The EVSL package for symmetric eigenvalue problems Yousef Saad Department of Computer Science and Engineering University of Minnesota

Size: px
Start display at page:

Download "The EVSL package for symmetric eigenvalue problems Yousef Saad Department of Computer Science and Engineering University of Minnesota"

Transcription

1 The EVSL package for symmetric eigenvalue problems Yousef Saad Department of Computer Science and Engineering University of Minnesota 15th Copper Mountain Conference Mar. 28, 218

2 First: Joint work with Ruipeng Li, Yuanzhe Xi, and Luke Erlandson Application side: collaboration with Jia Shi, Maarten V. de Hoop (Rice) Support: NSF

3 Spectrum Slicing Context: very large number of eigenvalues to be computed Goal: compute spectrum by slices by applying filtering Apply Lanczos or Subspace iteration to problem: 1.8 φ(λ i ) Pol. of degree 32 approx δ(.5) in [ 1 1] φ(a)u = µu φ(t) a polynomial or rational function that enhances wanted eigenvalues φ ( λ ) λ i.2 λ 3 Copper Mountain,

4 Rationale. Eigenvectors on both ends of wanted spectrum need not be orthogonalized against each other : Idea: Get the spectrum by slices or windows [e.g., a few hundreds or thousands of pairs at a time] Note: Orthogonalization cost can be very high if we do not slice the spectrum 4 Copper Mountain,

5 Illustration: All eigenvalues in [, 1] of a 49 3 Laplacean 6 5 Computing all 1,971 e.v. s. in [, 1] Matvec Orth Total 4 Time Number of slices Note: This is a small pb. in a scalar environment. Effect likely much more pronounced in a fully parallel case. 5 Copper Mountain,

6 How do I slice my spectrum?.25 Slice spectrum into 8 with the DOS Answer: Use the spectral density, aka, Density Of States (DOS) DOS inexpensive to compute DOS We must have: ti+1 t i φ(t)dt = 1 n slices b a φ(t)dt 6 Copper Mountain,

7 Polynomial filtering: The δ-dirac function approach Obtain the LS approximation to the δ Dirac function Centered at some point (TBD) inside interval. 1.8 φ(λ i ) Pol. of degree 32 approx δ(.5) in [ 1 1] 1.8 Three filters using different smoothing No damping Jackson Lanczos σ φ ( λ ) λ i ρ k ( λ ) λ λ Damping: Jackson, Lanczos σ damping, or none. 7 Copper Mountain,

8 The soul of a new filter A few technical details Issue # one: balance the filter To facilitate the selection of wanted eigenvalues [Select λ s such that ρ(λ) > bar] we need to find γ so that ρ(ξ) ρ(η) = Procedure: Solve the equation ρ γ (ξ) ρ γ (η) = with respect to γ, accurately. Use Newton scheme ρ k ( λ ) ρ k ( λ ) λ ξ ξ η η λ 8 Copper Mountain,

9 Issue # two: Determine degree & polynomial (automatically) Start low then increase degree until value (s) at the boundary (ies) become small enough - Exple for [.833,.97..] 1.2 Degree = 3; Sigma damping 1.2 Degree = 4; Sigma damping 1.2 Degree = 7; Sigma damping Degree = 13; Sigma damping 1.2 Degree = 2; Sigma damping 1.2 Degree = 23; Sigma damping Copper Mountain,

10 Which Projection: Lanczos,w/o restarts, Subspace iteration,.. Options: Subspace iteration: quite appealing in some applications (e.g., electronic structure): Can re-use previous subspace. Simplest: (+ most efficient) Lanczos without restarts Lanczos with Thick-Restarting [TR Lanczos, Stathopoulos et al 98, Wu & Simon ] Crucial tool in TR Lanczos: deflation ( Locking ) Main idea: Keep extracting eigenvalues in interval [ξ, η] until none are left [remember: deflation] If filter is good: Can catch all eigenvalues in interval thanks to deflation + Lanczos. 1 Copper Mountain,

11 Polynomial filtered Lanczos: No-Restart version Degree = 23; Sigma damping Use Lanczos with full reorthogonalization on ρ(a). Eigenvalues of ρ(a): ρ(λ i ) Accept if ρ(λ i ) bar Ignore if ρ(λ i ) < bar ρ(λ) Unwanted eigenvalues Wanted 11 Copper Mountain,

12 Rational filters: Why? Consider a spectrum like this one: 1 9 Polynomial filtering utterly ineffective for this case Second issue: situation when Matrix-vector products are expensive Generalized eigenvalue problems. 12 Copper Mountain,

13 Alternative is to use rational filters: φ(z) = j α j z σ j φ(a) = j α j(a σ j I) 1 We now need to solve linear systems Tool: Cauchy integral representations of spectral projectors P = 1 2iπ Γ (A si) 1 ds Numer. integr. P P Use Krylov or S.I. on P Sakurai-Sugiura approach [Krylov] FEAST [Subs. iter.] (E. Polizzi) 13 Copper Mountain,

14 The Gauss viewpoint: Least-squares rational filters Given: poles σ 1, σ 2,, σ p Related basis functions φ j (z) = 1 z σ j Find φ(z) = p j=1 α jφ j (z) that minimizes w(t) h(t) φ(t) 2 dt h(t) = step function χ [ 1,1]. w(t)= weight function. For example a = 1, β =.1 w(t) = if t > a β if t 1 1 else Many advantages 14 Copper Mountain,

15 Spectrum Slicing and the EVSL project EVSL package now at version 1.1.x Uses polynomial and rational filtering: Each can be appealing in different situations. Spectrum slicing: Invokes Kernel Polynomial Method or Lanczos quadrature to cut the overall interval containing the spectrum into small sub-intervals φ ( λ ) Copper Mountain, λ

16 Levels of parallelism Macro task 1 Slice 1 Domain 1 Slice 2 Slice 3 Domain 2 Domain 3 Domain 4 The two main levels of parallelism in EVSL 16 Copper Mountain,

17 EVSL Main Contributors (version 1.1.+) & Support Ruipeng Li LLNL Yuanzhe Xi Post-doc (UMN) Luke Erlandson UG Intern (UMN) Work supported by NSF (also past work: DOE) See web-site for details: 17 Copper Mountain,

