Metal-Insulator Transitions of the Vanadates. New Perspectives of an Old Mystery : New Perspectives of an Old Mystery Volker Eyert Center for Electronic Correlations and Magnetism Institute of Physics, University of Augsburg November 15, 21 Outline Basic Theories 1 Basic Theories Density

More information

The Augmented Spherical Wave Method

The Augmented Spherical Wave Method Introduction Institut für Physik, Universität Augsburg Electronic Structure in a Nutshell Outline 1 Fundamentals Generations 2 Outline 1 Fundamentals Generations 2 Outline Fundamentals Generations 1 Fundamentals

More information

Double exchange in double perovskites: Ferromagnetism and Antiferromagnetism

Double exchange in double perovskites: Ferromagnetism and Antiferromagnetism Double exchange in double perovskites: Ferromagnetism and Antiferromagnetism Prabuddha Sanyal University of Hyderabad with H. Das, T. Saha Dasgupta, P. Majumdar, S. Ray, D.D. Sarma H. Das, P. Sanyal, D.D.

More information

Anisotropic Magnetic Structures in Iron-Based Superconductors

Anisotropic Magnetic Structures in Iron-Based Superconductors Anisotropic Magnetic Structures in Iron-Based Superconductors Chi-Cheng Lee, Weiguo Yin & Wei Ku CM-Theory, CMPMSD, Brookhaven National Lab Department of Physics, SUNY Stony Brook Another example of SC

More information

Electronic structure calculations results from LDA+U method

Electronic structure calculations results from LDA+U method Electronic structure calculations results from LDA+U method Vladimir I. Anisimov Institute of Metal Physics Ekaterinburg, Russia LDA+U method applications Mott insulators Polarons and stripes in cuprates

More information

FULL POTENTIAL LINEARIZED AUGMENTED PLANE WAVE (FP-LAPW) IN THE FRAMEWORK OF DENSITY FUNCTIONAL THEORY

FULL POTENTIAL LINEARIZED AUGMENTED PLANE WAVE (FP-LAPW) IN THE FRAMEWORK OF DENSITY FUNCTIONAL THEORY FULL POTENTIAL LINEARIZED AUGMENTED PLANE WAVE (FP-LAPW) IN THE FRAMEWORK OF DENSITY FUNCTIONAL THEORY C.A. Madu and B.N Onwuagba Department of Physics, Federal University of Technology Owerri, Nigeria

More information

Crystalline and Magnetic Anisotropy of the 3d Transition-Metal Monoxides

Crystalline and Magnetic Anisotropy of the 3d Transition-Metal Monoxides Crystalline and of the 3d Transition-Metal Monoxides Institut für Festkörpertheorie und -optik Friedrich-Schiller-Universität Max-Wien-Platz 1 07743 Jena 2012-03-23 Introduction Crystalline Anisotropy

More information

Mott insulators. Mott-Hubbard type vs charge-transfer type

Mott insulators. Mott-Hubbard type vs charge-transfer type Mott insulators Mott-Hubbard type vs charge-transfer type Cluster-model description Chemical trend Band theory Self-energy correction Electron-phonon interaction Mott insulators Mott-Hubbard type vs charge-transfer

More information

Hyperfine interactions Mössbauer, PAC and NMR Spectroscopy: Quadrupole splittings, Isomer shifts, Hyperfine fields (NMR shifts)

Hyperfine interactions Mössbauer, PAC and NMR Spectroscopy: Quadrupole splittings, Isomer shifts, Hyperfine fields (NMR shifts) Hyperfine interactions Mössbauer, PAC and NMR Spectroscopy: Quadrupole splittings, Isomer shifts, Hyperfine fields (NMR shifts) Peter Blaha Institute of Materials Chemistry TU Wien Definition of Hyperfine

More information

Magnetism in transition metal oxides by post-dft methods

Magnetism in transition metal oxides by post-dft methods Magnetism in transition metal oxides by post-dft methods Cesare Franchini Faculty of Physics & Center for Computational Materials Science University of Vienna, Austria Workshop on Magnetism in Complex

More information

PROOF COPY [LD9110BJ] PRB

PROOF COPY [LD9110BJ] PRB Effect of oxygen stoichiometry on spin, charge, and orbital ordering in manganites R. Vidya,* P. Ravindran, P. Vajeeston, A. Kjekshus, and H. Fjellvåg Department of Chemistry, University of Oslo, P.O.

