Heisenberg-Kitaev physics in magnetic fields

Size: px
Start display at page:

Download "Heisenberg-Kitaev physics in magnetic fields"

Transcription

1 Heisenberg-Kitaev physics in magnetic fields Lukas Janssen & Eric Andrade, Matthias Vojta L.J., E. Andrade, and M. Vojta, Phys. Rev. Lett. 117, (2016) L.J., E. Andrade, and M. Vojta, Phys. Rev. B 96, 0630 (2017) A. Wolter, L. Corredor, L.J., et al., Phys. Rev. B 96, 0105(R) (2017) SFB 113

2 α-rucl3 in field: [Sears et al., PRB(R) 17] [Baek et al., PRL 17] [Johnson et al., PRB 15] [Wolter et al., PRB(R) 17] T N (K) (K) Smag( J mol K ) [Banerjee et al., NPJQM 18] T (K) µ 0 H (T) Questions: Reason for anisotropy? Nature of field-induced phases? g factors or intrinsic? quantum paramagnet/topological spin liquid? Appropriate spin model? sign of K1, role of J3, Γ1?

3 <latexit sha1_base6="oj31nb3shz07glefsoqs3fiqlg=">aaacn3icbvhbjtmwehxdbqm3ljzyym0fggqbigwfaswjpyjfutzru1vtzxj16rtrlzttrl8b3wnr/aj/a1ugis6y8iwjuzxmfm5lxgxibj71507fqnm7f2bsd37t67/6c///clqrrncmiquemzhawkrnbiurvvmsemqs8zzdvn/zpcrxhlfps1zxojcwulzkdg1lz/tpmovt+zinhxcvalzcruw8jzyxsfhp+8pkmhsbr0k0gmsbfj+xvzqknrkvzqkmmazjbwcotovmoi+zxmanbaklnaaoqkkzuvaip09cpqblpcnvlrbzfyscsgpwmg8vjdhzc5nbjp/htrtbvpk5rurgomlbj8pgufvrzxzowtuyk9ybanm8akxshdqwg3yyx5lghd9yjswowmulsc7wbzbqcotdzsq/eeeqaduq2sxiflwjqfjx2ntdx2ynj7pqjdi5neud6owxanc7t++pvxudpg8nptwkfelgsnrzg6tg8njnew+vhqmrp09e+qxosdpseooyyickdgzeea+kx/kj/kvhuqn0ydovh0a9bqar2qnoq9/ahvp0a=</latexit> α-rucl3 in zero field: Zigzag antiferromagnet Neutron diffraction: [Johnson et al., PRB 15] +~m stagg ~m stagg y +~e z +~m stagg x z Moment direction: [Cao et al., PRB 16] or ~S k ±[001] 2 ac ; ](~S;a) ' 35 ~S k ±[xxz] 2 ac ; ](~S;a) ' +35

4 Mechanisms to stabilize zigzag Extended Heisenberg-Kitaev models: h i J 1 ~S i ~S j +K 1 S i S j +Γ 1 (S i S j +S i S j ) H = X hiji + X hhijii J 2 ~ Si ~S j +K 2 S i S j + X hhhijiii J 3 ~ Si ~S j ~ h X i ~S i neglect trigonal distortion J 1 K 1 Ŵ 1 J 2 K 2 J 3 Set Material (mev) (mev) (mev) (mev) (mev) (mev) Method Ref. Year 1 α-rucl Fittoneutron scattering [35,36] Na 2 IrO Fit to susceptibility and neutron scattering [30] Ŵ α-rucl DFT + t/u expansion [] Na 2 IrO DFT+ exact diagonalization [32] Ŵ Na 2 IrO DFT+ t/u expansion, direction of moments [0,5] 2016 (2 + Ŵ) Na 2 IrO MRCI,fittoθ CW [7] 201 (2 + Ŵ) α-rucl MRCI, fit to magnetization [13] /3 α-rucl DFT+ exact diagonalization [32] α-rucl Fit to neutron scattering [33] α-rucl DFT+ t/u expansion [3] α-rucl DFT+ t/u expansion [38] J 3 α-rucl Fit to neutron scattering [39] 2017 [LJ, Andrade, Vojta, PRB 17]

5 Mechanisms to stabilize zigzag J 1 K 1 Ŵ 1 J 2 K 2 J 3 Set Material (mev) (mev) (mev) (mev) (mev) (mev) Method Ref. Year 1 α-rucl Fittoneutron scattering [35,36] Na 2 IrO Fit to susceptibility and neutron scattering [30] Ŵ α-rucl DFT + t/u expansion [] Na 2 IrO DFT+ exact diagonalization [32] Ŵ Na 2 IrO DFT+ t/u expansion, direction of moments [0,5] 2016 (2 + Ŵ) Na 2 IrO MRCI,fittoθ CW [7] 201 (2 + Ŵ) α-rucl MRCI, fit to magnetization [13] /3 α-rucl DFT+ exact diagonalization [32] α-rucl Fit to neutron scattering [33] α-rucl DFT+ t/u expansion [3] α-rucl DFT+ t/u expansion [38] J 3 α-rucl Fit to neutron scattering [39] 2017 Three scenarios: (1) Antiferromagnetic K1, ferromagnetic J1 [Chaloupka et al., PRL 13]

6 Mechanisms to stabilize zigzag J 1 K 1 Ŵ 1 J 2 K 2 J 3 Set Material (mev) (mev) (mev) (mev) (mev) (mev) Method Ref. Year 1 α-rucl Fittoneutron scattering [35,36] Na 2 IrO Fit to susceptibility and neutron scattering [30] Ŵ α-rucl DFT + t/u expansion [] Na 2 IrO DFT+ exact diagonalization [32] Ŵ Na 2 IrO DFT+ t/u expansion, direction of moments [0,5] 2016 (2 + Ŵ) Na 2 IrO MRCI,fittoθ CW [7] 201 (2 + Ŵ) α-rucl MRCI, fit to magnetization [13] /3 α-rucl DFT+ exact diagonalization [32] α-rucl Fit to neutron scattering [33] α-rucl DFT+ t/u expansion [3] α-rucl DFT+ t/u expansion [38] J 3 α-rucl Fit to neutron scattering [39] 2017 Three scenarios: (1) Antiferromagnetic K1, ferromagnetic J1 [Chaloupka et al., PRL 13] (2) Ferromagnetic K1, antiferromagnetic J3 [Winter et al., PRB 16] [Katukuri et al., NJP 1; ]

7 Mechanisms to stabilize zigzag J 1 K 1 Ŵ 1 J 2 K 2 J 3 Set Material (mev) (mev) (mev) (mev) (mev) (mev) Method Ref. Year 1 α-rucl Fittoneutron scattering [35,36] Na 2 IrO Fit to susceptibility and neutron scattering [30] Ŵ α-rucl DFT + t/u expansion [] Na 2 IrO DFT+ exact diagonalization [32] Ŵ Na 2 IrO DFT+ t/u expansion, direction of moments [0,5] 2016 (2 + Ŵ) Na 2 IrO MRCI,fittoθ CW [7] 201 (2 + Ŵ) α-rucl MRCI, fit to magnetization [13] /3 α-rucl DFT+ exact diagonalization [32] α-rucl Fit to neutron scattering [33] α-rucl DFT+ t/u expansion [3] α-rucl 3 S DFT+ t/u expansion [38] J 3 α-rucl Fit to neutron scattering [39] 2017 Three scenarios: (1) Antiferromagnetic K1, ferromagnetic J1 [Chaloupka et al., PRL 13] (2) Ferromagnetic K1, antiferromagnetic J3 [Winter et al., PRB 16] (3) Ferromagnetic K1, positive Γ1 [Rau et al., PRL 1; Ran et al., PRL 17] we will show that finite J 1 < 0 is also needed [Katukuri et al., NJP 1; ]

8 Mechanisms to stabilize zigzag J 1 K 1 Ŵ 1 J 2 K 2 J 3 Set Material (mev) (mev) (mev) (mev) (mev) (mev) Method Ref. Year 1 α-rucl Fittoneutron scattering [35,36] Na 2 IrO Fit to susceptibility and neutron scattering [30] Ŵ α-rucl DFT + t/u expansion [] Na 2 IrO DFT+ exact diagonalization [32] Ŵ Na 2 IrO DFT+ t/u expansion, direction of moments [0,5] 2016 (2 + Ŵ) Na 2 IrO MRCI,fittoθ CW [7] 201 (2 + Ŵ) α-rucl MRCI, fit to magnetization [13] /3 α-rucl DFT+ exact diagonalization [32] α-rucl Fit to neutron scattering [33] α-rucl DFT+ t/u expansion [3] α-rucl DFT+ t/u expansion [38] J 3 α-rucl Fit to neutron scattering [39] 2017 Three scenarios: (1) Antiferromagnetic K1, ferromagnetic J1 [Chaloupka et al., PRL 13] (2) Ferromagnetic K1, antiferromagnetic J3 [Winter et al., PRB 16] (3) Ferromagnetic K1, positive Γ1 [Rau et al., PRL 1; Ran et al., PRL 17] we will show that finite J 1 < 0 is also needed [Katukuri et al., NJP 1; ] This talk: Magnetic-field behavior allows to distinguish scenarios!

