Self Consistent Cycle

Size: px
Start display at page:

Download "Self Consistent Cycle"

Transcription

1 Self Consistent Cycle

2

3 Step 0 : defining your system namelist SYSTEM

4 How to specify the System All periodic systems can be specified by a Bravais Lattice and and atomic basis

5 How to specify the Bravais Lattice / Unit cell Input parameter ibrav - gives the type of Bravais lattice (SC, FCC, HEX,...) Input parameters {celldm(i)} - give the lengths (& directions if needed) of the BL vectors Note that one can choose a non-primitive unit cell (e.g., 4 atom SC cell for FCC structure).

6 Atoms inside the unit cell: How many, where? Input parameter nat - Number of atoms in the unit cell Input parameter ntyp - Number of types of atoms Field ATOMIC_POSITIONS - Initial positions of atoms (may vary when relax done). - Can choose to give in units of lattice vectors ( crystal ) or in Cartesian units ( alat or bohr or angstrom )

7 Step 1 : obtaining V_ext

8 Nuclear potential Electrons experience experience a Coulomb potential due to the nuclei This has a known simple form But this leads to computational problems!

9 Problems for Plane-Wave basis Core wavefunctions: Sharply peaked close to nuclei due to deep Coulomb potential. Valence wavefunctions: Lots of wiggles near nuclei due to orthogonality to core wavefunctions High Fourier component are present i.e. large kinetic energy cutoff needed

10 Solutions for Plane-Wave basis Core wavefunctions: Sharply peaked close to nuclei due to deep Coulomb potential. Valence wavefunctions: Lots of wiggles near nuclei due to orthogonality to core wavefunctions Don't solve for core wavefunction Remove wiggles from valence wavefunctions Replace hard Coulomb potential by smooth PseudoPotentials

11

12 Pseudopotentials for Quantum ESPRESSO Go to

13 Pseudopotentials for Quantum ESPRESSO Click on the element for which the PP is desired

14 Pseudopotentials for Quantum ESPRESSO Pseudopotential's name gives Information about -exchange correlation functional -type of pseudopotential

15 Atomic and V_ion info for QE Input card ATOMIC_SPECIES example: ATOMIC_SPECIES Ba Ba.pbe-nsp-van.UPF Ti Ti.pbe-sp-van_ak.UPF O O.pbe-van_ak.UPF NOTE should use the same XC functional for all pseudopentials. ecutwfc, ecutrho depend on type of pseudopotentials used (should test for system & property of interest).

16 Step 2 : initial guess for rho_in

17 Initial choice of rho_in Various possible choices, e.g.,: Superpositions of atomic densities. Converged n(r) from a closely related calculation (e.g., one where ionic positions slightly different). Approximate n(r), e.g., from solving problem in a smaller/different basis. Random numbers.

18 Initial choice of rho_in Various possible choices, e.g.,: Superpositions of atomic densities. Converged n(r) from a closely related calculation (e.g., one where ionic positions slightly different). Approximate n(r), e.g., from solving problem in a smaller/different basis. Random numbers. Initial guess of wfc Input parameter startingwfc 'atomic' 'atomic+random' 'random' 'file'

19 Step 3 : compute VH & Vxc

20 Hartree potential Hartree potential is computed from the Poisson equation which is diagonal in reciprocal space. VH (G) = 4 π e^2 rho(g) / G^2 The divergent G=0 term cancel out (for neutral systems) with analogous terms present in the ion-ion and electronion interactions. In charged systems a compensating uniform background is assumed.

21 Exchange-Correlation potential - Local Density Approximation - Generalized Gradient Approximation

22 Step 4 : diagonalization

23 Kohn Sham equation in a PW basis Eigenvalue equation is Matrix elements are V_ion contains the NON-LOCAL pseudopotential terms

24 Exact diagonalization is expensive find eigenvalues & eigenfunctions of H k+g,k+g Typically, NPW > 100 x number of atoms in unit cell. Expensive to store H matrix: NPW^2 elements to be stored Expensive (CPU time) to diagonalize matrix exactly, ~ NPW^3 operations required. Note, NPW >> Nb = number of bands required = Ne/2 or a little more (for metals). So ok to determine just lowest few eigenvalues.

25 Iterative diagonalization Can recast diagonalization as a minimization problem. Then use well-established techniques for iterative minimization by searching in the space of solutions, e.g., Conjugate Gradient. Another popular iterative diagonalization technique is the Davidson algorithm. Input parameter diagonalization algorithm used for iterative diagonalization Input parameter nbnd how many eigenvalues to compute

26 Iterative diagonalization Explicit storage of the hamiltonian matrix is not needed The only requirement is a routine able to compute H * Psi * Dual space formalism * apply kinetic energy in reciprocal space apply local potentials in real space compute dot products wherever is more effcient move between spaces by FFT

27 Iterative diagonalization Can recast diagonalization as a minimization problem. Then use well-established techniques for iterative minimization by searching in the space of solutions, e.g., Conjugate Gradient. Another popular iterative diagonalization technique is the Davidson algorithm. Input parameter diagonalization algorithm used for iterative diagonalization Input parameter nbnd how many eigenvalues to compute

28 Step 5 : new charge density

29 Brilloun Zone Sums Many quantities (e.g., n, Etot) involve sums over k. - In principle, need infinite number of k s. - In practice, sum over a finite number: BZ Sampling. - Number needed depends on band structure. - Typically need more k s for metals. - Need to test convergence wrt k-point sampling.

