ELECTRONIC STRUCTURE CALCULATIONS FOR THE SOLID STATE PHYSICS

Size: px
Start display at page:

Download "ELECTRONIC STRUCTURE CALCULATIONS FOR THE SOLID STATE PHYSICS"

Transcription

1 FROM RESEARCH TO INDUSTRY 32 ème forum ORAP 10 octobre 2013 Maison de la Simulation, Saclay, France ELECTRONIC STRUCTURE CALCULATIONS FOR THE SOLID STATE PHYSICS APPLICATION ON HPC, BLOCKING POINTS, Marc Torrent CEA, DAM, DIF F Arpajon, France PAGE 1

2 OUTLINE Computing properties of electrons in matter Density Functional Theory (DFT) : a brief introduction DFT in practice ABINIT Overview of the project Examples Parallelization scheme DFT parallelism: how to go further Performance analysis Possibles solutions Conclusion

3 COMPUTING PROPERTIES OF ELECTRONS IN MATTER : DENSITY-FUNCTIONAL THEORY

4 DENSITY FUNCTIONAL THEORY A system made of interacting particles: Atomic nuclei Electrons Eventual external field To be solved within the «Born-Oppenheimer approximation» Electrons relaxation and nuclei motion are decoupled. We consider here the electrons as the interacting particle in the field due to the nuclei. The system made of the electrons is a Many-Body system.

5 DENSITY FUNCTIONAL THEORY To be solved: the Schrödinger equation (for the electrons and time independent) Fundamental postulate of Quantum Mechanics Hamiltonian H ψ = εψ Wave function Hohenberg et Kohn Theorem, 1964 The ground-state properties of a many-electron system are uniquely determined by the electron density ρ This density minimizes the total energy H [ ρ ] ψ = εψ E totale [ ρ] = Emin

6 KOHN-SHAM DENSITY FUNCTIONAL THEORY Kohn and Sham DFT, 1965 Replace the Many-Body system by a fictitious system of non-interacting electrons that generate the same density A local effective potential A set of equations H KS DFT [ ρ ] ψn = ε nψn ρ ( r) = n f n ψ ( r) n 2 Express the effective potential acting on electrons as the sum of: - the external potential (nuclei) - the electrostatic potential - the exchange-correlation potential which is approximated

7 DFT IN PRACTICE

8 DFT: SOLVE A SELF-CONSISTENT SYSTEM Solve a self-consistent set of eigenvalue equations: To solve these Kohn-Sham equations, need An exchange-correlation functional Vxc A basis set for expressing the eigenvectors ψ n An (iterative) algorithm for finding the eigenvectors

9 DFT: SOLVE A SELF-CONSISTENT SYSTEM Density Hamiltonian Local Non-local Kinetic Eigenvalue problem Iterative algorithm Convergence check? Wave functions Diagonalization in eigenvectors subspace Nuclei motion Structure relaxation Molecular Dynamics Energy, Forces

10 DFT: SOLVE A SELF-CONSISTENT SYSTEM Solve a self-consistent set of eigenvalue equations To solve these Kohn-Sham equations, need An exchange-correlation functional Vxc A basis set for expressing the wave-functions ψ n An (iterative) algorithm for finding the eigenvectors

11 DFT: EIGENSOLVERS H KS-DFT Need to solve this eigen problem without knowing the Hamiltonian matrix Hamiltonian application is a very expensive task Need only the «occupied» states, i.e. the ones associated with the lowest eigenvalues Use of an iterative eigensolver

12 DFT: EIGENSOLVERS Most used iterative eigensolvers in DFT H ε n ψ ~ Goal : minimize the residual ( ) n Conjugate gradient (CG) Requires explicit orthogonalizations «Conjugate the new search direction to the previous ones» Residual minimization method (RMM-DIIS) Direct inversion in iterative subspace Band-by-band algorithm «Minimize the norm of the residual vector» Blocked-Davidson like algorithms «Blocked» algorithm, iterative subspace «Append a block of vectors to the subspace» ABINIT: Locally Optimal Blocked Conjugate Gradient (LOBPCG) Knyazev, SIAM Journal of Scientific Computing 23, 517 (2001) Bottin, Leroux, Knyazev, Zerah, Comp. Mat. Sc. 42, 329 (2008)

13 DFT: EIGENSOLVERS Iterative eigensolvers : parallelism issues Orthogonalization Need communications Diagonalization (in subspace) Medium-sized problem not optimized on HPC Congugate-Gradient: A full orthogonalization No explicit diagonalization RMM-DIIS: Easy to parallelize (electron by electron) Medium-sized diagonalization Very sensitive to the initial guess Blocked-Davidson: Robust Can be parallelized by block Medium-sized diagonalization

14 DFT: SOME CODES Codes differ in their basis choice, functionalities, approximations, license, VASP (commercial) Quantum Espresso (GPL) ABINIT (GPL) CASTEP (commercial) SIESTA (free for academic) CP2K (GPL) BigDFT (GPL) GPAW (GPL) Most of them are written in FORTRAN

15 ABINIT: OVERVIEW OF THE PROJECT

16 ABINIT OVERVIEW Open-source package (GNU-GPL), freely distributed on the web Initiated in 1997 in Louvain-la-Neuve (Belgium) Density-Functional Theory Plane-wave basis (native) or wavelet basis (BigDFT library) for the eigenvectors ~1300 registered users at forum.abinit.org ~80 names in contributors file ABINIT v7 ~50 developer branches (~25 active)

17 ABINIT A DISTRIBUTED DEVELOPMENT A collaborative development Most active developer groups Louvain-la-Neuve university (Belgium) Liège university (Belgium) CEA, Bruyères-le-Châtel (France) CEA, Grenoble (France) CEA, Saclay (France) Dalhousie university, Halifax, (Canada) Montréal university (Canada) Rutgers university, New-Jersey (USA) San-Sebastian university (Spain) Cinvestav, Quérétaro (Mexico) Bogota university (Colombia)

18 ABINIT ORGANIZING THE DEVELOPMENT Continuous Integration (CI) development workflow - Extensive test suites (1000+ automatic tests) - Daily reviewing of contributions (automation) - Computer farm management Concurrent Version System : bazaar (bzr) ( Automatic Nightly Builds New published changes automatically tested on 20 architectures Managed by buildbot (

