Spatially anisotropic triangular antiferromagnet in magnetic field

Size: px
Start display at page:

Download "Spatially anisotropic triangular antiferromagnet in magnetic field"

Transcription

1 Spatially anisotropic triangular antiferromagnet in magnetic field Oleg Starykh, University of Utah Leon Balents, KITP Hosho Katsura, KITP Jason Alicea, Caltech Andrey Chubukov, U Wisconsin Christian Griset Shane Head EQUAM10, MPIPKS, Dresden, August

2 Spatially anisotropic triangular antiferromagnet in magnetic field Magnetization plateau in triangular lattice antiferromagnets Oleg Starykh, University of Utah Leon Balents, KITP Hosho Katsura, KITP Jason Alicea, Caltech Andrey Chubukov, U Wisconsin Christian Griset Shane Head EQUAM10, MPIPKS, Dresden, August

3 Outline experimental (Cs2CuBr4) and theoretical motivations classical antiferromagnet in a field: entropic selection spatial anisotropy - high-t stabilization of the plateau Quantum spins: zero-point fluctuations Large-S analysis of interacting spin waves Approach from one dimension sequence of plateaux and selection rules (attempt at) Unification

4 Experiment: M=1/3 magnetization plateau in Cs2CuBr4 Observed in Cs 2 CuBr 4 (Ono 2004, Tsuji 2007) J /J = 0.75 but not Cs 2 CuCl4 [J /J = 0.34] J S=1/2 J UUD (up-up-down) structure -- down-spins at the centers of hexagons; commensurate structure -- one down spin per every triangle first observation of up-up-down state in spin-1/2 triangular lattice antiferromagnet

5 Progress in one dimensional J1-J2 chain (zig-zag ladder) S=1/2 Okunishi, Tonegawa JPSJ (2003) Hikihara et al PRB (2010) M=1/3 plateau plateau is centered around J2 = J1/2 point for S > 1/2; semi-classical spin wave expansion is possible there (OS 2009) agrees with Oshikawa, Yamanaka, Affleck argument (PRL 2007): p S (1 - M) = integer S=1,3/2 p = period, S = spin, M = magnetization: M=1/3, p=3 possible for all S Heirich-Meisner et al PRB (2007) also seen in frustrated spin ladders, Michaud et al PRB 2010

6 D = 2 surprisingly complex phase diagram of spatially anisotropic triangular lattice antiferromagnet no definite conclusions from numerical studies yet... connections with interacting boson system Superfluids Mott insulators Supersolids Nikuni, Shiba 1995 Heidarian, Damle 2005 Wang et al 2009 Jiang et al 2009 Tay, Motrunich 2010

7 Outline experimental (Cs2CuBr4) and theoretical motivations classical antiferromagnet in a field: entropic selection spatial anisotropy - high-t stabilization of the plateau Quantum spins: zero-point fluctuations Large-S analysis of interacting spin waves Approach from one dimension sequence of plateaux and selection rules (attempt at) Unification

8 Classical isotropic Δ AFM in magnetic field No field: spiral (120 degree) state Magnetic field: accidental degeneracy H = J i,j S i S j i h Si H = 1 2 J ( i S i h 3J ) 2 S i1 + S i2 + S i3 = h 3J all states with form the lowest-energy manifold 6 angles, 3 equations => 2 continuous angles (upto global U(1) rotation about h) Planar Umbrella (cone) No plateau possible plateau is possible at collinear point

9 Phase diagram Head, Griset, Alicea, OS 2010

10 Thermal Order-from-Disorder mechanism RbFe(MoO4)2: S=5/2 Fe 3+ Svistov et al PRB (2003) Smirnov et al PRB (2007) plateau plateau is signaled by depression in dm/dh Two antiferromagnetically coupled layers Plateau width increases with T

11 Persistence of plateau in triangular structures cuboctahedron icosidodecahedron Mo 72 Fe 30 S=5/2 Heisenberg (kagome on a sphere) Schroder et al, PRL (2005) Rousochatzakis et al, PRB(2008)

12

13 M dm/dh crossing UUD state at finite T

14 First order transition chirality Cv

15 Phase diagram of the classical anisotropic model Griset, Head, Alicea, OS 2010 Dual role of thermal fluctuations: promotes high-entropy states; destabilizes order

16 Outline experimental (Cs2CuBr4) and theoretical motivations classical antiferromagnet in a field: entropic selection spatial anisotropy - high-t stabilization of the plateau Quantum spins: zero-point fluctuations Large-S analysis of interacting spin waves Approach from one dimension sequence of plateaux and selection rules (attempt at) Unification

17 Order-from-Disorder via Quantum fluctuations fluctuation spectra of different spin structures are different: E = Eclass + ΔE sw quantum fluctuations prefer planar arrangement prefer collinear configuration even more, when possible: state with maximum number of soft modes wins. plateau is a quantum effect, width δh = 1.8 J/(2S) (hsaturation = 9 J) Chubukov, Golosov (1991) finite S effect E sw planar = S 2 plateau is the effect of interactions (hence, width ~ 1/S) between spin waves k ω planar (k) < E sw umbrella = S 2 ω umbrella (k) k Tsuji et al (2007) NMR spectra: Fujii et al (2004) Cs 2 CuBr 4 δh T-independent width The problem: spatial anisotropy stabilizes umbrella

18 Spatially anisotropic model: classical analysis fails H = J ij S S h i j ij i S z i J J J J 0 h sat h 0 h sat h 1/3-plateau Umbrella state: favored classically; energy gain (J-J ) 2 /J Planar states: favored by quantum fluctuations; energy gain J/S The competition is controlled by δ = S(J J ) 2 /J 2 dimensionless parameter Technical formulation: spatial anisotropy J-J causes softening of interacting (including 1/S correction) spin waves

19 Our semiclassical approach: treat spatial anisotropy (J-J ) as a perturbation to interacting spin waves single dimensionless parameter δ = S(1 - J /J) 2 : fully polarized state h h c2 planar distorted umbrella (2) BEC k = 0 h c1 commensurate planar UUD plateau zero-field spiral distorted umbrella (1) Alicea, Chubukov, Starykh PRL 102, (2009) incommensurate 2 low-energy gapped modes BEC k ! Cs 2 CuBr 4 Cs 2 CuCl 4 ~ S(1 - J /J) 2

20 More detailed phase diagram fully polarized state Exact dilute boson calculation (OS 2010) V incommensurate: fan h V commensurate planar distorted umbrella (2) h c2 BEC k = 0 h c1 commensurate planar incommensurate UUD plateau 2 low-energy gapped modes zero-field spiral distorted umbrella (1) Alicea, Chubukov, Starykh PRL 102, (2009) BEC k ! Cs 2 CuBr 4 Cs 2 CuCl 4 ~ S(1 - J /J) 2

