i n the past it has been common practice to treat the response of internal

Size: px
Start display at page:

Download "i n the past it has been common practice to treat the response of internal"

Transcription

1 13 Tray Dynamics- Material Balance* 13.1 INTRODUCTION i n the past it has been common practice to treat the response of internal reflux to either external reflux or feed changes as the result of a chain of noninteracting, first-order lags. In reality, as we shall see, it is a chain of noninteracting second-order lags, although for many columns the first-order approximation is adequate. It has also been assumed that internal reflux is not affected by vapor flow changes. We now know, however, that, depending on tray design and operating conditions, an increase in vapor flow may cause internal reflux: (1) to increase temporarily, (2) to decrease temporarily, or (3) not to change at all. The first of these is commonly termed inverse response because it causes a momentary increase in low boilers in the column base, which is followed by a long-term decrease in low boiler concentration. This apparently was first noted by Rijnsdorp, although Harriot? observed that in an AIChE report3 a bubble cap tray at low liquid rates had less holdup at higher F factors than at low F factors. In this chapter we will derive the dynamic relationships between internal reflux and both vapor rate and external reflux (or feed) as function of tray and column design. The basic tray hydraulic equations are based on the treatment by Van Winkle4 First we discuss what happens on an individual tray, and then derive an approximate model for a combination of trays. Vapor flow will be assumed to occur without lags, and heat-storage effects will be assumed to be negligible. A discussion of reboiler dynamics will be deferred to Chapter 15. * This chapter is based on reference

2 314 Tray Dynamia-iUawiul Balance 13.2 TRAY HYDRAULlCS (See Figure 13.1) Downcomer Liquid Level The height of liquid level in the downcomer is the integral of the difference between the flow from tray n + 1, w,,+~, and the downcomer outflow, woe. In Laplace transform notation: (13.1) flow, lbm/sec, from downcomer, fromtrayn + 1 overflow, lbm/sec, from tray n + 1, into downcomer liquid density in downcomer, lbm/ft3; liquid usually slightly aerated downcomer cross-sectional area, fi?, assumed to be uniform liquid height, feet, in downcomer Downcomer Pressure Drop and Flow The downcomer pressure drop is determined by the differences between the liquid heads and static heads: (13.2) A POc = downcomer pressure drop, lbf/ft' prn = density of aerated liquid on tray n, Ibm/ft3 Hh = height, feet, of aerated liquid on tray just downstream of inlet weir Pn+ = pressure, lbf/fi?, above liquid on tray n + 1; P,, is pressure on tray R Note that we assume that poc does not vary.

3 13.2 Tray Hya'radh 315 FIGURE 13.1 Distillation tray schematic for flows and liquid evaluations

4 3 16 Tray Dynumia-Mated Balance Equation (13.2) may be Laplace transformed to: AP,(s) - BL - -[PDcKx(~) - jsmhk(s) - KRPTR(J)I (13.3) [Pn(s) - Pn+l(J>l Next, from page 508 of Van Winkle:* 0.03 Q&- hd = (100 Ah)2 hd = liquid head in inches of liquid-flow pressure drop through the downcomer & = downcomer flow, gpm Ah = minimum downcomer flow area, ftz This equation may be rewritten: (13.4) (13.5) or ~& BL - X- PDC BC (13.6) (13.7) and Now since wx i&- 2 hp,c is determined by APx, we may write: (13.9) (13.10) (13.11)

5 13.2 Tray Hydraulics 317 Aerated liquid Holdup and Gradient on Tray With reference to Figure 13.1, we assume a linear gradient across the tray: V, = volume, fi3, of aerated liquid on active area of tray (downcomer volume excluded) A, = active tray area, f? (area bubbling occurs) H,, = height, feet, over outlet weir H, = height, feet, of outlet weir (constant) HA = aerated liquid height, feet, at tray inlet (see Figure 13.1) = H,, + H, or in Laplace transform notation: Inlet Liquid Height Over Weir -- Vm(4 - HW(4 + H%f) (13.13) Am 2 Let us assume that the change in inlet height over weir is the same as the change in outlet height over weir. Then: Volume of Liquid on Tray ~,,(~) = H25) ( 13.14) The volume of liquid on a tray is related to the inventory and the density: (13.15) W, is the active tray holdup, Ibm. By Laplace transforming we obtain: ( 13.16) av, 1 aw, - [From equation (13.15)] Pm

6 318 Tray Dynamia-M&& Balance and avm - -wm- -vm apm P2 Pm [From equation ( 13.15)] Tray Liquid Material Balance On the active part of the tray, the liquid material balance in Laplace transform notation is: ~DC(S) - fp,(s) = wm(s) w, = overflow, Ibm/sec, from tray n. Aerated Liquid Density as a Function of Vapor Velocity S (13.17) In Figure 13.16, page 516, Van Winkle4 presents a p3t that shows that froth density decreases with an increase in vapor rate. From thls we can calculate a slope, apm/af. Then: (13.18) F = F factor u~~ vv -0.5 = UVApy = - p. Am vapor velocity, ft/sec, = corresponding to A~ wv = vapor rate, Ibm/sec Ibm pv = vapor density, - ti3 Liquid Overflow from Tray The Francis weir formula can be written in the form: (13.19) (13.20)

7 13.2 Tray Hydratrlia 3 19 and Q = overflow, ft3/sec, of aerated liquid In Laplace transform notation: b = a constant for any given weir (see Van Winkle: pages ) (13.21) (13.22) (13.23) Tray Pressure Drop In Laplace transform notation: aarm P,(s) - P,,+~(S) = APm(s) = - WV(4 (13.24) at9, For perforated trays Van Wde (page 519 of reference 4) gives the relationship: (13.25) PL = P. = velocity, ft/sec, through the holes WV PAh total hole area per tray, f? dry-plate pressure drop, inches of clear liquid density, lbm/fi3, of clear liquid vapor density, lbm/fi3

8 320 Tray Dynanak-Material Balance C, = discharge coefficient that is a function of both the tray-thickness/hole-diameter ratio, and the hole-area/active-area ratio. This is presented in Figure 13.18, page 5 19, of Van Winkle.4 Thistlethwaite6 has developed a correlation for C, that facilitates computations: T, = tray thickness and Dh = hole diameter. From the above: so (13.26) (13.27) = 2(%) (13.28) For valve trays, if the caps are not M y lifted: Once the caps have been fully lifted, the equation for perforated trays applies DERIVATION OF OVERALL TRAY EQUATION As a first step in deriving an overall tray equation, let us construct a signal flowdiagramfiomequations (13.1), (13.3), (13.11), (13.13), (13.14), (13.16), (13.17), (13.18), (13.21), and (13.24). This is shown in Figure By successive reductions this signal flow diagram can be reduced until the following equation is derived: (13.29)