More information

A Twisted Ladder: Relating the Iron Superconductors and the High-Tc Cuprates

A Twisted Ladder: Relating the Iron Superconductors and the High-Tc Cuprates A Twisted Ladder: Relating the Iron Superconductors and the High-Tc Cuprates arxiv:0905.1096, To appear in New. J. Phys. Erez Berg 1, Steven A. Kivelson 1, Doug J. Scalapino 2 1 Stanford University, 2

More information

An Approximate DFT Method: The Density-Functional Tight-Binding (DFTB) Method

An Approximate DFT Method: The Density-Functional Tight-Binding (DFTB) Method Fakultät für Mathematik und Naturwissenschaften - Lehrstuhl für Physikalische Chemie I / Theoretische Chemie An Approximate DFT Method: The Density-Functional Tight-Binding (DFTB) Method Jan-Ole Joswig

More information

All electron optimized effective potential method for solids

All electron optimized effective potential method for solids All electron optimized effective potential method for solids Institut für Theoretische Physik Freie Universität Berlin, Germany and Fritz Haber Institute of the Max Planck Society, Berlin, Germany. 22

More information

Magnetism. Eric Bousquet. University of Liège. Abinit School, Lyon, France 16/05/2014

Magnetism. Eric Bousquet. University of Liège. Abinit School, Lyon, France 16/05/2014 Magnetism University of Liège eric.bousquet@ulg.ac.be Abinit School, Lyon, France 16/05/2014 Outline Origin of magnetism: Inside an atom Between 2 atoms Interaction with ligands Interaction through ligands

More information

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C3: CONDENSED MATTER PHYSICS

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C3: CONDENSED MATTER PHYSICS 2753 SECOND PUBLIC EXAMINATION Honour School of Physics Part C: 4 Year Course Honour School of Physics and Philosophy Part C C3: CONDENSED MATTER PHYSICS TRINITY TERM 2011 Wednesday, 22 June, 9.30 am 12.30

More information

Introduction to Density Functional Theory

Introduction to Density Functional Theory 1 Introduction to Density Functional Theory 21 February 2011; V172 P.Ravindran, FME-course on Ab initio Modelling of solar cell Materials 21 February 2011 Introduction to DFT 2 3 4 Ab initio Computational

More information

Materials 218/UCSB: Superconductivity and High T C copper oxide superconductors:

Materials 218/UCSB: Superconductivity and High T C copper oxide superconductors: Materials 218/UCSB: Superconductivity and High T C copper oxide superconductors: Ram Seshadri (seshadri@mrl.ucsb.edu) The Ruddlesden-Popper phases: Ruddlesden-Popper phases are intergrowths of perovskite

More information

Spins and spin-orbit coupling in semiconductors, metals, and nanostructures

Spins and spin-orbit coupling in semiconductors, metals, and nanostructures B. Halperin Spin lecture 1 Spins and spin-orbit coupling in semiconductors, metals, and nanostructures Behavior of non-equilibrium spin populations. Spin relaxation and spin transport. How does one produce

More information

One-dimensional magnetism of one-dimensional metallic chains in bulk MnB 4.

One-dimensional magnetism of one-dimensional metallic chains in bulk MnB 4. One-dimensional magnetism of one-dimensional metallic chains in bulk MnB 4. S. Khmelevskyi 1*, J. Redinger 1, A.B. Shick 2, and P. Mohn 1. 1 Institute of Applied Physics, CMS, Vienna University of Technology,

More information

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C3: CONDENSED MATTER PHYSICS

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C3: CONDENSED MATTER PHYSICS A11046W1 SECOND PUBLIC EXAMINATION Honour School of Physics Part C: 4 Year Course Honour School of Physics and Philosophy Part C C3: CONDENSED MATTER PHYSICS TRINITY TERM 2015 Wednesday, 17 June, 2.30

More information

CHAPTER 6. ELECTRONIC AND MAGNETIC STRUCTURE OF ZINC-BLENDE TYPE CaX (X = P, As and Sb) COMPOUNDS

CHAPTER 6. ELECTRONIC AND MAGNETIC STRUCTURE OF ZINC-BLENDE TYPE CaX (X = P, As and Sb) COMPOUNDS 143 CHAPTER 6 ELECTRONIC AND MAGNETIC STRUCTURE OF ZINC-BLENDE TYPE CaX (X = P, As and Sb) COMPOUNDS 6.1 INTRODUCTION Almost the complete search for possible magnetic materials has been performed utilizing

More information

The electronic structure of materials 2 - DFT

The electronic structure of materials 2 - DFT Quantum mechanics 2 - Lecture 9 December 19, 2012 1 Density functional theory (DFT) 2 Literature Contents 1 Density functional theory (DFT) 2 Literature Historical background The beginnings: L. de Broglie

More information

Temperature-dependence of magnetism of free Fe clusters

Temperature-dependence of magnetism of free Fe clusters Temperature-dependence of magnetism of free Fe clusters O. Šipr 1, S. Bornemann 2, J. Minár 2, S. Polesya 2, H. Ebert 2 1 Institute of Physics, Academy of Sciences CR, Prague, Czech Republic 2 Universität