21 Exact dilute boson calculation incomm. planar h h c2 commens planar distorted umbrella (2) h c1 planar incommen UUD plateau 2 low-energy distorted umbrella (1) BEC k ! ~ S(1 - J /J) 2 Variational wave function calculation Tay, Motrunich PRB 2010

22 Outline experimental (Cs2CuBr4) and theoretical motivations classical antiferromagnet in a field: entropic selection spatial anisotropy - high-t stabilization of the plateau Quantum spins: zero-point fluctuations Large-S analysis of interacting spin waves Approach from one dimension sequence of plateaux and selection rules (attempt at) Unification

23 Heisenberg spin chain via free Dirac fermions Spin-1/2 AFM chain = half-filled (1 electron per site, k F =π/2a ) fermion chain Spin-charge separation q=0 fluctuations: right- and left- spin currents 2k F (= π/a) fluctuations: charge density wave ε, spin density wave N Staggered Magnetization N Spin flip ΔS=1 -k F k F Susceptibility 1/q 1/q Staggered Dimerization ε = (-1) x S x S x+a ΔS=0 -k F k F 1/q Must be careful: often spin-charge separation must be enforced by hand

24 S=1/2 AFM Chain in a Field Field-split Fermi momenta: Uniform magnetization Half-filled condition S z component (ΔS=0) peaked at scaling dimension increases 1 Affleck and Oshikawa, 1999 S x,y components (ΔS=1) remain at π scaling dimension decreases 1/2 0 h/h sat 1/2 M 1 Derived for free electrons but correct always - Luttinger Theorem h sat =2J 0 h/h sat 1 XY AF correlations grow with h and remain commensurate Ising SDW correlations decrease with h and shift from π

25 Weakly coupled Heisenberg chains in magnetic field non - frustrated inter-chain coupling J S r S r N x r N x r + N y r N y r + N z r N z r most relevant less relevant 2πR 2 < 1/(2πR 2 ) spins order in the plane perpendicular to the direction of magnetic field (z): umbrella / cone / spin-flop states frustrated inter-chain coupling y+1 y S x,y ( S x,y+1 + S x+1,y+1 ) N x y x N x y+1+n y y x N y y+1 +sin(δ)sz π 2δ(y)S z π+2δ(y+1) less relevant 1+2πR 2 > 1/(2πR 2 ) frustration promotes collinear SDW order most relevant (small to intermediate fields)

26 Ideal J-J model in magnetic field OS, Balents 2007 Two important couplings for h>0 Quantum phase transition between SDW and Cone states Magnetic field relieves frustration! k F k F =2δ =2πM dim 1/2πR 2 : 1 -> 2 collinear SDW dim 1+2πR 2 : 2 -> 3/2 spiral cone state Critical point : 1+2πR 2 = 1/2πR 2 gives at M = T c cone sdw M 1/2 also: Kolezhuk, Vekua 2005 h/h sat

27 J-J model: magnetization plateaux via commensurate locking of SDW Collinear SDW state locks to the lattice at low-t - irrelevant (1d) umklapp terms become relevant once SDW order is present (when commensurate): multiparticle umklapp scattering -strongest locking is at M=1/3 M sat Observed in Cs2CuBr 4 (Ono 2004, Tsuji 07, Fortune 09) down-spins at the centers of hexagons T collinear SDW cone polarized uud h/h sat ( n Ψ R L) Ψ (π 2δ)n =2πm 2M =1 2m/n Cs2CuBr4 Fortune et al /3 2/3 n m M 1/3 1/2 3/5 1/5 2/3 naively thinking

28 Plateau more carefully Umklapp must respect triangular lattice symmetries translation along chain direction translation along diagonal spatial inversion H (n) umk = y Z n-th plateau width (in field) and OS, Katsura, Balents PRB 2010 M (n,m) = 1 1 2m 2 n φ y (x) φ y (x + 1) R(π 2δ) φ y (x) φ y+1 (x + 1/2) R(π 2δ)/2 φ y (x) πr φ y ( x) dx t n cos[ n R φ y] n = m (mod 2) width J /J n 2 /(4(4πR 2 1)) same parity condition n m M 1/3 1/2 3/5 1/5 2/3 large n leads to exponential suppression 1/3-plateau is most prominent, 3/5 is possible (if falls within the SDW region). Exponentially weak 1/2- and 2/3- plateaux, if any!

29 J << J limit collinear SDW cone polarized uud h/h sat

30 J << J limit collinear SDW cone polarized uud h/h sat h/h sat /5 1/3 collinear SDW cone polarized J /J = 1 J /J = 0

31 J << J limit to J = J point... h h c2 h c1 planar comm. planar UUD plateau 2 low-energy incomm. planar distorted umbrella (1) BEC k 0 distorted umbrella (2)???? cone longit. sdw h/h sat /5 1/3 collinear SDW cone polarized J /J = ! 0 J /J = 0

32 Global phase diagram Hypothesis: 1/3 plateau extends for all 0 < J /J < 1; other magnetization plateaux terminate above some critical J /J ratio. polarized h h c2 h c1 planar comm. planar UUD plateau incomm. planar distorted umbrella (1) distorted umbrella (2) cone = umbrella longitudinal sdw h/h sat /5 1/3 cone collinear SDW J /J = ! CAF 0 J /J = 0

33 Experimental relevance polarized h h c2 h c1 planar comm. planar UUD plateau incomm. planar distorted umbrella (1) distorted umbrella (2) cone = umbrella longitudinal sdw h/h sat /5 1/3 cone collinear SDW J /J = ! Cs2CuBr4 plateau - yes CAF 0 J /J = 0 inter-layer exchange J /J Cs2CuCl4 no plateau large J /J favors classical cone order!