9 13.3 DeriPatiOn.foPerall Tray Eqrcation 321 \ t For all columns examined so far, the denominator quadratic has factored into two terms with substantially unequal time constants. The smaller, in most cases, has been roughly equal to the numerator time constant in the multiplier for w&). Then equation (13.29) reduces to: (13.30) (13.31) Note that K, + [ - v,- af ap, +--- af ap, 2 - How(A, has the dimensions aw9 af at9, a3 3 lbm/sec lbm/sec x sec +A,) ] (13.32)

10 322 Tray Dy~~--Mated Balance " U z m C s m a - m ti c, E c, P L s E 5 P : 0 m - I C m N" $2 W- C SE us Gk

11 13.4 Mathematical Moa!.el fw Combined Trays 323 We can now make three generalizations about KTR and w,: 1. If KTR is positive, an increase in w,, causes a temporary increase in internal reflux. This results in an inverse response, since low boiler concentration is increased temporarily in the base of the column. 2. If Km is zero, a change in w, causes no change in internal reflux. This we term neutral response. 3. If KTR is nedative, an increase in w, causes a temporary decrease in internal reflux. This we have termed direct)) response; it temporarily augments the long-term decrease in base low boilers caused by increasing w,,. The term that seems to affect the sign of KTR most strongly is dapm/&,,. This term is almost zero for valve trays, and for all valve-tray columns we have checked so far, the calculations predict inverse response over the entire range of normal operation. For sieve trays, dap,/dw, is small at low boilup rates and the calculations predict inverse response. This term increases rapidly with boilup, however [see equation (13.27)] and the calculations indicate that as w, increases, the column shows next neutral response, and finally, for large values of w,, direct response MATHEMATICAL MODEL FOR COMBINED TRAYS A column with a number of trays may be represented by a mathematical model such as shown in Figure This may be simulated readily on a large digital computer. For a mathematical analysis, however, or for hand calculations, we need a simpler model. A system with a large number of identical first-order lags may be represented by a dead time a, which is equal to nt n is the number of lags. Therefore, the response of reflux from the lowest tray, wl, to a change in external reflux n trays away is: (13.33) To = condensing temperature, C TR = external reflux temperature, C wr = external reflux, Ibm/sec A simplified model for response to w, may be arrived at by a somewhat intuitive method. Consider the overflow response of an individual tray to a

12 324 Tray Llymwaia-Mated Balance FIGURE 13.3 Material balance coupling with vapor and liquid flow

13 325 step change in w,: The integrated outflow is: At t = a: is : Km -t/rm w(t) = Aw, - e Tm Ibm/sec (13.34) W(t) = Aw,Km(l - (13.35) W(w) = Atp,,Km (1 3.36) For n trays the total amount of liquid that is either displaced or held up CW(m) = nawkm (13.37) Since we are assuming that Aw, is felt by all of the trays simultaneously, equations (13.29) and (13.30) apply to all trays at the same time. But the outflow fiom each tray must flow through all lower trays. The time required for the bulk of the liquid displaced or held up to flow down is approximately ntm. Therefore, the average outflow rate is: (13.38) Overall, then, we obtain the approximate transfer hction for an n-tray column: (13.39) It was previously indicated that if the sign of Km is positive, the columnbase composition will exhibit an inverse response to a change in boilup. Equation (13.39) indicates the possibility of another kind of inverse response, that of column-base level. If Km is positive and if Km/~m is greater than unity, an iwease in boilup will result in a temporary iweuse in base level. As will be discussed in Chapter 16, this can cause great difficulties base level is controlled by boilup. If Km/~m is positive and close to unity, a change in boilup causes no change in level for a period of time equal to ntm. The control system seems af liaed with dead time, but in reality, as shown by equation (13.39), it is not. Thistlethwaite6 has carried out a more extensive analysis of inverse response in distillation columns. REFERENCES 1. Rijnsdorp, J. E., Birmiqgbam Univ. 2. Harriott, P., Process Conml, McGraw- Chm. EM. 12:5-14 (1961). Hill, New York, 1964.

14 326 Tray DynamM -Mat& Balance 3. Williams, B., J. W. Begley, and C. Wu, Rollins, Inverse Response in Tray Efficiencies in Distillation a Distillation Column, CEP, Columns, final report of AIChE 71(6):83-84 (July, 1975). Research Committee, 1960, page 6. Thistlethwaite, E. A., Analysis of In- 13. verse Response Behavior in Distil- 4. Van Winkle, M., Distifhtk, McGraw- lation Columns, M.S. Thesis, De- Hill, New York, partment of Chemical Engineering, 5. Buckley, P. S., R. K. Cox, and D. L. Louisiana State University, 1980.

Distilla l tion n C olum u n

Distilla l tion n C olum u n Distillation Column Distillation: Process in which a liquid or vapour mixture of two or more substances is separated into its component fractions of desired purity, by the application and removal of heat

More information

Distillation the most important unit operation. Predict Distillation Tray Efficiency. Reactions and Separations

Distillation the most important unit operation. Predict Distillation Tray Efficiency. Reactions and Separations Predict Distillation Tray Efficiency Markus Duss Sulzer Chemtech Ltd Ross Taylor Clarkson Univ. An empirical technique the O Connell correlation is widely used to estimate the efficiency of cross-flow

More information

Distillation. Presented by : Nabanita Deka

Distillation. Presented by : Nabanita Deka Distillation OPTIMIZATION FOR MAXIMISATION Presented by : Nabanita Deka LPG department OIL INDIA LIMITED DATED-04.03.2011 Basics of mass transfer Mass transfer : Transfer of material from one homogeneous

More information

Mass Transfer Operations I Prof. Bishnupada Mandal Department of Chemical Engineering Indian Institute of Technology, Guwahati

Mass Transfer Operations I Prof. Bishnupada Mandal Department of Chemical Engineering Indian Institute of Technology, Guwahati Mass Transfer Operations I Prof. Bishnupada Mandal Department of Chemical Engineering Indian Institute of Technology, Guwahati Module - 5 Distillation Lecture - 6 Fractional Distillation: McCabe Thiele

More information

DISTILLATION. Keywords: Phase Equilibrium, Isothermal Flash, Adiabatic Flash, Batch Distillation

DISTILLATION. Keywords: Phase Equilibrium, Isothermal Flash, Adiabatic Flash, Batch Distillation 25 DISTILLATION Keywords: Phase Equilibrium, Isothermal Flash, Adiabatic Flash, Batch Distillation Distillation refers to the physical separation of a mixture into two or more fractions that have different