More information

Band calculations: Theory and Applications

Band calculations: Theory and Applications Band calculations: Theory and Applications Lecture 2: Different approximations for the exchange-correlation correlation functional in DFT Local density approximation () Generalized gradient approximation

More information

Spin or Orbital-based Physics in the Fe-based Superconductors? W. Lv, W. Lee, F. Kruger, Z. Leong, J. Tranquada. Thanks to: DOE (EFRC)+BNL

Spin or Orbital-based Physics in the Fe-based Superconductors? W. Lv, W. Lee, F. Kruger, Z. Leong, J. Tranquada. Thanks to: DOE (EFRC)+BNL Spin or Orbital-based Physics in the Fe-based Superconductors? W. Lv, W. Lee, F. Kruger, Z. Leong, J. Tranquada Thanks to: DOE (EFRC)+BNL Spin or Orbital-based Physics in the Fe-based Superconductors?

More information

Ultrashort Lifetime Expansion for Resonant Inelastic X-ray Scattering. Luuk Ament

Ultrashort Lifetime Expansion for Resonant Inelastic X-ray Scattering. Luuk Ament Ultrashort Lifetime Expansion for Resonant Inelastic X-ray Scattering Luuk Ament In collaboration with Jeroen van den Brink and Fiona Forte What is RIXS? Resonant Inelastic X-ray Scattering Synchrotron

More information

X-ray absorption spectroscopy.

X-ray absorption spectroscopy. X-ray absorption spectroscopy www.anorg.chem.uu.nl/people/staff/frankdegroot/ X-ray absorption spectroscopy www.anorg.chem.uu.nl/people/staff/frankdegroot/ Frank de Groot PhD: solid state chemistry U Nijmegen

More information

Transport and magnetic properties in one dimensional A 3 ABO 6 family

Transport and magnetic properties in one dimensional A 3 ABO 6 family Transport and magnetic properties in one dimensional A 3 ABO 6 family M. Costes 1, J.M. Broto 1, B. Raquet 1, M.N. Baibich 2, H. Rakoto 1, A. Maignan 3, Ch. Martin 3, D. Flahaut 3, S. Hebert 3 1 Laboratoire

More information

Mott insulators. Introduction Cluster-model description Chemical trend Band description Self-energy correction

Mott insulators. Introduction Cluster-model description Chemical trend Band description Self-energy correction Mott insulators Introduction Cluster-model description Chemical trend Band description Self-energy correction Introduction Mott insulators Lattice models for transition-metal compounds Hubbard model Anderson-lattice

More information

Basics of DFT applications to solids and surfaces

Basics of DFT applications to solids and surfaces Basics of DFT applications to solids and surfaces Peter Kratzer Physics Department, University Duisburg-Essen, Duisburg, Germany E-mail: Peter.Kratzer@uni-duisburg-essen.de Periodicity in real space and

More information

MAGNETIC ANISOTROPY IN TIGHT-BINDING

MAGNETIC ANISOTROPY IN TIGHT-BINDING MAGNETIC ANISOTROPY IN TIGHT-BINDING Cyrille Barreteau Magnetic Tight-Binding Workshop, London10-11 Sept. 2012 9 SEPTEMBRE 2012 CEA 10 AVRIL 2012 PAGE 1 SOMMAIRE TB Model TB 0 : Mehl & Papaconstantopoulos

More information

The Oxford Solid State Basics

The Oxford Solid State Basics The Oxford Solid State Basics Steven H. Simon University of Oxford OXFORD UNIVERSITY PRESS Contents 1 About Condensed Matter Physics 1 1.1 What Is Condensed Matter Physics 1 1.2 Why Do We Study Condensed

More information

The Gutzwiller Density Functional Theory

The Gutzwiller Density Functional Theory The Gutzwiller Density Functional Theory Jörg Bünemann, BTU Cottbus I) Introduction 1. Model for an H 2 -molecule 2. Transition metals and their compounds II) Gutzwiller variational theory 1. Gutzwiller

More information

More a progress report than a talk

More a progress report than a talk Superconductivity and Magnetism in novel Fe-based superconductors Ilya Eremin 1,2 and Maxim Korshunov 1 1 - Max-Planck Institut für Physik komplexer Systeme, Dresden, 2- Institut für Theoretische Physik,

More information

Electronic structure of correlated electron systems. G.A.Sawatzky UBC Lecture

Electronic structure of correlated electron systems. G.A.Sawatzky UBC Lecture Electronic structure of correlated electron systems G.A.Sawatzky UBC Lecture 6 011 Influence of polarizability on the crystal structure Ionic compounds are often cubic to maximize the Madelung energy i.e.