19 ABINIT: EXAMPLES Melting of Aluminum 2-phase method 512 atoms, CPU cores Bouchet, Bottin, Jomard, Zerah, Phys. Rev. B. 80, (2009)

20 ABINIT: EXAMPLES Hydrogen diffusion in electrolyte for fuel cells Computation of energy barriers between various sites for the proton Coupling with a higher scale(multiscale modelling) 40 atoms, CPU cores Hermet, Torrent, Bottin, Dejzanneau, Geneste, Phys. Rev. B. 87, (2013)

21 ABINIT: PARALLELIZATION SCHEMES

22 ABINIT: PARALLELIZATON LEVELS Electronic density formula: r ρ r r ( ) i = ( ) ( k + g ) r C g e r r v ( ) A r dk ρ ( ) n, k + σ spins n Bands r k Reciprocal space r g Plane waves 2 A atoms compensation Parallelization levels: Spins Bands k vectors Plane waves Atoms Parallelization over k points: easy; interesting for metals Parallelization over plane waves: requires a parallel 3-dim FFT Parallelization over bands: requires a blocked eigen-solver Parallelization over cells: not far from embarrassingly parallel

23 ABINIT PARALLELISM : OVERVIEW Distributed memory parallelism High level Message Passing Interface (MPI) Computational load distribution Over k-points, spins, atomic sites, bands and plane waves Each level has its own parallel efficiency Distribution of data Over k-points, spins, atomic sites, bands and plane waves Only collective communications used Currently no computation/communication overlap optimization

24 ABINIT PARALLELISM : OVERVIEW Shared memory parallelism Low level OpenMP (v3) compiler directives OpenACC or Intel compiler directives in preparation All loops over plane waves Linear and Matrix Algebra FFT Accelerators Some expensive parts have been ported on Nvidia GPU Speed-up : x3 x5

25 ABINIT PARALLELISM: EXAMPLE Gold, 108 atoms, 1200 electrons, TERA Supercomputer (CEA) «plane-waves, bands» parallelisation «k-points, plane-waves, bands» parallelisation By distributing the g-vector grid over two levels of processors rather than one, we improve the efficiency.

26 IMPROVE DFT SCALABILITY? DFT scalability can be improved if we Make some assumption Example : the electronic wave function is localized around atoms order-n algorithms can be applied But this is not a valid approximation for metals Put more physics in the theory Example : generalized DFT : replace the model Exchange- Correlation by a more sophisticated one (Hartree-Fock) Perfectly scalable, suitable for GPU, But the size of the simulated system does not increase but this is not useable for standard ABINIT calculations

27 ABINIT PARALLELIZATION: HOW TO GO FURTHER?

28 ABINIT PERFORMANCE ANALYSIS Repartition of time in in a ground-state calculation varying the number of band CPU cores (strong scaling) TEST CASE A vacancy in a 108 atoms cell (gold) TGCC-Curie (Intel Westmere) Iterative eigensolver: Consuming parts: eigensolver + comm Hamiltonian application: ~ linear scaling Analog results for weak scaling

29 CONSUMING PARTS AND BOTTLENECKS Fast Fourier Transforms used to apply local Hamiltonian Application of non-local Hamiltonian Linear algebra in iterative algorithm used to solve the eigenvalue problem Matrix algebra to get wave functions diagonalisation and orthogonalisation

30 CONSUMING PARTS WITH EFFICIENT PARALLELISM Fast Fourier Transforms used to apply local Hamiltonian Application of non-local Hamiltonian Linear algebra in iterative algorithm used to solve the eigenvalue problem Matrix algebra to get wave functions diagonalisation and orthogonalisation

31 BOTTLENECKS Fast Fourier Transforms used to apply local Hamiltonian Application of non-local Hamiltonian Linear algebra in iterative algorithm used to solve the eigenvalue problem Matrix algebra to get wave functions diagonalisation and orthogonalisation

32 CONSUMING PARTS AND BOOTLENECKS EFFICIENT Density Hamiltonian Local Non-local Kinetic Eigenvalue problem Iterative algorithm BOTTLENECK Convergence check? Wave functions Diagonalization in eigenvectors subspace Energy and forces

33 ABINIT BOTTLENECK ANALYSIS The efficiency of the blocked-davidson eigensolver algorithm depends strongly on the size of the blocks : Competition : orthogonalization vs diagonalization The size of the matrixes manipulated here is small (medium). The improvement of the eigen-solver on medium-sized dense hermitian matrix has not been addressed by mathematicians

34 PARALLEL ABINIT : HOW TO GO FURTHER? Optimize existing algorithm, trying to make the diagonalization (orthogonalization?) disappear Let s try to optimized matrix algebra library ELPA library, PLASMA library Let s try accelerators MAGMA libray Change the algorithm ; replace blocked-davidson by???... Currently under study : FEAST (contour integration technique) Polizzi, 2009

35 CONCLUSION

36 CONCLUSION Density Functional Theory on HPC, what can be done Many core architectures still evolve Implement an openacc version of ABINIT Davidson-like algorithms clearly show their limitations on petascale architectures; Find alternatives (?) On manycore architectures, the data distribution (governing memory access) has to be carefully set up A deep investigation of memory access has to be done for ABINIT

37 Commissariat à l énergie atomique et aux énergies alternatives Etablissement public à caractère industriel et commercial RCS Paris B

Preconditioned Eigenvalue Solvers for electronic structure calculations. Andrew V. Knyazev. Householder Symposium XVI May 26, 2005

Preconditioned Eigenvalue Solvers for electronic structure calculations. Andrew V. Knyazev. Householder Symposium XVI May 26, 2005 1 Preconditioned Eigenvalue Solvers for electronic structure calculations Andrew V. Knyazev Department of Mathematics and Center for Computational Mathematics University of Colorado at Denver Householder

More information

Block Iterative Eigensolvers for Sequences of Dense Correlated Eigenvalue Problems

Block Iterative Eigensolvers for Sequences of Dense Correlated Eigenvalue Problems Mitglied der Helmholtz-Gemeinschaft Block Iterative Eigensolvers for Sequences of Dense Correlated Eigenvalue Problems Birkbeck University, London, June the 29th 2012 Edoardo Di Napoli Motivation and Goals