9 Warm-up: SU(2) Heisenberg antiferromagnet in field Minimal model: H = X hiji J 1 ~S i ~S j ~h X ~S i i ~h ~h =0

10 Warm-up: SU(2) Heisenberg antiferromagnet in field Minimal model: H = X hiji J 1 ~S i ~S j ~h X ~S i i ~h ~h =0

11 Warm-up: SU(2) Heisenberg antiferromagnet in field Minimal model: H = X hiji J 1 ~S i ~S j ~h X ~S i i ~h 0 < ~h J 1 S ~S i ~h (largest susceptibility)

12 Warm-up: SU(2) Heisenberg antiferromagnet in field Minimal model: H = X hiji J 1 ~S i ~S j ~h X ~S i i ~h 0 < ~h < 6J 1 S homogenous canting h ~m i =S ~h =(6J 1 S)

13 Warm-up: SU(2) Heisenberg antiferromagnet in field Minimal model: H = X hiji J 1 ~S i ~S j ~h X ~S i i ~h 6J 1 S ~h fully polarized h~m i =S =1 since one-magnon state eigenstate of H h ~m i =S ~h =(6J 1 S)

14 α-rucl3: Field directions

15 Scenario 1: Antiferromagnetic K1, ferromagnetic J1 Minimal model: H = X hiji h J 1 ~S i ~S j +K 1 S i S j [Chaloupka et al., PRL 10; PRL 13] i Zero field: cubic-axes zigzag ~S k ±~e z along Ru-Cl bonds consistent with one of the two options in α-rucl 3 : [Cao et al., PRB 16]

16 Scenario 1 (K1 > 0, J1 < 0) in field: ~h k [ 110] k b Spin-wave spectrum in high-field phase: 3 Set 1 ~ h k [ 110] k b h = h + c K M 2 K M 1 M 3 K Γ K along Ru-Ru bonds ε~q /(AS) K Γ M 1 K M 2 K M 3 K (J 1, K 1 ) = (-.6, +7.0) mev [Banerjee et al., Nat. Mat. 16] gap closes precisely at z zigzag ordering wavevector ~ Q = M 2 consistent with a direct continuous transition to canted zigzag

17 Scenario 1 (K1 > 0, J1 < 0) in field: ~h k [ 110] k b Magnetization curve: M1 along Ru-Ru bonds Γ M2 Γ 1.0 M3 ~m ĥ/s M1 M2 M uniform h ~ Sik ~ h 0.2 cubic-axis z-zigzag h/ K 1 S Set 1 (K 1 -J 1 ) ~ h k [ 110] k b MC (S ) anal.(s ) SW (S =1/2) 2 (J 1, K 1 ) = (-.6, +7.0) mev but: high-field state not fully polarized: h~m i =S < 1

18 Scenario 1 (K1 > 0, J1 < 0) in field: ~h k [ 110] k b Classical phase diagram in [1 10] field: h/(as) canted Néel π π 2 canted zigzag 3π polarized ' = ' = 1.85 ' =2 5π 3π 2 canted stripy Néel zigzag FM stripy Néel 7π ~ h [ 110] canted Néel J 1 = Acos K 1 =2Asin

19 Scenario 1 (K1 > 0, J1 < 0) in field: ~h k [111] k c Zero field: ~S i along cubic axes simple canting impossible! cubic-axes zigzag canted zigzag will compete with other states Spin-wave spectrum in high-field phase: ε~q/(as) ~ h k [111] ' =0.62 h =2.61AS M 1 K K Γ magnon gap closes at K points! 0.0 K Γ M K different from zigzag ordering wavevector

20 Scenario 1 (K1 > 0, J1 < 0) in field: ~h k [111] k c Zero field: ~S i along cubic axes simple canting impossible! cubic-axes zigzag canted zigzag will compete with other states Spin-wave spectrum in high-field phase: ε~q/(as) ~ h k [111] ' =0.62 h =2.61AS Continuous transition to canted zigzag impossible! magnon gap closes at K points! 0.0 K Γ M K M 1 K K Γ different from zigzag ordering wavevector

21 Scenario 1 (K1 > 0, J1 < 0) in field: ~h k [111] k c K 1 > 2J 1 : intermediate phases 2J 1 >K 1 > J 1 : first-order transition (a) (b)

22 Scenario 1 (K1 > 0, J1 < 0) in field: ~h k [111] k c K 1 > 2J 1 : intermediate phases h = 0: (a) [111] [ 110] [11 2] zigzag

23 ~ Scenario 1 (K1 > 0, J1 < 0) in field: h k [111] k c K1 > 2J1 : intermediate phases 0 < h/(as) < 1.8: h = 0.18AS (a) AF star

24 ~ Scenario 1 (K1 > 0, J1 < 0) in field: h k [111] k c K1 > 2J1 : intermediate phases 1.8 < h/(as) < 2.0: h = 1.8AS (a) [111] zigzag star cf. [Chern et al., PRB 17]

25 ~ Scenario 1 (K1 > 0, J1 < 0) in field: h k [111] k c K1 > 2J1 : intermediate phases 2.0 < h/(as) < 2.6: (a) AF vortex consistent with spin-wave analysis

26 Scenario 1 (K1 > 0, J1 < 0) in field: ~h k [111] k c Classical phase diagram in [111] field: [LJ, Andrade, Vojta, PRL 16] h/(as) AF vortex polarized diluted star canted zigzag star canted Néel vortex Néel canted stripy FM AF star canted zigzag star Néel zigzag FM stripy Néel π π 2 3π ' = ' = 1.85 ' =2 5π 3π 2 7π ~ h [111] J 1 = Acos K 1 =2Asin similarly complicated phase diagram for [112 ] direction (a axis)

27 Scenario 1 (K1 > 0, J1 < 0) in field: ~h k [111] k c Classical phase diagram in [111] field: [LJ, Andrade, Vojta, PRL 16] h/(as) AF vortex polarized diluted star canted zigzag star canted Néel vortex Néel canted stripy FM AF star canted zigzag star Néel zigzag FM stripy Néel π π 2 3π ' = ' = 1.85 ' =2 5π 3π 2 7π ~ h [111] zigzag/stripy & star Klein points intermediate phases also for S = 1/2 J 1 = Acos K 1 =2Asin

28 <latexit sha1_base6="qtqawdc3kifkuqqnawuodq5hq0m=">aaacnxicbvhdbtmwfhbdz7bw13l3vguebessiambrdi1ucaakgbkj1uv9wjc7jatz3idgzvlbfgabifn+ftcnmg0y0jw/r8nr+fc76kkmk6kprdca5dv3fzy3mrvhx7zt173e2dlzyvdcchz2vuzhkwkixgornollhefqicztmxyz9ows0vut6s1suoffwrkumodhptbsp305j+pg+p/eea1nmgdiwvmu5vf0vn+32on7ugl0khb0sgun0+1owtkclwq1xkshcdrsyvgcexdpkpcuc+bzoceyhbov2ujxj1psrz1ka5czf7wjd/ptrgbj2orifqcdn7gxfkvyfb1y67ghscv2udjvffzsvkrqclnddu2gqo7nwalgrvlfkz2cao7/bmgqgnx7luvkg0ploircpjhbkv1dmzv9xwsnwdbnr8tzbb2unzreimk2w39btr8yx8wl2byql2dmj7leuvr0+qsudukn/sshx75o6fwjl2twfqz3+8f96ooz3mdqyrnjdskd8ote5jamybtysoaek+/kb/ljfgu0ebw8dz6sqonom3ofrfkw+gof+cvl</latexit> <latexit sha1_base6="qtqawdc3kifkuqqnawuodq5hq0m=">aaacnxicbvhdbtmwfhbdz7bw13l3vguebessiambrdi1ucaakgbkj1uv9wjc7jatz3idgzvlbfgabifn+ftcnmg0y0jw/r8nr+fc76kkmk6kprdca5dv3fzy3mrvhx7zt173e2dlzyvdcchz2vuzhkwkixgornollhefqicztmxyz9ows0vut6s1suoffwrkumodhptbsp305j+pg+p/eea1nmgdiwvmu5vf0vn+32on7ugl0khb0sgun0+1owtkclwq1xkshcdrsyvgcexdpkpcuc+bzoceyhbov2ujxj1psrz1ka5czf7wjd/ptrgbj2orifqcdn7gxfkvyfb1y67ghscv2udjvffzsvkrqclnddu2gqo7nwalgrvlfkz2cao7/bmgqgnx7luvkg0ploircpjhbkv1dmzv9xwsnwdbnr8tzbb2unzreimk2w39btr8yx8wl2byql2dmj7leuvr0+qsudukn/sshx75o6fwjl2twfqz3+8f96ooz3mdqyrnjdskd8ote5jamybtysoaek+/kb/ljfgu0ebw8dz6sqonom3ofrfkw+gof+cvl</latexit> <latexit sha1_base6="qtqawdc3kifkuqqnawuodq5hq0m=">aaacnxicbvhdbtmwfhbdz7bw13l3vguebessiambrdi1ucaakgbkj1uv9wjc7jatz3idgzvlbfgabifn+ftcnmg0y0jw/r8nr+fc76kkmk6kprdca5dv3fzy3mrvhx7zt173e2dlzyvdcchz2vuzhkwkixgornollhefqicztmxyz9ows0vut6s1suoffwrkumodhptbsp305j+pg+p/eea1nmgdiwvmu5vf0vn+32on7ugl0khb0sgun0+1owtkclwq1xkshcdrsyvgcexdpkpcuc+bzoceyhbov2ujxj1psrz1ka5czf7wjd/ptrgbj2orifqcdn7gxfkvyfb1y67ghscv2udjvffzsvkrqclnddu2gqo7nwalgrvlfkz2cao7/bmgqgnx7luvkg0ploircpjhbkv1dmzv9xwsnwdbnr8tzbb2unzreimk2w39btr8yx8wl2byql2dmj7leuvr0+qsudukn/sshx75o6fwjl2twfqz3+8f96ooz3mdqyrnjdskd8ote5jamybtysoaek+/kb/ljfgu0ebw8dz6sqonom3ofrfkw+gof+cvl</latexit> Scenario 1 (K1 > 0, J1 < 0) in field: ~h k [111] k c Classical phase diagram in [111] field: [LJ, Andrade, Vojta, PRL 16] h/(as) AF vortex polarized diluted star canted zigzag star canted Néel vortex Néel canted stripy FM AF star canted zigzag star Néel zigzag FM stripy Néel π π 2 3π ' = ' = 1.85 ' =2 5π 3π 2 7π ~ h [111] DMRG: magnetic field h α Heisenberg model canted Neel AFM h coupling parameter α polarized phase canted stripy AFM topological phase Kitaev model J 1 =1 K 1 = 2 [Jiang, Gu, Qi, Trebst, PRB 11]