More information

Structure and Curie temperature of Y 2 Fe 17 x Cr x

Structure and Curie temperature of Y 2 Fe 17 x Cr x Vol. 46 No. 4 SCIENCE IN CHINA (Series G) August 2003 Structure and Curie temperature of Y 2 Fe 17 x Cr x HAO Shiqiang ( ) 1 & CHEN Nanxian ( ) 1,2 1. Department of Physics, Tsinghua University, Beijing

More information

Spin or Orbital-based Physics in the Fe-based Superconductors? W. Lv, W. Lee, F. Kruger, Z. Leong, J. Tranquada. Thanks to: DOE (EFRC)+BNL

Spin or Orbital-based Physics in the Fe-based Superconductors? W. Lv, W. Lee, F. Kruger, Z. Leong, J. Tranquada. Thanks to: DOE (EFRC)+BNL Spin or Orbital-based Physics in the Fe-based Superconductors? W. Lv, W. Lee, F. Kruger, Z. Leong, J. Tranquada Thanks to: DOE (EFRC)+BNL Spin or Orbital-based Physics in the Fe-based Superconductors?

More information

Department of Physics, Anna University, Sardar Patel Road, Guindy, Chennai -25, India.

Department of Physics, Anna University, Sardar Patel Road, Guindy, Chennai -25, India. Advanced Materials Research Online: 2013-02-13 ISSN: 1662-8985, Vol. 665, pp 43-48 doi:10.4028/www.scientific.net/amr.665.43 2013 Trans Tech Publications, Switzerland Electronic Structure and Ground State

More information

Optimized Effective Potential method for non-collinear Spin-DFT: view to spin-dynamics

Optimized Effective Potential method for non-collinear Spin-DFT: view to spin-dynamics Optimized Effective Potential method for non-collinear Spin-DFT: view to spin-dynamics Sangeeta Sharma 1,2, J. K. Dewhurst 3, C. Ambrosch-Draxl 4, S. Pittalis 2, S. Kurth 2, N. Helbig 2, S. Shallcross

More information

Role of the Octahedra Rotation on the Electronic Structures of 4d Transition Metal Oxides

Role of the Octahedra Rotation on the Electronic Structures of 4d Transition Metal Oxides Role of the Octahedra Rotation on the Electronic Structures of 4d Transition Metal Oxides Changyoung Kim Dept. Physics, Yonsei University B. J. Kim 1, J. Yu 1, S. J. Oh 1, H. Koh 2, I. Nagai 3, S. I. Ikeda

More information

Giniyat Khaliullin Max Planck Institute for Solid State Research, Stuttgart

Giniyat Khaliullin Max Planck Institute for Solid State Research, Stuttgart Mott insulators with strong spin-orbit coupling Giniyat Khaliullin Max Planck Institute for Solid State Research, Stuttgart LS driven unusual ground states & excitations motivated by: Sr 2 IrO 4 Na 2 IrO

More information

Topological insulator gap in graphene with heavy adatoms

Topological insulator gap in graphene with heavy adatoms Topological insulator gap in graphene with heavy adatoms ES2013, College of William and Mary Ruqian Wu Department of Physics and Astronomy, University of California, Irvine, California 92697 Supported

More information

WORLD SCIENTIFIC (2014)

WORLD SCIENTIFIC (2014) WORLD SCIENTIFIC (2014) LIST OF PROBLEMS Chapter 1: Magnetism of Free Electrons and Atoms 1. Orbital and spin moments of an electron: Using the theory of angular momentum, calculate the orbital

More information

University of Bristol. 1 Naval Research Laboratory 2 II. Physikalisches Institut, Universität zu Köln

University of Bristol. 1 Naval Research Laboratory 2 II. Physikalisches Institut, Universität zu Köln Charge ordering as alternative to Jahn-Teller distortion In collaboration with Michelle Johannes 1, Daniel Khomskii 2 (theory) and Mohsen Abd-Elmeguid et al 2, Radu Coldea et al 3 (experiment) 1 Naval

More information

Frustrated Magnetic Materials from an ab initio prespective Roser Valentí Institute of Theoretical Physics University of Frankfurt Germany

Frustrated Magnetic Materials from an ab initio prespective Roser Valentí Institute of Theoretical Physics University of Frankfurt Germany Frustrated Magnetic Materials from an ab initio prespective Roser Valentí Institute of Theoretical Physics University of Frankfurt Germany Highly Frustrated Magnetism Tutorial, July 9 th 2018, UC Davis

More information

From Quantum Mechanics to Materials Design

From Quantum Mechanics to Materials Design The Basics of Density Functional Theory Volker Eyert Center for Electronic Correlations and Magnetism Institute of Physics, University of Augsburg December 03, 2010 Outline Formalism 1 Formalism Definitions