More information

Study of Clear Liquid Height and Dry Pressure Drop Models for Valve Trays

Study of Clear Liquid Height and Dry Pressure Drop Models for Valve Trays A publication of CHEMICA ENGINEERING TRANSACTIONS VO. 69, 18 Guest Editors: Elisabetta Brunazzi, Eva Sorensen Copyright 18, AIDIC Servizi S.r.l. ISBN 978-88-9568-66-; ISSN 83-916 The Italian Association

More information

Evaluation of Dynamic Models of Distillation Columns with Emphasis on the Initial Response

Evaluation of Dynamic Models of Distillation Columns with Emphasis on the Initial Response MODELING, IDENTIFICATION AND CONTROL, 2000, VOL. 21, NO. 2, 83 103 doi:10.4173/mic.2000.2.2 Evaluation of Dynamic Models of Distillation Columns with Emphasis on the Initial Response BERND WITTGENS and

More information

Dynamic Effects of Diabatization in Distillation Columns

Dynamic Effects of Diabatization in Distillation Columns Downloaded from orbit.dtu.dk on: Dec 27, 2018 Dynamic Effects of Diabatization in Distillation Columns Bisgaard, Thomas Publication date: 2012 Document Version Publisher's PDF, also known as Version of

More information

Model to Monitor, Predict and Control Impulse Input Response of Distillate and Reflux Ratio of A Distillation Column

Model to Monitor, Predict and Control Impulse Input Response of Distillate and Reflux Ratio of A Distillation Column Applied Science Reports www.pscipub.com/asr E-ISSN: 2310-90 / P-ISSN: 2311-0139 DOI: 10.15192/PSCP.ASR.2016.13.1.292 App. Sci. Report. 13 (1), 2016: 29-2 PSCI Publications Model to Monitor, Predict and

More information

Mass Transfer Operations I Prof. Bishnupada Mandal Department of Chemical Engineering Indian Institute of Technology, Guwahati

Mass Transfer Operations I Prof. Bishnupada Mandal Department of Chemical Engineering Indian Institute of Technology, Guwahati Mass Transfer Operations I Prof. Bishnupada Mandal Department of Chemical Engineering Indian Institute of Technology, Guwahati Module - 5 Distillation Lecture - 5 Fractional Distillation Welcome to the

More information

SIEVE TRAY EFFICIENCY USING CFD MODELING AND SIMULATION

SIEVE TRAY EFFICIENCY USING CFD MODELING AND SIMULATION SIEVE TRAY EFFICIENCY USING CFD MODELING AND SIMULATION Getye Gesit* School of Chemical and Bio Engineering Addis Ababa Institute of Technology, Addis Ababa University ABSTRACT In this work, computational

More information

UNIVERSITY OF MINNESOTA DULUTH DEPARTMENT OF CHEMICAL ENGINEERING ChE CONTINUOUS BINARY DISTILLATION

UNIVERSITY OF MINNESOTA DULUTH DEPARTMENT OF CHEMICAL ENGINEERING ChE CONTINUOUS BINARY DISTILLATION UNIVERSITY OF MINNESOTA DULUTH DEPARTMENT OF CHEMICAL ENGINEERING ChE 3211-4211 CONTINUOUS BINARY DISTILLATION OBJECTIVE The objective of this experiment is to determine the overall column efficiency for

More information

CFD Simulation and Experimental Study of New Developed Centrifugal Trays

CFD Simulation and Experimental Study of New Developed Centrifugal Trays CFD Simulation and Experimental Study of New Developed Centrifugal Trays N. Naziri, R. Zadghaffari, and H. Naziri Abstract In this work, a computational fluid dynamics (CFD) model is developed to predict

More information

Distillation. This is often given as the definition of relative volatility, it can be calculated directly from vapor-liquid equilibrium data.

Distillation. This is often given as the definition of relative volatility, it can be calculated directly from vapor-liquid equilibrium data. Distillation Distillation may be defined as the separation of the components of a liquid mixture by a process involving partial vaporization. The vapor evolved is usually recovered by condensation. Volatility

More information

MODELING OF A DISTILLATION COLUMN USING BOND GRAPHS

MODELING OF A DISTILLATION COLUMN USING BOND GRAPHS MODELING OF A DISTILLATION COLUMN USING BOND GRAPHS by Braden Alan Brooks Copyright Braden Alan Brooks 1993 A Thesis Submitted to the Faculty of the Department of Electrical & Computer Engineering In Partial

More information

i n recent years on-line analyzers have vastly improved in sensitivity, selectivity,

i n recent years on-line analyzers have vastly improved in sensitivity, selectivity, 10 Indirect Composition Measurements 10.1 INTRODUCTION i n recent years on-line analyzers have vastly improved in sensitivity, selectivity, speed of response, stability, and reliability. Consequently it

More information

Dynamic Characteristics of Double-Pipe Heat Exchangers

Dynamic Characteristics of Double-Pipe Heat Exchangers Dynamic Characteristics of Double-Pipe Heat Exchangers WILLIAM C. COHEN AND ERNEST F. JOHNSON Princeton University, Princeton, N. J. The performance of automatically controlled process plants depends on

More information

Stage Discharge Tabulation for Only Orifice Flow

Stage Discharge Tabulation for Only Orifice Flow Stage Discharge Tabulation for Only Orifice Flow DEPTH STAGE DISCHARGE (meters) (feet) (meters) (feet) (m 3 /s) (ft 3 /s) 0 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 0.7 1.3 2.0 2.6 3.3 3.9 4.6

More information

Mass Transfer Operations I Prof. BishnupadaMandal Department of Chemical Engineering Indian Institute of Technology, Guwahati

Mass Transfer Operations I Prof. BishnupadaMandal Department of Chemical Engineering Indian Institute of Technology, Guwahati Mass Transfer Operations I Prof. BishnupadaMandal Department of Chemical Engineering Indian Institute of Technology, Guwahati Module -5 Distillation Lecture - 8 Fractional Distillation: Subcooled Reflux,

More information

Plant Design LECTURE 8: REBOILER CIRCUIT DESIGN. Daniel R. Lewin Department of Chemical Engineering Technion, Haifa, Israel

Plant Design LECTURE 8: REBOILER CIRCUIT DESIGN. Daniel R. Lewin Department of Chemical Engineering Technion, Haifa, Israel 054410 Plant Design LECTURE 8: REBOILER CIRCUIT DESIGN Daniel R. Lewin Department of Chemical Engineering Technion, Haifa, Israel Ref: Kern, R. Thermosyphon Reboiler Piping Simplified, Hydrocarbon Processing,