More information

Density Functional Theory

Density Functional Theory Density Functional Theory Iain Bethune EPCC ibethune@epcc.ed.ac.uk Overview Background Classical Atomistic Simulation Essential Quantum Mechanics DFT: Approximations and Theory DFT: Implementation using

More information

ELSI: A Unified Software Interface for Kohn-Sham Electronic Structure Solvers

ELSI: A Unified Software Interface for Kohn-Sham Electronic Structure Solvers ELSI: A Unified Software Interface for Kohn-Sham Electronic Structure Solvers Victor Yu and the ELSI team Department of Mechanical Engineering & Materials Science Duke University Kohn-Sham Density-Functional

More information

VASP: running on HPC resources. University of Vienna, Faculty of Physics and Center for Computational Materials Science, Vienna, Austria

VASP: running on HPC resources. University of Vienna, Faculty of Physics and Center for Computational Materials Science, Vienna, Austria VASP: running on HPC resources University of Vienna, Faculty of Physics and Center for Computational Materials Science, Vienna, Austria The Many-Body Schrödinger equation 0 @ 1 2 X i i + X i Ĥ (r 1,...,r

More information

Fundamentals and applications of Density Functional Theory Astrid Marthinsen PhD candidate, Department of Materials Science and Engineering

Fundamentals and applications of Density Functional Theory Astrid Marthinsen PhD candidate, Department of Materials Science and Engineering Fundamentals and applications of Density Functional Theory Astrid Marthinsen PhD candidate, Department of Materials Science and Engineering Outline PART 1: Fundamentals of Density functional theory (DFT)

More information

HYBRID FUNCTIONALS IN ABINIT: STATE OF THE ART AND PERSPECTIVES. F. Jollet 1, M. Torrent 1, B. Amadon 1, F. Arnardi 1, X.

HYBRID FUNCTIONALS IN ABINIT: STATE OF THE ART AND PERSPECTIVES. F. Jollet 1, M. Torrent 1, B. Amadon 1, F. Arnardi 1, X. HYBRID FUNCTIONALS IN ABINIT: STATE OF THE ART AND PERSPECTIVES F. Jollet 1, M. Torrent 1, B. Amadon 1, F. Arnardi 1, X. Gonze 1,2 1 CEA, DAM-DIF, Bruyères le Châtel, 91297 Arpajon Cedex 2 UCL,Louvain

More information

Self Consistent Cycle

Self Consistent Cycle Self Consistent Cycle Step 0 : defining your system namelist SYSTEM How to specify the System All periodic systems can be specified by a Bravais Lattice and and atomic basis How to specify the Bravais

More information

ab initio Electronic Structure Calculations

ab initio Electronic Structure Calculations ab initio Electronic Structure Calculations New scalability frontiers using the BG/L Supercomputer C. Bekas, A. Curioni and W. Andreoni IBM, Zurich Research Laboratory Rueschlikon 8803, Switzerland ab

More information

Large Scale Electronic Structure Calculations

Large Scale Electronic Structure Calculations Large Scale Electronic Structure Calculations Jürg Hutter University of Zurich 8. September, 2008 / Speedup08 CP2K Program System GNU General Public License Community Developers Platform on "Berlios" (cp2k.berlios.de)

More information

Comparing the Efficiency of Iterative Eigenvalue Solvers: the Quantum ESPRESSO experience

Comparing the Efficiency of Iterative Eigenvalue Solvers: the Quantum ESPRESSO experience Comparing the Efficiency of Iterative Eigenvalue Solvers: the Quantum ESPRESSO experience Stefano de Gironcoli Scuola Internazionale Superiore di Studi Avanzati Trieste-Italy 0 Diagonalization of the Kohn-Sham

More information

Large scale ab initio calculations based on three levels of parallelization

Large scale ab initio calculations based on three levels of parallelization Large scale ab initio calculations based on three levels of parallelization François Bottin a,b,, Stéphane Leroux a, Andrew Knyazev c,1, Gilles Zérah a a Département de Physique Théorique et Appliquée,

More information

ALMA: All-scale predictive design of heat management material structures

ALMA: All-scale predictive design of heat management material structures ALMA: All-scale predictive design of heat management material structures Version Date: 2015.11.13. Last updated 2015.12.02 Purpose of this document: Definition of a data organisation that is applicable

More information

CP2K. New Frontiers. ab initio Molecular Dynamics

CP2K. New Frontiers. ab initio Molecular Dynamics CP2K New Frontiers in ab initio Molecular Dynamics Jürg Hutter, Joost VandeVondele, Valery Weber Physical-Chemistry Institute, University of Zurich Ab Initio Molecular Dynamics Molecular Dynamics Sampling

More information

Introduction to Parallelism in CASTEP

Introduction to Parallelism in CASTEP to ism in CASTEP Stewart Clark Band University of Durham 21 September 2012 Solve for all the bands/electrons (Band-) Band CASTEP solves the Kohn-Sham equations for electrons in a periodic array of nuclei:

More information

FEAST eigenvalue algorithm and solver: review and perspectives

FEAST eigenvalue algorithm and solver: review and perspectives FEAST eigenvalue algorithm and solver: review and perspectives Eric Polizzi Department of Electrical and Computer Engineering University of Masachusetts, Amherst, USA Sparse Days, CERFACS, June 25, 2012

More information

Contents. Preface... xi. Introduction...

Contents. Preface... xi. Introduction... Contents Preface... xi Introduction... xv Chapter 1. Computer Architectures... 1 1.1. Different types of parallelism... 1 1.1.1. Overlap, concurrency and parallelism... 1 1.1.2. Temporal and spatial parallelism

More information

Electronic structure calculations with GPAW. Jussi Enkovaara CSC IT Center for Science, Finland

Electronic structure calculations with GPAW. Jussi Enkovaara CSC IT Center for Science, Finland Electronic structure calculations with GPAW Jussi Enkovaara CSC IT Center for Science, Finland Basics of density-functional theory Density-functional theory Many-body Schrödinger equation Can be solved

More information

The Abinit project. Coding is based on modern software engineering principles

The Abinit project. Coding is based on modern software engineering principles The Abinit project Abinit is a robust, full-featured electronic-structure code based on density functional theory, plane waves, and pseudopotentials. Abinit is copyrighted and distributed under the GNU