More information

CHAPTER 3 WIEN2k. Chapter 3 : WIEN2k 50

CHAPTER 3 WIEN2k. Chapter 3 : WIEN2k 50 CHAPTER 3 WIEN2k WIEN2k is one of the fastest and reliable simulation codes among computational methods. All the computational work presented on lanthanide intermetallic compounds has been performed by

More information

ARPES study of many-body effects and electronic reconstructions in misfit cobaltates

ARPES study of many-body effects and electronic reconstructions in misfit cobaltates ARPES study of many-body effects and electronic reconstructions in misfit cobaltates Véronique Brouet, Alessandro Nicolaou Laboratoire de Physique des Solides d Orsay M. Zacchigna (Elettra), A. Tejeda

More information

Excitonic Condensation in Systems of Strongly Correlated Electrons. Jan Kuneš and Pavel Augustinský DFG FOR1346

Excitonic Condensation in Systems of Strongly Correlated Electrons. Jan Kuneš and Pavel Augustinský DFG FOR1346 Excitonic Condensation in Systems of Strongly Correlated Electrons Jan Kuneš and Pavel Augustinský DFG FOR1346 Motivation - unconventional long-range order incommensurate spin spirals complex order parameters

More information

Chapter 3. The (L)APW+lo Method. 3.1 Choosing A Basis Set

Chapter 3. The (L)APW+lo Method. 3.1 Choosing A Basis Set Chapter 3 The (L)APW+lo Method 3.1 Choosing A Basis Set The Kohn-Sham equations (Eq. (2.17)) provide a formulation of how to practically find a solution to the Hohenberg-Kohn functional (Eq. (2.15)). Nevertheless

More information

EFFECTIVE MAGNETIC HAMILTONIANS: ab initio determination

EFFECTIVE MAGNETIC HAMILTONIANS: ab initio determination ICSM212, Istanbul, May 3, 212, Theoretical Magnetism I, 17:2 p. 1 EFFECTIVE MAGNETIC HAMILTONIANS: ab initio determination Václav Drchal Institute of Physics ASCR, Praha, Czech Republic in collaboration

More information

Magnetic ordering, magnetic anisotropy and the mean-field theory

Magnetic ordering, magnetic anisotropy and the mean-field theory Magnetic ordering, magnetic anisotropy and the mean-field theory Alexandra Kalashnikova kalashnikova@mail.ioffe.ru Ferromagnets Mean-field approximation Curie temperature and critical exponents Magnetic

More information

Luigi Paolasini

Luigi Paolasini Luigi Paolasini paolasini@esrf.fr LECTURE 4: MAGNETIC INTERACTIONS - Dipole vs exchange magnetic interactions. - Direct and indirect exchange interactions. - Anisotropic exchange interactions. - Interplay

More information

Electronic structure of correlated electron systems. G.A.Sawatzky UBC lecture

Electronic structure of correlated electron systems. G.A.Sawatzky UBC lecture Electronic structure of correlated electron systems G.A.Sawatzky UBC lecture 10 2011 Go through H2 on a metal singlet triplet Linear vs non linear polarizability U 2 electrons or holes versus Ei-Ea Orbital

More information

Phases of Na x CoO 2

Phases of Na x CoO 2 Phases of Na x CoO 2 by Aakash Pushp (pushp@uiuc.edu) Abstract This paper deals with the various phases of Na x CoO 2 ranging from charge ordered insulator to Curie-Weiss metal to superconductor as the

More information

Quantum spin systems - models and computational methods

Quantum spin systems - models and computational methods Summer School on Computational Statistical Physics August 4-11, 2010, NCCU, Taipei, Taiwan Quantum spin systems - models and computational methods Anders W. Sandvik, Boston University Lecture outline Introduction

More information

Introduction to Density Functional Theory with Applications to Graphene Branislav K. Nikolić

Introduction to Density Functional Theory with Applications to Graphene Branislav K. Nikolić Introduction to Density Functional Theory with Applications to Graphene Branislav K. Nikolić Department of Physics and Astronomy, University of Delaware, Newark, DE 19716, U.S.A. http://wiki.physics.udel.edu/phys824

More information

Probing the Electronic Structure of Complex Systems by State-of-the-Art ARPES Andrea Damascelli

Probing the Electronic Structure of Complex Systems by State-of-the-Art ARPES Andrea Damascelli Probing the Electronic Structure of Complex Systems by State-of-the-Art ARPES Andrea Damascelli Department of Physics & Astronomy University of British Columbia Vancouver, B.C. Outline: Part I State-of-the-Art

More information

Competing Ferroic Orders The magnetoelectric effect

Competing Ferroic Orders The magnetoelectric effect Competing Ferroic Orders The magnetoelectric effect Cornell University I would found an institution where any person can find instruction in any study. Ezra Cornell, 1868 Craig J. Fennie School of Applied