29 0 α coupling parameter α Kitaev model h canted Neel AFM topological phase canted stripy AFM magnetic field h Heisenberg model <latexit sha1_base6="qtqawdc3kifkuqqnawuodq5hq0m=">aaacnxicbvhdbtmwfhbdz7bw13l3vguebessiambrdi1ucaakgbkj1uv9wjc7jatz3idgzvlbfgabifn+ftcnmg0y0jw/r8nr+fc76kkmk6kprdca5dv3fzy3mrvhx7zt173e2dlzyvdcchz2vuzhkwkixgornollhefqicztmxyz9ows0vut6s1suoffwrkumodhptbsp305j+pg+p/eea1nmgdiwvmu5vf0vn+32on7ugl0khb0sgun0+1owtkclwq1xkshcdrsyvgcexdpkpcuc+bzoceyhbov2ujxj1psrz1ka5czf7wjd/ptrgbj2orifqcdn7gxfkvyfb1y67ghscv2udjvffzsvkrqclnddu2gqo7nwalgrvlfkz2cao7/bmgqgnx7luvkg0ploircpjhbkv1dmzv9xwsnwdbnr8tzbb2unzreimk2w39btr8yx8wl2byql2dmj7leuvr0+qsudukn/sshx75o6fwjl2twfqz3+8f96ooz3mdqyrnjdskd8ote5jamybtysoaek+/kb/ljfgu0ebw8dz6sqonom3ofrfkw+gof+cvl</latexit> <latexit sha1_base6="qtqawdc3kifkuqqnawuodq5hq0m=">aaacnxicbvhdbtmwfhbdz7bw13l3vguebessiambrdi1ucaakgbkj1uv9wjc7jatz3idgzvlbfgabifn+ftcnmg0y0jw/r8nr+fc76kkmk6kprdca5dv3fzy3mrvhx7zt173e2dlzyvdcchz2vuzhkwkixgornollhefqicztmxyz9ows0vut6s1suoffwrkumodhptbsp305j+pg+p/eea1nmgdiwvmu5vf0vn+32on7ugl0khb0sgun0+1owtkclwq1xkshcdrsyvgcexdpkpcuc+bzoceyhbov2ujxj1psrz1ka5czf7wjd/ptrgbj2orifqcdn7gxfkvyfb1y67ghscv2udjvffzsvkrqclnddu2gqo7nwalgrvlfkz2cao7/bmgqgnx7luvkg0ploircpjhbkv1dmzv9xwsnwdbnr8tzbb2unzreimk2w39btr8yx8wl2byql2dmj7leuvr0+qsudukn/sshx75o6fwjl2twfqz3+8f96ooz3mdqyrnjdskd8ote5jamybtysoaek+/kb/ljfgu0ebw8dz6sqonom3ofrfkw+gof+cvl</latexit> <latexit sha1_base6="qtqawdc3kifkuqqnawuodq5hq0m=">aaacnxicbvhdbtmwfhbdz7bw13l3vguebessiambrdi1ucaakgbkj1uv9wjc7jatz3idgzvlbfgabifn+ftcnmg0y0jw/r8nr+fc76kkmk6kprdca5dv3fzy3mrvhx7zt173e2dlzyvdcchz2vuzhkwkixgornollhefqicztmxyz9ows0vut6s1suoffwrkumodhptbsp305j+pg+p/eea1nmgdiwvmu5vf0vn+32on7ugl0khb0sgun0+1owtkclwq1xkshcdrsyvgcexdpkpcuc+bzoceyhbov2ujxj1psrz1ka5czf7wjd/ptrgbj2orifqcdn7gxfkvyfb1y67ghscv2udjvffzsvkrqclnddu2gqo7nwalgrvlfkz2cao7/bmgqgnx7luvkg0ploircpjhbkv1dmzv9xwsnwdbnr8tzbb2unzreimk2w39btr8yx8wl2byql2dmj7leuvr0+qsudukn/sshx75o6fwjl2twfqz3+8f96ooz3mdqyrnjdskd8ote5jamybtysoaek+/kb/ljfgu0ebw8dz6sqonom3ofrfkw+gof+cvl</latexit> Scenario 1 (K1 > 0, J1 < 0) in field: ~h k [111] k c Classical phase diagram in [111] field: [LJ, Andrade, Vojta, PRL 16] h/(as) AF vortex polarized diluted star canted zigzag star canted Néel vortex Néel canted stripy FM AF star canted zigzag star Néel zigzag FM stripy Néel π π 2 3π ' = ' = 1.85 ' =2 5π 3π 2 7π ~ h [111] DMRG: polarized phase J 1 =1 K 1 = 2 [Jiang, Gu, Qi, Trebst, PRB 11]

30 Scenario 1 (K1 > 0, J1 < 0) in field: ~h k [111] k c Classical phase diagram in [111] field: [LJ, Andrade, Vojta, PRL 16] h/(as) AF vortex polarized diluted star canted zigzag star canted Néel vortex Néel canted stripy FM AF star canted zigzag star Néel zigzag FM stripy Néel π π 2 3π ' = ' = 1.85 ' =2 5π 3π 2 7π ~ h [111] coupling parameter α magnetic field h Heisenberg model 0 α Kitaev model h polarized phase canted Neel AFM canted stripy AFM topological phase DMRG: [Jiang, Gu, Qi, Trebst, PRB 11]

31 Summary: Scenario 1 (K1 > 0, J1 < 0) Magnetization process strongly anisotropic typically no simple canting but only weak angle dependence of susceptibility and h c does not explain anisotropy in α-rucl 3 unless field along high-symmetry direction exotic intermediate phases large unit cell, multi-q, vortex

32 Scenario 2: Ferromagnetic K1, antiferromagnetic J3 Minimal model: H = X hiji K 1 S i S j + X J 3 ~S i ~S j [Winter et al., PRB 16] Zero field: hhhijiii cubic-planes zigzag ~S k ±(c~e x +s~e y ); c 2 +s 2 =1 i.e., within Ru 2 Cl 2 planes degeneracy will be lifted in real materials

33 Scenario 2 (K1 < 0, J3 > 0) in field For Γ 1 = 0: uniform h ~ Sik ~ h 0.8 uniform h ~ Sik ~ h ~m ĥ/s cubic-plane x/y/z-zigzag h/ K 1 S Set 2 (K 1 -J 3 ) ~ h k [ 110] k b MC (S ) anal.(s ) SW (S =1/2) 5 ~m ĥ/s cubic-plane x/y/z-zigzag h/ K 1 S Set 2 (K 1 -J 3 ) ~ h k [111] k c MC (S ) anal.(s ) SW (S =1/2) classical magnetization curve independent of field direction! (K 1, J 3 ) = (-17, +6.8) mev [Winter et al., PRB 16] and angle dependence of quantum corrections very weak

34 Scenario 2 (K1 < 0, J3 > 0) in field: Perturbations 3 O(2) degeneracy lifted by: (i) quantum fluctuations: [Sizyuk et al., PRB 16] [Chaloupka et al., PRB 16] ~S i k ±~e x ;±~e y ;±~e z cubic-axes zigzag (ii) off-diagonal Γ 1 > 0: ( ±[110] or symmetry-equivalent; if 0 < Γ 1 K 1 ~S i k ±[11 1] or symmetry-equivalent; if Γ 1 K 1 face-center zigzag (iii) magnetic field: ~S i ~h cubic-plane zigzag competition between different effects can be tuned by h

35 Scenario 2 (K1 < 0, J3 > 0) in field: Perturbations Metamagnetic transitions between canted zigzag states: ~h k [ 110] k b ~h k [111] k c uniform h ~ Sik ~ h 0.8 uniform h ~ Sik ~ h ~m ĥ/s face-center z-zigzag h/ K 1 S Set 2+Γ ~ h k [ 110] k b MC (S ) anal.(s ) SW (S =1/2) 2 ~m ĥ/s cubic-plane x/y/z-zigzag 0.2 face-center 0.0 x/y/z-zigzag h/ K 1 S Set 2+Γ ~ h k [111] k c MC (S ) anal.(s ) SW (S =1/2) 2 (J 1, K 1, Γ 1, J 2, K 2, J 3 ) = (+3, -17, +1, -3, +6, +1) mev [Sizyuk et al., PRB 16]

36 Summary: Scenario 2 (K1 < 0, J3 > 0) Magnetization process mostly isotropic very weak angle dependence of susceptibility and h c does not explain anisotropy in α-rucl 3 transitions between different canted zigzag states possible no exotic intermediate phases for some field directions high-field transition continuous

37 Scenario 3: Ferromagnetic K1, positive Γ1 Minimal model: H = X hiji h i J 1 ~S i ~S j +K 1 S i S j +Γ 1 (S i S j +S i S j ) [Ran et al., PRL 17] Zero-field phase diagram? [Rau et al., PRL 1]

38 Scenario 3: Ferromagnetic K1, positive Γ1 Minimal model: H = X hiji h i J 1 ~S i ~S j +K 1 S i S j +Γ 1 (S i S j +S i S j ) [Ran et al., PRL 17] Zero-field phase diagram? [Rau et al., PRL 1] (a) (b) (c) K M 1 K (K 1, Γ 1 ) = (-6.8, +9.5) mev [Ran et al., PRL 17] Γ M 2 Γ Γ M 3 0 J 1 K J 1 K J 1 K 1 multi-q incommensurate ferromagnet failure of Luttinger-Tisza

39 Scenario 3: Ferromagnetic K1, positive Γ1 Minimal model: H = X hiji h i J 1 ~S i ~S j +K 1 S i S j +Γ 1 (S i S j +S i S j ) [Ran et al., PRL 17] Zero-field phase diagram? [Rau et al., PRL 1] (a) (b) (c) K M 1 K (K 1, Γ 1 ) = (-6.8, +9.5) mev [Ran et al., PRL 17] Γ M 2 Γ Γ M 3 0 J 1 K J 1 K J 1 K 1 multi-q incommensurate ferromagnet failure of Luttinger-Tisza