More information

Weile Jia 1, Long Wang 1, Zongyan Cao 1, Jiyun Fu 1, Xuebin Chi 1, Weiguo Gao 2, Lin-Wang Wang 3

Weile Jia 1, Long Wang 1, Zongyan Cao 1, Jiyun Fu 1, Xuebin Chi 1, Weiguo Gao 2, Lin-Wang Wang 3 A plane wave pseudopotential density functional theory molecular dynamics code on multi-gpu machine - GPU Technology Conference, San Jose, May 17th, 2012 Weile Jia 1, Long Wang 1, Zongyan Cao 1, Jiyun

More information

Intro to ab initio methods

Intro to ab initio methods Lecture 2 Part A Intro to ab initio methods Recommended reading: Leach, Chapters 2 & 3 for QM methods For more QM methods: Essentials of Computational Chemistry by C.J. Cramer, Wiley (2002) 1 ab initio

More information

A Non-Linear Eigensolver-Based Alternative to Traditional Self-Consistent Electronic Structure Calculation Methods

A Non-Linear Eigensolver-Based Alternative to Traditional Self-Consistent Electronic Structure Calculation Methods University of Massachusetts Amherst ScholarWorks@UMass Amherst Masters Theses 1911 - February 2014 2013 A Non-Linear Eigensolver-Based Alternative to Traditional Self-Consistent Electronic Structure Calculation

More information

Introduction to First-Principles Method

Introduction to First-Principles Method Joint ICTP/CAS/IAEA School & Workshop on Plasma-Materials Interaction in Fusion Devices, July 18-22, 2016, Hefei Introduction to First-Principles Method by Guang-Hong LU ( 吕广宏 ) Beihang University Computer

More information

Massively parallel electronic structure calculations with Python software. Jussi Enkovaara Software Engineering CSC the finnish IT center for science

Massively parallel electronic structure calculations with Python software. Jussi Enkovaara Software Engineering CSC the finnish IT center for science Massively parallel electronic structure calculations with Python software Jussi Enkovaara Software Engineering CSC the finnish IT center for science GPAW Software package for electronic structure calculations

More information

ESLW_Drivers July 2017

ESLW_Drivers July 2017 ESLW_Drivers 10-21 July 2017 Volker Blum - ELSI Viktor Yu - ELSI William Huhn - ELSI David Lopez - Siesta Yann Pouillon - Abinit Micael Oliveira Octopus & Abinit Fabiano Corsetti Siesta & Onetep Paolo

More information

Recent implementations, applications, and extensions of the Locally Optimal Block Preconditioned Conjugate Gradient method LOBPCG

Recent implementations, applications, and extensions of the Locally Optimal Block Preconditioned Conjugate Gradient method LOBPCG MITSUBISHI ELECTRIC RESEARCH LABORATORIES http://www.merl.com Recent implementations, applications, and extensions of the Locally Optimal Block Preconditioned Conjugate Gradient method LOBPCG Knyazev,

More information

Parallel Eigensolver Performance on the HPCx System

Parallel Eigensolver Performance on the HPCx System Parallel Eigensolver Performance on the HPCx System Andrew Sunderland, Elena Breitmoser Terascaling Applications Group CCLRC Daresbury Laboratory EPCC, University of Edinburgh Outline 1. Brief Introduction

More information

Exchange Correlation Functional Investigation of RT-TDDFT on a Sodium Chloride. Dimer. Philip Straughn

Exchange Correlation Functional Investigation of RT-TDDFT on a Sodium Chloride. Dimer. Philip Straughn Exchange Correlation Functional Investigation of RT-TDDFT on a Sodium Chloride Dimer Philip Straughn Abstract Charge transfer between Na and Cl ions is an important problem in physical chemistry. However,

More information

Optimized energy landscape exploration for nanosciences using ab-initio based methods

Optimized energy landscape exploration for nanosciences using ab-initio based methods Optimized energy landscape exploration for nanosciences using ab-initio based methods Eduardo Machado-Charry Nanosciences Foundation & Laboratoire de simulation atomistique (L Sim), SP2M, UMR-E CEA-Grenoble

More information

Improving the performance of applied science numerical simulations: an application to Density Functional Theory

Improving the performance of applied science numerical simulations: an application to Density Functional Theory Improving the performance of applied science numerical simulations: an application to Density Functional Theory Edoardo Di Napoli Jülich Supercomputing Center - Institute for Advanced Simulation Forschungszentrum

More information

Conjugate-Gradient Eigenvalue Solvers in Computing Electronic Properties of Nanostructure Architectures

Conjugate-Gradient Eigenvalue Solvers in Computing Electronic Properties of Nanostructure Architectures Conjugate-Gradient Eigenvalue Solvers in Computing Electronic Properties of Nanostructure Architectures Stanimire Tomov 1, Julien Langou 1, Andrew Canning 2, Lin-Wang Wang 2, and Jack Dongarra 1 1 Innovative

More information

A knowledge-based approach to high-performance computing in ab initio simulations.

A knowledge-based approach to high-performance computing in ab initio simulations. Mitglied der Helmholtz-Gemeinschaft A knowledge-based approach to high-performance computing in ab initio simulations. AICES Advisory Board Meeting. July 14th 2014 Edoardo Di Napoli Academic background

More information

Accelerating linear algebra computations with hybrid GPU-multicore systems.

Accelerating linear algebra computations with hybrid GPU-multicore systems. Accelerating linear algebra computations with hybrid GPU-multicore systems. Marc Baboulin INRIA/Université Paris-Sud joint work with Jack Dongarra (University of Tennessee and Oak Ridge National Laboratory)

More information

Algorithms and Computational Aspects of DFT Calculations

Algorithms and Computational Aspects of DFT Calculations Algorithms and Computational Aspects of DFT Calculations Part I Juan Meza and Chao Yang High Performance Computing Research Lawrence Berkeley National Laboratory IMA Tutorial Mathematical and Computational

More information

Density Functional Theory. Martin Lüders Daresbury Laboratory

Density Functional Theory. Martin Lüders Daresbury Laboratory Density Functional Theory Martin Lüders Daresbury Laboratory Ab initio Calculations Hamiltonian: (without external fields, non-relativistic) impossible to solve exactly!! Electrons Nuclei Electron-Nuclei