18 EVSL: current status & plans Version _1. Released in Sept. 216 Matrices in CSR format (only) Standard Hermitian problems (no generalized) Spectrum slicing with KPM (Kernel Polynomial Meth.) Trivial parallelism across slices with OpenMP Methods: Non-restart Lanczos polynomial & rational filters Thick-Restart Lanczos polynomial & rational filters Subspace iteration polynomial & rational filters 18 Copper Mountain,

19 Version _1.1.x V_1.1. Released back in August 217. general matvec [passed as function pointer] Ax = λbx Fortran (3) interface. Spectrum slicing by Lanczos and KPM Efficient Spectrum slicing for Ax = λbx (no solves with B). Version _1.2.x pevsl In progress Fully parallel version [MPI + openmp] 19 Copper Mountain,

20 Spectrum slicing and the EVSL package All eigenvalues in [, 1] of of a 49 3 discretized Laplacian eigs(a,1971, sa ): sec Solution: Use DOS to partition [, 1] into 5 slices Polynomial filtering from EVSL on Mesabi MSI, 23 threads/slice [a i, a i+1 ] CPU time (sec) # eigs matvec orth. total max residual [.,.37688] [.37688,.57428] [.57428,.73422] [.73422,.87389] [.87389, 1.] Grand tot. = 263 s. Time for slicing the spectrum: 1.22 sec. 2 Copper Mountain,

21 Computing the Earth normal modes Collaborative effort: Rice-UMN: J. Shi, R. Li, Y. Xi, YS, and M. V. De Hoop FEM model leads to a generalized eigenvalue problem: 21 Copper Mountain,

22 A s E T fs AT d E fs A d A p u s s u f = ω M 2 M f p e u s u f p e Want all eigen-values/vectors inside a given interval Issue 1: mass matrix has a large null space.. Issue 2: interior eigenvalue problem Solution for 1: change formulation of matrix problem [eliminate p e...] 22 Copper Mountain,

23 New formulation : {( ) ( ) As Efs ( ) } ( ) u A 1 E T s A p fs AT d } d u {{} f = Â ( ) ω 2 Ms M }{{ f } M ( ) u s u f Use polynomial filtering need to solve with M but severe scaling problems if direct solvers are used Hence: Replace action of M 1 by a low-deg. polynomial in M [to avoid direct solvers] 23 Copper Mountain,

24 Memory : parallel shift-invert and polynomial filtering Machine: Comet, SDSC Matrix size # Proc.s 591, , 157, , 425, , 778, , 37, Copper Mountain,

25 Recent: weak calability test for different solid (Mars-like) models on TACC Stampede2 nn/np Mat-size Av (ms) Eff. Mv (ms) Eff. M 1 v (µs) Eff. 2/96 1,38, /192 2,6, /384 3,894, /768 7,954, / ,89, /372 31,138, / ,381, / ,336, Copper Mountain,

26 Conclusion EVSL code available here: [Current version: version 1.1.1] EVSL Also on github (development) Plans: (1) Release fully parallel code; (2) Block versions; (3) Iterative solvers for rational filt.; (4) Nonhermitian case; Earth modes calculations done with fully parallel code Not quite ready for distribution A final note: Scalability issues with parallel direct solvers Needed: iterative solvers for the highly indefinite case 26 Copper Mountain,

ILAS 2017 July 25, 2017

ILAS 2017 July 25, 2017 Polynomial and rational filtering for eigenvalue problems and the EVSL project Yousef Saad Department of Computer Science and Engineering University of Minnesota ILAS 217 July 25, 217 Large eigenvalue

More information

PASC17 - Lugano June 27, 2017

PASC17 - Lugano June 27, 2017 Polynomial and rational filtering for eigenvalue problems and the EVSL project Yousef Saad Department of Computer Science and Engineering University of Minnesota PASC17 - Lugano June 27, 217 Large eigenvalue

More information

Divide and conquer algorithms for large eigenvalue problems Yousef Saad Department of Computer Science and Engineering University of Minnesota

Divide and conquer algorithms for large eigenvalue problems Yousef Saad Department of Computer Science and Engineering University of Minnesota Divide and conquer algorithms for large eigenvalue problems Yousef Saad Department of Computer Science and Engineering University of Minnesota PMAA 14 Lugano, July 4, 2014 Collaborators: Joint work with:

More information

LEAST-SQUARES RATIONAL FILTERS FOR THE SOLUTION OF INTERIOR EIGENVALUE PROBLEMS

LEAST-SQUARES RATIONAL FILTERS FOR THE SOLUTION OF INTERIOR EIGENVALUE PROBLEMS LEAST-SQUARES RATIONAL FILTERS FOR THE SOLUTION OF INTERIOR EIGENVALUE PROBLEMS YUANZHE XI AND YOUSEF SAAD Abstract. This paper presents a method for computing partial spectra of Hermitian matrices, based

More information

Polynomial filtering for interior eigenvalue problems Yousef Saad Department of Computer Science and Engineering University of Minnesota

Polynomial filtering for interior eigenvalue problems Yousef Saad Department of Computer Science and Engineering University of Minnesota Polynomial filtering for interior eigenvalue problems Yousef Saad Department of Computer Science and Engineering University of Minnesota SIAM CSE Boston - March 1, 2013 First: Joint work with: Haw-ren

More information

THE EIGENVALUES SLICING LIBRARY (EVSL): ALGORITHMS, IMPLEMENTATION, AND SOFTWARE

THE EIGENVALUES SLICING LIBRARY (EVSL): ALGORITHMS, IMPLEMENTATION, AND SOFTWARE THE EIGENVALUES SLICING LIBRARY (EVSL): ALGORITHMS, IMPLEMENTATION, AND SOFTWARE RUIPENG LI, YUANZHE XI, LUCAS ERLANDSON, AND YOUSEF SAAD Abstract. This paper describes a software package called EVSL (for

More information

COMPUTING PARTIAL SPECTRA WITH LEAST-SQUARES RATIONAL FILTERS

COMPUTING PARTIAL SPECTRA WITH LEAST-SQUARES RATIONAL FILTERS SIAM J. SCI. COMPUT. Vol. 38, No. 5, pp. A32 A345 c 26 Society for Industrial and Applied Mathematics COMPUTING PARTIAL SPECTRA WITH LEAST-SQUARES RATIONAL FILTERS YUANZHE XI AND YOUSEF SAAD Abstract.