30 Types of K-points used Special Points: [Chadi & Cohen] Points designed to give quick convergence for particular crystal structures. Monkhorst-Pack grids: Equally spaced mesh in reciprocal space. May be centred on origin [ non-shifted ] or not [ shifted ] K_POINTS {tpiba crystal automatic gamma} If 'automatic' use M-P grids nk1, nk2, nk3, ik1, ik2, ik shift

31 Step 6 : test for convergence

32 How to decide if converged? Check for self-consistency. Could compare: New and old wavefunctions / charge densities. New and old total energies. Compare with energy estimated using Harris-Foulkes Input parameter conv_thr typically ok to use 1.d-8 Input parameter electron_maxstep maximum number of scf steps performed

33 Step 7 : mixing

34 Mixing Once iteration n of the self-consistent cycle has completed how to get next guess for rho? direct iteration in which rho_out is fed directly in rho_in rho_in(n) rho_outt(n) rho_in(n+1) usually doesn t converge. One needs to mix, take some combination of input and output densities (may include information from several previous iterations). Goal is to achieve self consistency (rho_out=rho_in) in as few iterations as possible.

35 Mixing Simplest prescription: linear mixing rho_in(n+1) = beta * rho_out(n) + (1-beta) rho_in(n). Usually slow but should converge for small enough values of beta There exist more sophisticated prescriptions (Broyden mixing, modified Broyden mixing of various kinds ) based on Quasi Newton Raphson methods. Input parameter mixing_mode plain TF local-tf Input parameter mixing_beta -Typical values between 0.1 & 0.7 (depend on type of system)

36

37

38 The end : convergence achieved

39 Output quantities Converged diagonalization eigenvaules and eigenvectors This allows to compute - Ground state charge density: ρ(r) = Σ Ψ ^2 - Ground state energy: sum of the eigenvalues, corrected for double counting of Hartree and XC term + ion-ion int.... can be used to get structures, heats of formation, adsorption energies, diffusion barriers, activation energies, elastic moduli, vibrational frequencies... to be continued

K-Points and Metals. Ralph Gebauer ICTP, Trieste. (slides courtesy of Shobhana Narasimhan)

K-Points and Metals. Ralph Gebauer ICTP, Trieste. (slides courtesy of Shobhana Narasimhan) Joint ICTP-TWAS Caribbean School on Electronic Structure Fundamentals and Methodologies (an Ab-initio Perspective) Cartagena Colombia, 27.08. to 21.09.2012 K-Points and Metals Ralph Gebauer ICTP, Trieste

More information

Quantum ESPRESSO. Input and Output description

Quantum ESPRESSO. Input and Output description Quantum ESPRESSO Input and Output description Where can I find useful information about Quantum ESPRESSO? Where can I find useful information about Quantum ESPRESSO? prompt > cd $espresso_dir/doc; ls *.html

More information

PWSCF First examples

PWSCF First examples PWSCF First examples (much more in espresso 3.1.1/examples directory!) Guido Fratesi (Università di Milano) Urbana, August 2006 A pw.x input file &CONTROL / &SYSTEM / &ELECTRONS title calculation restart_mode

More information

Metals Magnetic systems

Metals Magnetic systems Metals Magnetic systems Ralph Gebauer Cape Town, July 2008 Metallic systems: k-points and smearing: Let us consider iron, in the bcc phase. In the first part of this exercise, we neglect magnetism and

More information

Quantum ESPRESSO. PWSCF: first steps

Quantum ESPRESSO. PWSCF: first steps Quantum ESPRESSO PWSCF: first steps What can I learn in this tutorial? What can I learn in this tutorial? How to run PWscf (pw.x) in self-consistent mode for Silicon How to get the band structure of Silicon

More information

Lab 3: Handout Quantum-ESPRESSO: a first principles code, part 2.

Lab 3: Handout Quantum-ESPRESSO: a first principles code, part 2. 1 Lab 3: Handout Quantum-ESPRESSO: a first principles code, part 2. In this lab, we will be using Quantum-ESPRESSO as our first-principles code again. In problem 1, we will compare energy between allotropes

More information

Fundamentals and applications of Density Functional Theory Astrid Marthinsen PhD candidate, Department of Materials Science and Engineering

Fundamentals and applications of Density Functional Theory Astrid Marthinsen PhD candidate, Department of Materials Science and Engineering Fundamentals and applications of Density Functional Theory Astrid Marthinsen PhD candidate, Department of Materials Science and Engineering Outline PART 1: Fundamentals of Density functional theory (DFT)

More information

Ab initio molecular dynamics : BO

Ab initio molecular dynamics : BO School on First Principles Simulations, JNCASR, 2010 Ab initio molecular dynamics : BO Vardha Srinivasan IISER Bhopal Why ab initio MD Free of parametrization and only fundamental constants required. Bond

More information

DFT calculation of pressure induced phase transition in silicon

DFT calculation of pressure induced phase transition in silicon DFT calculation of pressure induced phase transition in silicon Michael Scherbela scherbela@student.tugraz.at 2015-12-07 Contents 1 Introduction 2 2 Structure of the input file 2 3 Calculation of phase