More information

Density Functional Theory

Density Functional Theory Density Functional Theory March 26, 2009 ? DENSITY FUNCTIONAL THEORY is a method to successfully describe the behavior of atomic and molecular systems and is used for instance for: structural prediction

More information

3: Density Functional Theory

3: Density Functional Theory The Nuts and Bolts of First-Principles Simulation 3: Density Functional Theory CASTEP Developers Group with support from the ESF ψ k Network Density functional theory Mike Gillan, University College London

More information

Wavelets for density functional calculations: Four families and three. applications

Wavelets for density functional calculations: Four families and three. applications Wavelets for density functional calculations: Four families and three Haar wavelets Daubechies wavelets: BigDFT code applications Stefan Goedecker Stefan.Goedecker@unibas.ch http://comphys.unibas.ch/ Interpolating

More information

Fast Eigenvalue Solutions

Fast Eigenvalue Solutions Fast Eigenvalue Solutions Techniques! Steepest Descent/Conjugate Gradient! Davidson/Lanczos! Carr-Parrinello PDF Files will be available Where HF/DFT calculations spend time Guess ρ Form H Diagonalize

More information

Domain specific libraries. Material science codes on innovative HPC architectures Anton Kozhevnikov, CSCS December 5, 2016

Domain specific libraries. Material science codes on innovative HPC architectures Anton Kozhevnikov, CSCS December 5, 2016 Domain specific libraries Material science codes on innovative HPC architectures Anton Kozhevnikov, CSCS December 5, 2016 Part 1: Introduction Kohn-Shame equations 1 2 Eigen-value problem + v eff (r) j(r)

More information

Institut Néel Institut Laue Langevin. Introduction to electronic structure calculations

Institut Néel Institut Laue Langevin. Introduction to electronic structure calculations Institut Néel Institut Laue Langevin Introduction to electronic structure calculations 1 Institut Néel - 25 rue des Martyrs - Grenoble - France 2 Institut Laue Langevin - 71 avenue des Martyrs - Grenoble

More information

Orbital Density Dependent Functionals

Orbital Density Dependent Functionals Orbital Density Dependent Functionals S. Kluepfel1, P. Kluepfel1, Hildur Guðmundsdóttir1 and Hannes Jónsson1,2 1. Univ. of Iceland; 2. Aalto University Outline: Problems with GGA approximation (PBE, RPBE,...)

More information

Introduction to Density Functional Theory

Introduction to Density Functional Theory Introduction to Density Functional Theory S. Sharma Institut für Physik Karl-Franzens-Universität Graz, Austria 19th October 2005 Synopsis Motivation 1 Motivation : where can one use DFT 2 : 1 Elementary

More information

Parallel Eigensolver Performance on High Performance Computers

Parallel Eigensolver Performance on High Performance Computers Parallel Eigensolver Performance on High Performance Computers Andrew Sunderland Advanced Research Computing Group STFC Daresbury Laboratory CUG 2008 Helsinki 1 Summary (Briefly) Introduce parallel diagonalization

More information

Jacobi-Davidson Eigensolver in Cusolver Library. Lung-Sheng Chien, NVIDIA

Jacobi-Davidson Eigensolver in Cusolver Library. Lung-Sheng Chien, NVIDIA Jacobi-Davidson Eigensolver in Cusolver Library Lung-Sheng Chien, NVIDIA lchien@nvidia.com Outline CuSolver library - cusolverdn: dense LAPACK - cusolversp: sparse LAPACK - cusolverrf: refactorization

More information

Key concepts in Density Functional Theory (II)

Key concepts in Density Functional Theory (II) Kohn-Sham scheme and band structures European Theoretical Spectroscopy Facility (ETSF) CNRS - Laboratoire des Solides Irradiés Ecole Polytechnique, Palaiseau - France Present Address: LPMCN Université

More information

TR A Comparison of the Performance of SaP::GPU and Intel s Math Kernel Library (MKL) for Solving Dense Banded Linear Systems

TR A Comparison of the Performance of SaP::GPU and Intel s Math Kernel Library (MKL) for Solving Dense Banded Linear Systems TR-0-07 A Comparison of the Performance of ::GPU and Intel s Math Kernel Library (MKL) for Solving Dense Banded Linear Systems Ang Li, Omkar Deshmukh, Radu Serban, Dan Negrut May, 0 Abstract ::GPU is a

More information

Verbundprojekt ELPA-AEO. Eigenwert-Löser für Petaflop-Anwendungen Algorithmische Erweiterungen und Optimierungen

Verbundprojekt ELPA-AEO. Eigenwert-Löser für Petaflop-Anwendungen Algorithmische Erweiterungen und Optimierungen Verbundprojekt ELPA-AEO http://elpa-aeo.mpcdf.mpg.de Eigenwert-Löser für Petaflop-Anwendungen Algorithmische Erweiterungen und Optimierungen BMBF Projekt 01IH15001 Feb 2016 - Jan 2019 7. HPC-Statustagung,

More information

CP2K: the gaussian plane wave (GPW) method

CP2K: the gaussian plane wave (GPW) method CP2K: the gaussian plane wave (GPW) method Basis sets and Kohn-Sham energy calculation R. Vuilleumier Département de chimie Ecole normale supérieure Paris Tutorial CPMD-CP2K CPMD and CP2K CPMD CP2K http://www.cpmd.org

More information

Conjugate-Gradient Eigenvalue Solvers in Computing Electronic Properties of Nanostructure Architectures

Conjugate-Gradient Eigenvalue Solvers in Computing Electronic Properties of Nanostructure Architectures Conjugate-Gradient Eigenvalue Solvers in Computing Electronic Properties of Nanostructure Architectures Stanimire Tomov 1, Julien Langou 1, Andrew Canning 2, Lin-Wang Wang 2, and Jack Dongarra 1 1 Innovative

More information

Session 1. Introduction to Computational Chemistry. Computational (chemistry education) and/or (Computational chemistry) education

Session 1. Introduction to Computational Chemistry. Computational (chemistry education) and/or (Computational chemistry) education Session 1 Introduction to Computational Chemistry 1 Introduction to Computational Chemistry Computational (chemistry education) and/or (Computational chemistry) education First one: Use computational tools