More information

Domain Decomposition-based contour integration eigenvalue solvers

Domain Decomposition-based contour integration eigenvalue solvers Domain Decomposition-based contour integration eigenvalue solvers Vassilis Kalantzis joint work with Yousef Saad Computer Science and Engineering Department University of Minnesota - Twin Cities, USA SIAM

More information

Solution of eigenvalue problems. Subspace iteration, The symmetric Lanczos algorithm. Harmonic Ritz values, Jacobi-Davidson s method

Solution of eigenvalue problems. Subspace iteration, The symmetric Lanczos algorithm. Harmonic Ritz values, Jacobi-Davidson s method Solution of eigenvalue problems Introduction motivation Projection methods for eigenvalue problems Subspace iteration, The symmetric Lanczos algorithm Nonsymmetric Lanczos procedure; Implicit restarts

More information

FEAST eigenvalue algorithm and solver: review and perspectives

FEAST eigenvalue algorithm and solver: review and perspectives FEAST eigenvalue algorithm and solver: review and perspectives Eric Polizzi Department of Electrical and Computer Engineering University of Masachusetts, Amherst, USA Sparse Days, CERFACS, June 25, 2012

More information

Preconditioned Locally Minimal Residual Method for Computing Interior Eigenpairs of Symmetric Operators

Preconditioned Locally Minimal Residual Method for Computing Interior Eigenpairs of Symmetric Operators Preconditioned Locally Minimal Residual Method for Computing Interior Eigenpairs of Symmetric Operators Eugene Vecharynski 1 Andrew Knyazev 2 1 Department of Computer Science and Engineering University

More information

Solution of eigenvalue problems. Subspace iteration, The symmetric Lanczos algorithm. Harmonic Ritz values, Jacobi-Davidson s method

Solution of eigenvalue problems. Subspace iteration, The symmetric Lanczos algorithm. Harmonic Ritz values, Jacobi-Davidson s method Solution of eigenvalue problems Introduction motivation Projection methods for eigenvalue problems Subspace iteration, The symmetric Lanczos algorithm Nonsymmetric Lanczos procedure; Implicit restarts

More information

LARGE SPARSE EIGENVALUE PROBLEMS. General Tools for Solving Large Eigen-Problems

LARGE SPARSE EIGENVALUE PROBLEMS. General Tools for Solving Large Eigen-Problems LARGE SPARSE EIGENVALUE PROBLEMS Projection methods The subspace iteration Krylov subspace methods: Arnoldi and Lanczos Golub-Kahan-Lanczos bidiagonalization General Tools for Solving Large Eigen-Problems

More information

LARGE SPARSE EIGENVALUE PROBLEMS

LARGE SPARSE EIGENVALUE PROBLEMS LARGE SPARSE EIGENVALUE PROBLEMS Projection methods The subspace iteration Krylov subspace methods: Arnoldi and Lanczos Golub-Kahan-Lanczos bidiagonalization 14-1 General Tools for Solving Large Eigen-Problems

More information

Last Time. Social Network Graphs Betweenness. Graph Laplacian. Girvan-Newman Algorithm. Spectral Bisection

Last Time. Social Network Graphs Betweenness. Graph Laplacian. Girvan-Newman Algorithm. Spectral Bisection Eigenvalue Problems Last Time Social Network Graphs Betweenness Girvan-Newman Algorithm Graph Laplacian Spectral Bisection λ 2, w 2 Today Small deviation into eigenvalue problems Formulation Standard eigenvalue

More information

A FILTERED LANCZOS PROCEDURE FOR EXTREME AND INTERIOR EIGENVALUE PROBLEMS

A FILTERED LANCZOS PROCEDURE FOR EXTREME AND INTERIOR EIGENVALUE PROBLEMS A FILTERED LANCZOS PROCEDURE FOR EXTREME AND INTERIOR EIGENVALUE PROBLEMS HAW-REN FANG AND YOUSEF SAAD Abstract. When combined with Krylov projection methods, polynomial filtering can provide a powerful

More information

Multilevel low-rank approximation preconditioners Yousef Saad Department of Computer Science and Engineering University of Minnesota

Multilevel low-rank approximation preconditioners Yousef Saad Department of Computer Science and Engineering University of Minnesota Multilevel low-rank approximation preconditioners Yousef Saad Department of Computer Science and Engineering University of Minnesota SIAM CSE Boston - March 1, 2013 First: Joint work with Ruipeng Li Work

More information

Multilevel Low-Rank Preconditioners Yousef Saad Department of Computer Science and Engineering University of Minnesota. Modelling 2014 June 2,2014

Multilevel Low-Rank Preconditioners Yousef Saad Department of Computer Science and Engineering University of Minnesota. Modelling 2014 June 2,2014 Multilevel Low-Rank Preconditioners Yousef Saad Department of Computer Science and Engineering University of Minnesota Modelling 24 June 2,24 Dedicated to Owe Axelsson at the occasion of his 8th birthday

More information

SPECTRAL SCHUR COMPLEMENT TECHNIQUES FOR SYMMETRIC EIGENVALUE PROBLEMS

SPECTRAL SCHUR COMPLEMENT TECHNIQUES FOR SYMMETRIC EIGENVALUE PROBLEMS Electronic Transactions on Numerical Analysis. Volume 45, pp. 305 329, 2016. Copyright c 2016,. ISSN 1068 9613. ETNA SPECTRAL SCHUR COMPLEMENT TECHNIQUES FOR SYMMETRIC EIGENVALUE PROBLEMS VASSILIS KALANTZIS,

More information

Filtered Conjugate Residual-type Algorithms with Applications

Filtered Conjugate Residual-type Algorithms with Applications Filtered Conjugate Residual-type Algorithms with Applications Yousef Saad May 21, 25 Abstract In a number of applications, certain computations to be done with a given matrix are performed by replacing

More information

A knowledge-based approach to high-performance computing in ab initio simulations.