More information

Distributed Parameter Systems

Distributed Parameter Systems Distributed Parameter Systems Introduction All the apparatus dynamic experiments in the laboratory exhibit the effect known as "minimum phase dynamics". Process control loops are often based on simulations

More information

Sigurd Skogestad, Chem. Eng., Norwegian Inst. of Tech. (NTH), N-7034 Trondheim, Norway

Sigurd Skogestad, Chem. Eng., Norwegian Inst. of Tech. (NTH), N-7034 Trondheim, Norway ANAYSIS AND CONTRO OF DISTIATION COUMNS Sigurd Skogestad, Chem. Eng., Norwegian Inst. of Tech. (NTH), N-7034 Trondheim, Norway The emphasis in this paper is on the analysis of the dynamic behavior of distillation

More information

Step input response application on control of distillate and reflux ratio of a distillation column

Step input response application on control of distillate and reflux ratio of a distillation column Physical Chemistry 17(1) (2015) 16-28 Step input response application on control of distillate and reflux ratio of a distillation column C. P. Ukpaka 1 and Okaniba, O. Bestman 2 1 Department of Chemical/Petrochemical

More information

RATE-BASED MODELING OF TWO COMMERCIAL SCALE H 2 S STRIPPING COLUMNS

RATE-BASED MODELING OF TWO COMMERCIAL SCALE H 2 S STRIPPING COLUMNS Distillation Absorption A.B. de Haan, H. Kooijman and A. Górak (Editors) All rights reserved by authors as per DA copyright notice RATE-BASED MODELING OF TWO COMMERCIAL SCALE H 2 S STRIPPING COLUMNS Ross

More information

DESIGN AND CONTROL OF BUTYL ACRYLATE REACTIVE DISTILLATION COLUMN SYSTEM. I-Lung Chien and Kai-Luen Zeng

DESIGN AND CONTROL OF BUTYL ACRYLATE REACTIVE DISTILLATION COLUMN SYSTEM. I-Lung Chien and Kai-Luen Zeng DESIGN AND CONTROL OF BUTYL ACRYLATE REACTIVE DISTILLATION COLUMN SYSTEM I-Lung Chien and Kai-Luen Zeng Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei

More information

CIE4491 Lecture. Hydraulic design

CIE4491 Lecture. Hydraulic design CIE4491 Lecture. Hydraulic design Marie-claire ten Veldhuis 19-9-013 Delft University of Technology Challenge the future Hydraulic design of urban stormwater systems Focus on sewer pipes Pressurized and

More information

Theoretical Models of Chemical Processes

Theoretical Models of Chemical Processes Theoretical Models of Chemical Processes Dr. M. A. A. Shoukat Choudhury 1 Rationale for Dynamic Models 1. Improve understanding of the process 2. Train Plant operating personnel 3. Develop control strategy

More information

Figure 4-1: Pretreatment schematic

Figure 4-1: Pretreatment schematic GAS TREATMENT The pretreatment process consists of four main stages. First, CO 2 and H 2 S removal stage which is constructed to assure that CO 2 would not exceed 50 ppm in the natural gas feed. If the

More information

INDUSTRIAL APPLICATION OF A NEW BATCH EXTRACTIVE DISTILLATION OPERATIONAL POLICY

INDUSTRIAL APPLICATION OF A NEW BATCH EXTRACTIVE DISTILLATION OPERATIONAL POLICY INDUSTRIAL APPLICATION OF A NEW BATCH EXTRACTIVE DISTILLATION OPERATIONAL POLICY Lang P. 1, Gy. Kovacs 2, B. Kotai 1, J. Gaal-Szilagyi 2, G. Modla 1 1 BUTE, Department of Process Engineering, H-1521 Budapest

More information

Basic Models of Simultaneous Heat and Mass Transfer

Basic Models of Simultaneous Heat and Mass Transfer 20 Basic Models of Simultaneous Heat and Mass Transfer Keywords: Unit Models, Evaporator, Vaporizer A chemical process invariably involves energy transfer simultaneously with mass transfer. So in this

More information

Solutions for Tutorial 10 Stability Analysis

Solutions for Tutorial 10 Stability Analysis Solutions for Tutorial 1 Stability Analysis 1.1 In this question, you will analyze the series of three isothermal CSTR s show in Figure 1.1. The model for each reactor is the same at presented in Textbook

More information

See section and the dew and bubble point calculations in example 11.9.

See section and the dew and bubble point calculations in example 11.9. Solution 1.1 See section 11.3.2 and the dew and bubble point calculations in example 11.9. This type of problem is best solved using a spread-sheet, see the solution to problem 11.2. Solution 11.2 This

More information

CL-333 Manual. MT 303: Batch Distillation

CL-333 Manual. MT 303: Batch Distillation CL-333 Manual MT 303: Batch Distillation Batch Distillation Equipment Operating Panel Refrectometer 1 CL-333 Manual MT 303: Batch Distillation Objectives: To determine the height equivalent to number of

More information

ANSWER KEY. Page 1 Page 2 cake key pie boat glue cat sled pig fox sun dog fish zebra. Page 3. Page 7. Page 6

ANSWER KEY. Page 1 Page 2 cake key pie boat glue cat sled pig fox sun dog fish zebra. Page 3. Page 7. Page 6 ANWE EY P 1 P 2 d fx d fh z P 3 P 4 m, m, m, m, m, m P 6 d d P 7 m P 5 m m P 10 d P 8 P 9 h,,, d d,, h v P 11 P 12,, m, m, m,, dd P 13 m f m P 18 h m P 22 f fx f fh fm fd P 14 m h P 19 m v x h d m P 15

More information

INFLOW DESIGN FLOOD CONTROL SYSTEM PLAN 40 C.F.R. PART PLANT YATES ASH POND 2 (AP-2) GEORGIA POWER COMPANY

INFLOW DESIGN FLOOD CONTROL SYSTEM PLAN 40 C.F.R. PART PLANT YATES ASH POND 2 (AP-2) GEORGIA POWER COMPANY INFLOW DESIGN FLOOD CONTROL SYSTEM PLAN 40 C.F.R. PART 257.82 PLANT YATES ASH POND 2 (AP-2) GEORGIA POWER COMPANY EPA s Disposal of Coal Combustion Residuals from Electric Utilities Final Rule (40 C.F.R.