34 Conclusions Magnetization plateau persists for all Jʼ/J semiclassical interacting spin waves near J - Jʼ << J 1d scaling + symmetry arguments near Jʼ << J Many other interesting phases Longitudinal SDW commensurate-incommensurate transitions Many open questions, excellent problem for numerical studies

Triangular lattice antiferromagnet in magnetic field: ground states and excitations

Triangular lattice antiferromagnet in magnetic field: ground states and excitations Triangular lattice antiferromagnet in magnetic field: ground states and excitations Oleg Starykh, University of Utah Jason Alicea, Caltech Leon Balents, KITP Andrey Chubukov, U Wisconsin Outline motivation:

More information

Unusual ordered phases of magnetized frustrated antiferromagnets

Unusual ordered phases of magnetized frustrated antiferromagnets Unusual ordered phases of magnetized frustrated antiferromagnets Credit: Francis Pratt / ISIS / STFC Oleg Starykh University of Utah Leon Balents and Andrey Chubukov Novel states in correlated condensed

More information

Quasi-1d Antiferromagnets

Quasi-1d Antiferromagnets Quasi-1d Antiferromagnets Leon Balents, UCSB Masanori Kohno, NIMS, Tsukuba Oleg Starykh, U. Utah Quantum Fluids, Nordita 2007 Outline Motivation: Quantum magnetism and the search for spin liquids Neutron

More information

Quasi-1d Frustrated Antiferromagnets. Leon Balents, UCSB Masanori Kohno, NIMS, Tsukuba Oleg Starykh, U. Utah

Quasi-1d Frustrated Antiferromagnets. Leon Balents, UCSB Masanori Kohno, NIMS, Tsukuba Oleg Starykh, U. Utah Quasi-1d Frustrated Antiferromagnets Leon Balents, UCSB Masanori Kohno, NIMS, Tsukuba Oleg Starykh, U. Utah Outline Frustration in quasi-1d systems Excitations: magnons versus spinons Neutron scattering

More information

Spinons and triplons in spatially anisotropic triangular antiferromagnet

Spinons and triplons in spatially anisotropic triangular antiferromagnet Spinons and triplons in spatially anisotropic triangular antiferromagnet Oleg Starykh, University of Utah Leon Balents, UC Santa Barbara Masanori Kohno, NIMS, Tsukuba PRL 98, 077205 (2007); Nature Physics

More information

Emergent Ising orders of frustrated magnets

Emergent Ising orders of frustrated magnets Emergent Ising orders of frustrated magnets Oleg Starykh University of Utah Jason Alicea (Caltech) Andrey Chubukov (U Minnesota) Leon Balents (KITP) Zhentao Wang (U Tennessee) Cristian Batista (U Tennessee)

More information

Critical Spin-liquid Phases in Spin-1/2 Triangular Antiferromagnets. In collaboration with: Olexei Motrunich & Jason Alicea

Critical Spin-liquid Phases in Spin-1/2 Triangular Antiferromagnets. In collaboration with: Olexei Motrunich & Jason Alicea Critical Spin-liquid Phases in Spin-1/2 Triangular Antiferromagnets In collaboration with: Olexei Motrunich & Jason Alicea I. Background Outline Avoiding conventional symmetry-breaking in s=1/2 AF Topological

More information

Quantum phases and transitions of spatially anisotropic triangular antiferromagnets. Leon Balents, KITP, Santa Barbara, CA

Quantum phases and transitions of spatially anisotropic triangular antiferromagnets. Leon Balents, KITP, Santa Barbara, CA Quantum phases and transitions of spatially anisotropic triangular antiferromagnets Leon Balents, KITP, Santa Barbara, CA Hanoi, July 14, 2010 Collaborators Oleg Starykh, University of Utah Masanori Kohno,

More information

Spinon spin resonance Electron spin resonance of spinon gas

Spinon spin resonance Electron spin resonance of spinon gas Spinon spin resonance Electron spin resonance of spinon gas Oleg Starykh, University of Utah In collaboration with: K. Povarov, A. Smirnov, S. Petrov, Kapitza Institute for Physical Problems, Moscow, Russia,

More information

Spinon magnetic resonance. Oleg Starykh, University of Utah

Spinon magnetic resonance. Oleg Starykh, University of Utah Spinon magnetic resonance Oleg Starykh, University of Utah May 17-19, 2018 Examples of current literature 200 cm -1 = 6 THz Spinons? 4 mev = 1 THz The big question(s) What is quantum spin liquid? No broken

More information

Quantum spin systems - models and computational methods

Quantum spin systems - models and computational methods Summer School on Computational Statistical Physics August 4-11, 2010, NCCU, Taipei, Taiwan Quantum spin systems - models and computational methods Anders W. Sandvik, Boston University Lecture outline Introduction

More information

Frustrated diamond lattice antiferromagnets

Frustrated diamond lattice antiferromagnets Frustrated diamond lattice antiferromagnets ason Alicea (Caltech) Doron Bergman (Yale) Leon Balents (UCSB) Emanuel Gull (ETH Zurich) Simon Trebst (Station Q) Bergman et al., Nature Physics 3, 487 (007).

More information

Phases of spin chains with uniform Dzyaloshinskii-Moriya interactions

Phases of spin chains with uniform Dzyaloshinskii-Moriya interactions Phases of spin chains with uniform Dzyaloshinskii-Moriya interactions Oleg Starykh, University of Utah Wen Jin (Univ of Waterloo, Canada) Yang-Hao Chan (IAMS, Taiwan) Hong-Chen Jiang (SLAC, SIMES) RIKEN

More information

Breaking the spin waves: spinons in!!!cs2cucl4 and elsewhere

Breaking the spin waves: spinons in!!!cs2cucl4 and elsewhere Breaking the spin waves: spinons in!!!cs2cucl4 and elsewhere Oleg Starykh, University of Utah In collaboration with: K. Povarov, A. Smirnov, S. Petrov, Kapitza Institute for Physical Problems, Moscow,

More information

Ideas on non-fermi liquid metals and quantum criticality. T. Senthil (MIT).

Ideas on non-fermi liquid metals and quantum criticality. T. Senthil (MIT). Ideas on non-fermi liquid metals and quantum criticality T. Senthil (MIT). Plan Lecture 1: General discussion of heavy fermi liquids and their magnetism Review of some experiments Concrete `Kondo breakdown

More information

Spinon magnetic resonance. Oleg Starykh, University of Utah

Spinon magnetic resonance. Oleg Starykh, University of Utah Spinon magnetic resonance Oleg Starykh, University of Utah June 11, 2018 My other projects I d be glad to discuss at the workshop Topological phase of repulsively interacting quantum wire with SO coupling

More information

Paramagnetic phases of Kagome lattice quantum Ising models p.1/16

Paramagnetic phases of Kagome lattice quantum Ising models p.1/16 Paramagnetic phases of Kagome lattice quantum Ising models Predrag Nikolić In collaboration with T. Senthil Massachusetts Institute of Technology Paramagnetic phases of Kagome lattice quantum Ising models