A knowledge-based approach to high-performance computing in ab initio simulations. Mitglied der Helmholtz-Gemeinschaft A knowledge-based approach to high-performance computing in ab initio simulations. AICES Advisory Board Meeting. July 14th 2014 Edoardo Di Napoli Academic background

More information

PFEAST: A High Performance Sparse Eigenvalue Solver Using Distributed-Memory Linear Solvers

PFEAST: A High Performance Sparse Eigenvalue Solver Using Distributed-Memory Linear Solvers PFEAST: A High Performance Sparse Eigenvalue Solver Using Distributed-Memory Linear Solvers James Kestyn, Vasileios Kalantzis, Eric Polizzi, Yousef Saad Electrical and Computer Engineering Department,

More information

Arnoldi Methods in SLEPc

Arnoldi Methods in SLEPc Scalable Library for Eigenvalue Problem Computations SLEPc Technical Report STR-4 Available at http://slepc.upv.es Arnoldi Methods in SLEPc V. Hernández J. E. Román A. Tomás V. Vidal Last update: October,

More information

Multigrid absolute value preconditioning

Multigrid absolute value preconditioning Multigrid absolute value preconditioning Eugene Vecharynski 1 Andrew Knyazev 2 (speaker) 1 Department of Computer Science and Engineering University of Minnesota 2 Department of Mathematical and Statistical

More information

ITERATIVE METHODS FOR SPARSE LINEAR SYSTEMS

ITERATIVE METHODS FOR SPARSE LINEAR SYSTEMS ITERATIVE METHODS FOR SPARSE LINEAR SYSTEMS YOUSEF SAAD University of Minnesota PWS PUBLISHING COMPANY I(T)P An International Thomson Publishing Company BOSTON ALBANY BONN CINCINNATI DETROIT LONDON MADRID

More information

FILTERED CONJUGATE RESIDUAL-TYPE ALGORITHMS WITH APPLICATIONS

FILTERED CONJUGATE RESIDUAL-TYPE ALGORITHMS WITH APPLICATIONS SIAM J. MATRIX ANAL. APPL. Vol. 28, No. 3, pp. 845 87 c 26 Society for Industrial and Applied Mathematics FILTERED CONJUGATE RESIDUAL-TYPE ALGORITHMS WITH APPLICATIONS YOUSEF SAAD Abstract. It is often

More information

A HARMONIC RESTARTED ARNOLDI ALGORITHM FOR CALCULATING EIGENVALUES AND DETERMINING MULTIPLICITY

A HARMONIC RESTARTED ARNOLDI ALGORITHM FOR CALCULATING EIGENVALUES AND DETERMINING MULTIPLICITY A HARMONIC RESTARTED ARNOLDI ALGORITHM FOR CALCULATING EIGENVALUES AND DETERMINING MULTIPLICITY RONALD B. MORGAN AND MIN ZENG Abstract. A restarted Arnoldi algorithm is given that computes eigenvalues

More information

Inexact and Nonlinear Extensions of the FEAST Eigenvalue Algorithm

Inexact and Nonlinear Extensions of the FEAST Eigenvalue Algorithm University of Massachusetts Amherst ScholarWorks@UMass Amherst Doctoral Dissertations Dissertations and Theses 2018 Inexact and Nonlinear Extensions of the FEAST Eigenvalue Algorithm Brendan E. Gavin University

More information

Fast estimation of approximate matrix ranks using spectral densities

Fast estimation of approximate matrix ranks using spectral densities Fast estimation of approximate matrix ranks using spectral densities Shashanka Ubaru Yousef Saad Abd-Krim Seghouane November 29, 216 Abstract Many machine learning and data related applications require

More information

The new challenges to Krylov subspace methods Yousef Saad Department of Computer Science and Engineering University of Minnesota

The new challenges to Krylov subspace methods Yousef Saad Department of Computer Science and Engineering University of Minnesota The new challenges to Krylov subspace methods Yousef Saad Department of Computer Science and Engineering University of Minnesota SIAM Applied Linear Algebra Valencia, June 18-22, 2012 Introduction Krylov

More information

Preface to the Second Edition. Preface to the First Edition

Preface to the Second Edition. Preface to the First Edition n page v Preface to the Second Edition Preface to the First Edition xiii xvii 1 Background in Linear Algebra 1 1.1 Matrices................................. 1 1.2 Square Matrices and Eigenvalues....................

More information

Iterative methods for Linear System of Equations. Joint Advanced Student School (JASS-2009)

Iterative methods for Linear System of Equations. Joint Advanced Student School (JASS-2009) Iterative methods for Linear System of Equations Joint Advanced Student School (JASS-2009) Course #2: Numerical Simulation - from Models to Software Introduction In numerical simulation, Partial Differential

More information

Solving Ax = b, an overview. Program

Solving Ax = b, an overview. Program Numerical Linear Algebra Improving iterative solvers: preconditioning, deflation, numerical software and parallelisation Gerard Sleijpen and Martin van Gijzen November 29, 27 Solving Ax = b, an overview

More information

A Chebyshev-based two-stage iterative method as an alternative to the direct solution of linear systems

A Chebyshev-based two-stage iterative method as an alternative to the direct solution of linear systems A Chebyshev-based two-stage iterative method as an alternative to the direct solution of linear systems Mario Arioli m.arioli@rl.ac.uk CCLRC-Rutherford Appleton Laboratory with Daniel Ruiz (E.N.S.E.E.I.H.T)

More information

BEYOND AUTOMATED MULTILEVEL SUBSTRUCTURING: DOMAIN DECOMPOSITION WITH RATIONAL FILTERING

BEYOND AUTOMATED MULTILEVEL SUBSTRUCTURING: DOMAIN DECOMPOSITION WITH RATIONAL FILTERING SIAM J SCI COMPUT Vol 0, No 0, pp 000 000 c XXXX Society for Industrial and Applied Mathematics EYOND AUTOMATED MULTILEVEL SUSTRUCTURING: DOMAIN DECOMPOSITION WITH RATIONAL FILTERING VASSILIS KALANTZIS,

More information

Karhunen-Loève Approximation of Random Fields Using Hierarchical Matrix Techniques

Karhunen-Loève Approximation of Random Fields Using Hierarchical Matrix Techniques Institut für Numerische Mathematik und Optimierung Karhunen-Loève Approximation of Random Fields Using Hierarchical Matrix Techniques Oliver Ernst Computational Methods with Applications Harrachov, CR,

More information

EIGIFP: A MATLAB Program for Solving Large Symmetric Generalized Eigenvalue Problems