More information

Problem Set 2: First-Principles Energy Methods

Problem Set 2: First-Principles Energy Methods Problem Set 2: First-Principles Energy Methods Problem 1 (10 points): Convergence of absolute energies with respect to cutoff energies. A Using the Quantum ESPRESSO PWscf package, calculate the energy

More information

Density Functional Theory. Martin Lüders Daresbury Laboratory

Density Functional Theory. Martin Lüders Daresbury Laboratory Density Functional Theory Martin Lüders Daresbury Laboratory Ab initio Calculations Hamiltonian: (without external fields, non-relativistic) impossible to solve exactly!! Electrons Nuclei Electron-Nuclei

More information

Structural optimizations

Structural optimizations Structural optimizations Guido Fratesi (Università di Milano) Urbana, August 2006 Acetylene molecule ( ) We want to use pw.x to find the optimized geometry of acetylene. Let us suppose we have the following

More information

Quantum-ESPRESSO. PWSCF: first steps

Quantum-ESPRESSO. PWSCF: first steps Quantum-ESPRESSO PWSCF: first steps What can I learn in this lecture? What can I learn in this lecture? How to run PWscf (pw.x) in self-consistent mode for Silicon How to get the band structure of Silicon

More information

Module 2: Quantum Espresso Walkthrough

Module 2: Quantum Espresso Walkthrough Module 2: Quantum Espresso Walkthrough Energy and Geometry Optimization of the H 2 Molecule We will be using the PWSCF code for quantum mechanical calculations of extended systems. The PWSCF program is

More information

GWL tutorial. Paolo Umari, Università degli Studi di Padova, Italy Democritos, Trieste

GWL tutorial. Paolo Umari, Università degli Studi di Padova, Italy Democritos, Trieste GWL tutorial Paolo Umari, Università degli Studi di Padova, Italy Democritos, Trieste GW calculation with QE and GWL Benfits: Optimal basis (reduced) for representing polarizabilty operators Full convergence

More information

The Energetics of the Hydrogenation of a Single-Walled Carbon Nanotube. Janet Ryu Nicola Marzari May 13, J

The Energetics of the Hydrogenation of a Single-Walled Carbon Nanotube. Janet Ryu Nicola Marzari May 13, J The Energetics of the Hydrogenation of a Single-Walled Carbon Nanotube Janet Ryu Nicola Marzari May 13, 2005 3.021J Janet Ryu May 13, 2005 Final Paper 3.021J Carbon Nanotubes The Energetics of the Hydrogenation

More information

The Plane-Wave Pseudopotential Method

The Plane-Wave Pseudopotential Method Hands-on Workshop on Density Functional Theory and Beyond: Computational Materials Science for Real Materials Trieste, August 6-15, 2013 The Plane-Wave Pseudopotential Method Ralph Gebauer ICTP, Trieste

More information

CHEM6085: Density Functional Theory

CHEM6085: Density Functional Theory Lecture 11 CHEM6085: Density Functional Theory DFT for periodic crystalline solids C.-K. Skylaris 1 Electron in a one-dimensional periodic box (in atomic units) Schrödinger equation Energy eigenvalues

More information

Electronic Structure Methodology 1

Electronic Structure Methodology 1 Electronic Structure Methodology 1 Chris J. Pickard Lecture Two Working with Density Functional Theory In the last lecture we learnt how to write the total energy as a functional of the density n(r): E

More information

1. Hydrogen atom in a box

1. Hydrogen atom in a box 1. Hydrogen atom in a box Recall H atom problem, V(r) = -1/r e r exact answer solved by expanding in Gaussian basis set, had to solve secular matrix involving matrix elements of basis functions place atom

More information

Practical Guide to Density Functional Theory (DFT)

Practical Guide to Density Functional Theory (DFT) Practical Guide to Density Functional Theory (DFT) Brad Malone, Sadas Shankar Quick recap of where we left off last time BD Malone, S Shankar Therefore there is a direct one-to-one correspondence between

More information

Electronic structure, plane waves and pseudopotentials

Electronic structure, plane waves and pseudopotentials Electronic structure, plane waves and pseudopotentials P.J. Hasnip Spectroscopy Workshop 2009 We want to be able to predict what electrons and nuclei will do from first principles, without needing to know

More information

Examples of Defects in Solids from ESPRESSO

Examples of Defects in Solids from ESPRESSO Examples of Defects in Solids from ESPRESSO Alessandra Satta SLACS-INFMCNR Sardinian LAboratory for Computational Materials Science Hands-on Tutorial on the Quantum-ESPRESSO Package Cagliari, September

More information

Introduction to Density Functional Theory in a Plane Wave + Pseudopotential Framework

Introduction to Density Functional Theory in a Plane Wave + Pseudopotential Framework Introduction to Density Functional Theory in a Plane Wave + Pseudopotential Framework Shobhana Narasimhan Theoretical Sciences Unit JNCASR, Bangalore shobhana@jncasr.ac.in School- From the chemical bond

More information

Algorithms and Computational Aspects of DFT Calculations

Algorithms and Computational Aspects of DFT Calculations Algorithms and Computational Aspects of DFT Calculations Part I Juan Meza and Chao Yang High Performance Computing Research Lawrence Berkeley National Laboratory IMA Tutorial Mathematical and Computational