More information

All-electron density functional theory on Intel MIC: Elk

All-electron density functional theory on Intel MIC: Elk All-electron density functional theory on Intel MIC: Elk W. Scott Thornton, R.J. Harrison Abstract We present the results of the porting of the full potential linear augmented plane-wave solver, Elk [1],

More information

Computational Physics. J. M. Thijssen

Computational Physics. J. M. Thijssen Computational Physics J. M. Thijssen Delft University of Technology CAMBRIDGE UNIVERSITY PRESS Contents Preface xi 1 Introduction 1 1.1 Physics and computational physics 1 1.2 Classical mechanics and statistical

More information

A model leading to self-consistent iteration computation with need for HP LA (e.g, diagonalization and orthogonalization)

A model leading to self-consistent iteration computation with need for HP LA (e.g, diagonalization and orthogonalization) A model leading to self-consistent iteration computation with need for HP LA (e.g, diagonalization and orthogonalization) Schodinger equation: Hψ = Eψ Choose a basis set of wave functions Two cases: Orthonormal

More information

Electronic Structure Calculations, Density Functional Theory and its Modern Implementations

Electronic Structure Calculations, Density Functional Theory and its Modern Implementations Tutoriel Big RENOBLE Electronic Structure Calculations, Density Functional Theory and its Modern Implementations Thierry Deutsch L_Sim - CEA renoble 19 October 2011 Outline 1 of Atomistic calculations

More information

Solid State Theory: Band Structure Methods

Solid State Theory: Band Structure Methods Solid State Theory: Band Structure Methods Lilia Boeri Wed., 11:15-12:45 HS P3 (PH02112) http://itp.tugraz.at/lv/boeri/ele/ Plan of the Lecture: DFT1+2: Hohenberg-Kohn Theorem and Kohn and Sham equations.

More information

Efficient implementation of the overlap operator on multi-gpus

Efficient implementation of the overlap operator on multi-gpus Efficient implementation of the overlap operator on multi-gpus Andrei Alexandru Mike Lujan, Craig Pelissier, Ben Gamari, Frank Lee SAAHPC 2011 - University of Tennessee Outline Motivation Overlap operator

More information

Perm State University Research-Education Center Parallel and Distributed Computing

Perm State University Research-Education Center Parallel and Distributed Computing Perm State University Research-Education Center Parallel and Distributed Computing A 25-minute Talk (S4493) at the GPU Technology Conference (GTC) 2014 MARCH 24-27, 2014 SAN JOSE, CA GPU-accelerated modeling

More information

Ab initio calculations of proton migration properties in Gd-doped BaCeO 3

Ab initio calculations of proton migration properties in Gd-doped BaCeO 3 Ab initio calculations of proton migration properties in Gd-doped BaCeO 3 Jessica Hermet 1,2, François Bottin 1, Grégory Geneste 1, Guilhem Dezanneau 2 1 CEA, DAM, DIF, F-91297 Arpajon, France 2 Laboratoire

More information

References. Documentation Manuals Tutorials Publications

References.   Documentation Manuals Tutorials Publications References http://siesta.icmab.es Documentation Manuals Tutorials Publications Atomic units e = m e = =1 atomic mass unit = m e atomic length unit = 1 Bohr = 0.5292 Ang atomic energy unit = 1 Hartree =

More information

Multi-Scale Modeling from First Principles

Multi-Scale Modeling from First Principles m mm Multi-Scale Modeling from First Principles μm nm m mm μm nm space space Predictive modeling and simulations must address all time and Continuum Equations, densityfunctional space scales Rate Equations

More information

Reinhold Schneider, MATHEON TU Berlin. Direct Minimization for effective single particle models (DFT)

Reinhold Schneider, MATHEON TU Berlin. Direct Minimization for effective single particle models (DFT) Direct Minimization for effective single particle models (DFT) Partners joint work with: J. Blauert, T. Rohwedder (TU Berlin), A. Neelov (U Basel) joint EU NEST project BigDFT together with Dr. Thierry

More information

Plane waves and pseudopotentials (Part II)

Plane waves and pseudopotentials (Part II) Bristol 2007 Plane waves and pseudopotentials (Part II) X. Gonze Université Catholique de Louvain, Louvain-la-neuve, Belgium Plane Waves - Pseudopotentials, Bristol March 2007 1 In view of practical calculations,

More information

DFT / SIESTA algorithms

DFT / SIESTA algorithms DFT / SIESTA algorithms Javier Junquera José M. Soler References http://siesta.icmab.es Documentation Tutorials Atomic units e = m e = =1 atomic mass unit = m e atomic length unit = 1 Bohr = 0.5292 Ang

More information

Introduction to Benchmark Test for Multi-scale Computational Materials Software

Introduction to Benchmark Test for Multi-scale Computational Materials Software Introduction to Benchmark Test for Multi-scale Computational Materials Software Shun Xu*, Jian Zhang, Zhong Jin xushun@sccas.cn Computer Network Information Center Chinese Academy of Sciences (IPCC member)

More information

BigDFT tutorial. BigDFT tutorial FIRST YARMOUK SCHOOL. Thierry Deutsch. November, L_Sim - CEA Grenoble. Introduction DFT.

BigDFT tutorial. BigDFT tutorial FIRST YARMOUK SCHOOL. Thierry Deutsch. November, L_Sim - CEA Grenoble. Introduction DFT. Big tutorial FIRST YARMOUK SCHOOL Big tutorial Thierry Deutsch L_Sim - CEA Grenoble November, 2. 2010 Outline 1 2 Density Functional Theory (quick view) 3 4 A basis for nanosciences: the Big project STREP

More information

Mitglied der Helmholtz-Gemeinschaft. Linear algebra tasks in Materials Science: optimization and portability

Mitglied der Helmholtz-Gemeinschaft. Linear algebra tasks in Materials Science: optimization and portability Mitglied der Helmholtz-Gemeinschaft Linear algebra tasks in Materials Science: optimization and portability ADAC Workshop, July 17-19 2017 Edoardo Di Napoli Outline Jülich Supercomputing Center Chebyshev

More information

Introduction to Density Functional Theory with Applications to Graphene Branislav K. Nikolić

Introduction to Density Functional Theory with Applications to Graphene Branislav K. Nikolić Introduction to Density Functional Theory with Applications to Graphene Branislav K. Nikolić Department of Physics and Astronomy, University of Delaware, Newark, DE 19716, U.S.A. http://wiki.physics.udel.edu/phys824