EIGIFP: A MATLAB Program for Solving Large Symmetric Generalized Eigenvalue Problems EIGIFP: A MATLAB Program for Solving Large Symmetric Generalized Eigenvalue Problems JAMES H. MONEY and QIANG YE UNIVERSITY OF KENTUCKY eigifp is a MATLAB program for computing a few extreme eigenvalues

More information

BEYOND AMLS: DOMAIN DECOMPOSITION WITH RATIONAL FILTERING

BEYOND AMLS: DOMAIN DECOMPOSITION WITH RATIONAL FILTERING EYOND AMLS: DOMAIN DECOMPOSITION WITH RATIONAL FILTERING VASSILIS KALANTZIS, YUANZHE XI, AND YOUSEF SAAD Abstract. This paper proposes a rational filtering domain decomposition technique for the solution

More information

1. Introduction. We consider the problem of solving the linear system. Ax = b, (1.1)

1. Introduction. We consider the problem of solving the linear system. Ax = b, (1.1) SCHUR COMPLEMENT BASED DOMAIN DECOMPOSITION PRECONDITIONERS WITH LOW-RANK CORRECTIONS RUIPENG LI, YUANZHE XI, AND YOUSEF SAAD Abstract. This paper introduces a robust preconditioner for general sparse

More information

Parallel Multilevel Low-Rank approximation preconditioners Yousef Saad Department of Computer Science and Engineering University of Minnesota

Parallel Multilevel Low-Rank approximation preconditioners Yousef Saad Department of Computer Science and Engineering University of Minnesota Parallel Multilevel Low-Rank approximation preconditioners Yousef Saad Department of Computer Science and Engineering University of Minnesota ICME, Stanford April 2th, 25 First: Partly joint work with

More information

State-of-the-art numerical solution of large Hermitian eigenvalue problems. Andreas Stathopoulos

State-of-the-art numerical solution of large Hermitian eigenvalue problems. Andreas Stathopoulos State-of-the-art numerical solution of large Hermitian eigenvalue problems Andreas Stathopoulos Computer Science Department and Computational Sciences Cluster College of William and Mary Acknowledgment:

More information

Iterative methods for Linear System

Iterative methods for Linear System Iterative methods for Linear System JASS 2009 Student: Rishi Patil Advisor: Prof. Thomas Huckle Outline Basics: Matrices and their properties Eigenvalues, Condition Number Iterative Methods Direct and

More information

Part 3: Trust-region methods for unconstrained optimization. Nick Gould (RAL)

Part 3: Trust-region methods for unconstrained optimization. Nick Gould (RAL) Part 3: Trust-region methods for unconstrained optimization Nick Gould (RAL) minimize x IR n f(x) MSc course on nonlinear optimization UNCONSTRAINED MINIMIZATION minimize x IR n f(x) where the objective

More information

MATH 583A REVIEW SESSION #1

MATH 583A REVIEW SESSION #1 MATH 583A REVIEW SESSION #1 BOJAN DURICKOVIC 1. Vector Spaces Very quick review of the basic linear algebra concepts (see any linear algebra textbook): (finite dimensional) vector space (or linear space),

More information

Dimension reduction methods: Algorithms and Applications Yousef Saad Department of Computer Science and Engineering University of Minnesota

Dimension reduction methods: Algorithms and Applications Yousef Saad Department of Computer Science and Engineering University of Minnesota Dimension reduction methods: Algorithms and Applications Yousef Saad Department of Computer Science and Engineering University of Minnesota Université du Littoral- Calais July 11, 16 First..... to the

More information

IDR(s) A family of simple and fast algorithms for solving large nonsymmetric systems of linear equations

IDR(s) A family of simple and fast algorithms for solving large nonsymmetric systems of linear equations IDR(s) A family of simple and fast algorithms for solving large nonsymmetric systems of linear equations Harrachov 2007 Peter Sonneveld en Martin van Gijzen August 24, 2007 1 Delft University of Technology

More information

A refined Lanczos method for computing eigenvalues and eigenvectors of unsymmetric matrices

A refined Lanczos method for computing eigenvalues and eigenvectors of unsymmetric matrices A refined Lanczos method for computing eigenvalues and eigenvectors of unsymmetric matrices Jean Christophe Tremblay and Tucker Carrington Chemistry Department Queen s University 23 août 2007 We want to

More information

A communication-avoiding thick-restart Lanczos method on a distributed-memory system

A communication-avoiding thick-restart Lanczos method on a distributed-memory system A communication-avoiding thick-restart Lanczos method on a distributed-memory system Ichitaro Yamazaki and Kesheng Wu Lawrence Berkeley National Laboratory, Berkeley, CA, USA Abstract. The Thick-Restart

More information

Contents. Preface... xi. Introduction...

Contents. Preface... xi. Introduction... Contents Preface... xi Introduction... xv Chapter 1. Computer Architectures... 1 1.1. Different types of parallelism... 1 1.1.1. Overlap, concurrency and parallelism... 1 1.1.2. Temporal and spatial parallelism

More information

The Lanczos and conjugate gradient algorithms

The Lanczos and conjugate gradient algorithms The Lanczos and conjugate gradient algorithms Gérard MEURANT October, 2008 1 The Lanczos algorithm 2 The Lanczos algorithm in finite precision 3 The nonsymmetric Lanczos algorithm 4 The Golub Kahan bidiagonalization

More information

Is there life after the Lanczos method? What is LOBPCG?