More information

Superconductivity in Fe-based ladder compound BaFe 2 S 3

Superconductivity in Fe-based ladder compound BaFe 2 S 3 02/24/16 QMS2016 @ Incheon Superconductivity in Fe-based ladder compound BaFe 2 S 3 Tohoku University Kenya OHGUSHI Outline Introduction Fe-based ladder material BaFe 2 S 3 Basic physical properties High-pressure

More information

Orbitals, reduced dimensionality and spin gaps and insulator-metal transitions

Orbitals, reduced dimensionality and spin gaps and insulator-metal transitions Orbitals, reduced dimensionality and spin gaps and insulator-metal transitions D.Khomskii Cologne University, Germany D.Kh. Physica Scripta (Comments Cond.Mat.Phys.) 72, CC8 (2005) D.Kh. Progr.Theor. Phys.

More information

Many electrons: Density functional theory Part II. Bedřich Velický VI.

Many electrons: Density functional theory Part II. Bedřich Velický VI. Many electrons: Density functional theory Part II. Bedřich Velický velicky@karlov.mff.cuni.cz VI. NEVF 514 Surface Physics Winter Term 013-014 Troja 1 st November 013 This class is the second devoted to

More information

Non-collinear OEP for solids: SDFT vs CSDFT

Non-collinear OEP for solids: SDFT vs CSDFT Non-collinear OEP for solids: SDFT vs Sangeeta Sharma 1,2, J. K. Dewhurst 3 S. Pittalis 2, S. Kurth 2, S. Shallcross 4 and E. K. U. Gross 2 1. Fritz-Haber nstitut of the Max Planck Society, Berlin, Germany

More information

Optical Properties of Semiconductors. Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India

Optical Properties of Semiconductors. Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India Optical Properties of Semiconductors 1 Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India http://folk.uio.no/ravi/semi2013 Light Matter Interaction Response to external electric

More information

Geometrical frustration, phase transitions and dynamical order

Geometrical frustration, phase transitions and dynamical order Geometrical frustration, phase transitions and dynamical order The Tb 2 M 2 O 7 compounds (M = Ti, Sn) Yann Chapuis PhD supervisor: Alain Yaouanc September 2009 ann Chapuis (CEA/Grenoble - Inac/SPSMS)

More information

Modified Becke-Johnson (mbj) exchange potential

Modified Becke-Johnson (mbj) exchange potential Modified Becke-Johnson (mbj) exchange potential Hideyuki Jippo Fujitsu Laboratories LTD. 2015.12.21-22 OpenMX developer s meeting @ Kobe Overview: mbj potential The semilocal exchange potential adding

More information

High T C copper oxide superconductors and CMR:

High T C copper oxide superconductors and CMR: High T C copper oxide superconductors and CMR: Ram Seshadri (seshadri@mrl.ucsb.edu) The Ruddlesden-Popper phases: Ruddlesden-Popper phases are intergrowths of perovskite slabs with rock salt slabs. First

More information

Self-compensating incorporation of Mn in Ga 1 x Mn x As

Self-compensating incorporation of Mn in Ga 1 x Mn x As Self-compensating incorporation of Mn in Ga 1 x Mn x As arxiv:cond-mat/0201131v1 [cond-mat.mtrl-sci] 9 Jan 2002 J. Mašek and F. Máca Institute of Physics, Academy of Sciences of the CR CZ-182 21 Praha

More information

Tb 2 Hf 2 O 7 R 2 B 2 7 R B R 3+ T N

Tb 2 Hf 2 O 7 R 2 B 2 7 R B R 3+ T N Tb Hf O 7 7 χ ac(t ) χ(t ) M(H) C p(t ) µ χ ac(t ) µ 7 7 7 R B 7 R B R 3+ 111 7 7 7 7 111 θ p = 19 7 7 111 7 15 7 7 7 7 7 7 7 7 T N.55 3+ 7 µ µ B 7 7 7 3+ 4f 8 S = 3 L = 3 J = 6 J + 1 = 13 7 F 6 3+ 7 7

More information

What we have learned from Ba(Fe 1-x TM x ) 2 As 2 studies: empirical rules to inform theory

What we have learned from Ba(Fe 1-x TM x ) 2 As 2 studies: empirical rules to inform theory What we have learned from Ba(Fe 1-x TM x ) 2 As 2 studies: empirical rules to inform theory Paul C. Canfield Senior Physicist, Ames Laboratory Distinguished Professor, Dept. Physics Iowa State University

More information

First principle calculations of plutonium and plutonium compounds: part 1

First principle calculations of plutonium and plutonium compounds: part 1 First principle calculations of plutonium and plutonium compounds: part 1 A. B. Shick Institute of Physics ASCR, Prague, CZ Outline: u Lecture 1: Methods of Correlated band theory DFT and DFT+U u Lecture