More information

Density Functional Theory

Density Functional Theory Chemistry 380.37 Fall 2015 Dr. Jean M. Standard October 28, 2015 Density Functional Theory What is a Functional? A functional is a general mathematical quantity that represents a rule to convert a function

More information

Handbook of Computational Quantum Chemistry. DAVID B. COOK The Department of Chemistry, University of Sheffield

Handbook of Computational Quantum Chemistry. DAVID B. COOK The Department of Chemistry, University of Sheffield Handbook of Computational Quantum Chemistry DAVID B. COOK The Department of Chemistry, University of Sheffield Oxford New York Tokyo OXFORD UNIVERSITY PRESS 1998 CONTENTS 1 Mechanics and molecules 1 1.1

More information

Poisson Solver, Pseudopotentials, Atomic Forces in the BigDFT code

Poisson Solver, Pseudopotentials, Atomic Forces in the BigDFT code CECAM Tutorial on Wavelets in DFT, CECAM - LYON,, in the BigDFT code Kernel Luigi Genovese L_Sim - CEA Grenoble 28 November 2007 Outline, Kernel 1 The with Interpolating Scaling Functions in DFT for Interpolating

More information

The Quantum ESPRESSO Software Distribution

The Quantum ESPRESSO Software Distribution The Quantum ESPRESSO Software Distribution The DEMOCRITOS center of Italian INFM is dedicated to atomistic simulations of materials, with a strong emphasis on the development of high-quality scientific

More information

Molecular Mechanics: The Ab Initio Foundation

Molecular Mechanics: The Ab Initio Foundation Molecular Mechanics: The Ab Initio Foundation Ju Li GEM4 Summer School 2006 Cell and Molecular Mechanics in BioMedicine August 7 18, 2006, MIT, Cambridge, MA, USA 2 Outline Why are electrons quantum? Born-Oppenheimer

More information

Direct Self-Consistent Field Computations on GPU Clusters

Direct Self-Consistent Field Computations on GPU Clusters Direct Self-Consistent Field Computations on GPU Clusters Guochun Shi, Volodymyr Kindratenko National Center for Supercomputing Applications University of Illinois at UrbanaChampaign Ivan Ufimtsev, Todd

More information

Algorithms and Computational Aspects of DFT Calculations

Algorithms and Computational Aspects of DFT Calculations Algorithms and Computational Aspects of DFT Calculations Part II Juan Meza and Chao Yang High Performance Computing Research Lawrence Berkeley National Laboratory IMA Tutorial Mathematical and Computational

More information

Large-scale Electronic Structure Simulations with MVAPICH2 on Intel Knights Landing Manycore Processors

Large-scale Electronic Structure Simulations with MVAPICH2 on Intel Knights Landing Manycore Processors Large-scale Electronic Structure Simulations with MVAPICH2 on Intel Knights Landing Manycore Processors Hoon Ryu, Ph.D. (E: elec1020@kisti.re.kr) Principal Researcher / Korea Institute of Science and Technology

More information

Quantum Mechanical Simulations

Quantum Mechanical Simulations Quantum Mechanical Simulations Prof. Yan Wang Woodruff School of Mechanical Engineering Georgia Institute of Technology Atlanta, GA 30332, U.S.A. yan.wang@me.gatech.edu Topics Quantum Monte Carlo Hartree-Fock

More information

Petascale Quantum Simulations of Nano Systems and Biomolecules

Petascale Quantum Simulations of Nano Systems and Biomolecules Petascale Quantum Simulations of Nano Systems and Biomolecules Emil Briggs North Carolina State University 1. Outline of real-space Multigrid (RMG) 2. Scalability and hybrid/threaded models 3. GPU acceleration

More information

MONTE CARLO POWER ITERATION: ENTROPY AND SPATIAL CORRELATIONS

MONTE CARLO POWER ITERATION: ENTROPY AND SPATIAL CORRELATIONS MONTE CARLO POWER ITERATION: ENTROPY AND SPATIAL CORRELATIONS ANDREA ZOIA, M. NOWAK (CEA/SACLAY) E. DUMONTEIL, A. ONILLON (IRSN) J. MIAO, B. FORGET, K. S. SMITH (MIT) NEA EGAMCT meeting Andrea ZOIA DEN/DANS/DM2S/SERMA/LTSD

More information

Recent Developments in the ELSI Infrastructure for Large-Scale Electronic Structure Theory

Recent Developments in the ELSI Infrastructure for Large-Scale Electronic Structure Theory elsi-interchange.org MolSSI Workshop and ELSI Conference 2018, August 15, 2018, Richmond, VA Recent Developments in the ELSI Infrastructure for Large-Scale Electronic Structure Theory Victor Yu 1, William

More information

PRECONDITIONING ORBITAL MINIMIZATION METHOD FOR PLANEWAVE DISCRETIZATION 1. INTRODUCTION

PRECONDITIONING ORBITAL MINIMIZATION METHOD FOR PLANEWAVE DISCRETIZATION 1. INTRODUCTION PRECONDITIONING ORBITAL MINIMIZATION METHOD FOR PLANEWAVE DISCRETIZATION JIANFENG LU AND HAIZHAO YANG ABSTRACT. We present an efficient preconditioner for the orbital minimization method when the Hamiltonian

More information

arxiv: v1 [physics.comp-ph] 22 Nov 2012

arxiv: v1 [physics.comp-ph] 22 Nov 2012 A Customized 3D GPU Poisson Solver for Free BCs Nazim Dugan a, Luigi Genovese b, Stefan Goedecker a, a Department of Physics, University of Basel, Klingelbergstr. 82, 4056 Basel, Switzerland b Laboratoire

More information

GEM4 Summer School OpenCourseWare

GEM4 Summer School OpenCourseWare GEM4 Summer School OpenCourseWare http://gem4.educommons.net/ http://www.gem4.org/ Lecture: Molecular Mechanics by Ju Li. Given August 9, 2006 during the GEM4 session at MIT in Cambridge, MA. Please use

More information

Dept of Mechanical Engineering MIT Nanoengineering group

Dept of Mechanical Engineering MIT Nanoengineering group 1 Dept of Mechanical Engineering MIT Nanoengineering group » Recap of HK theorems and KS equations» The physical meaning of the XC energy» Solution of a one-particle Schroedinger equation» Pseudo Potentials»