More information

arxiv: v2 [cond-mat.str-el] 28 Apr 2013

arxiv: v2 [cond-mat.str-el] 28 Apr 2013 Ground states of spin- 1 triangular antiferromagnets in a magnetic field 2 arxiv:1211.1676v2 [cond-mat.str-el] 28 Apr 2013 Ru Chen, 1 Hyejin Ju, 1 Hong-Chen Jiang, 2 Oleg A. Starykh, 3 and Leon Balents

More information

Degeneracy Breaking in Some Frustrated Magnets

Degeneracy Breaking in Some Frustrated Magnets Degeneracy Breaking in Some Frustrated Magnets Doron Bergman Greg Fiete Ryuichi Shindou Simon Trebst UCSB Physics KITP UCSB Physics Q Station cond-mat: 0510202 (prl) 0511176 (prb) 0605467 0607210 0608131

More information

Degeneracy Breaking in Some Frustrated Magnets. Bangalore Mott Conference, July 2006

Degeneracy Breaking in Some Frustrated Magnets. Bangalore Mott Conference, July 2006 Degeneracy Breaking in Some Frustrated Magnets Doron Bergman Greg Fiete Ryuichi Shindou Simon Trebst UCSB Physics KITP UCSB Physics Q Station Bangalore Mott Conference, July 2006 Outline Motivation: Why

More information

Nematic and Magnetic orders in Fe-based Superconductors

Nematic and Magnetic orders in Fe-based Superconductors Nematic and Magnetic orders in Fe-based Superconductors Cenke Xu Harvard University Collaborators: Markus Mueller, Yang Qi Subir Sachdev, Jiangping Hu Collaborators: Subir Sachdev Markus Mueller Yang Qi

More information

Spin-orbit-induced spin-density wave in quantum wires and spin chains

Spin-orbit-induced spin-density wave in quantum wires and spin chains Spin-orbit-induced spin-density wave in quantum wires and spin chains Oleg Starykh, University of Utah Suhas Gangadharaiah, University of Basel Jianmin Sun, Indiana University also appears in quasi-1d

More information

Symmetry protected topological phases in quantum spin systems

Symmetry protected topological phases in quantum spin systems 10sor network workshop @Kashiwanoha Future Center May 14 (Thu.), 2015 Symmetry protected topological phases in quantum spin systems NIMS U. Tokyo Shintaro Takayoshi Collaboration with A. Tanaka (NIMS)

More information

A05: Quantum crystal and ring exchange. Novel magnetic states induced by ring exchange

A05: Quantum crystal and ring exchange. Novel magnetic states induced by ring exchange A05: Quantum crystal and ring exchange Novel magnetic states induced by ring exchange Members: Tsutomu Momoi (RIKEN) Kenn Kubo (Aoyama Gakuinn Univ.) Seiji Miyashita (Univ. of Tokyo) Hirokazu Tsunetsugu

More information

Jung Hoon Kim & Jung Hoon Han

Jung Hoon Kim & Jung Hoon Han Chiral spin states in the pyrochlore Heisenberg magnet : Fermionic mean-field theory & variational Monte-carlo calculations Jung Hoon Kim & Jung Hoon Han Department of Physics, Sungkyunkwan University,

More information

Quantum Spin-Metals in Weak Mott Insulators

Quantum Spin-Metals in Weak Mott Insulators Quantum Spin-Metals in Weak Mott Insulators MPA Fisher (with O. Motrunich, Donna Sheng, Simon Trebst) Quantum Critical Phenomena conference Toronto 9/27/08 Quantum Spin-metals - spin liquids with Bose

More information

SPIN-LIQUIDS ON THE KAGOME LATTICE: CHIRAL TOPOLOGICAL, AND GAPLESS NON-FERMI-LIQUID PHASE

SPIN-LIQUIDS ON THE KAGOME LATTICE: CHIRAL TOPOLOGICAL, AND GAPLESS NON-FERMI-LIQUID PHASE SPIN-LIQUIDS ON THE KAGOME LATTICE: CHIRAL TOPOLOGICAL, AND GAPLESS NON-FERMI-LIQUID PHASE ANDREAS W.W. LUDWIG (UC-Santa Barbara) work done in collaboration with: Bela Bauer (Microsoft Station-Q, Santa

More information

Gapless Spin Liquids in Two Dimensions

Gapless Spin Liquids in Two Dimensions Gapless Spin Liquids in Two Dimensions MPA Fisher (with O. Motrunich, Donna Sheng, Matt Block) Boulder Summerschool 7/20/10 Interest Quantum Phases of 2d electrons (spins) with emergent rather than broken

More information

Heisenberg-Kitaev physics in magnetic fields

Heisenberg-Kitaev physics in magnetic fields Heisenberg-Kitaev physics in magnetic fields Lukas Janssen & Eric Andrade, Matthias Vojta L.J., E. Andrade, and M. Vojta, Phys. Rev. Lett. 117, 277202 (2016) L.J., E. Andrade, and M. Vojta, Phys. Rev.

More information

Quantum Lifshitz point and a multipolar cascade for frustrated ferromagnets

Quantum Lifshitz point and a multipolar cascade for frustrated ferromagnets Quantum Lifshitz point and a multipolar cascade for frustrated ferromagnets Leon Balents, KITP, UCSB Progress and Applications of Modern Quantum Field Theory, Aspen, Feb. 015 Collaborators Oleg Starykh

More information

Non-magnetic states. The Néel states are product states; φ N a. , E ij = 3J ij /4 2 The Néel states have higher energy (expectations; not eigenstates)

Non-magnetic states. The Néel states are product states; φ N a. , E ij = 3J ij /4 2 The Néel states have higher energy (expectations; not eigenstates) Non-magnetic states Two spins, i and j, in isolation, H ij = J ijsi S j = J ij [Si z Sj z + 1 2 (S+ i S j + S i S+ j )] For Jij>0 the ground state is the singlet; φ s ij = i j i j, E ij = 3J ij /4 2 The

More information

Unconventional magnetic order in 3D Kitaev materials revealed by resonant x-ray diffraction Radu Coldea

Unconventional magnetic order in 3D Kitaev materials revealed by resonant x-ray diffraction Radu Coldea Unconventional magnetic order in 3D Kitaev materials revealed by resonant x-ray diffraction Radu Coldea Oxford Collaborators Alun Biffin (Oxford->PSI) Roger D. Johnson S. Choi P. Manuel A. Bombardi Sample

More information

Spinons in Spatially Anisotropic Frustrated Antiferromagnets

Spinons in Spatially Anisotropic Frustrated Antiferromagnets Spinons in Spatially Anisotropic Frustrated Antiferromagnets June 8th, 2007 Masanori Kohno Physics department, UCSB NIMS, Japan Collaborators: Leon Balents (UCSB) & Oleg Starykh (Univ. Utah) Introduction

More information

Some open questions from the KIAS Workshop on Emergent Quantum Phases in Strongly Correlated Electronic Systems, Seoul, Korea, October 2005.