More information

GEOMETRICALLY FRUSTRATED MAGNETS. John Chalker Physics Department, Oxford University

GEOMETRICALLY FRUSTRATED MAGNETS. John Chalker Physics Department, Oxford University GEOMETRICLLY FRUSTRTED MGNETS John Chalker Physics Department, Oxford University Outline How are geometrically frustrated magnets special? What they are not Evading long range order Degeneracy and fluctuations

More information

Band Structure Calculations; Electronic and Optical Properties

Band Structure Calculations; Electronic and Optical Properties ; Electronic and Optical Properties Stewart Clark University of Outline Introduction to band structures Calculating band structures using Castep Calculating optical properties Examples results Some applications

More information

New perspectives in superconductors. E. Bascones Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC)

New perspectives in superconductors. E. Bascones Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC) New perspectives in superconductors E. Bascones Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC) E. Bascones leni@icmm.csic.es Outline Talk I: Correlations in iron superconductors Introduction

More information

N. Gonzalez Szwacki and Jacek A. Majewski Faculty of Physics, University of Warsaw, ul. Hoża 69, Warszawa, Poland

N. Gonzalez Szwacki and Jacek A. Majewski Faculty of Physics, University of Warsaw, ul. Hoża 69, Warszawa, Poland Ab initio studies of Co 2 FeAl 1-x Si x Heusler alloys N. Gonzalez Szwacki and Jacek A. Majewski Faculty of Physics, University of Warsaw, ul. Hoża 69, 00-681 Warszawa, Poland Abstract We present results

More information

Improved Electronic Structure and Optical Properties of sp-hybridized Semiconductors Using LDA+U SIC

Improved Electronic Structure and Optical Properties of sp-hybridized Semiconductors Using LDA+U SIC 286 Brazilian Journal of Physics, vol. 36, no. 2A, June, 2006 Improved Electronic Structure and Optical Properties of sp-hybridized Semiconductors Using LDA+U SIC Clas Persson and Susanne Mirbt Department

More information

What so special about LaAlO3/SrTiO3 interface? Magnetism, Superconductivity and their coexistence at the interface

What so special about LaAlO3/SrTiO3 interface? Magnetism, Superconductivity and their coexistence at the interface What so special about LaAlO3/SrTiO3 interface? Magnetism, Superconductivity and their coexistence at the interface Pramod Verma Indian Institute of Science, Bangalore 560012 July 24, 2014 Pramod Verma

More information

Space group symmetry, spin-orbit coupling and the low energy effective Hamiltonian for iron based superconductors

Space group symmetry, spin-orbit coupling and the low energy effective Hamiltonian for iron based superconductors Space group symmetry, spin-orbit coupling and the low energy effective Hamiltonian for iron based superconductors Phys. Rev. B 88, 134510 (2013) Oskar Vafek National High Magnetic Field Laboratory and

More information

ELECTRONIC STRUCTURE OF DISORDERED ALLOYS, SURFACES AND INTERFACES

ELECTRONIC STRUCTURE OF DISORDERED ALLOYS, SURFACES AND INTERFACES ELECTRONIC STRUCTURE OF DISORDERED ALLOYS, SURFACES AND INTERFACES llja TUREK Institute of Physics of Materials, Brno Academy of Sciences of the Czech Republic Vaclav DRCHAL, Josef KUDRNOVSKY Institute

More information

Electronic, magnetic and spectroscopic properties of free Fe clusters

Electronic, magnetic and spectroscopic properties of free Fe clusters Electronic, magnetic and spectroscopic properties of free Fe clusters O. Šipr 1, M. Košuth 2, J. Minár 2, S. Polesya 2 and H. Ebert 2 1 Institute of Physics, Academy of Sciences of the Czech Republic,

More information

Magnetism in correlated-electron materials

Magnetism in correlated-electron materials Magnetism in correlated-electron materials B. Keimer Max-Planck-Institute for Solid State Research focus on delocalized electrons in metals and superconductors localized electrons: Hinkov talk outline

More information

Mn in GaAs: from a single impurity to ferromagnetic layers

Mn in GaAs: from a single impurity to ferromagnetic layers Mn in GaAs: from a single impurity to ferromagnetic layers Paul Koenraad Department of Applied Physics Eindhoven University of Technology Materials D e v i c e s S y s t e m s COBRA Inter-University Research

More information

Magnetic Oxides. Gerald F. Dionne. Department of Materials Science and Engineering Massachusetts Institute of Technology

Magnetic Oxides. Gerald F. Dionne. Department of Materials Science and Engineering Massachusetts Institute of Technology Magnetic Oxides Gerald F. Dionne Department of Materials Science and Engineering Massachusetts Institute of Technology Spins in Solids Summer School University of Virginia Charlottesville, VA 21 June 2006