More information

THE ROLE OF CORRELATIONS IN MONTE CARLO CRITICALITY SIMULATIONS

THE ROLE OF CORRELATIONS IN MONTE CARLO CRITICALITY SIMULATIONS THE ROLE OF CORRELATIONS IN MONTE CARLO CRITICALITY SIMULATIONS ANDREA ZOIA CEA/SACLAY Séminaire MANON Andrea ZOIA DEN/DANS/DM2S/SERMA/LTSD March 22nd 2016 APRILE 13, 2016 PAGE 1 OUTLINE q Power iteragon

More information

CHEM3023: Spins, Atoms and Molecules

CHEM3023: Spins, Atoms and Molecules CHEM3023: Spins, Atoms and Molecules Lecture 5 The Hartree-Fock method C.-K. Skylaris Learning outcomes Be able to use the variational principle in quantum calculations Be able to construct Fock operators

More information

Computing least squares condition numbers on hybrid multicore/gpu systems

Computing least squares condition numbers on hybrid multicore/gpu systems Computing least squares condition numbers on hybrid multicore/gpu systems M. Baboulin and J. Dongarra and R. Lacroix Abstract This paper presents an efficient computation for least squares conditioning

More information

CP2K: Past, Present, Future. Jürg Hutter Department of Chemistry, University of Zurich

CP2K: Past, Present, Future. Jürg Hutter Department of Chemistry, University of Zurich CP2K: Past, Present, Future Jürg Hutter Department of Chemistry, University of Zurich Outline Past History of CP2K Development of features Present Quickstep DFT code Post-HF methods (RPA, MP2) Libraries

More information

Key concepts in Density Functional Theory (II) Silvana Botti

Key concepts in Density Functional Theory (II) Silvana Botti Kohn-Sham scheme, band structure and optical spectra European Theoretical Spectroscopy Facility (ETSF) CNRS - Laboratoire des Solides Irradiés Ecole Polytechnique, Palaiseau - France Temporary Address:

More information

Robust Preconditioned Conjugate Gradient for the GPU and Parallel Implementations

Robust Preconditioned Conjugate Gradient for the GPU and Parallel Implementations Robust Preconditioned Conjugate Gradient for the GPU and Parallel Implementations Rohit Gupta, Martin van Gijzen, Kees Vuik GPU Technology Conference 2012, San Jose CA. GPU Technology Conference 2012,

More information

Walter Kohn was awarded with the Nobel Prize in Chemistry in 1998 for his development of the density functional theory.

Walter Kohn was awarded with the Nobel Prize in Chemistry in 1998 for his development of the density functional theory. Walter Kohn was awarded with the Nobel Prize in Chemistry in 1998 for his development of the density functional theory. Walter Kohn receiving his Nobel Prize from His Majesty the King at the Stockholm

More information

Carlo Cavazzoni, HPC department, CINECA

Carlo Cavazzoni, HPC department, CINECA Large Scale Parallelism Carlo Cavazzoni, HPC department, CINECA Parallel Architectures Two basic architectural scheme: Distributed Memory Shared Memory Now most computers have a mixed architecture + accelerators

More information

DGDFT: A Massively Parallel Method for Large Scale Density Functional Theory Calculations

DGDFT: A Massively Parallel Method for Large Scale Density Functional Theory Calculations DGDFT: A Massively Parallel Method for Large Scale Density Functional Theory Calculations The recently developed discontinuous Galerkin density functional theory (DGDFT)[21] aims at reducing the number

More information

Sakurai-Sugiura algorithm based eigenvalue solver for Siesta. Georg Huhs

Sakurai-Sugiura algorithm based eigenvalue solver for Siesta. Georg Huhs Sakurai-Sugiura algorithm based eigenvalue solver for Siesta Georg Huhs Motivation Timing analysis for one SCF-loop iteration: left: CNT/Graphene, right: DNA Siesta Specifics High fraction of EVs needed

More information

Parallel Eigensolver Performance on High Performance Computers 1

Parallel Eigensolver Performance on High Performance Computers 1 Parallel Eigensolver Performance on High Performance Computers 1 Andrew Sunderland STFC Daresbury Laboratory, Warrington, UK Abstract Eigenvalue and eigenvector computations arise in a wide range of scientific

More information

DFT in practice. Sergey V. Levchenko. Fritz-Haber-Institut der MPG, Berlin, DE

DFT in practice. Sergey V. Levchenko. Fritz-Haber-Institut der MPG, Berlin, DE DFT in practice Sergey V. Levchenko Fritz-Haber-Institut der MPG, Berlin, DE Outline From fundamental theory to practical solutions General concepts: - basis sets - integrals and grids, electrostatics,

More information

Key concepts in Density Functional Theory (I) Silvana Botti

Key concepts in Density Functional Theory (I) Silvana Botti From the many body problem to the Kohn-Sham scheme European Theoretical Spectroscopy Facility (ETSF) CNRS - Laboratoire des Solides Irradiés Ecole Polytechnique, Palaiseau - France Temporary Address: Centre

More information

Minimization of the Kohn-Sham Energy with a Localized, Projected Search Direction

Minimization of the Kohn-Sham Energy with a Localized, Projected Search Direction Minimization of the Kohn-Sham Energy with a Localized, Projected Search Direction Courant Institute of Mathematical Sciences, NYU Lawrence Berkeley National Lab 29 October 2009 Joint work with Michael

More information

The EVSL package for symmetric eigenvalue problems Yousef Saad Department of Computer Science and Engineering University of Minnesota

The EVSL package for symmetric eigenvalue problems Yousef Saad Department of Computer Science and Engineering University of Minnesota The EVSL package for symmetric eigenvalue problems Yousef Saad Department of Computer Science and Engineering University of Minnesota 15th Copper Mountain Conference Mar. 28, 218 First: Joint work with

More information

MARCH 24-27, 2014 SAN JOSE, CA

MARCH 24-27, 2014 SAN JOSE, CA MARCH 24-27, 2014 SAN JOSE, CA Sparse HPC on modern architectures Important scientific applications rely on sparse linear algebra HPCG a new benchmark proposal to complement Top500 (HPL) To solve A x =

More information