Some open questions from the KIAS Workshop on Emergent Quantum Phases in Strongly Correlated Electronic Systems, Seoul, Korea, October 2005. Some open questions from the KIAS Workshop on Emergent Quantum Phases in Strongly Correlated Electronic Systems, Seoul, Korea, October 2005. Q 1 (Balents) Are quantum effects important for physics of hexagonal

More information

Spin liquids on ladders and in 2d

Spin liquids on ladders and in 2d Spin liquids on ladders and in 2d MPA Fisher (with O. Motrunich) Minnesota, FTPI, 5/3/08 Interest: Quantum Spin liquid phases of 2d Mott insulators Background: Three classes of 2d Spin liquids a) Topological

More information

Dimerized & frustrated spin chains. Application to copper-germanate

Dimerized & frustrated spin chains. Application to copper-germanate Dimerized & frustrated spin chains Application to copper-germanate Outline CuGeO & basic microscopic models Excitation spectrum Confront theory to experiments Doping Spin-Peierls chains A typical S=1/2

More information

Anisotropic Magnetic Structures in Iron-Based Superconductors

Anisotropic Magnetic Structures in Iron-Based Superconductors Anisotropic Magnetic Structures in Iron-Based Superconductors Chi-Cheng Lee, Weiguo Yin & Wei Ku CM-Theory, CMPMSD, Brookhaven National Lab Department of Physics, SUNY Stony Brook Another example of SC

More information

Flat band and localized excitations in the magnetic spectrum of the fully frustrated dimerized magnet Ba 2 CoSi 2 O 6 Cl 2

Flat band and localized excitations in the magnetic spectrum of the fully frustrated dimerized magnet Ba 2 CoSi 2 O 6 Cl 2 Flat band and localized excitations in the magnetic spectrum of the fully frustrated dimerized magnet Ba 2 CoSi 2 O 6 Cl 2 γ 1 tr φ θ φ θ i Nobuo Furukawa Dept. of Physics, Aoyama Gakuin Univ. Collaborators

More information

Spin correlations in conducting and superconducting materials Collin Broholm Johns Hopkins University

Spin correlations in conducting and superconducting materials Collin Broholm Johns Hopkins University Spin correlations in conducting and superconducting materials Collin Broholm Johns Hopkins University Supported by U.S. DoE Basic Energy Sciences, Materials Sciences & Engineering DE-FG02-08ER46544 Overview

More information

arxiv: v1 [cond-mat.str-el] 13 Dec 2012

arxiv: v1 [cond-mat.str-el] 13 Dec 2012 Quantum stabilization of classically unstable plateau structures arxiv:1212.3086v1 [cond-mat.str-el] 13 Dec 2012 Tommaso Coletta, 1 M. E. Zhitomirsy, 2 and Frédéric Mila 1 1 Institute of Theoretical Physics,

More information

Luigi Paolasini

Luigi Paolasini Luigi Paolasini paolasini@esrf.fr LECTURE 4: MAGNETIC INTERACTIONS - Dipole vs exchange magnetic interactions. - Direct and indirect exchange interactions. - Anisotropic exchange interactions. - Interplay

More information

Emergent topological phenomena in antiferromagnets with noncoplanar spins

Emergent topological phenomena in antiferromagnets with noncoplanar spins Emergent topological phenomena in antiferromagnets with noncoplanar spins - Surface quantum Hall effect - Dimensional crossover Bohm-Jung Yang (RIKEN, Center for Emergent Matter Science (CEMS), Japan)

More information

Rashba vs Kohn-Luttinger: evolution of p-wave superconductivity in magnetized two-dimensional Fermi gas subject to spin-orbit interaction

Rashba vs Kohn-Luttinger: evolution of p-wave superconductivity in magnetized two-dimensional Fermi gas subject to spin-orbit interaction Rashba vs Kohn-Luttinger: evolution of p-wave superconductivity in magnetized two-dimensional Fermi gas subject to spin-orbit interaction Oleg Starykh, University of Utah with Dima Pesin, Ethan Lake, Caleb

More information

Valence Bonds in Random Quantum Magnets

Valence Bonds in Random Quantum Magnets Valence Bonds in Random Quantum Magnets theory and application to YbMgGaO 4 Yukawa Institute, Kyoto, November 2017 Itamar Kimchi I.K., Adam Nahum, T. Senthil, arxiv:1710.06860 Valence Bonds in Random Quantum

More information

WORLD SCIENTIFIC (2014)

WORLD SCIENTIFIC (2014) WORLD SCIENTIFIC (2014) LIST OF PROBLEMS Chapter 1: Magnetism of Free Electrons and Atoms 1. Orbital and spin moments of an electron: Using the theory of angular momentum, calculate the orbital

More information

Basis 4 ] = Integration of s(t) has been performed numerically by an adaptive quadrature algorithm. Discretization in the ɛ space

Basis 4 ] = Integration of s(t) has been performed numerically by an adaptive quadrature algorithm. Discretization in the ɛ space 1 [NPHYS-007-06-00643] SUPPLEMENTARY MATERIAL for Spinons and triplons in spatially anisotropic frustrated antiferromagnets by Masanori Kohno, Oleg A. Starykh, and Leon Balents Basis The two-spinon states

More information

Coupled Cluster Method for Quantum Spin Systems

Coupled Cluster Method for Quantum Spin Systems Coupled Cluster Method for Quantum Spin Systems Sven E. Krüger Department of Electrical Engineering, IESK, Cognitive Systems Universität Magdeburg, PF 4120, 39016 Magdeburg, Germany sven.krueger@e-technik.uni-magdeburg.de

More information

Strongly correlated Cooper pair insulators and superfluids

Strongly correlated Cooper pair insulators and superfluids Strongly correlated Cooper pair insulators and superfluids Predrag Nikolić George Mason University Acknowledgments Collaborators Subir Sachdev Eun-Gook Moon Anton Burkov Arun Paramekanti Affiliations and

More information

Numerical diagonalization studies of quantum spin chains

Numerical diagonalization studies of quantum spin chains PY 502, Computational Physics, Fall 2016 Anders W. Sandvik, Boston University Numerical diagonalization studies of quantum spin chains Introduction to computational studies of spin chains Using basis states

More information

2. Spin liquids and valence bond solids

2. Spin liquids and valence bond solids Outline 1. Coupled dimer antiferromagnets Landau-Ginzburg quantum criticality 2. Spin liquids and valence bond solids (a) Schwinger-boson mean-field theory - square lattice (b) Gauge theories of perturbative