More information

Introduction to First-Principles Method

Introduction to First-Principles Method Joint ICTP/CAS/IAEA School & Workshop on Plasma-Materials Interaction in Fusion Devices, July 18-22, 2016, Hefei Introduction to First-Principles Method by Guang-Hong LU ( 吕广宏 ) Beihang University Computer

More information

OPENATOM for GW calculations

OPENATOM for GW calculations OPENATOM for GW calculations by OPENATOM developers 1 Introduction The GW method is one of the most accurate ab initio methods for the prediction of electronic band structures. Despite its power, the GW

More information

Geometry Optimisation

Geometry Optimisation Geometry Optimisation Matt Probert Condensed Matter Dynamics Group Department of Physics, University of York, UK http://www.cmt.york.ac.uk/cmd http://www.castep.org Motivation Overview of Talk Background

More information

Theoretical Material Science: Electronic structure theory at the computer Exercise 14: Brillouin zone integration

Theoretical Material Science: Electronic structure theory at the computer Exercise 14: Brillouin zone integration Theoretical Material Science: Electronic structure theory at the computer Exercise 14: Brillouin zone integration Prepared by Lydia Nemec and Volker Blum Berlin, May 2012 Some rules on expected documentation

More information

Solid State Theory: Band Structure Methods

Solid State Theory: Band Structure Methods Solid State Theory: Band Structure Methods Lilia Boeri Wed., 11:15-12:45 HS P3 (PH02112) http://itp.tugraz.at/lv/boeri/ele/ Plan of the Lecture: DFT1+2: Hohenberg-Kohn Theorem and Kohn and Sham equations.

More information

COMPUTATIONAL TOOL. Fig. 4.1 Opening screen of w2web

COMPUTATIONAL TOOL. Fig. 4.1 Opening screen of w2web CHAPTER -4 COMPUTATIONAL TOOL Ph.D. Thesis: J. Maibam CHAPTER: 4 4.1 The WIEN2k code In this work, all the calculations presented are performed using the WIEN2k software package (Blaha et al., 2001). The

More information

ab initio Electronic Structure Calculations

ab initio Electronic Structure Calculations ab initio Electronic Structure Calculations New scalability frontiers using the BG/L Supercomputer C. Bekas, A. Curioni and W. Andreoni IBM, Zurich Research Laboratory Rueschlikon 8803, Switzerland ab

More information

The Linearized Augmented Planewave (LAPW) Method

The Linearized Augmented Planewave (LAPW) Method The Linearized Augmented Planewave (LAPW) Method David J. Singh Oak Ridge National Laboratory E T [ ]=T s [ ]+E ei [ ]+E H [ ]+E xc [ ]+E ii {T s +V ks [,r]} I (r)= i i (r) Need tools that are reliable

More information

Density Functional Theory

Density Functional Theory Density Functional Theory Iain Bethune EPCC ibethune@epcc.ed.ac.uk Overview Background Classical Atomistic Simulation Essential Quantum Mechanics DFT: Approximations and Theory DFT: Implementation using

More information

Electron bands in crystals Pseudopotentials, Plane Waves, Local Orbitals

Electron bands in crystals Pseudopotentials, Plane Waves, Local Orbitals Electron bands in crystals Pseudopotentials, Plane Waves, Local Orbitals Richard M. Martin UIUC Lecture at Summer School Hands-on introduction to Electronic Structure Materials Computation Center University

More information

CHEM3023: Spins, Atoms and Molecules

CHEM3023: Spins, Atoms and Molecules CHEM3023: Spins, Atoms and Molecules Lecture 5 The Hartree-Fock method C.-K. Skylaris Learning outcomes Be able to use the variational principle in quantum calculations Be able to construct Fock operators

More information

References. Documentation Manuals Tutorials Publications

References.   Documentation Manuals Tutorials Publications References http://siesta.icmab.es Documentation Manuals Tutorials Publications Atomic units e = m e = =1 atomic mass unit = m e atomic length unit = 1 Bohr = 0.5292 Ang atomic energy unit = 1 Hartree =

More information

Introduction to first-principles modelling and CASTEP

Introduction to first-principles modelling and CASTEP to first-principles modelling and Phil Hasnip to + Atomistic Simulations If we know what the bonding in a material is beforehand, then we can often find good expressions for the forces between atoms, e.g.

More information

Density Functional Theory (DFT)

Density Functional Theory (DFT) Density Functional Theory (DFT) An Introduction by A.I. Al-Sharif Irbid, Aug, 2 nd, 2009 Density Functional Theory Revolutionized our approach to the electronic structure of atoms, molecules and solid

More information

Electronic Structure of Crystalline Solids

Electronic Structure of Crystalline Solids Electronic Structure of Crystalline Solids Computing the electronic structure of electrons in solid materials (insulators, conductors, semiconductors, superconductors) is in general a very difficult problem

More information

6: Plane waves, unit cells, k- points and all that

6: Plane waves, unit cells, k- points and all that The Nuts and Bolts of First-Principles Simulation 6: Plane waves, unit cells, k- points and all that Durham, 6th- 13th December 2001 CASTEP Developers Group with support from the ESF ψ k Network Overview

More information

Teoría del Funcional de la Densidad (Density Functional Theory)

Teoría del Funcional de la Densidad (Density Functional Theory) Teoría del Funcional de la Densidad (Density Functional Theory) Motivation: limitations of the standard approach based on the wave function. The electronic density n(r) as the key variable: Functionals