More information

Performance and applications of flow-guided sieve trays for distillation of highly viscous mixtures

Performance and applications of flow-guided sieve trays for distillation of highly viscous mixtures Korean J. Chem. Eng., 25(6), 1509-1513 (2008) SHORT COMMUNICATION Performance and applications of flow-guided sieve trays for distillation of highly viscous mixtures Qun Shen Li*, Chun Ying Song*, Hai

More information

08257 ANSWER KEY. Page 1 Page 2 cake key pie boat glue cat sled pig fox sun dog fish zebra. Page 3. Page 7. Page 6

08257 ANSWER KEY. Page 1 Page 2 cake key pie boat glue cat sled pig fox sun dog fish zebra. Page 3. Page 7. Page 6 P 1 P 2 d fx d fh z P 3 P 4 m, m, m, m, m, m P 6 d d P 7 m P 5 m m P 10 P 8 P 9 h,,, d d,, d v P 11 P 12,, m, m, m,, dd P 13 m f m P 18 h m P 22 f fx f fh fm fd P 14 m h P 19 m v x h d m P 15 m m P 20

More information

Energy and Energy Balances

Energy and Energy Balances Energy and Energy Balances help us account for the total energy required for a process to run Minimizing wasted energy is crucial in Energy, like mass, is. This is the Components of Total Energy energy

More information

Feedforward Control Feedforward Compensation

Feedforward Control Feedforward Compensation Feedforward Control Feedforward Compensation Compensation Feedforward Control Feedforward Control of a Heat Exchanger Implementation Issues Comments Nomenclature The inherent limitation of feedback control

More information

TOTAL HEAD, N.P.S.H. AND OTHER CALCULATION EXAMPLES Jacques Chaurette p. eng., June 2003

TOTAL HEAD, N.P.S.H. AND OTHER CALCULATION EXAMPLES Jacques Chaurette p. eng.,   June 2003 TOTAL HEAD, N.P.S.H. AND OTHER CALCULATION EXAMPLES Jacques Chaurette p. eng., www.lightmypump.com June 2003 Figure 1 Calculation example flow schematic. Situation Water at 150 F is to be pumped from a

More information

Control Study of Ethyl tert-butyl Ether Reactive Distillation

Control Study of Ethyl tert-butyl Ether Reactive Distillation 3784 Ind. Eng. Chem. Res. 2002, 41, 3784-3796 Control Study of Ethyl tert-butyl Ether Reactive Distillation Muhammad A. Al-Arfaj Department of Chemical Engineering, King Fahd University of Petroleum and

More information

INTEGRATION OF DESIGN AND CONTROL FOR ENERGY INTEGRATED DISTILLATION

INTEGRATION OF DESIGN AND CONTROL FOR ENERGY INTEGRATED DISTILLATION INTEGRATION OF DESIGN AND CONTROL FOR ENERGY INTEGRATED DISTILLATION Hongwen Li, Rafiqul Gani, Sten Bay Jørgensen CAPEC, Department of Chemical Engineering Technical University of Denmark, Lyngby, Denmark

More information

A MODIFIED MODEL OF COMPUTATIONAL MASS TRANSFER FOR DISTILLATION COLUMN

A MODIFIED MODEL OF COMPUTATIONAL MASS TRANSFER FOR DISTILLATION COLUMN A MODIFIED MODEL OF COMPUTATIONAL MASS TRANSFER FOR DISTILLATION COLUMN Z. M. Sun, X. G. Yuan, C. J. Liu, K. T. Yu State Key Laboratory for Chemical Engineering (Tianjin University) and School of Chemical

More information

Chapter 4 DYNAMICS OF FLUID FLOW

Chapter 4 DYNAMICS OF FLUID FLOW Faculty Of Engineering at Shobra nd Year Civil - 016 Chapter 4 DYNAMICS OF FLUID FLOW 4-1 Types of Energy 4- Euler s Equation 4-3 Bernoulli s Equation 4-4 Total Energy Line (TEL) and Hydraulic Grade Line

More information

Experimental evaluation of a modified fully thermally coupled distillation column

Experimental evaluation of a modified fully thermally coupled distillation column Korean J. Chem. Eng., 27(4), 1056-1062 (2010) DOI: 10.1007/s11814-010-0205-8 RAPID COMMUNICATION Experimental evaluation of a modified fully thermally coupled distillation column Kyu Suk Hwang**, Byoung

More information

PART II. Fluid Mechanics Pressure. Fluid Mechanics Pressure. Fluid Mechanics Specific Gravity. Some applications of fluid mechanics

PART II. Fluid Mechanics Pressure. Fluid Mechanics Pressure. Fluid Mechanics Specific Gravity. Some applications of fluid mechanics ART II Some applications of fluid mechanics Fluid Mechanics ressure ressure = F/A Units: Newton's per square meter, Nm -, kgm - s - The same unit is also known as a ascal, a, i.e. a = Nm - ) English units:

More information

Process Control and Instrumentation Prof. A. K. Jana Department of Chemical Engineering Indian Institute of Technology, Kharagpur

Process Control and Instrumentation Prof. A. K. Jana Department of Chemical Engineering Indian Institute of Technology, Kharagpur Process Control and Instrumentation Prof. A. K. Jana Department of Chemical Engineering Indian Institute of Technology, Kharagpur Lecture - 10 Dynamic Behavior of Chemical Processes (Contd.) (Refer Slide

More information

DEMONSTRATION OF MASS TRANSFER USING AERATION OF WATER

DEMONSTRATION OF MASS TRANSFER USING AERATION OF WATER DEMONSTRATION OF MASS TRANSFER USING AERATION OF WATER Sultana R. Syeda *, B.M. S. Arifin, Md. M. Islam and Anup Kumar Department of Chemical Engineering, Bangladesh University of Engineering and Technology

More information

EXTENDED SMOKER S EQUATION FOR CALCULATING NUMBER OF STAGES IN DISTILLATION

EXTENDED SMOKER S EQUATION FOR CALCULATING NUMBER OF STAGES IN DISTILLATION EXTENDED SMOKER S EQUATION FOR CALCULATING NUMBER OF STAGES IN DISTILLATION Santanu Bandyopadhyay Energy Systems Engineering and Department of Mechanical Engineering, Indian Institute of Technology, Bombay,

More information

Dr. Muhammad Ali Shamim ; Internal 652

Dr. Muhammad Ali Shamim ; Internal 652 Dr. Muhammad Ali Shamim ali.shamim@uettaxila.edu.pk 051-904765; Internal 65 Channel Tranistions A channel transition is defined as change in channel cross section e.g. change in channel width and/or channel

More information

Cavitation occurs whenever the pressure in the flow of water drops to the value of the pressure of the saturated water vapour, pv (at the prevailing

Cavitation occurs whenever the pressure in the flow of water drops to the value of the pressure of the saturated water vapour, pv (at the prevailing Cavitation occurs whenever the pressure in the flow of water drops to the value of the pressure of the saturated water vapour, pv (at the prevailing temperature); cavities filled by vapour, and partly