40 Scenario 3: Ferromagnetic K1, positive Γ1 Minimal model: H = X hiji h i J 1 ~S i ~S j +K 1 S i S j +Γ 1 (S i S j +S i S j ) [Ran et al., PRL 17] Zero-field phase diagram? [Rau et al., PRL 1] (a) (b) (c) in J 1 -Γ 1 model M 1 M 1 M 2 M 2 Γ M 3 M 3 J 1 =0 0 < J 1 Γ J 1 Γ classical SL zigzag incommensurate [Rousochatzakis & Perkins, PRL 17] zigzag can be recovered for Γ 1 K 1 failure of Luttinger-Tisza

41 Scenario 3: Ferromagnetic K1, positive Γ1 Minimal model: H = X hiji h i J 1 ~S i ~S j +K 1 S i S j +Γ 1 (S i S j +S i S j ) [Ran et al., PRL 17] Zero-field phase diagram? [Rau et al., PRL 1] (a) (b) (c) in J 1 -Γ 1 model M 1 M 1 M 2 M 2 Γ M 3 M 3 J 1 =0 0 < J 1 Γ J 1 Γ classical SL zigzag incommensurate [Rousochatzakis & Perkins, PRL 17] zigzag can be recovered for Γ 1 K 1 failure of Luttinger-Tisza

42 Scenario 3: Ferromagnetic K1, positive Γ1 Minimal model: H = X hiji h i J 1 ~S i ~S j +K 1 S i S j +Γ 1 (S i S j +S i S j ) [Ran et al., PRL 17] Zero-field phase diagram? [Rau et al., PRL 1] (a) (b) (c) in J 1 -Γ 1 model M 1 M 1 M 2 M 2 Γ M 3 M 3 J 1 =0 0 < J 1 Γ J 1 Γ classical SL zigzag incommensurate [Rousochatzakis & Perkins, PRL 17] zigzag can be recovered for Γ 1 K 1 failure of Luttinger-Tisza

43 Scenario 3: Ferromagnetic K1, J1, positive Γ1 Minimal model: Zero field: H = X hiji h i J 1 ~S i ~S j +Γ 1 (S i S j +S i S j ) i.e., take the limit K 1 /Γ 1 0 face-center zigzag ~S k ±[11 1] towards faces of RuCl 6 octahedra

44 <latexit sha1_base6="fas0fz6ozma6opgr0j5sbc9j5mk=">aaacv3icbvdlahsxfl2epok76cnunvurewhk3emfjpafozuukxo3qqsy+5o7jgikmaqnalml/i13sb/ef7nzenljspaldofeic09wkel8kvzprm82nm9udv/e2y9fvx7t67/95crachqlupx2jenhshoae+kvnvswugekjrozbyv/+jysk6x56rcvttxojsykqb+kww/3kis0c0wmn5ngesyrtkgukczta1x++seowdrrdzjh0oi9jumadgcnw1m/857npag1gs8uojdjk8ppg7reckxlmneokhrnokdjoay1uwntnrrkhoss6k0rnpwvx/jqa1cwudhumn/tq99fbiu96k9sxetjgmqj0zcfdrusvms7bqh+xskvbqeqgkk0nwjk5djckhfuoywzj0iuqt0eqnl1bltcipwfr5zcnd8y/fc+tqtilwt7hlhlpmhzb3miw/d/ehydgxwwi0lrulh2ahdigfrzcc73aiyxbwbb/hgm6fyoinqpu3wjuwe+8g3ui+reul7uy</latexit> Scenario 3: Ferromagnetic K1, J1, positive Γ1 (J 1, K 1, Γ 1, J 3 ) = (-0.5, -5.0, +2.5, +0.5) mev [Winter et al., Nat. Comm. 17] (a) m ĥ/s (c) Set 3+J 3 h [111] c MC (S ) anal.(s ) SW (S =1/2) face-center x/y/z-zigzag uniform S h (b) m ĥ/s (d) face-center x/y-zigzag uniform S h Set 3+J 3 h [001] ac MC (S ) anal.(s ) m ĥ/s Observations: uniform S h m ĥ/s Set 3+J 3 Set 3+J 3 h [ 110] b 0. h [11 2] a MC (S ) MC (S ) anal.(s ) 0.2 face-center face-center anal.(s ) SW (S =1/2) z-zigzag x/y-zigzag SW (S =1/2) h/ K 1 S h/ K 1 S uniform S h 2 (1) Out-of-plane h c much larger than in-plane h c as in α-rucl 3 (2) h~m k i =S < 1 in polarized phase already in classical limit

45 Scenario 3 (K1, J1 < 0, Γ1 > 0): Consequences of strong Γ1 Toy model: H = X hiji Γ 1 (S i S j +S i S j ) x z y In polarized state S ~ i S 8 >< +Γ 1 if Si ~ k [111] k c he 0 =(NS 2 )i = Γ 1 =2 if Si ~ k [ 110] k b >: Γ 1 =2 if Si ~ k [11 2] k a Γ 1 > 0 means antiferromagnetic for out-of-plane spins ferromagnetic for in-plane spins similarly: components of S i in out-of-plane vs. in-plane direction naturally explains in-plane vs. out-of-plane anisotropy

46 Scenario 3 (K1, J1 < 0, Γ1 > 0): Field-angle dependence Susceptibility: Critical field h c : [LJ, Andrade, Vojta, PRB 17] (a) a b a [11 2] [01 1] [ 12 1] [ 110] [ 211] [ 101] [ 1 12] (b) a b a [11 2] [01 1] [ 12 1] [ 110] [ 211] [ 101] [ 1 12] 0 π/ π/2 3π/ 2.0 π ϕ 0 π/ π/2 3π/ 2.0 π ϕ h ab Set 3+J h ac d( m ĥ) d(h/ K1 ) 1.0 h ac h0/ K1S 1.0 h ab 0.5 Set 3+J 3 h h π/2 ϑ 0 π/ π/2 3π/ π [11 2] [11 1] [110] [111] [112] [001] [ 1 12] a c a π/2 ϑ 0 π/ π/2 3π/ π [11 2] [11 1] [110] [111] [112] [001] [ 1 12] a c a (J 1, K 1, Γ 1, J 3 ) = (-0.5, -5.0, +2.5, +0.5) mev immediately testable in α-rucl 3

47 <latexit sha1_base6="adgygkubgvqdhjuxjuigqnqpz6i=">aaacmhicbvfnbxmxehw2qmvylzylui8werknsfshaqekvd0at9iswilerwa9slvf2xtb6tom9/imr/cfxdsrzcwj1l6ejnvphuaimct5lvvwjjzt17m1v3wcphz1+0t/e+epmyzmouzhgnhbguaqnyy+8xnpaiqhcklxdrcsn1ygdclol35ey6zgqkulopgg5x3bjoiprmouknpjxfbmo6egc1kipjmkstpkzhsoktss05kha81lp1yttvd5x1836ervmx1p07w/sibjcvq2stsyib0o8+3em1ya3ijunktwbpimtc9asf5wiyuynq5rgcwxumgghs6rf1lsqavgllsythwtkcr9v9hc8q5uspcpwi/czdrs/f/tunjq7dzk3tdent8+qkqkdqbugyylsii93iecharwq6uz0ik3idvignmuemln0qblltwgrjyxmifjfsllrnqd19byifebbr8i1veicv0znk3yxhv+g6yfh9gi26ulfilnloxpkuvcej8peckjhh5bv5qx6sx9futb99id5dt0a9zvource6+g3dfs28</latexit> Scenario 3 (K 1, J 1 < 0, Γ 1 > 0): High-field transversal magnetization High fields: expect ground state w/o spontaneous symmetry breaking i.e., expect high-field state to be adiabatically connected to fully polarized state If Γ 1 = 0: S x i 7! S x i ; S y i 7! S y i ; Sz i 7! S z i is an accidental higher symmetry For ~ h k [001]: (a) Γ1 = 0: h~s i ik[001] ) h~m k i =S =1 (b) Γ1 0: h~s i ik[xxz]withx6= 0 not forbidden ) finite h~m i? ~ h possible ~m is a direct measure of Γ 1 independent of K 1, J 1, J 3, h~m? i = h~m k i ' 0:51 at h = h c + for (J1, K 1, Γ 1, J 3 ) = (-0.5, -5.0, +2.5, +0.5) mev

48 Summary: Scenario 3 (K1, J1 < 0, Γ1 > 0) Magnetization process strongly anisotropic χ ab much larger than χ c even without g-factor anisotropy χ ab /χ c 3 for (J 1, K 1, Γ 1, J 3 ) = (-0.5, -5.0, +7.0, +0.5) mev consistent with small trigonal distortion [Agrestini et al., PRB(R) 17] high-field state with transversal magnetization for field in intermediate direction, e.g., [001]

49 Conclusions: Magnetization process crucially dependent on zigzag stabilization: Scenario 1 (K 1 > 0, J 1 < 0) Weak anisotropy in χ and hc Various exotic intermediate phases Scenario 2 (K 1 < 0, J 3 > 0) Nearly no anisotropy in χ and hc Metamagnetic transitions between different canted zigzag Scenario 3 (K 1, J 1 < 0, Γ 1 > 0) Strong anisotropy in χ and hc Finite transversal magnetization in high-field state Intermediate phases? natural explanation for anisotropy in α-rucl 3 α-rucl 3 : expect strong Γ 1 > 0, K 1 < 0, and small J 3 > 0 possibly measurable?