More information

Spins and spin-orbit coupling in semiconductors, metals, and nanostructures

Spins and spin-orbit coupling in semiconductors, metals, and nanostructures B. Halperin Spin lecture 1 Spins and spin-orbit coupling in semiconductors, metals, and nanostructures Behavior of non-equilibrium spin populations. Spin relaxation and spin transport. How does one produce

More information

Spin liquids in frustrated magnets

Spin liquids in frustrated magnets May 20, 2010 Contents 1 Frustration 2 3 4 Exotic excitations 5 Frustration The presence of competing forces that cannot be simultaneously satisfied. Heisenberg-Hamiltonian H = 1 J ij S i S j 2 ij The ground

More information

Spontaneous Spin Polarization in Quantum Wires

Spontaneous Spin Polarization in Quantum Wires Spontaneous Spin Polarization in Quantum Wires Julia S. Meyer The Ohio State University with A.D. Klironomos K.A. Matveev 1 Why ask this question at all GaAs/AlGaAs heterostucture 2D electron gas Quantum

More information

Solving the sign problem for a class of frustrated antiferromagnets

Solving the sign problem for a class of frustrated antiferromagnets Solving the sign problem for a class of frustrated antiferromagnets Fabien Alet Laboratoire de Physique Théorique Toulouse with : Kedar Damle (TIFR Mumbai), Sumiran Pujari (Toulouse Kentucky TIFR Mumbai)

More information

Haldane phase and magnetic end-states in 1D topological Kondo insulators. Alejandro M. Lobos Instituto de Fisica Rosario (IFIR) - CONICET- Argentina

Haldane phase and magnetic end-states in 1D topological Kondo insulators. Alejandro M. Lobos Instituto de Fisica Rosario (IFIR) - CONICET- Argentina Haldane phase and magnetic end-states in 1D topological Kondo insulators Alejandro M. Lobos Instituto de Fisica Rosario (IFIR) - CONICET- Argentina Workshop on Next Generation Quantum Materials ICTP-SAIFR,

More information

Z2 topological phase in quantum antiferromagnets. Masaki Oshikawa. ISSP, University of Tokyo

Z2 topological phase in quantum antiferromagnets. Masaki Oshikawa. ISSP, University of Tokyo Z2 topological phase in quantum antiferromagnets Masaki Oshikawa ISSP, University of Tokyo RVB spin liquid 4 spins on a square: Groundstate is exactly + ) singlet pair a.k.a. valence bond So, the groundstate

More information

Lecture 2: Deconfined quantum criticality

Lecture 2: Deconfined quantum criticality Lecture 2: Deconfined quantum criticality T. Senthil (MIT) General theoretical questions Fate of Landau-Ginzburg-Wilson ideas at quantum phase transitions? (More precise) Could Landau order parameters

More information

Global phase diagrams of two-dimensional quantum antiferromagnets. Subir Sachdev Harvard University

Global phase diagrams of two-dimensional quantum antiferromagnets. Subir Sachdev Harvard University Global phase diagrams of two-dimensional quantum antiferromagnets Cenke Xu Yang Qi Subir Sachdev Harvard University Outline 1. Review of experiments Phases of the S=1/2 antiferromagnet on the anisotropic

More information

Fully symmetric and non-fractionalized Mott insulators at fractional site-filling

Fully symmetric and non-fractionalized Mott insulators at fractional site-filling Fully symmetric and non-fractionalized Mott insulators at fractional site-filling Itamar Kimchi University of California, Berkeley EQPCM @ ISSP June 19, 2013 PRL 2013 (kagome), 1207.0498...[PNAS] (honeycomb)

More information

Stability of semi-metals : (partial) classification of semi-metals

Stability of semi-metals : (partial) classification of semi-metals : (partial) classification of semi-metals Eun-Gook Moon Department of Physics, UCSB EQPCM 2013 at ISSP, Jun 20, 2013 Collaborators Cenke Xu, UCSB Yong Baek, Kim Univ. of Toronto Leon Balents, KITP B.J.

More information

GEOMETRICALLY FRUSTRATED MAGNETS. John Chalker Physics Department, Oxford University

GEOMETRICALLY FRUSTRATED MAGNETS. John Chalker Physics Department, Oxford University GEOMETRICLLY FRUSTRTED MGNETS John Chalker Physics Department, Oxford University Outline How are geometrically frustrated magnets special? What they are not Evading long range order Degeneracy and fluctuations

More information

Nematicity and quantum paramagnetism in FeSe

Nematicity and quantum paramagnetism in FeSe Nematicity and quantum paramagnetism in FeSe Fa Wang 1,, Steven A. Kivelson 3 & Dung-Hai Lee 4,5, 1 International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China.

More information

Spin or Orbital-based Physics in the Fe-based Superconductors? W. Lv, W. Lee, F. Kruger, Z. Leong, J. Tranquada. Thanks to: DOE (EFRC)+BNL

Spin or Orbital-based Physics in the Fe-based Superconductors? W. Lv, W. Lee, F. Kruger, Z. Leong, J. Tranquada. Thanks to: DOE (EFRC)+BNL Spin or Orbital-based Physics in the Fe-based Superconductors? W. Lv, W. Lee, F. Kruger, Z. Leong, J. Tranquada Thanks to: DOE (EFRC)+BNL Spin or Orbital-based Physics in the Fe-based Superconductors?

More information

Superfluid vortex with Mott insulating core

Superfluid vortex with Mott insulating core Superfluid vortex with Mott insulating core Congjun Wu, Han-dong Chen, Jiang-ping Hu, and Shou-cheng Zhang (cond-mat/0211457) Department of Physics, Stanford University Department of Applied Physics, Stanford

More information

Supersymmetry breaking and Nambu-Goldstone fermions in lattice models

Supersymmetry breaking and Nambu-Goldstone fermions in lattice models YKIS2016@YITP (2016/6/15) Supersymmetry breaking and Nambu-Goldstone fermions in lattice models Hosho Katsura (Department of Physics, UTokyo) Collaborators: Yu Nakayama (IPMU Rikkyo) Noriaki Sannomiya

More information

Deconfined Quantum Critical Points

Deconfined Quantum Critical Points Deconfined Quantum Critical Points Leon Balents T. Senthil, MIT A. Vishwanath, UCB S. Sachdev, Yale M.P.A. Fisher, UCSB Outline Introduction: what is a DQCP Disordered and VBS ground states and gauge theory