More information

COMPUTER SIMULATION OF THE WATER AND HYDROGEN DISTILLATION AND CECE PROCESS AND ITS EXPERIMENTAL VERIFICATION

COMPUTER SIMULATION OF THE WATER AND HYDROGEN DISTILLATION AND CECE PROCESS AND ITS EXPERIMENTAL VERIFICATION COMPUTER SIMULATION OF THE WATER AND HYDROGEN DISTILLATION AND CECE PROCESS AND ITS EXPERIMENTAL VERIFICATION Oleg A. Fedorchenko Ivan A. Alekseev Veniamin D. Trenin Vadim V. Uborski Petersburg Nuclear

More information

Distillation. The Continuous Column. Learning Outcomes. Recap - VLE for Meth H 2 O. Gavin Duffy School of Electrical Engineering DIT Kevin Street

Distillation. The Continuous Column. Learning Outcomes. Recap - VLE for Meth H 2 O. Gavin Duffy School of Electrical Engineering DIT Kevin Street Distillation The Continuous Colun Gavin Duffy School of Electrical Engineering DIT Kevin Street Learning Outcoes After this lecture you should be able to.. Describe how continuous distillation works List

More information

WATER DISTRIBUTION NETWORKS

WATER DISTRIBUTION NETWORKS WATER DISTRIBUTION NETWORKS CE 370 1 Components of Water Supply System 2 1 Water Distribution System Water distribution systems are designed to adequately satisfy the water requirements for a combinations

More information

Overview of Control System Design

Overview of Control System Design Overview of Control System Design Introduction Degrees of Freedom for Process Control Selection of Controlled, Manipulated, and Measured Variables Process Safety and Process Control 1 General Requirements

More information

All Rights Reserved. Armando B. Corripio, PhD, P.E., Multicomponent Distillation Column Specifications... 2

All Rights Reserved. Armando B. Corripio, PhD, P.E., Multicomponent Distillation Column Specifications... 2 Multicomponent Distillation All Rights Reserved. Armando B. Corripio, PhD, P.E., 2013 Contents Multicomponent Distillation... 1 1 Column Specifications... 2 1.1 Key Components and Sequencing Columns...

More information

y 2 = 1 + y 1 This is known as the broad-crested weir which is characterized by:

y 2 = 1 + y 1 This is known as the broad-crested weir which is characterized by: CEE 10 Open Channel Flow, Dec. 1, 010 18 8.16 Review Flow through a contraction Critical and choked flows The hydraulic jump conservation of linear momentum y = 1 + y 1 1 + 8Fr 1 8.17 Rapidly Varied Flows

More information

Exergy Analysis of Solar Air Collector Having W Shaped Artificial Roughness

Exergy Analysis of Solar Air Collector Having W Shaped Artificial Roughness Advances in Materials Science and Mechanical Engineering Research Volume 1, Number 1 (2015), pp. 25-32 International Research Publication House http://www.irphouse.com Exergy Analysis of Solar Air Collector

More information

Matlab programme for the calculation of fractionation column diameter

Matlab programme for the calculation of fractionation column diameter American Journal of Science and Technology 2014; 1(5): 221-228 Published online September 30, 2014 (http://www.aascit.org/journal/ajst) Matlab programme for the calculation of fractionation column diameter

More information

Science & Technologies SURFACE TENSION EFFECTS IN SIEVE PLATE DISTILLATION COLUMN

Science & Technologies SURFACE TENSION EFFECTS IN SIEVE PLATE DISTILLATION COLUMN SURFACE TENSION EFFECTS IN SIEVE PLATE DISTILLATION COLUMN Zhelcho Stefanov, Mariana Karaivanova University Prof.d-r Assen Zlatarov Bourgas 8, Bulgaria ABSTRACT Rectification is one of the methods for

More information

Proppant Transport & Screenout Behavior. R.D. Barree

Proppant Transport & Screenout Behavior. R.D. Barree Proppant Transport & Screenout Behavior R.D. Barree In this session Look at traditional proppant transport and its assumptions Look at common remedies for early screenout What factors actually affect proppant

More information

Department of Energy Fundamentals Handbook. THERMODYNAMICS, HEAT TRANSFER, AND FLUID FLOW, Module 3 Fluid Flow

Department of Energy Fundamentals Handbook. THERMODYNAMICS, HEAT TRANSFER, AND FLUID FLOW, Module 3 Fluid Flow Department of Energy Fundamentals Handbook THERMODYNAMICS, HEAT TRANSFER, AND FLUID FLOW, Module 3 REFERENCES REFERENCES Streeter, Victor L., Fluid Mechanics, 5th Edition, McGraw-Hill, New York, ISBN 07-062191-9.

More information

4.1 Derivation and Boundary Conditions for Non-Nipped Interfaces

4.1 Derivation and Boundary Conditions for Non-Nipped Interfaces Chapter 4 Roller-Web Interface Finite Difference Model The end goal of this project is to allow the correct specification of a roller-heater system given a general set of customer requirements. Often the

More information

Theory. Humidity h of an air-vapor mixture is defined as the mass ratio of water vapor and dry air,

Theory. Humidity h of an air-vapor mixture is defined as the mass ratio of water vapor and dry air, Theory Background In a cooling tower with open water circulation, heat is removed from water because of the material and heat exchange between the water and the ambient air. The cooling tower is a special

More information

First principles dynamic modeling and multivariable control of a cryogenic distillation process Betlem, B.H.L.; Roffel, B.; de Ruijter, J.A.F.

First principles dynamic modeling and multivariable control of a cryogenic distillation process Betlem, B.H.L.; Roffel, B.; de Ruijter, J.A.F. University of Groningen First principles dynamic modeling and multivariable control of a cryogenic distillation process Betlem, B.H.L.; Roffel, B.; de Ruijter, J.A.F. Published in: Computers %26 Chemical

More information

Optimizing Control of Petlyuk Distillation: Understanding the Steady-State Behavior

Optimizing Control of Petlyuk Distillation: Understanding the Steady-State Behavior Optimizing Control of Petlyuk Distillation: Understanding the Steady-State Behavior Ivar J. Halvorsen and Sigurd Skogestad Abstract. Norwegian University of Science and Technology, Department of Chemical

More information

CFD SIMULATION OF MULTIPHASE FLOW IN A SIEVE TRAY OF A DISTILLATION COLUMN

CFD SIMULATION OF MULTIPHASE FLOW IN A SIEVE TRAY OF A DISTILLATION COLUMN CFD SIMULATION OF MULTIPHASE FLOW IN A SIEVE TRAY OF A DISTILLATION COLUMN a Teleen, J. G.; a Werle, L. O. 1 ; a Marangoni, C.; a Quadri, M. B.; Machado, R. A. F. a Federal University of Santa Catarina-