Is there life after the Lanczos method? What is LOBPCG? 1 Is there life after the Lanczos method? What is LOBPCG? Andrew V. Knyazev Department of Mathematics and Center for Computational Mathematics University of Colorado at Denver SIAM ALA Meeting, July 17,

More information

On the Ritz values of normal matrices

On the Ritz values of normal matrices On the Ritz values of normal matrices Zvonimir Bujanović Faculty of Science Department of Mathematics University of Zagreb June 13, 2011 ApplMath11 7th Conference on Applied Mathematics and Scientific

More information

1. What is the determinant of the following matrix? a 1 a 2 4a 3 2a 2 b 1 b 2 4b 3 2b c 1. = 4, then det

1. What is the determinant of the following matrix? a 1 a 2 4a 3 2a 2 b 1 b 2 4b 3 2b c 1. = 4, then det What is the determinant of the following matrix? 3 4 3 4 3 4 4 3 A 0 B 8 C 55 D 0 E 60 If det a a a 3 b b b 3 c c c 3 = 4, then det a a 4a 3 a b b 4b 3 b c c c 3 c = A 8 B 6 C 4 D E 3 Let A be an n n matrix

More information

Polynomial filtered Lanczos iterations with applications in Density Functional Theory

Polynomial filtered Lanczos iterations with applications in Density Functional Theory Polynomial filtered Lanczos iterations with applications in Density Functional Theory C. Bekas, E. Kokiopoulou, Yousef Saad Computer Science & Engineering Dept. University of Minnesota, Twin Cities. {bekas,kokiopou,saad}@cs.umn.edu

More information

arxiv: v2 [math.na] 10 May 2016

arxiv: v2 [math.na] 10 May 2016 High-performance implementation of Chebyshev filter diagonalization for interior eigenvalue computations arxiv:151.4895v2 [math.na] 1 May 216 Andreas Pieper a, Moritz Kreutzer b, Andreas Alvermann a,,

More information

Preconditioned Eigenvalue Solvers for electronic structure calculations. Andrew V. Knyazev. Householder Symposium XVI May 26, 2005

Preconditioned Eigenvalue Solvers for electronic structure calculations. Andrew V. Knyazev. Householder Symposium XVI May 26, 2005 1 Preconditioned Eigenvalue Solvers for electronic structure calculations Andrew V. Knyazev Department of Mathematics and Center for Computational Mathematics University of Colorado at Denver Householder

More information

Krylov subspace projection methods

Krylov subspace projection methods I.1.(a) Krylov subspace projection methods Orthogonal projection technique : framework Let A be an n n complex matrix and K be an m-dimensional subspace of C n. An orthogonal projection technique seeks

More information

Computation of Smallest Eigenvalues using Spectral Schur Complements

Computation of Smallest Eigenvalues using Spectral Schur Complements Computation of Smallest Eigenvalues using Spectral Schur Complements Constantine Bekas Yousef Saad January 23, 2004 Abstract The Automated Multilevel Substructing method (AMLS ) was recently presented

More information

A parameter tuning technique of a weighted Jacobi-type preconditioner and its application to supernova simulations

A parameter tuning technique of a weighted Jacobi-type preconditioner and its application to supernova simulations A parameter tuning technique of a weighted Jacobi-type preconditioner and its application to supernova simulations Akira IMAKURA Center for Computational Sciences, University of Tsukuba Joint work with

More information

Solving Symmetric Indefinite Systems with Symmetric Positive Definite Preconditioners

Solving Symmetric Indefinite Systems with Symmetric Positive Definite Preconditioners Solving Symmetric Indefinite Systems with Symmetric Positive Definite Preconditioners Eugene Vecharynski 1 Andrew Knyazev 2 1 Department of Computer Science and Engineering University of Minnesota 2 Department

More information

LSTRS 1.2: MATLAB Software for Large-Scale Trust-Regions Subproblems and Regularization

LSTRS 1.2: MATLAB Software for Large-Scale Trust-Regions Subproblems and Regularization LSTRS 1.2: MATLAB Software for Large-Scale Trust-Regions Subproblems and Regularization Marielba Rojas Informatics and Mathematical Modelling Technical University of Denmark Computational Methods with

More information

Efficient Linear Algebra methods for Data Mining Yousef Saad Department of Computer Science and Engineering University of Minnesota

Efficient Linear Algebra methods for Data Mining Yousef Saad Department of Computer Science and Engineering University of Minnesota Efficient Linear Algebra methods for Data Mining Yousef Saad Department of Computer Science and Engineering University of Minnesota NUMAN-08 Kalamata, 08 Team members involved in this work Support Past:

More information

Spectrum Slicing for Sparse Hermitian Definite Matrices Based on Zolotarev s Functions

Spectrum Slicing for Sparse Hermitian Definite Matrices Based on Zolotarev s Functions Spectrum Slicing for Sparse Hermitian Definite Matrices Based on Zolotarev s Functions Yingzhou Li, Haizhao Yang, ICME, Stanford University Department of Mathematics, Duke University January 30, 017 Abstract

More information

A CHEBYSHEV-DAVIDSON ALGORITHM FOR LARGE SYMMETRIC EIGENPROBLEMS

A CHEBYSHEV-DAVIDSON ALGORITHM FOR LARGE SYMMETRIC EIGENPROBLEMS A CHEBYSHEV-DAVIDSON ALGORITHM FOR LARGE SYMMETRIC EIGENPROBLEMS YUNKAI ZHOU AND YOUSEF SAAD Abstract. A polynomial filtered Davidson-type algorithm is proposed for solving symmetric eigenproblems. The

More information

Cucheb: A GPU implementation of the filtered Lanczos procedure. Department of Computer Science and Engineering University of Minnesota, Twin Cities

Cucheb: A GPU implementation of the filtered Lanczos procedure. Department of Computer Science and Engineering University of Minnesota, Twin Cities Cucheb: A GPU implementation of the filtered Lanczos procedure Jared L. Aurentz, Vassilis Kalantzis, and Yousef Saad May 2017 EPrint ID: 2017.1 Department of Computer Science and Engineering University

More information

Efficient Deflation for Communication-Avoiding Krylov Subspace Methods

Efficient Deflation for Communication-Avoiding Krylov Subspace Methods Efficient Deflation for Communication-Avoiding Krylov Subspace Methods Erin Carson Nicholas Knight, James Demmel Univ. of California, Berkeley Monday, June 24, NASCA 2013, Calais, France Overview We derive

More information

Model Order Reduction via Matlab Parallel Computing Toolbox. Istanbul Technical University

Model Order Reduction via Matlab Parallel Computing Toolbox. Istanbul Technical University Model Order Reduction via Matlab Parallel Computing Toolbox E. Fatih Yetkin & Hasan Dağ Istanbul Technical University Computational Science & Engineering Department September 21, 2009 E. Fatih Yetkin (Istanbul

More information

A Jacobi Davidson Method with a Multigrid Solver for the Hermitian Wilson-Dirac Operator

A Jacobi Davidson Method with a Multigrid Solver for the Hermitian Wilson-Dirac Operator A Jacobi Davidson Method with a Multigrid Solver for the Hermitian Wilson-Dirac Operator Artur Strebel Bergische Universität Wuppertal August 3, 2016 Joint Work This project is joint work with: Gunnar