More information

Tutorial on frustrated magnetism

Tutorial on frustrated magnetism Tutorial on frustrated magnetism Roderich Moessner CNRS and ENS Paris Lorentz Center Leiden 9 August 2006 Overview Frustrated magnets What are they? Why study them? Classical frustration degeneracy and

More information

Neutron scattering from quantum materials

Neutron scattering from quantum materials Neutron scattering from quantum materials Bernhard Keimer Max Planck Institute for Solid State Research Max Planck UBC UTokyo Center for Quantum Materials Detection of bosonic elementary excitations in

More information

DM-induced frustration of the weakly coupled Heisenberg chains

DM-induced frustration of the weakly coupled Heisenberg chains Journal of Physics: Conference Series PAPER OPEN ACCESS DM-induced frustration of the weakly coupled Heisenberg chains To cite this article: Wen Jin and Oleg A. Starykh 2017 J. Phys.: Conf. Ser. 828 012019

More information

Geometry, topology and frustration: the physics of spin ice

Geometry, topology and frustration: the physics of spin ice Geometry, topology and frustration: the physics of spin ice Roderich Moessner CNRS and LPT-ENS 9 March 25, Magdeburg Overview Spin ice: experimental discovery and basic model Spin ice in a field dimensional

More information

Magnetic Quantum Phase Transitions in Coupled Spin Dimer Systems

Magnetic Quantum Phase Transitions in Coupled Spin Dimer Systems Magnetic Quantum Phase Transitions in Coupled Spin Dimer Systems Hidekazu TANAKA Research Center for Low Temperature Physics, Tokyo Institute of Technology TlCuCl 3, KCuCl 3, (NH 4 CuCl 3 ) Magnetic insulator.

More information

Luttinger Liquid at the Edge of a Graphene Vacuum

Luttinger Liquid at the Edge of a Graphene Vacuum Luttinger Liquid at the Edge of a Graphene Vacuum H.A. Fertig, Indiana University Luis Brey, CSIC, Madrid I. Introduction: Graphene Edge States (Non-Interacting) II. III. Quantum Hall Ferromagnetism and

More information

Quantum Magnetism. P. Mendels Lab. Physique des solides, UPSud From basics to recent developments: a flavor

Quantum Magnetism. P. Mendels Lab. Physique des solides, UPSud From basics to recent developments: a flavor Quantum Magnetism P. Mendels Lab. Physique des solides, UPSud philippe.mendels@u-psud.fr From basics to recent developments: a flavor Quantum phase transitions Model physics for fermions, bosons, problems

More information

Spin or Orbital-based Physics in the Fe-based Superconductors? W. Lv, W. Lee, F. Kruger, Z. Leong, J. Tranquada. Thanks to: DOE (EFRC)+BNL

Spin or Orbital-based Physics in the Fe-based Superconductors? W. Lv, W. Lee, F. Kruger, Z. Leong, J. Tranquada. Thanks to: DOE (EFRC)+BNL Spin or Orbital-based Physics in the Fe-based Superconductors? W. Lv, W. Lee, F. Kruger, Z. Leong, J. Tranquada Thanks to: DOE (EFRC)+BNL Spin or Orbital-based Physics in the Fe-based Superconductors?

More information

Design and realization of exotic quantum phases in atomic gases

Design and realization of exotic quantum phases in atomic gases Design and realization of exotic quantum phases in atomic gases H.P. Büchler and P. Zoller Theoretische Physik, Universität Innsbruck, Austria Institut für Quantenoptik und Quanteninformation der Österreichischen

More information

Spin Superfluidity and Graphene in a Strong Magnetic Field

Spin Superfluidity and Graphene in a Strong Magnetic Field Spin Superfluidity and Graphene in a Strong Magnetic Field by B. I. Halperin Nano-QT 2016 Kyiv October 11, 2016 Based on work with So Takei (CUNY), Yaroslav Tserkovnyak (UCLA), and Amir Yacoby (Harvard)

More information

Hidden Symmetry and Quantum Phases in Spin 3/2 Cold Atomic Systems

Hidden Symmetry and Quantum Phases in Spin 3/2 Cold Atomic Systems Hidden Symmetry and Quantum Phases in Spin / Cold Atomic Systems Congjun Wu Kavli Institute for Theoretical Physics, UCSB Ref: C. Wu, Mod. Phys. Lett. B 0, 707, (006); C. Wu, J. P. Hu, and S. C. Zhang,

More information

2D Bose and Non-Fermi Liquid Metals

2D Bose and Non-Fermi Liquid Metals 2D Bose and Non-Fermi Liquid Metals MPA Fisher, with O. Motrunich, D. Sheng, E. Gull, S. Trebst, A. Feiguin KITP Cold Atoms Workshop 10/5/2010 Interest: A class of exotic gapless 2D Many-Body States a)

More information

Quantum order-by-disorder in Kitaev model on a triangular lattice

Quantum order-by-disorder in Kitaev model on a triangular lattice Quantum order-by-disorder in Kitaev model on a triangular lattice George Jackeli Max-Planck Institute & University of Stuttgart, Germany Andronikashvili Institute of Physics, Tbilisi, Georgia GJ & Avella,

More information

News on tensor network algorithms

News on tensor network algorithms News on tensor network algorithms Román Orús Donostia International Physics Center (DIPC) December 6th 2018 S. S. Jahromi, RO, M. Kargarian, A. Langari, PRB 97, 115162 (2018) S. S. Jahromi, RO, PRB 98,

More information

Optimized statistical ensembles for slowly equilibrating classical and quantum systems

Optimized statistical ensembles for slowly equilibrating classical and quantum systems Optimized statistical ensembles for slowly equilibrating classical and quantum systems IPAM, January 2009 Simon Trebst Microsoft Station Q University of California, Santa Barbara Collaborators: David Huse,

More information

FROM NODAL LIQUID TO NODAL INSULATOR

FROM NODAL LIQUID TO NODAL INSULATOR FROM NODAL LIQUID TO NODAL INSULATOR Collaborators: Urs Ledermann and Maurice Rice John Hopkinson (Toronto) GORDON, 2004, Oxford Doped Mott insulator? Mott physics: U Antiferro fluctuations: J SC fluctuations

More information

Luigi Paolasini

Luigi Paolasini Luigi Paolasini paolasini@esrf.fr LECTURE 7: Magnetic excitations - Phase transitions and the Landau mean-field theory. - Heisenberg and Ising models. - Magnetic excitations. External parameter, as for