Magnetic ordering of local moments

Magnetic ordering of local moments Magnetic ordering Types of magnetic structure Ground state of the Heisenberg ferromagnet and antiferromagnet Spin wave High temperature susceptibility Mean field theory Magnetic ordering of local moments

More information

Degeneracy Breaking in Some Frustrated Magnets

Degeneracy Breaking in Some Frustrated Magnets Degeneracy Breaking in Some Frustrated Magnets Doron Bergman Greg Fiete Ryuichi Shindou Simon Trebst UCSB Physics KITP UCSB Physics Q Station cond-mat: 0510202 (prl) 0511176 (prb) 0605467 0607210 0608131

More information

Critical Spin-liquid Phases in Spin-1/2 Triangular Antiferromagnets. In collaboration with: Olexei Motrunich & Jason Alicea

Critical Spin-liquid Phases in Spin-1/2 Triangular Antiferromagnets. In collaboration with: Olexei Motrunich & Jason Alicea Critical Spin-liquid Phases in Spin-1/2 Triangular Antiferromagnets In collaboration with: Olexei Motrunich & Jason Alicea I. Background Outline Avoiding conventional symmetry-breaking in s=1/2 AF Topological

More information

Unconventional magnetic order in 3D Kitaev materials revealed by resonant x-ray diffraction Radu Coldea

Unconventional magnetic order in 3D Kitaev materials revealed by resonant x-ray diffraction Radu Coldea Unconventional magnetic order in 3D Kitaev materials revealed by resonant x-ray diffraction Radu Coldea Oxford Collaborators Alun Biffin (Oxford->PSI) Roger D. Johnson S. Choi P. Manuel A. Bombardi Sample

More information

Anisotropic Magnetic Structures in Iron-Based Superconductors

Anisotropic Magnetic Structures in Iron-Based Superconductors Anisotropic Magnetic Structures in Iron-Based Superconductors Chi-Cheng Lee, Weiguo Yin & Wei Ku CM-Theory, CMPMSD, Brookhaven National Lab Department of Physics, SUNY Stony Brook Another example of SC

More information

Dimerized & frustrated spin chains. Application to copper-germanate

Dimerized & frustrated spin chains. Application to copper-germanate Dimerized & frustrated spin chains Application to copper-germanate Outline CuGeO & basic microscopic models Excitation spectrum Confront theory to experiments Doping Spin-Peierls chains A typical S=1/2

More information

Magnetic properties of honeycomb iridates and rhodates. Philipp Gegenwart

Magnetic properties of honeycomb iridates and rhodates. Philipp Gegenwart Magnetic properties of honeycomb iridates and rhodates Philipp Gegenwart Augsburg University Outline Intro: Kitaev exchange in spin-orbit Mott insulators Synthesis, structure, electronic and magnetic properties

More information

Spinon magnetic resonance. Oleg Starykh, University of Utah

Spinon magnetic resonance. Oleg Starykh, University of Utah Spinon magnetic resonance Oleg Starykh, University of Utah May 17-19, 2018 Examples of current literature 200 cm -1 = 6 THz Spinons? 4 mev = 1 THz The big question(s) What is quantum spin liquid? No broken

More information

Solving the sign problem for a class of frustrated antiferromagnets

Solving the sign problem for a class of frustrated antiferromagnets Solving the sign problem for a class of frustrated antiferromagnets Fabien Alet Laboratoire de Physique Théorique Toulouse with : Kedar Damle (TIFR Mumbai), Sumiran Pujari (Toulouse Kentucky TIFR Mumbai)

More information

Nematicity and quantum paramagnetism in FeSe

Nematicity and quantum paramagnetism in FeSe Nematicity and quantum paramagnetism in FeSe Fa Wang 1,, Steven A. Kivelson 3 & Dung-Hai Lee 4,5, 1 International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China.

More information

Spinons and triplons in spatially anisotropic triangular antiferromagnet

Spinons and triplons in spatially anisotropic triangular antiferromagnet Spinons and triplons in spatially anisotropic triangular antiferromagnet Oleg Starykh, University of Utah Leon Balents, UC Santa Barbara Masanori Kohno, NIMS, Tsukuba PRL 98, 077205 (2007); Nature Physics

More information

Degeneracy Breaking in Some Frustrated Magnets. Bangalore Mott Conference, July 2006

Degeneracy Breaking in Some Frustrated Magnets. Bangalore Mott Conference, July 2006 Degeneracy Breaking in Some Frustrated Magnets Doron Bergman Greg Fiete Ryuichi Shindou Simon Trebst UCSB Physics KITP UCSB Physics Q Station Bangalore Mott Conference, July 2006 Outline Motivation: Why

More information

Andreas Kreisel. Institut für Theoretische Physik Johann Wolfgang Goethe Universität Frankfurt am Main. July,

Andreas Kreisel. Institut für Theoretische Physik Johann Wolfgang Goethe Universität Frankfurt am Main. July, BEC of magnons and spin wave interactions in QAF Andreas Kreisel Institut für Theoretische Physik Johann Wolfgang Goethe Universität Frankfurt am Main July, 18 2007 collaborators: N. Hasselmann, P. Kopietz

More information

Giniyat Khaliullin Max Planck Institute for Solid State Research, Stuttgart

Giniyat Khaliullin Max Planck Institute for Solid State Research, Stuttgart Mott insulators with strong spin-orbit coupling Giniyat Khaliullin Max Planck Institute for Solid State Research, Stuttgart LS driven unusual ground states & excitations motivated by: Sr 2 IrO 4 Na 2 IrO

More information

Unusual ordered phases of magnetized frustrated antiferromagnets

Unusual ordered phases of magnetized frustrated antiferromagnets Unusual ordered phases of magnetized frustrated antiferromagnets Credit: Francis Pratt / ISIS / STFC Oleg Starykh University of Utah Leon Balents and Andrey Chubukov Novel states in correlated condensed

More information

Frustrated Magnetic Materials from an ab initio prespective Roser Valentí Institute of Theoretical Physics University of Frankfurt Germany

Frustrated Magnetic Materials from an ab initio prespective Roser Valentí Institute of Theoretical Physics University of Frankfurt Germany Frustrated Magnetic Materials from an ab initio prespective Roser Valentí Institute of Theoretical Physics University of Frankfurt Germany Highly Frustrated Magnetism Tutorial, July 9 th 2018, UC Davis

More information

Quantum order-by-disorder in Kitaev model on a triangular lattice

Quantum order-by-disorder in Kitaev model on a triangular lattice Quantum order-by-disorder in Kitaev model on a triangular lattice George Jackeli Max-Planck Institute & University of Stuttgart, Germany Andronikashvili Institute of Physics, Tbilisi, Georgia GJ & Avella,

More information

Frustrated diamond lattice antiferromagnets

Frustrated diamond lattice antiferromagnets Frustrated diamond lattice antiferromagnets ason Alicea (Caltech) Doron Bergman (Yale) Leon Balents (UCSB) Emanuel Gull (ETH Zurich) Simon Trebst (Station Q) Bergman et al., Nature Physics 3, 487 (007).

More information

Multiple spin exchange model on the triangular lattice

Multiple spin exchange model on the triangular lattice Multiple spin exchange model on the triangular lattice Philippe Sindzingre, Condensed matter theory laboratory Univ. Pierre & Marie Curie Kenn Kubo Aoyama Gakuin Univ Tsutomu Momoi RIKEN T. Momoi, P. Sindzingre,

More information

Quantum Spin Liquids and Majorana Metals

Quantum Spin Liquids and Majorana Metals Quantum Spin Liquids and Majorana Metals Maria Hermanns University of Cologne M.H., S. Trebst, PRB 89, 235102 (2014) M.H., K. O Brien, S. Trebst, PRL 114, 157202 (2015) M.H., S. Trebst, A. Rosch, arxiv:1506.01379

More information

Giniyat Khaliullin Max Planck Institute for Solid State Research, Stuttgart

Giniyat Khaliullin Max Planck Institute for Solid State Research, Stuttgart Magnetism and doping effects in spin-orbit coupled Mott insulators Giniyat Khaliullin Max Planck Institute for Solid State Research, Stuttgart Witczak-Krempa, Chen, Y-B.Kim, Balents (Annu. Rev. 2014) Hubbard

More information

Ideas on non-fermi liquid metals and quantum criticality. T. Senthil (MIT).

Ideas on non-fermi liquid metals and quantum criticality. T. Senthil (MIT). Ideas on non-fermi liquid metals and quantum criticality T. Senthil (MIT). Plan Lecture 1: General discussion of heavy fermi liquids and their magnetism Review of some experiments Concrete `Kondo breakdown

More information

Deconfined Quantum Critical Points

Deconfined Quantum Critical Points Deconfined Quantum Critical Points Leon Balents T. Senthil, MIT A. Vishwanath, UCB S. Sachdev, Yale M.P.A. Fisher, UCSB Outline Introduction: what is a DQCP Disordered and VBS ground states and gauge theory

More information

Phase transitions in Bi-layer quantum Hall systems

Phase transitions in Bi-layer quantum Hall systems Phase transitions in Bi-layer quantum Hall systems Ming-Che Chang Department of Physics Taiwan Normal University Min-Fong Yang Departmant of Physics Tung-Hai University Landau levels Ferromagnetism near

More information

Quantum spin systems - models and computational methods

Quantum spin systems - models and computational methods Summer School on Computational Statistical Physics August 4-11, 2010, NCCU, Taipei, Taiwan Quantum spin systems - models and computational methods Anders W. Sandvik, Boston University Lecture outline Introduction

More information

Fe Co Si. Fe Co Si. Ref. p. 59] d elements and C, Si, Ge, Sn or Pb Alloys and compounds with Ge

Fe Co Si. Fe Co Si. Ref. p. 59] d elements and C, Si, Ge, Sn or Pb Alloys and compounds with Ge Ref. p. 59] 1.5. 3d elements and C, Si, Ge, Sn or Pb 7 1.75 1.50 Co Si 0.8 0. 3.50 3.5 Co Si 0.8 0. H cr Magnetic field H [koe] 1.5 1.00 0.75 0.50 0.5 C C IF "A" P Frequency ωγ / e [koe] 3.00.75.50.5.00

More information

Theory of carbon-based magnetism

Theory of carbon-based magnetism Theory of carbon-based magnetism Mikhail Katsnelson Theory of Condensed Matter Institute for Molecules and Materials RU Outline sp magnetism in general: why it is interesting? Defect-induced magnetism