More information

Heat Transfer with Phase Change

Heat Transfer with Phase Change CM3110 Transport I Part II: Heat Transfer Heat Transfer with Phase Change Evaporators and Condensers Professor Faith Morrison Department of Chemical Engineering Michigan Technological University 1 Heat

More information

CFD SIMULATIONS OF BENZENE TOLUENE SYSTEM OVER SIEVE TRAY

CFD SIMULATIONS OF BENZENE TOLUENE SYSTEM OVER SIEVE TRAY CFD SIMULATIONS OF BENZENE TOLUENE SYSTEM OVER SIEVE TRAY Sumit Singh M.Tech, Department of Chemical Engineering Dr. B R Ambedkar National Institute of Technology, Jalandhar, India sumit_nitj@yahoo.com

More information

Applied Thermodynamics for Marine Systems Prof. P. K. Das Department of Mechanical Engineering Indian Institute of Technology, Kharagpur

Applied Thermodynamics for Marine Systems Prof. P. K. Das Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Applied Thermodynamics for Marine Systems Prof. P. K. Das Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture No - 03 First Law of Thermodynamics (Open System) Good afternoon,

More information

Rucker Pond. Background

Rucker Pond. Background Rucker Pond Background The Rucker Basin consists of two subbasins (East and West) that drain to a single area known as Rucker Pond. Both subbasins have the same hydraulic parameters, but have different

More information

Parts Manual. EPIC II Critical Care Bed REF 2031

Parts Manual. EPIC II Critical Care Bed REF 2031 EPIC II Critical Care Bed REF 2031 Parts Manual For parts or technical assistance call: USA: 1-800-327-0770 2013/05 B.0 2031-109-006 REV B www.stryker.com Table of Contents English Product Labels... 4

More information

MODULE 5: DISTILLATION

MODULE 5: DISTILLATION MOULE 5: ISTILLATION LECTURE NO. 3 5.2.2. Continuous distillation columns In contrast, continuous columns process a continuous feed stream. No interruptions occur unless there is a problem with the column

More information

Equipment Design and Costs for Separating Homogeneous Mixtures

Equipment Design and Costs for Separating Homogeneous Mixtures Equipment Design and Costs for Separating Homogeneous Mixtures Dr. Syeda Sultana Razia Department of Chemical Engineering, Bangladesh University of Engineering and Technology (BUET), Dhaka -1000 1. Distillation

More information

Cryogenic Engineering Prof. M. D. Atrey Department of Mechanical Engineering Indian Institute of Technology, Bombay. Lecture No. #23 Gas Separation

Cryogenic Engineering Prof. M. D. Atrey Department of Mechanical Engineering Indian Institute of Technology, Bombay. Lecture No. #23 Gas Separation Cryogenic Engineering Prof. M. D. Atrey Department of Mechanical Engineering Indian Institute of Technology, Bombay Lecture No. #23 Gas Separation So, welcome to the 23rd lecture, on Cryogenic Engineering,

More information

An Efficient Design of Multi Component Distillation Column by Approximate & Rigorous Method

An Efficient Design of Multi Component Distillation Column by Approximate & Rigorous Method An Efficient Design of Multi Component Distillation Column by Approximate & Rigorous Method Syed Mujahed Ali Rizwan Senior Lecturer in Chemistry Challenger College, Moinabad, Hyderabad. Abstract: In this

More information

Solid-Liquid Extraction

Solid-Liquid Extraction Chapter (10) Solid-Liquid Extraction (( Leaching )) Leaching: is the separation of a solute from solid mixture by dissolving it in a liquid phase. Leaching occurs in two steps: 1. Contacting solvent and

More information

A NON-LINEAR WAVE MODEL WITH VARIABLE MOLAR FLOWS FOR DYNAMIC BEHAVIOUR AND DISTURBANCE PROPAGATION IN DISTILLATION COLUMNS

A NON-LINEAR WAVE MODEL WITH VARIABLE MOLAR FLOWS FOR DYNAMIC BEHAVIOUR AND DISTURBANCE PROPAGATION IN DISTILLATION COLUMNS A NON-LINEAR WAVE MODEL WITH VARIABLE MOLAR FLOWS FOR DYNAMIC BEHAVIOUR AND DISTURBANCE PROPAGATION IN DISTILLATION COLUMNS Nick Hankins Department of Engineering Science, The University of Oxford, Parks

More information

The Transient Response of a Distillation Column to Liquid Rate Perturbations.

The Transient Response of a Distillation Column to Liquid Rate Perturbations. Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1963 The Transient Response of a Distillation Column to Liquid Rate Perturbations. Paul Whitfield

More information

Prediction of Temperature and Concentration Distributions of Distillation Sieve Trays by CFD

Prediction of Temperature and Concentration Distributions of Distillation Sieve Trays by CFD Tamkang Journal of Science and Engineering, Vol. 9, No 3, pp. 265278 (2006) 265 Prediction of Temperature and Concentration Distributions of Distillation Sieve Trays by CFD Mahmood-Reza Rahimi*, Rahbar

More information

Heat Transfer Performance in Double-Pass Flat-Plate Heat Exchangers with External Recycle

Heat Transfer Performance in Double-Pass Flat-Plate Heat Exchangers with External Recycle Journal of Applied Science and Engineering, Vol. 17, No. 3, pp. 293 304 (2014) DOI: 10.6180/jase.2014.17.3.10 Heat Transfer Performance in Double-Pass Flat-Plate Heat Exchangers with External Recycle Ho-Ming

More information

TRACKING DYNAMIC HOLD-UP OF JUICE IN A CANE BED

TRACKING DYNAMIC HOLD-UP OF JUICE IN A CANE BED REFEREED PAPER TRACKING DYNAMIC HOLD-UP OF JUICE IN A CANE BED LOUBSER R C Sugar Milling Research Institute NPC, c/o University of KwaZulu-Natal, Durban, South Africa, rloubser@smri.org Abstract Effective

More information

A New Batch Extractive Distillation Operational Policy for Methanol Recovery

A New Batch Extractive Distillation Operational Policy for Methanol Recovery A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 35, 2013 Guest Editors: Petar Varbanov, Jiří Klemeš, Panos Seferlis, Athanasios I. Papadopoulos, Spyros Voutetakis Copyright 2013, AIDIC Servizi

More information

If you have any questions, feel free to contact me or one of my team members, David Jolley or Chevales Ward.

If you have any questions, feel free to contact me or one of my team members, David Jolley or Chevales Ward. October 7, 2002 Bryan Williams Blue Team - Distillation Contractors College of Engineering and Computer Science University of Tennessee at Chattanooga 615 McCallie Avenue Chattanooga, TN 37421 To: Dr.