More information

Electrochemistry project, Chemistry Department, November Ab-initio Molecular Dynamics Simulation

Electrochemistry project, Chemistry Department, November Ab-initio Molecular Dynamics Simulation Electrochemistry project, Chemistry Department, November 2006 Ab-initio Molecular Dynamics Simulation Outline Introduction Ab-initio concepts Total energy concepts Adsorption energy calculation Project

More information

DFT / SIESTA algorithms

DFT / SIESTA algorithms DFT / SIESTA algorithms Javier Junquera José M. Soler References http://siesta.icmab.es Documentation Tutorials Atomic units e = m e = =1 atomic mass unit = m e atomic length unit = 1 Bohr = 0.5292 Ang

More information

The electronic structure of materials 2 - DFT

The electronic structure of materials 2 - DFT Quantum mechanics 2 - Lecture 9 December 19, 2012 1 Density functional theory (DFT) 2 Literature Contents 1 Density functional theory (DFT) 2 Literature Historical background The beginnings: L. de Broglie

More information

Phonon Transport in Nanostructures

Phonon Transport in Nanostructures Phonon Transport in Nanostructures David-Alexander Robinson & Pádraig Ó Conbhuí 08332461 13th December 2011 Contents 1 Introduction & Theory 1 1.1 TiO 2 Nanostructure Production...................... 1

More information

Algorithms and Computational Aspects of DFT Calculations

Algorithms and Computational Aspects of DFT Calculations Algorithms and Computational Aspects of DFT Calculations Part II Juan Meza and Chao Yang High Performance Computing Research Lawrence Berkeley National Laboratory IMA Tutorial Mathematical and Computational

More information

Introduction to density functional perturbation theory for lattice dynamics

Introduction to density functional perturbation theory for lattice dynamics Introduction to density functional perturbation theory for lattice dynamics SISSA and DEMOCRITOS Trieste (Italy) Outline 1 Lattice dynamic of a solid: phonons Description of a solid Equations of motion

More information

Introduction to Condensed Matter Physics

Introduction to Condensed Matter Physics Introduction to Condensed Matter Physics The Reciprocal Lattice M.P. Vaughan Overview Overview of the reciprocal lattice Periodic functions Reciprocal lattice vectors Bloch functions k-space Dispersion

More information

Dept of Mechanical Engineering MIT Nanoengineering group

Dept of Mechanical Engineering MIT Nanoengineering group 1 Dept of Mechanical Engineering MIT Nanoengineering group » Recap of HK theorems and KS equations» The physical meaning of the XC energy» Solution of a one-particle Schroedinger equation» Pseudo Potentials»

More information

Practical calculations using first-principles QM Convergence, convergence, convergence

Practical calculations using first-principles QM Convergence, convergence, convergence Practical calculations using first-principles QM Convergence, convergence, convergence Keith Refson STFC Rutherford Appleton Laboratory September 18, 2007 Results of First-Principles Simulations..........................................................

More information

Introduction to Parallelism in CASTEP

Introduction to Parallelism in CASTEP to ism in CASTEP Stewart Clark Band University of Durham 21 September 2012 Solve for all the bands/electrons (Band-) Band CASTEP solves the Kohn-Sham equations for electrons in a periodic array of nuclei:

More information

Density Functional Theory

Density Functional Theory Density Functional Theory March 26, 2009 ? DENSITY FUNCTIONAL THEORY is a method to successfully describe the behavior of atomic and molecular systems and is used for instance for: structural prediction

More information

The quasi-harmonic approximation (QHA)

The quasi-harmonic approximation (QHA) The quasi-harmonic approximation (QHA) M. Palumbo 19/01/2017 Trieste, Italy Limitations of the harmonic approximation E tot(r I, u I )=E tot(r I )+ I,α E tot u u Iα + 1 2 E tot Iα 2 I,α u u Iα u Iα u Jβ

More information

Electronic and Structural Properties of Silicene and Graphene Layered Structures

Electronic and Structural Properties of Silicene and Graphene Layered Structures Wright State University CORE Scholar Browse all Theses and Dissertations Theses and Dissertations 2012 Electronic and Structural Properties of Silicene and Graphene Layered Structures Patrick B. Benasutti

More information

MODULE 2: QUANTUM MECHANICS. Practice: Quantum ESPRESSO

MODULE 2: QUANTUM MECHANICS. Practice: Quantum ESPRESSO MODULE 2: QUANTUM MECHANICS Practice: Quantum ESPRESSO I. What is Quantum ESPRESSO? 2 DFT software PW-DFT, PP, US-PP, PAW http://www.quantum-espresso.org FREE PW-DFT, PP, PAW http://www.abinit.org FREE

More information

CP2K: the gaussian plane wave (GPW) method

CP2K: the gaussian plane wave (GPW) method CP2K: the gaussian plane wave (GPW) method Basis sets and Kohn-Sham energy calculation R. Vuilleumier Département de chimie Ecole normale supérieure Paris Tutorial CPMD-CP2K CPMD and CP2K CPMD CP2K http://www.cpmd.org

More information

Many electrons: Density functional theory Part II. Bedřich Velický VI.