More information

Index. for generalized eigenvalue problem, butterfly form, 211

Index. for generalized eigenvalue problem, butterfly form, 211 Index ad hoc shifts, 165 aggressive early deflation, 205 207 algebraic multiplicity, 35 algebraic Riccati equation, 100 Arnoldi process, 372 block, 418 Hamiltonian skew symmetric, 420 implicitly restarted,

More information

Introduction to Iterative Solvers of Linear Systems

Introduction to Iterative Solvers of Linear Systems Introduction to Iterative Solvers of Linear Systems SFB Training Event January 2012 Prof. Dr. Andreas Frommer Typeset by Lukas Krämer, Simon-Wolfgang Mages and Rudolf Rödl 1 Classes of Matrices and their

More information

Iterative methods for positive definite linear systems with a complex shift

Iterative methods for positive definite linear systems with a complex shift Iterative methods for positive definite linear systems with a complex shift William McLean, University of New South Wales Vidar Thomée, Chalmers University November 4, 2011 Outline 1. Numerical solution

More information

Jacobi s Ideas on Eigenvalue Computation in a modern context

Jacobi s Ideas on Eigenvalue Computation in a modern context Jacobi s Ideas on Eigenvalue Computation in a modern context Henk van der Vorst vorst@math.uu.nl Mathematical Institute Utrecht University June 3, 2006, Michel Crouzeix p.1/18 General remarks Ax = λx Nonlinear

More information

Chapter Two: Numerical Methods for Elliptic PDEs. 1 Finite Difference Methods for Elliptic PDEs

Chapter Two: Numerical Methods for Elliptic PDEs. 1 Finite Difference Methods for Elliptic PDEs Chapter Two: Numerical Methods for Elliptic PDEs Finite Difference Methods for Elliptic PDEs.. Finite difference scheme. We consider a simple example u := subject to Dirichlet boundary conditions ( ) u

More information

FAME-matlab Package: Fast Algorithm for Maxwell Equations Tsung-Ming Huang

FAME-matlab Package: Fast Algorithm for Maxwell Equations Tsung-Ming Huang FAME-matlab Package: Fast Algorithm for Maxwell Equations Tsung-Ming Huang Modelling, Simulation and Analysis of Nonlinear Optics, NUK, September, 4-8, 2015 1 2 FAME group Wen-Wei Lin Department of Applied

More information

Total least squares. Gérard MEURANT. October, 2008

Total least squares. Gérard MEURANT. October, 2008 Total least squares Gérard MEURANT October, 2008 1 Introduction to total least squares 2 Approximation of the TLS secular equation 3 Numerical experiments Introduction to total least squares In least squares

More information

An Efficient Two-Level Preconditioner for Multi-Frequency Wave Propagation Problems

An Efficient Two-Level Preconditioner for Multi-Frequency Wave Propagation Problems An Efficient Two-Level Preconditioner for Multi-Frequency Wave Propagation Problems M. Baumann, and M.B. van Gijzen Email: M.M.Baumann@tudelft.nl Delft Institute of Applied Mathematics Delft University

More information

Lecture 11: CMSC 878R/AMSC698R. Iterative Methods An introduction. Outline. Inverse, LU decomposition, Cholesky, SVD, etc.

Lecture 11: CMSC 878R/AMSC698R. Iterative Methods An introduction. Outline. Inverse, LU decomposition, Cholesky, SVD, etc. Lecture 11: CMSC 878R/AMSC698R Iterative Methods An introduction Outline Direct Solution of Linear Systems Inverse, LU decomposition, Cholesky, SVD, etc. Iterative methods for linear systems Why? Matrix

More information

A short course on: Preconditioned Krylov subspace methods. Yousef Saad University of Minnesota Dept. of Computer Science and Engineering

A short course on: Preconditioned Krylov subspace methods. Yousef Saad University of Minnesota Dept. of Computer Science and Engineering A short course on: Preconditioned Krylov subspace methods Yousef Saad University of Minnesota Dept. of Computer Science and Engineering Universite du Littoral, Jan 19-3, 25 Outline Part 1 Introd., discretization

More information

Preliminary/Qualifying Exam in Numerical Analysis (Math 502a) Spring 2012

Preliminary/Qualifying Exam in Numerical Analysis (Math 502a) Spring 2012 Instructions Preliminary/Qualifying Exam in Numerical Analysis (Math 502a) Spring 2012 The exam consists of four problems, each having multiple parts. You should attempt to solve all four problems. 1.

More information

Krylov Space Solvers

Krylov Space Solvers Seminar for Applied Mathematics ETH Zurich International Symposium on Frontiers of Computational Science Nagoya, 12/13 Dec. 2005 Sparse Matrices Large sparse linear systems of equations or large sparse

More information

YORK UNIVERSITY. Faculty of Science Department of Mathematics and Statistics MATH M Test #1. July 11, 2013 Solutions

YORK UNIVERSITY. Faculty of Science Department of Mathematics and Statistics MATH M Test #1. July 11, 2013 Solutions YORK UNIVERSITY Faculty of Science Department of Mathematics and Statistics MATH 222 3. M Test # July, 23 Solutions. For each statement indicate whether it is always TRUE or sometimes FALSE. Note: For

More information

Iterative Helmholtz Solvers

Iterative Helmholtz Solvers Iterative Helmholtz Solvers Scalability of deflation-based Helmholtz solvers Delft University of Technology Vandana Dwarka March 28th, 2018 Vandana Dwarka (TU Delft) 15th Copper Mountain Conference 2018

More information

Iterative Methods for Solving A x = b

Iterative Methods for Solving A x = b Iterative Methods for Solving A x = b A good (free) online source for iterative methods for solving A x = b is given in the description of a set of iterative solvers called templates found at netlib: http

More information

Recent advances in approximation using Krylov subspaces. V. Simoncini. Dipartimento di Matematica, Università di Bologna.