More information

Linear spin wave theory

Linear spin wave theory Linear spin wave theory Sándor Tóth Paul Scherrer Institut August 17, 2015 Sándor Tóth (Paul Scherrer Institut) Linear spin wave theory August 17, 2015 1 / 48 Motivation Presentation Outline 1 Motivation

More information

H ψ = E ψ. Introduction to Exact Diagonalization. Andreas Läuchli, New states of quantum matter MPI für Physik komplexer Systeme - Dresden

H ψ = E ψ. Introduction to Exact Diagonalization. Andreas Läuchli, New states of quantum matter MPI für Physik komplexer Systeme - Dresden H ψ = E ψ Introduction to Exact Diagonalization Andreas Läuchli, New states of quantum matter MPI für Physik komplexer Systeme - Dresden http://www.pks.mpg.de/~aml laeuchli@comp-phys.org Simulations of

More information

Thermal Hall effect of magnons

Thermal Hall effect of magnons Max Planck-UBC-UTokyo School@Hongo (2018/2/18) Thermal Hall effect of magnons Hosho Katsura (Dept. Phys., UTokyo) Related papers: H.K., Nagaosa, Lee, Phys. Rev. Lett. 104, 066403 (2010). Onose et al.,

More information

A New look at the Pseudogap Phase in the Cuprates.

A New look at the Pseudogap Phase in the Cuprates. A New look at the Pseudogap Phase in the Cuprates. Patrick Lee MIT Common themes: 1. Competing order. 2. superconducting fluctuations. 3. Spin gap: RVB. What is the elephant? My answer: All of the above!

More information

Thermal conductivity of anisotropic spin ladders

Thermal conductivity of anisotropic spin ladders Thermal conductivity of anisotropic spin ladders By :Hamed Rezania Razi University, Kermanshah, Iran Magnetic Insulator In one dimensional is a good candidate for thermal conductivity due to magnetic excitation

More information

Topological Obstructions to Band Insulator Behavior in Non-symmorphic Crystals

Topological Obstructions to Band Insulator Behavior in Non-symmorphic Crystals Topological Obstructions to Band Insulator Behavior in Non-symmorphic Crystals D. P. Arovas, UCSD Siddharth Parameswaran UC Berkeley UC Irvine Ari Turner Univ. Amsterdam JHU Ashvin Vishwanath UC Berkeley

More information

Excitonic Condensation in Systems of Strongly Correlated Electrons. Jan Kuneš and Pavel Augustinský DFG FOR1346

Excitonic Condensation in Systems of Strongly Correlated Electrons. Jan Kuneš and Pavel Augustinský DFG FOR1346 Excitonic Condensation in Systems of Strongly Correlated Electrons Jan Kuneš and Pavel Augustinský DFG FOR1346 Motivation - unconventional long-range order incommensurate spin spirals complex order parameters

More information

Nematic quantum paramagnet in spin-1 square lattice models

Nematic quantum paramagnet in spin-1 square lattice models Nematic quantum paramagnet in spin-1 square lattice models Fa Wang( 王垡 ) Peking University Ref.: arxiv:1501.00844 Acknowledgments Prof. Dung-Hai Lee, UC Berkeley Prof. Kivelson, Stanford Discussions with

More information

Entanglement in Valence-Bond-Solid States on Symmetric Graphs

Entanglement in Valence-Bond-Solid States on Symmetric Graphs Entanglement in Valence-Bond-Solid States on Symmetric Graphs Shu Tanaka A, Hosho Katsura B, Naoki Kawashima C Anatol N. Kirillov D, and Vladimir E. Korepin E A. Kinki University B. Gakushuin University

More information

Surface effects in frustrated magnetic materials: phase transition and spin resistivity

Surface effects in frustrated magnetic materials: phase transition and spin resistivity Surface effects in frustrated magnetic materials: phase transition and spin resistivity H T Diep (lptm, ucp) in collaboration with Yann Magnin, V. T. Ngo, K. Akabli Plan: I. Introduction II. Surface spin-waves,

More information

Spin liquids on the triangular lattice

Spin liquids on the triangular lattice Spin liquids on the triangular lattice ICFCM, Sendai, Japan, Jan 11-14, 2011 Talk online: sachdev.physics.harvard.edu HARVARD Outline 1. Classification of spin liquids Quantum-disordering magnetic order

More information

Keywords: frustration, spin orders, magnetization plateau, triangular antiferromagnets PACS numbers: Hk, Ej, Ln

Keywords: frustration, spin orders, magnetization plateau, triangular antiferromagnets PACS numbers: Hk, Ej, Ln Revised manuscript submitted to Journal of Physics: Condensed Matter (JPCM-0656) Effect of further-neighbor interactions on the magnetization behaviors of the Ising model on a triangular lattice J. Chen,

More information

Quantum Lattice Models & Introduction to Exact Diagonalization

Quantum Lattice Models & Introduction to Exact Diagonalization Quantum Lattice Models & Introduction to Exact Diagonalization H! = E! Andreas Läuchli IRRMA EPF Lausanne ALPS User Workshop CSCS Manno, 28/9/2004 Outline of this lecture: Quantum Lattice Models Lattices

More information

Loop current order in optical lattices

Loop current order in optical lattices JQI Summer School June 13, 2014 Loop current order in optical lattices Xiaopeng Li JQI/CMTC Outline Ultracold atoms confined in optical lattices 1. Why we care about lattice? 2. Band structures and Berry

More information

7 Frustrated Spin Systems

7 Frustrated Spin Systems 7 Frustrated Spin Systems Frédéric Mila Institute of Theoretical Physics Ecole Polytechnique Fédérale de Lausanne 1015 Lausanne, Switzerland Contents 1 Introduction 2 2 Competing interactions and degeneracy

More information

Fractional quantum Hall effect and duality. Dam T. Son (University of Chicago) Canterbury Tales of hot QFTs, Oxford July 11, 2017

Fractional quantum Hall effect and duality. Dam T. Son (University of Chicago) Canterbury Tales of hot QFTs, Oxford July 11, 2017 Fractional quantum Hall effect and duality Dam T. Son (University of Chicago) Canterbury Tales of hot QFTs, Oxford July 11, 2017 Plan Plan General prologue: Fractional Quantum Hall Effect (FQHE) Plan General

More information

Metal-Insulator Transitions in a model for magnetic Weyl semimetal and graphite under high magnetic field

Metal-Insulator Transitions in a model for magnetic Weyl semimetal and graphite under high magnetic field Metal-Insulator Transitions in a model for magnetic Weyl semimetal and graphite under high magnetic field Disorder-driven quantum phase transition in Weyl fermion semimetal Luo, Xu, Ohtsuki and RS, ArXiv:1710.00572v2,

More information