More information

arxiv: v1 [cond-mat.str-el] 4 Jan 2019

arxiv: v1 [cond-mat.str-el] 4 Jan 2019 aaab73icdvdlssnafj3uv42vqks3g0v0fzlwr7ordooygrfkg8pkommhzkzczeqopv/hxowkw3/hnx/jpi2gogcuhm65l3vvivjglxbdd6u0tlyyulzetzc2t7z3krt7nyrjjcybtlgibyokckocbjpqrm5tsrcpgole41bud+6jvdqr13qskpcjoaaxxugb6a6heyoty9vuv6qu4/u1+lkduo47hyge6zxopegvshuuapcr771bgjnohmymkdx13fshuyq1xyzm7f6msirwga1j11cbofhhdh7wdb4zzqdjrjosgs7v7xntxjwa8mh0cqrh6rexi3953uzhfjilis00exixkm4y1anmv4cdkgnwbgiiwpkawyeeiymwnhnlixx9cv8nqc1pon7vabxpf2muwqe4bcfaaxegcs5bgwqaaw4ewbn4tqt1al1yr4vwklxm7imfsn4+avkujvc=

More information

Surface effects in frustrated magnetic materials: phase transition and spin resistivity

Surface effects in frustrated magnetic materials: phase transition and spin resistivity Surface effects in frustrated magnetic materials: phase transition and spin resistivity H T Diep (lptm, ucp) in collaboration with Yann Magnin, V. T. Ngo, K. Akabli Plan: I. Introduction II. Surface spin-waves,

More information

Controlling Spin Exchange Interactions of Ultracold Atoms in Optical Lattices

Controlling Spin Exchange Interactions of Ultracold Atoms in Optical Lattices Controlling Spin Exchange Interactions of Ultracold Atoms in Optical Lattices The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters.

More information

Twisted Hubbard model for Sr2IrO4: magnetism and possible high temperature superconductivity. Fa Wang and T. Senthil, PRL 2011

Twisted Hubbard model for Sr2IrO4: magnetism and possible high temperature superconductivity. Fa Wang and T. Senthil, PRL 2011 Twisted Hubbard model for Sr2IrO4: magnetism and possible high temperature superconductivity Fa Wang and T. Senthil, PRL 2011 Iridium oxide materials: various kinds of exotic physics Na4Ir3O8: insulating

More information

Quantum Monte Carlo study of a Z 2 gauge theory containing phases with and without a Luttinger volume Fermi surface

Quantum Monte Carlo study of a Z 2 gauge theory containing phases with and without a Luttinger volume Fermi surface Quantum Monte Carlo study of a Z 2 gauge theory containing phases with and without a Luttinger volume Fermi surface V44.00011 APS March Meeting, Los Angeles Fakher Assaad, Snir Gazit, Subir Sachdev, Ashvin

More information

Universal Post-quench Dynamics at a Quantum Critical Point

Universal Post-quench Dynamics at a Quantum Critical Point Universal Post-quench Dynamics at a Quantum Critical Point Peter P. Orth University of Minnesota, Minneapolis, USA Rutgers University, 10 March 2016 References: P. Gagel, P. P. Orth, J. Schmalian Phys.

More information

Quantum Annealing in spin glasses and quantum computing Anders W Sandvik, Boston University

Quantum Annealing in spin glasses and quantum computing Anders W Sandvik, Boston University PY502, Computational Physics, December 12, 2017 Quantum Annealing in spin glasses and quantum computing Anders W Sandvik, Boston University Advancing Research in Basic Science and Mathematics Example:

More information

Quasi-1d Antiferromagnets

Quasi-1d Antiferromagnets Quasi-1d Antiferromagnets Leon Balents, UCSB Masanori Kohno, NIMS, Tsukuba Oleg Starykh, U. Utah Quantum Fluids, Nordita 2007 Outline Motivation: Quantum magnetism and the search for spin liquids Neutron

More information

Electron Spin Resonance and Quantum Dynamics. Masaki Oshikawa (ISSP, University of Tokyo)

Electron Spin Resonance and Quantum Dynamics. Masaki Oshikawa (ISSP, University of Tokyo) Electron Spin Resonance and Quantum Dynamics Masaki Oshikawa (ISSP, University of Tokyo) Electron Spin Resonance (ESR) E-M wave electron spins H measure the absorption intensity Characteristic of ESR single

More information

Winter School for Quantum Magnetism EPFL and MPI Stuttgart Magnetism in Strongly Correlated Systems Vladimir Hinkov

Winter School for Quantum Magnetism EPFL and MPI Stuttgart Magnetism in Strongly Correlated Systems Vladimir Hinkov Winter School for Quantum Magnetism EPFL and MPI Stuttgart Magnetism in Strongly Correlated Systems Vladimir Hinkov 1. Introduction Excitations and broken symmetry 2. Spin waves in the Heisenberg model

More information

Which Spin Liquid Is It?

Which Spin Liquid Is It? Which Spin Liquid Is It? Some results concerning the character and stability of various spin liquid phases, and Some speculations concerning candidate spin-liquid phases as the explanation of the peculiar

More information

Exact results concerning the phase diagram of the Hubbard Model

Exact results concerning the phase diagram of the Hubbard Model Steve Kivelson Apr 15, 2011 Freedman Symposium Exact results concerning the phase diagram of the Hubbard Model S.Raghu, D.J. Scalapino, Li Liu, E. Berg H. Yao, W-F. Tsai, A. Lauchli G. Karakonstantakis,

More information

Magnets, 1D quantum system, and quantum Phase transitions

Magnets, 1D quantum system, and quantum Phase transitions 134 Phys620.nb 10 Magnets, 1D quantum system, and quantum Phase transitions In 1D, fermions can be mapped into bosons, and vice versa. 10.1. magnetization and frustrated magnets (in any dimensions) Consider

More information

M. A. Gusmão IF-UFRGS

M. A. Gusmão IF-UFRGS M. A. Gusmão IF-UFRGS - 217 1 FIP164-217/2 Text 9 Mean-field approximation - II Heisenberg Hamiltonian in wave-vector space As we saw in Text 8, the uniform susceptibility does not diverge in the case

More information

Small and large Fermi surfaces in metals with local moments

Small and large Fermi surfaces in metals with local moments Small and large Fermi surfaces in metals with local moments T. Senthil (MIT) Subir Sachdev Matthias Vojta (Augsburg) cond-mat/0209144 Transparencies online at http://pantheon.yale.edu/~subir Luttinger

More information

Nematic and Magnetic orders in Fe-based Superconductors

Nematic and Magnetic orders in Fe-based Superconductors Nematic and Magnetic orders in Fe-based Superconductors Cenke Xu Harvard University Collaborators: Markus Mueller, Yang Qi Subir Sachdev, Jiangping Hu Collaborators: Subir Sachdev Markus Mueller Yang Qi

More information

Quantum Spin-Metals in Weak Mott Insulators

Quantum Spin-Metals in Weak Mott Insulators Quantum Spin-Metals in Weak Mott Insulators MPA Fisher (with O. Motrunich, Donna Sheng, Simon Trebst) Quantum Critical Phenomena conference Toronto 9/27/08 Quantum Spin-metals - spin liquids with Bose

More information

A05: Quantum crystal and ring exchange. Novel magnetic states induced by ring exchange

A05: Quantum crystal and ring exchange. Novel magnetic states induced by ring exchange A05: Quantum crystal and ring exchange Novel magnetic states induced by ring exchange Members: Tsutomu Momoi (RIKEN) Kenn Kubo (Aoyama Gakuinn Univ.) Seiji Miyashita (Univ. of Tokyo) Hirokazu Tsunetsugu

More information

Emergent SU(4) symmetry and quantum spin-orbital liquid in 3 α-zrcl3

Emergent SU(4) symmetry and quantum spin-orbital liquid in 3 α-zrcl3 Emergent SU(4) symmetry and quantum spin-orbital liquid in 3 α-zrcl3 arxiv:1709.05252 Masahiko G. Yamada the Institute for Solid State Physics, the University of Tokyo with Masaki Oshikawa (ISSP) and George

More information

Spatially anisotropic triangular antiferromagnet in magnetic field

Spatially anisotropic triangular antiferromagnet in magnetic field Spatially anisotropic triangular antiferromagnet in magnetic field Oleg Starykh, University of Utah Leon Balents, KITP Hosho Katsura, KITP Jason Alicea, Caltech Andrey Chubukov, U Wisconsin Christian Griset

More information

Topological Phases of the Spin-1/2 Ferromagnetic-Antiferromagnetic Alternating Heisenberg Chain with Frustrated Next-Nearest-Neighbour Interaction

Topological Phases of the Spin-1/2 Ferromagnetic-Antiferromagnetic Alternating Heisenberg Chain with Frustrated Next-Nearest-Neighbour Interaction Topological Phases of the Spin-1/2 Ferromagnetic-Antiferromagnetic Alternating Heisenberg Chain with Frustrated Next-Nearest-Neighbour Interaction Kazuo Hida (Saitama University) Ken ichi Takano (Toyota

More information

Persistent spin current in a spin ring

Persistent spin current in a spin ring Persistent spin current in a spin ring Ming-Che Chang Dept of Physics Taiwan Normal Univ Jing-Nuo Wu (NCTU) Min-Fong Yang (Tunghai U.) A brief history precursor: Hund, Ann. Phys. 1934 spin charge persistent

More information

Nematic quantum paramagnet in spin-1 square lattice models

Nematic quantum paramagnet in spin-1 square lattice models Nematic quantum paramagnet in spin-1 square lattice models Fa Wang( 王垡 ) Peking University Ref.: arxiv:1501.00844 Acknowledgments Prof. Dung-Hai Lee, UC Berkeley Prof. Kivelson, Stanford Discussions with

More information

SPIN-LIQUIDS ON THE KAGOME LATTICE: CHIRAL TOPOLOGICAL, AND GAPLESS NON-FERMI-LIQUID PHASE

SPIN-LIQUIDS ON THE KAGOME LATTICE: CHIRAL TOPOLOGICAL, AND GAPLESS NON-FERMI-LIQUID PHASE SPIN-LIQUIDS ON THE KAGOME LATTICE: CHIRAL TOPOLOGICAL, AND GAPLESS NON-FERMI-LIQUID PHASE ANDREAS W.W. LUDWIG (UC-Santa Barbara) work done in collaboration with: Bela Bauer (Microsoft Station-Q, Santa