More information

Electronic correlations in models and materials. Jan Kuneš

Electronic correlations in models and materials. Jan Kuneš Electronic correlations in models and materials Jan Kuneš Outline Dynamical-mean field theory Implementation (impurity problem) Single-band Hubbard model MnO under pressure moment collapse metal-insulator

More information

Magnetism: Spin-orbit coupling magnetic exchange and anisotropy

Magnetism: Spin-orbit coupling magnetic exchange and anisotropy VASP workshop Rennes 2016 Magnetism: Spin-orbit coupling magnetic exchange and anisotropy Xavier Rocquefelte Institut des Sciences Chimiques de Rennes (UMR 6226) Université de Rennes 1, FRANCE INTRODUCTION

More information

Outline. Introduction: graphene. Adsorption on graphene: - Chemisorption - Physisorption. Summary

Outline. Introduction: graphene. Adsorption on graphene: - Chemisorption - Physisorption. Summary Outline Introduction: graphene Adsorption on graphene: - Chemisorption - Physisorption Summary 1 Electronic band structure: Electronic properties K Γ M v F = 10 6 ms -1 = c/300 massless Dirac particles!

More information

Optical Properties of Solid from DFT

Optical Properties of Solid from DFT Optical Properties of Solid from DFT 1 Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India & Center for Materials Science and Nanotechnology, University of Oslo, Norway http://folk.uio.no/ravi/cmt15

More information

Metal-insulator transitions

Metal-insulator transitions Metal-insulator transitions What can we learn from electronic structure calculations? Mike Towler mdt26@phy.cam.ac.uk www.tcm.phy.cam.ac.uk/ mdt26 Theory of Condensed Matter Group Cavendish Laboratory

More information

Solving the sign problem for a class of frustrated antiferromagnets

Solving the sign problem for a class of frustrated antiferromagnets Solving the sign problem for a class of frustrated antiferromagnets Fabien Alet Laboratoire de Physique Théorique Toulouse with : Kedar Damle (TIFR Mumbai), Sumiran Pujari (Toulouse Kentucky TIFR Mumbai)

More information

Heisenberg-Kitaev physics in magnetic fields

Heisenberg-Kitaev physics in magnetic fields Heisenberg-Kitaev physics in magnetic fields Lukas Janssen & Eric Andrade, Matthias Vojta L.J., E. Andrade, and M. Vojta, Phys. Rev. Lett. 117, 277202 (2016) L.J., E. Andrade, and M. Vojta, Phys. Rev.

More information

arxiv:cond-mat/ v1 [cond-mat.mtrl-sci] 6 Apr 2000

arxiv:cond-mat/ v1 [cond-mat.mtrl-sci] 6 Apr 2000 Electronic Structure and Magnetism of Equiatomic FeN Y. Kong Department of Physics & The Applied Magnetics Laboratory of the Ministry of Education, Lanzhou University, 73 Lanzhou, China Max-Planck-Institut

More information

Magnetism at finite temperature: molecular field, phase transitions

Magnetism at finite temperature: molecular field, phase transitions Magnetism at finite temperature: molecular field, phase transitions -The Heisenberg model in molecular field approximation: ferro, antiferromagnetism. Ordering temperature; thermodynamics - Mean field

More information

Density functional calculations on the charge-ordered and valence-mixed modification of YBaFe 2 O 5

Density functional calculations on the charge-ordered and valence-mixed modification of YBaFe 2 O 5 PHYSICAL REVIEW B 79, 53 009 Density functional calculations on the charge-ordered and valence-mixed modification of YBaFe O 5 Christian Spiel, Peter Blaha, and Karlheinz Schwarz Department of Materials

More information

Hyperfine interactions

Hyperfine interactions Hyperfine interactions Karlheinz Schwarz Institute of Materials Chemistry TU Wien Some slides were provided by Stefaan Cottenier (Gent) nuclear point charges interacting with electron charge distribution

More information

CHAPTER 4. ELECTRONIC AND MAGNETIC PROPERTIES OF MX 2 (M = V, Nb; X = Al, Ga, In, Cl, Br AND I) COMPOUNDS IN CdI 2 -TYPE STRUCTURE

CHAPTER 4. ELECTRONIC AND MAGNETIC PROPERTIES OF MX 2 (M = V, Nb; X = Al, Ga, In, Cl, Br AND I) COMPOUNDS IN CdI 2 -TYPE STRUCTURE 84 CHAPTER 4 ELECTRONIC AND MAGNETIC PROPERTIES OF MX 2 (M = V, Nb; X = Al, Ga, In, Cl, Br AND I) COMPOUNDS IN CdI 2 -TYPE STRUCTURE 4.1 INTRODUCTION As ideal materials for use in spintronic devices, the

More information