Many electrons: Density functional theory Part II. Bedřich Velický VI. Many electrons: Density functional theory Part II. Bedřich Velický velicky@karlov.mff.cuni.cz VI. NEVF 514 Surface Physics Winter Term 013-014 Troja 1 st November 013 This class is the second devoted to

More information

Computing NMR parameters using the GIPAW method

Computing NMR parameters using the GIPAW method Computing NMR parameters using the GIPAW method DFT and NMR with Quantum Espresso (QE) thibault.charpentier@cea.fr & Ari.P.Seitsonen@iki.fi Welcome to the hands-on session on the GIPAW method. The idea

More information

ELECTRONIC STRUCTURE CALCULATIONS FOR THE SOLID STATE PHYSICS

ELECTRONIC STRUCTURE CALCULATIONS FOR THE SOLID STATE PHYSICS FROM RESEARCH TO INDUSTRY 32 ème forum ORAP 10 octobre 2013 Maison de la Simulation, Saclay, France ELECTRONIC STRUCTURE CALCULATIONS FOR THE SOLID STATE PHYSICS APPLICATION ON HPC, BLOCKING POINTS, Marc

More information

Integrated Computational Materials Engineering Education

Integrated Computational Materials Engineering Education Integrated Computational Materials Engineering Education Lecture on Density Functional Theory An Introduction Mark Asta Dept. of Materials Science and Engineering, University of California, Berkeley &

More information

CHEM6085: Density Functional Theory Lecture 10

CHEM6085: Density Functional Theory Lecture 10 CHEM6085: Density Functional Theory Lecture 10 1) Spin-polarised calculations 2) Geometry optimisation C.-K. Skylaris 1 Unpaired electrons So far we have developed Kohn-Sham DFT for the case of paired

More information

DENSITY FUNCTIONAL THEORY FOR NON-THEORISTS JOHN P. PERDEW DEPARTMENTS OF PHYSICS AND CHEMISTRY TEMPLE UNIVERSITY

DENSITY FUNCTIONAL THEORY FOR NON-THEORISTS JOHN P. PERDEW DEPARTMENTS OF PHYSICS AND CHEMISTRY TEMPLE UNIVERSITY DENSITY FUNCTIONAL THEORY FOR NON-THEORISTS JOHN P. PERDEW DEPARTMENTS OF PHYSICS AND CHEMISTRY TEMPLE UNIVERSITY A TUTORIAL FOR PHYSICAL SCIENTISTS WHO MAY OR MAY NOT HATE EQUATIONS AND PROOFS REFERENCES

More information

Some Review & Introduction to Solar PV

Some Review & Introduction to Solar PV 1.021, 3.021, 10.333, 22.00 : Introduction to Modeling and Simulation : Spring 2012 Part II Quantum Mechanical Methods : Lecture 9 Some Review & Introduction to Solar PV Jeffrey C. Grossman Department

More information

Electrons in periodic potential

Electrons in periodic potential Chapter 9 Electrons in periodic potential The computation of electronic states in a solid is a nontrivial problem. A great simplification can be achieved if the solid is a crystal, i.e. if it can be described

More information

Electron levels in a periodic potential: general remarks. Daniele Toffoli January 11, / 46

Electron levels in a periodic potential: general remarks. Daniele Toffoli January 11, / 46 Electron levels in a periodic potential: general remarks Daniele Toffoli January 11, 2017 1 / 46 Outline 1 Mathematical tools 2 The periodic potential 3 Bloch s theorem and Born-von Karman boundary conditions

More information

Electronic Structure Theory for Periodic Systems: The Concepts. Christian Ratsch

Electronic Structure Theory for Periodic Systems: The Concepts. Christian Ratsch Electronic Structure Theory for Periodic Systems: The Concepts Christian Ratsch Institute for Pure and Applied Mathematics and Department of Mathematics, UCLA Motivation There are 10 20 atoms in 1 mm 3

More information

Chapter 3. The (L)APW+lo Method. 3.1 Choosing A Basis Set

Chapter 3. The (L)APW+lo Method. 3.1 Choosing A Basis Set Chapter 3 The (L)APW+lo Method 3.1 Choosing A Basis Set The Kohn-Sham equations (Eq. (2.17)) provide a formulation of how to practically find a solution to the Hohenberg-Kohn functional (Eq. (2.15)). Nevertheless

More information

Practical calculations with the GW approximation and Bethe-Salpeter equation in BerkeleyGW

Practical calculations with the GW approximation and Bethe-Salpeter equation in BerkeleyGW Practical calculations with the GW approximation and Bethe-Salpeter equation in BerkeleyGW David A. Strubbe Department of Physics, University of California, Merced Benasque, Spain 23 August 2018 Band gaps:

More information

VASP: running on HPC resources. University of Vienna, Faculty of Physics and Center for Computational Materials Science, Vienna, Austria

VASP: running on HPC resources. University of Vienna, Faculty of Physics and Center for Computational Materials Science, Vienna, Austria VASP: running on HPC resources University of Vienna, Faculty of Physics and Center for Computational Materials Science, Vienna, Austria The Many-Body Schrödinger equation 0 @ 1 2 X i i + X i Ĥ (r 1,...,r

More information

On the adaptive finite element analysis of the Kohn-Sham equations

On the adaptive finite element analysis of the Kohn-Sham equations On the adaptive finite element analysis of the Kohn-Sham equations Denis Davydov, Toby Young, Paul Steinmann Denis Davydov, LTM, Erlangen, Germany August 2015 Denis Davydov, LTM, Erlangen, Germany College