More information

Electronic Higher Multipoles in Solids

Electronic Higher Multipoles in Solids Electronic Higher Multipoles in Solids Yoshio Kuramoto Department of Physics, Tohoku University Outline Elementary examples of multiple moments Role of multipole moments in solids Case studies octupole

More information

Competing Ferroic Orders The magnetoelectric effect

Competing Ferroic Orders The magnetoelectric effect Competing Ferroic Orders The magnetoelectric effect Cornell University I would found an institution where any person can find instruction in any study. Ezra Cornell, 1868 Craig J. Fennie School of Applied

More information

Magnetism at finite temperature: molecular field, phase transitions

Magnetism at finite temperature: molecular field, phase transitions Magnetism at finite temperature: molecular field, phase transitions -The Heisenberg model in molecular field approximation: ferro, antiferromagnetism. Ordering temperature; thermodynamics - Mean field

More information

From the pseudogap to the strange metal

From the pseudogap to the strange metal HARVARD From the pseudogap to the strange metal S. Sachdev, E. Berg, S. Chatterjee, and Y. Schattner, PRB 94, 115147 (2016) S. Sachdev and S. Chatterjee, arxiv:1703.00014 APS March meeting March 13, 2017

More information

Thermal Hall effect of magnons

Thermal Hall effect of magnons Max Planck-UBC-UTokyo School@Hongo (2018/2/18) Thermal Hall effect of magnons Hosho Katsura (Dept. Phys., UTokyo) Related papers: H.K., Nagaosa, Lee, Phys. Rev. Lett. 104, 066403 (2010). Onose et al.,

More information

Phase Transitions in Condensed Matter Spontaneous Symmetry Breaking and Universality. Hans-Henning Klauss. Institut für Festkörperphysik TU Dresden

Phase Transitions in Condensed Matter Spontaneous Symmetry Breaking and Universality. Hans-Henning Klauss. Institut für Festkörperphysik TU Dresden Phase Transitions in Condensed Matter Spontaneous Symmetry Breaking and Universality Hans-Henning Klauss Institut für Festkörperphysik TU Dresden 1 References [1] Stephen Blundell, Magnetism in Condensed

More information

Spin liquids on ladders and in 2d

Spin liquids on ladders and in 2d Spin liquids on ladders and in 2d MPA Fisher (with O. Motrunich) Minnesota, FTPI, 5/3/08 Interest: Quantum Spin liquid phases of 2d Mott insulators Background: Three classes of 2d Spin liquids a) Topological

More information

Magnetic ordering, magnetic anisotropy and the mean-field theory

Magnetic ordering, magnetic anisotropy and the mean-field theory Magnetic ordering, magnetic anisotropy and the mean-field theory Alexandra Kalashnikova kalashnikova@mail.ioffe.ru Ferromagnets Mean-field approximation Curie temperature and critical exponents Magnetic

More information

Quantum s=1/2 antiferromagnet on the Bethe lattice at percolation I. Low-energy states, DMRG, and diagnostics

Quantum s=1/2 antiferromagnet on the Bethe lattice at percolation I. Low-energy states, DMRG, and diagnostics Quantum s=1/2 antiferromagnet on the Bethe lattice at percolation I. Low-energy states, DMRG, and diagnostics Hitesh J. Changlani, Shivam Ghosh, Sumiran Pujari, Christopher L. Henley Laboratory of Atomic

More information

Quantum Phases in Bose-Hubbard Models with Spin-orbit Interactions

Quantum Phases in Bose-Hubbard Models with Spin-orbit Interactions Quantum Phases in Bose-Hubbard Models with Spin-orbit Interactions Shizhong Zhang The University of Hong Kong Institute for Advanced Study, Tsinghua 24 October 2012 The plan 1. Introduction to Bose-Hubbard

More information

Valence Bonds in Random Quantum Magnets

Valence Bonds in Random Quantum Magnets Valence Bonds in Random Quantum Magnets theory and application to YbMgGaO 4 Yukawa Institute, Kyoto, November 2017 Itamar Kimchi I.K., Adam Nahum, T. Senthil, arxiv:1710.06860 Valence Bonds in Random Quantum

More information

Golden chain of strongly interacting Rydberg atoms

Golden chain of strongly interacting Rydberg atoms Golden chain of strongly interacting Rydberg atoms Hosho Katsura (Gakushuin Univ.) Acknowledgment: Igor Lesanovsky (MUARC/Nottingham Univ. I. Lesanovsky & H.K., [arxiv:1204.0903] Outline 1. Introduction

More information

Haldane phase and magnetic end-states in 1D topological Kondo insulators. Alejandro M. Lobos Instituto de Fisica Rosario (IFIR) - CONICET- Argentina

Haldane phase and magnetic end-states in 1D topological Kondo insulators. Alejandro M. Lobos Instituto de Fisica Rosario (IFIR) - CONICET- Argentina Haldane phase and magnetic end-states in 1D topological Kondo insulators Alejandro M. Lobos Instituto de Fisica Rosario (IFIR) - CONICET- Argentina Workshop on Next Generation Quantum Materials ICTP-SAIFR,

More information

Dirac fermions in condensed matters

Dirac fermions in condensed matters Dirac fermions in condensed matters Bohm Jung Yang Department of Physics and Astronomy, Seoul National University Outline 1. Dirac fermions in relativistic wave equations 2. How do Dirac fermions appear

More information

GEOMETRICALLY FRUSTRATED MAGNETS. John Chalker Physics Department, Oxford University

GEOMETRICALLY FRUSTRATED MAGNETS. John Chalker Physics Department, Oxford University GEOMETRICLLY FRUSTRTED MGNETS John Chalker Physics Department, Oxford University Outline How are geometrically frustrated magnets special? What they are not Evading long range order Degeneracy and fluctuations

More information

Double Perovskites Spin- Orbit Coupling, Magne4sm, Topological States

Double Perovskites Spin- Orbit Coupling, Magne4sm, Topological States Double Perovskites Spin- Orbit Coupling, Magne4sm, Topological States Arun Paramekanti (University of Toronto) ICTP-JNU workshop on Current Trends in Frustrated Magnetism Collaborators Theory Ashley Cook

More information

Spin-wave dispersion in half-doped La3/2Sr1/2NiO4

Spin-wave dispersion in half-doped La3/2Sr1/2NiO4 Physics Physics Research Publications Purdue University Year 2007 Spin-wave dispersion in half-doped La3/2Sr1/2NiO4 D. X. Yao E. W. Carlson This paper is posted at Purdue e-pubs. http://docs.lib.purdue.edu/physics

More information

Bose Einstein condensation of magnons and spin wave interactions in quantum antiferromagnets

Bose Einstein condensation of magnons and spin wave interactions in quantum antiferromagnets Bose Einstein condensation of magnons and spin wave interactions in quantum antiferromagnets Talk at Rutherford Appleton Lab, March 13, 2007 Peter Kopietz, Universität Frankfurt collaborators: Nils Hasselmann,

More information

Gapless Spin Liquids in Two Dimensions

Gapless Spin Liquids in Two Dimensions Gapless Spin Liquids in Two Dimensions MPA Fisher (with O. Motrunich, Donna Sheng, Matt Block) Boulder Summerschool 7/20/10 Interest Quantum Phases of 2d electrons (spins) with emergent rather than broken

More information

Making the Invisible Visible: Probing Antiferromagnetic Order in Novel Materials

Making the Invisible Visible: Probing Antiferromagnetic Order in Novel Materials Making the Invisible Visible: Probing Antiferromagnetic Order in Novel Materials Elke Arenholz Lawrence Berkeley National Laboratory Antiferromagnetic contrast in X-ray absorption Ni in NiO Neel Temperature

More information

The Oxford Solid State Basics

The Oxford Solid State Basics The Oxford Solid State Basics Steven H. Simon University of Oxford OXFORD UNIVERSITY PRESS Contents 1 About Condensed Matter Physics 1 1.1 What Is Condensed Matter Physics 1 1.2 Why Do We Study Condensed

More information

Spins and spin-orbit coupling in semiconductors, metals, and nanostructures

Spins and spin-orbit coupling in semiconductors, metals, and nanostructures B. Halperin Spin lecture 1 Spins and spin-orbit coupling in semiconductors, metals, and nanostructures Behavior of non-equilibrium spin populations. Spin relaxation and spin transport. How does one produce

More information

Quasi-1d Frustrated Antiferromagnets. Leon Balents, UCSB Masanori Kohno, NIMS, Tsukuba Oleg Starykh, U. Utah

Quasi-1d Frustrated Antiferromagnets. Leon Balents, UCSB Masanori Kohno, NIMS, Tsukuba Oleg Starykh, U. Utah Quasi-1d Frustrated Antiferromagnets Leon Balents, UCSB Masanori Kohno, NIMS, Tsukuba Oleg Starykh, U. Utah Outline Frustration in quasi-1d systems Excitations: magnons versus spinons Neutron scattering

More information

quasi-particle pictures from continuous unitary transformations

quasi-particle pictures from continuous unitary transformations quasi-particle pictures from continuous unitary transformations Kai Phillip Schmidt 24.02.2016 quasi-particle pictures from continuous unitary transformations overview Entanglement in Strongly Correlated

More information

Proximate Kitaev Quantum Spin Liquid Behavior in α-rucl 3

Proximate Kitaev Quantum Spin Liquid Behavior in α-rucl 3 Proximate Kitaev Quantum Spin Liquid Behavior in α-rucl 3 A. Banerjee 1 *, C.A. Bridges 2, J-Q. Yan 3,4, A.A. Aczel 1, L. Li 4, M.B. Stone 1, G.E. Granroth 5, M.D. Lumsden 1, Y. Yiu 6, J. Knolle 7, D.L.