More information

Tray Columns: Performance. Further Reading. Design Calculations. Conclusions. Introduction

Tray Columns: Performance. Further Reading. Design Calculations. Conclusions. Introduction 1140 II / DISTILLATION / Tray Columns: Performance to the minimum area to the minimum area required for vapour}liquid disengagement. The DCBUSF determines the approach of the downcomer froth height to

More information

N. Zhang, W.-J. Yang and Y. Xu Department of Mechanical Engineering and Applied Mechanics, The University of Michigan, Ann Arbor, MI 48109, USA

N. Zhang, W.-J. Yang and Y. Xu Department of Mechanical Engineering and Applied Mechanics, The University of Michigan, Ann Arbor, MI 48109, USA Experiments in Fluids 1, 25 32 (1993) Experiments m Fluids 9 Springer-Verlag 1993 Flow characteristics in flow networks N. Zhang, W.-J. Yang and Y. Xu Department of Mechanical Engineering and Applied Mechanics,

More information

Heat and Mass Transfer in Tray Drying

Heat and Mass Transfer in Tray Drying Heat and Mass Transfer in Tray Drying Group # 11: Sami Marchand (GL), Chase Kairdolf (WR), Tiffany Robinson (OR) Instructor: Dr. Wetzel Objective: The objective of this experiment is to exhibit how accurately

More information

Cork Institute of Technology. Autumn 2005 CE 2.7 Separation Process & Particle Technology (Time: 3 Hours) Section A

Cork Institute of Technology. Autumn 2005 CE 2.7 Separation Process & Particle Technology (Time: 3 Hours) Section A Cork Institute of Technology Bachelor of Engineering (Honours) in Chemical and Process Engineering Stage 2 (Bachelor of Engineering in Chemical and Process Engineering Stage 2) (NFQ Level 8) Autumn 2005

More information

Computer Aided Design Module for a Binary Distillation Column

Computer Aided Design Module for a Binary Distillation Column Computer Aided Design Module for a Binary Distillation Column K. R. Onifade Department of Chemical Engineering, Federal University of Technology Minna, Nigeria Abstract A Computer Aided Design (CAD) module

More information

WQ Outlet Design Single Orifice Orifice diameter = 24. Perforated riser/orifice Plate Outlet area per perforation row = 4

WQ Outlet Design Single Orifice Orifice diameter = 24. Perforated riser/orifice Plate Outlet area per perforation row = 4 These calculations should be used when designing the outlet structures for extended wet and dry detention basins (Sections 4. 7 and 4.8). The water quality outlet size and the trash rack design will vary

More information

IMPROVED MULTI-MODEL PREDICTIVE CONTROL TO REJECT VERY LARGE DISTURBANCES ON A DISTILLATION COLUMN. Abdul Wahid 1*, Arshad Ahmad 2,3

IMPROVED MULTI-MODEL PREDICTIVE CONTROL TO REJECT VERY LARGE DISTURBANCES ON A DISTILLATION COLUMN. Abdul Wahid 1*, Arshad Ahmad 2,3 International Journal of Technology (2016) 6: 962-971 ISSN 2086-9614 IJTech 2016 IMPROVED MULTI-MODEL PREDICTIVE CONTROL TO REJECT VERY LARGE DISTURBANCES ON A DISTILLATION COLUMN Abdul Wahid 1*, Arshad

More information

TO STUDY THE PERFORMANCE OF BATCH DISTILLATION USING gproms

TO STUDY THE PERFORMANCE OF BATCH DISTILLATION USING gproms TO STUDY THE PERFORMANCE OF BATCH DISTILLATION USING gproms A Thesis Submitted In Fulfillment Of The Requirements for Degree of Bachelor of Technology In Chemical Engineering By ABDULLAH SALEH AWAD BA

More information

5.2 Surface Tension Capillary Pressure: The Young-Laplace Equation. Figure 5.1 Origin of surface tension at liquid-vapor interface.

5.2 Surface Tension Capillary Pressure: The Young-Laplace Equation. Figure 5.1 Origin of surface tension at liquid-vapor interface. 5.2.1 Capillary Pressure: The Young-Laplace Equation Vapor Fo Fs Fs Fi Figure 5.1 Origin of surface tension at liquid-vapor interface. Liquid 1 5.2.1 Capillary Pressure: The Young-Laplace Equation Figure

More information

Overview of Control System Design

Overview of Control System Design Overview of Control System Design General Requirements 1. Safety. It is imperative that industrial plants operate safely so as to promote the well-being of people and equipment within the plant and in

More information

All rights reserved. Armando B. Corripio, PhD, PE Flash Distillation Flash Drum Variables and Specifications... 2

All rights reserved. Armando B. Corripio, PhD, PE Flash Distillation Flash Drum Variables and Specifications... 2 Flash Distillation All rights reserved. Armando B. Corripio, PhD, PE. 2013 Contents Flash Distillation... 1 1 Flash Drum Variables and Specifications... 2 2 Flash Drum Balances and Equations... 4 2.1 Equilibrium

More information

Lecture Note for Open Channel Hydraulics

Lecture Note for Open Channel Hydraulics Chapter -one Introduction to Open Channel Hydraulics 1.1 Definitions Simply stated, Open channel flow is a flow of liquid in a conduit with free space. Open channel flow is particularly applied to understand

More information

9. Flood Routing. chapter Two

9. Flood Routing. chapter Two 9. Flood Routing Flow routing is a mathematical procedure for predicting the changing magnitude, speed, and shape of a flood wave as a function of time at one or more points along a watercourse (waterway

More information

Shortcut methods for complex distillation columns : part 2-- number of stages and feed tray location

Shortcut methods for complex distillation columns : part 2-- number of stages and feed tray location Carnegie Mellon University Research Showcase @ CMU Department of Chemical Engineering Carnegie Institute of Technology 1979 Shortcut methods for complex distillation columns : part 2-- number of stages

More information

Optimal Design of a Reactive Distillation Column

Optimal Design of a Reactive Distillation Column Optimal Design of a Reactive Distillation Column Edwin Zondervan, Mayank Shah * and André B. de Haan Eindhoven University of Technology, Department of Chemistry and Chemical Engineering, P.O. Box 513,

More information

Dividing wall columns for heterogeneous azeotropic distillation

Dividing wall columns for heterogeneous azeotropic distillation Dividing wall columns for heterogeneous azeotropic distillation Quang-Khoa Le 1, Ivar J. Halvorsen 2, Oleg Pajalic 3, Sigurd Skogestad 1* 1 Norwegian University of Science and Technology (NTNU), Trondheim,

More information