More information

DFT and beyond: Hands-on Tutorial Workshop Tutorial 1: Basics of Electronic Structure Theory

DFT and beyond: Hands-on Tutorial Workshop Tutorial 1: Basics of Electronic Structure Theory DFT and beyond: Hands-on Tutorial Workshop 2011 Tutorial 1: Basics of Electronic Structure Theory V. Atalla, O. T. Hofmann, S. V. Levchenko Theory Department, Fritz-Haber-Institut der MPG Berlin July 13,

More information

Quantum Mechanical Simulations

Quantum Mechanical Simulations Quantum Mechanical Simulations Prof. Yan Wang Woodruff School of Mechanical Engineering Georgia Institute of Technology Atlanta, GA 30332, U.S.A. yan.wang@me.gatech.edu Topics Quantum Monte Carlo Hartree-Fock

More information

Preface Introduction to the electron liquid

Preface Introduction to the electron liquid Table of Preface page xvii 1 Introduction to the electron liquid 1 1.1 A tale of many electrons 1 1.2 Where the electrons roam: physical realizations of the electron liquid 5 1.2.1 Three dimensions 5 1.2.2

More information

DFT+U practical session

DFT+U practical session DFT+U practical session Matteo Cococcioni GGA and GGA+U calculations in FeO Calculation of U for bulk Fe Calculation of U for NiO Exercise I: evaluating U for Cu 2 O Exercise II: evaluating U for FePO

More information

Exchange Correlation Functional Investigation of RT-TDDFT on a Sodium Chloride. Dimer. Philip Straughn

Exchange Correlation Functional Investigation of RT-TDDFT on a Sodium Chloride. Dimer. Philip Straughn Exchange Correlation Functional Investigation of RT-TDDFT on a Sodium Chloride Dimer Philip Straughn Abstract Charge transfer between Na and Cl ions is an important problem in physical chemistry. However,

More information

MODULE 2: QUANTUM MECHANICS. Principles and Theory

MODULE 2: QUANTUM MECHANICS. Principles and Theory MODULE 2: QUANTUM MECHANICS Principles and Theory You are here http://www.lbl.gov/cs/html/exascale4energy/nuclear.html 2 Short Review of Quantum Mechanics Why do we need quantum mechanics? Bonding and

More information

Self-consistent Field

Self-consistent Field Chapter 6 Self-consistent Field A way to solve a system of many electrons is to consider each electron under the electrostatic field generated by all other electrons. The many-body problem is thus reduced

More information

Computational Physics. J. M. Thijssen

Computational Physics. J. M. Thijssen Computational Physics J. M. Thijssen Delft University of Technology CAMBRIDGE UNIVERSITY PRESS Contents Preface xi 1 Introduction 1 1.1 Physics and computational physics 1 1.2 Classical mechanics and statistical

More information

Introduction to the QUANTUM ESPRESSO package and its application to computational catalysis Input/Output description

Introduction to the QUANTUM ESPRESSO package and its application to computational catalysis Input/Output description School on computational materials modeling in catalysis Bangalore, 1-5 September 2014 Introduction to the QUANTUM ESPRESSO package and its application to computational catalysis Input/Output description

More information

CHEM6085: Density Functional Theory

CHEM6085: Density Functional Theory Lecture 5 CHEM6085: Density Functional Theory Orbital-free (or pure ) DFT C.-K. Skylaris 1 Consists of three terms The electronic Hamiltonian operator Electronic kinetic energy operator Electron-Electron

More information

Walter Kohn was awarded with the Nobel Prize in Chemistry in 1998 for his development of the density functional theory.

Walter Kohn was awarded with the Nobel Prize in Chemistry in 1998 for his development of the density functional theory. Walter Kohn was awarded with the Nobel Prize in Chemistry in 1998 for his development of the density functional theory. Walter Kohn receiving his Nobel Prize from His Majesty the King at the Stockholm

More information

Introduction to VASP (1)

Introduction to VASP (1) Introduction to VASP (1) Yun-Wen Chen http://cms.mpi.univie.ac.at/vasp/vasp/vasp.html https://www.vasp.at/ 1 What is VASP? The Vienna Ab initio Simulation Package (VASP) is a computer program for atomic

More information

Band Structure Calculations; Electronic and Optical Properties

Band Structure Calculations; Electronic and Optical Properties ; Electronic and Optical Properties Stewart Clark University of Outline Introduction to band structures Calculating band structures using Castep Calculating optical properties Examples results Some applications

More information

1 Construction of norm-conserving semi-local pseudopotentials for Si

1 Construction of norm-conserving semi-local pseudopotentials for Si 1 Construction of norm-conserving semi-local pseudopotentials for Si As discussed in class, it is desirable to replace the effective interaction of the valence electrons with the ionic core, i.e. nucleus

More information

Chem 4502 Introduction to Quantum Mechanics and Spectroscopy 3 Credits Fall Semester 2014 Laura Gagliardi. Lecture 28, December 08, 2014

Chem 4502 Introduction to Quantum Mechanics and Spectroscopy 3 Credits Fall Semester 2014 Laura Gagliardi. Lecture 28, December 08, 2014 Chem 4502 Introduction to Quantum Mechanics and Spectroscopy 3 Credits Fall Semester 2014 Laura Gagliardi Lecture 28, December 08, 2014 Solved Homework Water, H 2 O, involves 2 hydrogen atoms and an oxygen