More information

Ultrashort Lifetime Expansion for Resonant Inelastic X-ray Scattering. Luuk Ament

Ultrashort Lifetime Expansion for Resonant Inelastic X-ray Scattering. Luuk Ament Ultrashort Lifetime Expansion for Resonant Inelastic X-ray Scattering Luuk Ament In collaboration with Jeroen van den Brink and Fiona Forte What is RIXS? Resonant Inelastic X-ray Scattering Synchrotron

More information

100 Tesla multishot. 60 Tesla long pulse. Los Alamos branch of the Magnet Lab Pulsed magnetic fields

100 Tesla multishot. 60 Tesla long pulse. Los Alamos branch of the Magnet Lab Pulsed magnetic fields Los Alamos branch of the Magnet Lab Pulsed magnetic fields 100 Tesla multishot 100 80 60 40 20 Magnetic field (T) 0 0 0.5 1 1.5 2 2.5 3 time (s) 60 Tesla long pulse 60 40 20 0 0 1 2 3 time (s) Magnetization,

More information

/21. Tsuneya Yoshida. Collaborators: Robert Peters, Satoshi Fujimoto, and N. Kawakami 2013/6/07 (EQPCM) 1. Kyoto Univ.

/21. Tsuneya Yoshida. Collaborators: Robert Peters, Satoshi Fujimoto, and N. Kawakami 2013/6/07 (EQPCM) 1. Kyoto Univ. 2013/6/07 (EQPCM) 1 /21 Tsuneya Yoshida Kyoto Univ. Collaborators: Robert Peters, Satoshi Fujimoto, and N. Kawakami T.Y., Satoshi Fujimoto, and Norio Kawakami Phys. Rev. B 85, 125113 (2012) Outline 2 /21

More information

Anomalous spin suscep.bility and suppressed exchange energy of 2D holes

Anomalous spin suscep.bility and suppressed exchange energy of 2D holes Anomalous spin suscep.bility and suppressed exchange energy of 2D holes School of Chemical and Physical Sciences & MacDiarmid Ins7tute for Advanced Materials and Nanotechnology Victoria University of Wellington

More information

Spin liquids on the triangular lattice

Spin liquids on the triangular lattice Spin liquids on the triangular lattice ICFCM, Sendai, Japan, Jan 11-14, 2011 Talk online: sachdev.physics.harvard.edu HARVARD Outline 1. Classification of spin liquids Quantum-disordering magnetic order

More information

Thermal conductivity of anisotropic spin ladders

Thermal conductivity of anisotropic spin ladders Thermal conductivity of anisotropic spin ladders By :Hamed Rezania Razi University, Kermanshah, Iran Magnetic Insulator In one dimensional is a good candidate for thermal conductivity due to magnetic excitation

More information

2D tensor network study of the S=1 bilinear-biquadratic Heisenberg model

2D tensor network study of the S=1 bilinear-biquadratic Heisenberg model 2D tensor network study of the S=1 bilinear-biquadratic Heisenberg model Philippe Corboz, Institute for Theoretical Physics, University of Amsterdam AF phase Haldane phase 3-SL 120 phase? ipeps 2D tensor

More information

Excitations in the field-induced quantum spin liquid state of α-rucl3. Authors:

Excitations in the field-induced quantum spin liquid state of α-rucl3. Authors: Excitations in the field-induced quantum spin liquid state of α-rucl3 Authors: A. Banerjee* 1, P. Lampen-Kelley* 2,3, J. Knolle 4, C. Balz 1, A.A. Aczel 1, B. Winn 1, Y. Liu 1, D. Pajerowski 1, J.-Q. Yan

More information

Topological Insulators and Ferromagnets: appearance of flat surface bands

Topological Insulators and Ferromagnets: appearance of flat surface bands Topological Insulators and Ferromagnets: appearance of flat surface bands Thomas Dahm University of Bielefeld T. Paananen and T. Dahm, PRB 87, 195447 (2013) T. Paananen et al, New J. Phys. 16, 033019 (2014)

More information

A New look at the Pseudogap Phase in the Cuprates.

A New look at the Pseudogap Phase in the Cuprates. A New look at the Pseudogap Phase in the Cuprates. Patrick Lee MIT Common themes: 1. Competing order. 2. superconducting fluctuations. 3. Spin gap: RVB. What is the elephant? My answer: All of the above!

More information

Real-Space Renormalization Group (RSRG) Approach to Quantum Spin Lattice Systems

Real-Space Renormalization Group (RSRG) Approach to Quantum Spin Lattice Systems WDS'11 Proceedings of Contributed Papers, Part III, 49 54, 011. ISBN 978-80-7378-186-6 MATFYZPRESS Real-Space Renormalization Group (RSRG) Approach to Quantum Spin Lattice Systems A. S. Serov and G. V.

More information

Spin or Orbital-based Physics in the Fe-based Superconductors? W. Lv, W. Lee, F. Kruger, Z. Leong, J. Tranquada. Thanks to: DOE (EFRC)+BNL

Spin or Orbital-based Physics in the Fe-based Superconductors? W. Lv, W. Lee, F. Kruger, Z. Leong, J. Tranquada. Thanks to: DOE (EFRC)+BNL Spin or Orbital-based Physics in the Fe-based Superconductors? W. Lv, W. Lee, F. Kruger, Z. Leong, J. Tranquada Thanks to: DOE (EFRC)+BNL Spin or Orbital-based Physics in the Fe-based Superconductors?

More information

Emergent Ising orders of frustrated magnets

Emergent Ising orders of frustrated magnets Emergent Ising orders of frustrated magnets Oleg Starykh University of Utah Jason Alicea (Caltech) Andrey Chubukov (U Minnesota) Leon Balents (KITP) Zhentao Wang (U Tennessee) Cristian Batista (U Tennessee)

More information

Paramagnetic phases of Kagome lattice quantum Ising models p.1/16

Paramagnetic phases of Kagome lattice quantum Ising models p.1/16 Paramagnetic phases of Kagome lattice quantum Ising models Predrag Nikolić In collaboration with T. Senthil Massachusetts Institute of Technology Paramagnetic phases of Kagome lattice quantum Ising models

More information

Quantum Phase Transitions

Quantum Phase Transitions Quantum Phase Transitions Subir Sachdev Department of Physics Yale University P.O. Box 208120, New Haven, CT 06520-8120 USA E-mail: subir.sachdev@yale.edu May 19, 2004 To appear in Encyclopedia of Mathematical

More information

Symmetry protected topological phases in quantum spin systems

Symmetry protected topological phases in quantum spin systems 10sor network workshop @Kashiwanoha Future Center May 14 (Thu.), 2015 Symmetry protected topological phases in quantum spin systems NIMS U. Tokyo Shintaro Takayoshi Collaboration with A. Tanaka (NIMS)

More information

Luigi Paolasini

Luigi Paolasini Luigi Paolasini paolasini@esrf.fr LECTURE 7: Magnetic excitations - Phase transitions and the Landau mean-field theory. - Heisenberg and Ising models. - Magnetic excitations. External parameter, as for

More information

Shunsuke Furukawa Condensed Matter Theory Lab., RIKEN. Gregoire Misguich Vincent Pasquier Service de Physique Theorique, CEA Saclay, France

Shunsuke Furukawa Condensed Matter Theory Lab., RIKEN. Gregoire Misguich Vincent Pasquier Service de Physique Theorique, CEA Saclay, France Shunsuke Furukawa Condensed Matter Theory Lab., RIKEN in collaboration with Gregoire Misguich Vincent Pasquier Service de Physique Theorique, CEA Saclay, France : ground state of the total system Reduced

More information

Skyrmions and Anomalous Hall Effect in a Dzyaloshinskii-Moriya Magnet

Skyrmions and Anomalous Hall Effect in a Dzyaloshinskii-Moriya Magnet Skyrmions and Anomalous Hall Effect in a Dzyaloshinskii-Moriya Magnet Jung Hoon Han (SungKyunKwanU, Suwon) Su Do Yi SKKU Shigeki Onoda RIKEN Naoto Nagaosa U of Tokyo arxiv:0903.3272v1 Nearly ferromagnetic

More information

J. Phys.: Condens. Matter 10 (1998) L159 L165. Printed in the UK PII: S (98)90604-X

J. Phys.: Condens. Matter 10 (1998) L159 L165. Printed in the UK PII: S (98)90604-X J. Phys.: Condens. Matter 10 (1998) L159 L165. Printed in the UK PII: S0953-8984(98)90604-X LETTER TO THE EDITOR Calculation of the susceptibility of the S = 1 antiferromagnetic Heisenberg chain with single-ion

More information

Luigi Paolasini

Luigi Paolasini Luigi Paolasini paolasini@esrf.fr LECTURE 4: MAGNETIC INTERACTIONS - Dipole vs exchange magnetic interactions. - Direct and indirect exchange interactions. - Anisotropic exchange interactions. - Interplay

More information

Phases of spin chains with uniform Dzyaloshinskii-Moriya interactions

Phases of spin chains with uniform Dzyaloshinskii-Moriya interactions Phases of spin chains with uniform Dzyaloshinskii-Moriya interactions Oleg Starykh, University of Utah Wen Jin (Univ of Waterloo, Canada) Yang-Hao Chan (IAMS, Taiwan) Hong-Chen Jiang (SLAC, SIMES) RIKEN

More information

The Gutzwiller Density Functional Theory

The Gutzwiller Density Functional Theory The Gutzwiller Density Functional Theory Jörg Bünemann, BTU Cottbus I) Introduction 1. Model for an H 2 -molecule 2. Transition metals and their compounds II) Gutzwiller variational theory 1. Gutzwiller

More information

Revealing fermionic quantum criticality from new Monte Carlo techniques. Zi Yang Meng ( 孟子杨 )

Revealing fermionic quantum criticality from new Monte Carlo techniques. Zi Yang Meng ( 孟子杨 ) Revealing fermionic quantum criticality from new Monte Carlo techniques Zi Yang Meng ( 孟子杨 ) http://ziyangmeng.iphy.ac.cn Collaborators and References Xiao Yan Xu Zi Hong Liu Chuang Chen Gao Pei Pan Yang

More information