Recent advances in approximation using Krylov subspaces. V. Simoncini. Dipartimento di Matematica, Università di Bologna. Recent advances in approximation using Krylov subspaces V. Simoncini Dipartimento di Matematica, Università di Bologna and CIRSA, Ravenna, Italy valeria@dm.unibo.it 1 The framework It is given an operator

More information

Matrix Algorithms. Volume II: Eigensystems. G. W. Stewart H1HJ1L. University of Maryland College Park, Maryland

Matrix Algorithms. Volume II: Eigensystems. G. W. Stewart H1HJ1L. University of Maryland College Park, Maryland Matrix Algorithms Volume II: Eigensystems G. W. Stewart University of Maryland College Park, Maryland H1HJ1L Society for Industrial and Applied Mathematics Philadelphia CONTENTS Algorithms Preface xv xvii

More information

Numerical Methods in Matrix Computations

Numerical Methods in Matrix Computations Ake Bjorck Numerical Methods in Matrix Computations Springer Contents 1 Direct Methods for Linear Systems 1 1.1 Elements of Matrix Theory 1 1.1.1 Matrix Algebra 2 1.1.2 Vector Spaces 6 1.1.3 Submatrices

More information

PARALLEL SOLUTION OF EIGENPROBLEMS IN STRUCTURAL DYNAMICS USING THE IMPLICITLY RESTARTED LANCZOS METHOD

PARALLEL SOLUTION OF EIGENPROBLEMS IN STRUCTURAL DYNAMICS USING THE IMPLICITLY RESTARTED LANCZOS METHOD PARALLEL SOLUTION OF EIGENPROBLEMS IN STRUCTURAL DYNAMICS USING THE IMPLICITLY RESTARTED LANCZOS METHOD GEORGE O. AINSWORTH JR. FERNANDO L. B. RIBEIRO CARLOS MAGLUTA ABSTRACT: This paper presents a parallel

More information

Algebra C Numerical Linear Algebra Sample Exam Problems

Algebra C Numerical Linear Algebra Sample Exam Problems Algebra C Numerical Linear Algebra Sample Exam Problems Notation. Denote by V a finite-dimensional Hilbert space with inner product (, ) and corresponding norm. The abbreviation SPD is used for symmetric

More information

Algebra Exam Topics. Updated August 2017

Algebra Exam Topics. Updated August 2017 Algebra Exam Topics Updated August 2017 Starting Fall 2017, the Masters Algebra Exam will have 14 questions. Of these students will answer the first 8 questions from Topics 1, 2, and 3. They then have

More information

Iterative Methods for Linear Systems of Equations

Iterative Methods for Linear Systems of Equations Iterative Methods for Linear Systems of Equations Projection methods (3) ITMAN PhD-course DTU 20-10-08 till 24-10-08 Martin van Gijzen 1 Delft University of Technology Overview day 4 Bi-Lanczos method

More information

Efficient implementation of the overlap operator on multi-gpus

Efficient implementation of the overlap operator on multi-gpus Efficient implementation of the overlap operator on multi-gpus Andrei Alexandru Mike Lujan, Craig Pelissier, Ben Gamari, Frank Lee SAAHPC 2011 - University of Tennessee Outline Motivation Overlap operator

More information

MATH 221, Spring Homework 10 Solutions

MATH 221, Spring Homework 10 Solutions MATH 22, Spring 28 - Homework Solutions Due Tuesday, May Section 52 Page 279, Problem 2: 4 λ A λi = and the characteristic polynomial is det(a λi) = ( 4 λ)( λ) ( )(6) = λ 6 λ 2 +λ+2 The solutions to the

More information

DELFT UNIVERSITY OF TECHNOLOGY

DELFT UNIVERSITY OF TECHNOLOGY DELFT UNIVERSITY OF TECHNOLOGY REPORT 16-02 The Induced Dimension Reduction method applied to convection-diffusion-reaction problems R. Astudillo and M. B. van Gijzen ISSN 1389-6520 Reports of the Delft

More information

Density-Matrix-Based Algorithms for Solving Eingenvalue Problems

Density-Matrix-Based Algorithms for Solving Eingenvalue Problems University of Massachusetts - Amherst From the SelectedWorks of Eric Polizzi 2009 Density-Matrix-Based Algorithms for Solving Eingenvalue Problems Eric Polizzi, University of Massachusetts - Amherst Available

More information

1. Introduction. In this paper, we consider the eigenvalue solution for a non- Hermitian matrix A:

1. Introduction. In this paper, we consider the eigenvalue solution for a non- Hermitian matrix A: A FAST CONTOUR-INTEGRAL EIGENSOLVER FOR NON-HERMITIAN MATRICES XIN YE, JIANLIN XIA, RAYMOND H. CHAN, STEPHEN CAULEY, AND VENKATARAMANAN BALAKRISHNAN Abstract. We present a fast contour-integral eigensolver

More information

Applications of trace estimation techniques

Applications of trace estimation techniques Applications of trace estimation techniques Shashanka Ubaru and Yousef Saad University of Minnesota at Twin Cities, MN 55455. {ubaru1, saad}@umn.edu Abstract. We discuss various applications of trace estimation

More information

Algebraic Multigrid as Solvers and as Preconditioner

Algebraic Multigrid as Solvers and as Preconditioner Ò Algebraic Multigrid as Solvers and as Preconditioner Domenico Lahaye domenico.lahaye@cs.kuleuven.ac.be http://www.cs.kuleuven.ac.be/ domenico/ Department of Computer Science Katholieke Universiteit Leuven

More information

Linear Algebra Massoud Malek

Linear Algebra Massoud Malek CSUEB Linear Algebra Massoud Malek Inner Product and Normed Space In all that follows, the n n identity matrix is denoted by I n, the n n zero matrix by Z n, and the zero vector by θ n An inner product

More information

Stabilization and Acceleration of Algebraic Multigrid Method

Stabilization and Acceleration of Algebraic Multigrid Method Stabilization and Acceleration of Algebraic Multigrid Method Recursive Projection Algorithm A. Jemcov J.P. Maruszewski Fluent Inc. October 24, 2006 Outline 1 Need for Algorithm Stabilization and Acceleration

More information

Approximation of functions of large matrices. Part I. Computational aspects. V. Simoncini

Approximation of functions of large matrices. Part I. Computational aspects. V. Simoncini Approximation of functions of large matrices. Part I. Computational aspects V. Simoncini Dipartimento di Matematica, Università di Bologna and CIRSA, Ravenna, Italy valeria@dm.unibo.it 1 The problem Given

More information