More information

Poisson Solver, Pseudopotentials, Atomic Forces in the BigDFT code

Poisson Solver, Pseudopotentials, Atomic Forces in the BigDFT code CECAM Tutorial on Wavelets in DFT, CECAM - LYON,, in the BigDFT code Kernel Luigi Genovese L_Sim - CEA Grenoble 28 November 2007 Outline, Kernel 1 The with Interpolating Scaling Functions in DFT for Interpolating

More information

Translation Symmetry, Space Groups, Bloch functions, Fermi energy

Translation Symmetry, Space Groups, Bloch functions, Fermi energy Translation Symmetry, Space Groups, Bloch functions, Fermi energy Roberto Orlando and Silvia Casassa Università degli Studi di Torino July 20, 2015 School Ab initio Modelling of Solids (UniTo) Symmetry

More information

CHAPTER 3 WIEN2k. Chapter 3 : WIEN2k 50

CHAPTER 3 WIEN2k. Chapter 3 : WIEN2k 50 CHAPTER 3 WIEN2k WIEN2k is one of the fastest and reliable simulation codes among computational methods. All the computational work presented on lanthanide intermetallic compounds has been performed by

More information

Preconditioned Eigenvalue Solvers for electronic structure calculations. Andrew V. Knyazev. Householder Symposium XVI May 26, 2005

Preconditioned Eigenvalue Solvers for electronic structure calculations. Andrew V. Knyazev. Householder Symposium XVI May 26, 2005 1 Preconditioned Eigenvalue Solvers for electronic structure calculations Andrew V. Knyazev Department of Mathematics and Center for Computational Mathematics University of Colorado at Denver Householder

More information

Dept of Mechanical Engineering MIT Nanoengineering group

Dept of Mechanical Engineering MIT Nanoengineering group 1 Dept of Mechanical Engineering MIT Nanoengineering group » To calculate all the properties of a molecule or crystalline system knowing its atomic information: Atomic species Their coordinates The Symmetry

More information

Notes on Density Functional Theory

Notes on Density Functional Theory Notes on Density Functional Theory 1 Basic Theorems The energy, E, of a system with a given Hamiltonian H is a functional of the (normalized, many-particle) wave function Ψ. We write this functional as

More information

Yingwei Wang Computational Quantum Chemistry 1 Hartree energy 2. 2 Many-body system 2. 3 Born-Oppenheimer approximation 2

Yingwei Wang Computational Quantum Chemistry 1 Hartree energy 2. 2 Many-body system 2. 3 Born-Oppenheimer approximation 2 Purdue University CHM 67300 Computational Quantum Chemistry REVIEW Yingwei Wang October 10, 2013 Review: Prof Slipchenko s class, Fall 2013 Contents 1 Hartree energy 2 2 Many-body system 2 3 Born-Oppenheimer

More information

Institut Néel Institut Laue Langevin. Introduction to electronic structure calculations

Institut Néel Institut Laue Langevin. Introduction to electronic structure calculations Institut Néel Institut Laue Langevin Introduction to electronic structure calculations 1 Institut Néel - 25 rue des Martyrs - Grenoble - France 2 Institut Laue Langevin - 71 avenue des Martyrs - Grenoble

More information

Large Scale Electronic Structure Calculations

Large Scale Electronic Structure Calculations Large Scale Electronic Structure Calculations Jürg Hutter University of Zurich 8. September, 2008 / Speedup08 CP2K Program System GNU General Public License Community Developers Platform on "Berlios" (cp2k.berlios.de)

More information

Tutorial on DFPT and TD-DFPT: calculations of phonons and absorption spectra

Tutorial on DFPT and TD-DFPT: calculations of phonons and absorption spectra Tutorial on DFPT and TD-DFPT: calculations of phonons and absorption spectra Iurii Timrov SISSA Scuola Internazionale Superiore di Studi Avanzati, Trieste Italy itimrov@sissa.it Computer modelling of materials

More information

Before we start: Important setup of your Computer

Before we start: Important setup of your Computer Before we start: Important setup of your Computer change directory: cd /afs/ictp/public/shared/smr2475./setup-config.sh logout login again 1 st Tutorial: The Basics of DFT Lydia Nemec and Oliver T. Hofmann

More information

Recent advances in development of single-point orbital-free kinetic energy functionals

Recent advances in development of single-point orbital-free kinetic energy functionals PacifiChem 2010 p. 1/29 Recent advances in development of single-point orbital-free kinetic energy functionals Valentin V. Karasiev vkarasev@qtp.ufl.edu Quantum Theory Project, Departments of Physics and

More information

3: Density Functional Theory

3: Density Functional Theory The Nuts and Bolts of First-Principles Simulation 3: Density Functional Theory CASTEP Developers Group with support from the ESF ψ k Network Density functional theory Mike Gillan, University College London

More information

Reciprocal Lattice. Let A(r) be some function featuring discrete translation symmetry:

Reciprocal Lattice. Let A(r) be some function featuring discrete translation symmetry: Reciprocal Lattice From Quantum Mechanics we know that symmetries have kinematic implications. Each symmetry predetermines its specific quantum numbers and leads to certain constraints (conservation laws/selection

More information