Engineering and Probing Topological Bloch Bands in Optical Lattices

Size: px
Start display at page:

Download "Engineering and Probing Topological Bloch Bands in Optical Lattices"

Transcription

1 Engineering and Probing Topological Bloch Bands in Optical Lattices Monika Aidelsburger, Marcos Atala, Michael Lohse, Christian Schweizer, Julio Barreiro Christian Gross, Stefan Kuhr, Manuel Endres, Marc Cheneau, Takeshi Fukuhara, Peter Schauss, Sebastian Hild, Johannes Zeiher Ulrich Schneider, Simon Braun, Philipp Ronzheimer, Michael Schreiber, Tim Rom, Sean Hodgman Ulrich Schneider, Monika Schleier-Smith, Lucia Duca, Tracy Li, Martin Reitter, Josselin Bernadoff, Henrik Lüschen Ahmed Omran, Martin Boll, Timon Hilker, Michael Lohse, Thomas Reimann, Alexander Keesling, Christian Gross Simon Fölling, Francesco Scazza, Christian Hofrichter, Pieter de Groot, Moritz Höfer Christoph Gohle, Tobias Schneider, Nikolaus Buchheim, Zhenkai Lu Humboldt Research Awardees: N. Cooper, C. Salomon, W. Ketterle Max-Planck-Institut für Quantenoptik Ludwig-Maximilians Universität funding by MPG, European Union, DFG $ DARPA (OLE)

2 Outline Realizing Artificial Gauge Fields Realizing the Hoftstadter & Quantum Spin Hall Hamiltonian Meissner -currents in bosonic flux ladders Outline Realizing Artificial Gauge Fields Realizing the Hoftstadter & Quantum Spin Hall Hamiltonian Meissner -currents in bosonic flux ladders Probing Topological Features of Bloch Bands 3 Probing Zak Phases in Topological Bands 4 An Aharonov Bohm Interferometer for measuring Berry curvature

3 Realizing Artificial Gauge Fields in Optical Lattices Gauge Fields Quantum Hall Effect in D Electron Gases Integer Quantum Hall Effect E s xy = ne /h n Integer LLL c Chern Insulators (w/o magnetic field see D. Haldane 988) Fractional Quantum Hall Effect Laughlin state at = /3 flux quantum =h/ec electron

4 Gauge Fields State of the Art ) Rotation In rapidly rotating gases, Coriolis force is equivalent to Lorentz force. ) Raman Induced Gauge Fields F L = qv B F C = mv W rot K. Madison et al., PRL () J.R. Abo-Shaeer et al. Science () Spatially dependent optical couplings lead to a Berry phase analoguous to the Aharonov-Bohm phase Y. Lin et al., Nature (9) Gauge Fields State of the Art ) Rotation ) Raman Induced Gauge Fields In rapidly rotating gases, Coriolis force is equivalent to Lorentz force. F L = qv B Problem in both cases: small B-fields (large ν> for now), heating... F C = mv W rot K. Madison et al., PRL () J.R. Abo-Shaeer et al. Science () Spatially dependent optical couplings lead to a Berry phase analoguous to the Aharonov-Bohm phase Y. Lin et al., Nature (9)

5 Gauge Fields Artificial B-Fields with Ultracold Atoms Controlling atom tunneling along x with Raman lasers leads to effective tunnel coupling with spatially-dependent Peierls phase j(r) Ĥ = Â R Ke ij(r) â RâR+dx + J â RâR+dy + h.c. K e i d x d y Magnetic flux through a plaquette: Z f = BdS = j j y x J K e i J D. Jaksch & P. Zoller, New J. Phys. (3) F. Gerbier & J. Dalibard, New J. Phys. () N. Cooper, PRL () E. Mueller, Phys. Rev. A (4) L.-K. Lim et al. Phys. Rev. A () A. Kolovsky, Europhys. Lett. () see also: lattice shaking E. Arimondo, PRL(7), K. Sengstock, Science (), M. Rechtsman & M. Segev, Nature (3) Gauge Fields Artificial B-Fields with Ultracold Atoms Controlling atom tunneling along x with Raman lasers leads to effective tunnel coupling with spatially-dependent Peierls phase j(r) Ĥ = Â R Ke ij(r) â RâR+dx + J â RâR+dy + h.c. K e i d x d y Magnetic flux through a plaquette: Z f = BdS = j j y x J K e i J D. Jaksch & P. Zoller, New J. Phys. (3) F. Gerbier & J. Dalibard, New J. Phys. () N. Cooper, PRL () E. Mueller, Phys. Rev. A (4) L.-K. Lim et al. Phys. Rev. A () A. Kolovsky, Europhys. Lett. () see also: lattice shaking E. Arimondo, PRL(7), K. Sengstock, Science (), M. Rechtsman & M. Segev, Nature (3)

6 Gauge Fields Artificial B-Fields with Ultracold Atoms Controlling atom tunneling along x with Raman lasers leads to effective tunnel coupling with spatially-dependent Peierls phase j(r) Ĥ = Â R Ke ij(r) â RâR+dx + J â RâR+dy + h.c. K e i d x d y Magnetic flux through a plaquette: Z f = BdS = j j y x J K e i J D. Jaksch & P. Zoller, New J. Phys. (3) F. Gerbier & J. Dalibard, New J. Phys. () N. Cooper, PRL () E. Mueller, Phys. Rev. A (4) L.-K. Lim et al. Phys. Rev. A () A. Kolovsky, Europhys. Lett. () see also: lattice shaking E. Arimondo, PRL(7), K. Sengstock, Science (), M. Rechtsman & M. Segev, Nature (3) Gauge Fields Artificial B-Fields with Ultracold Atoms Controlling atom tunneling along x with Raman lasers leads to effective tunnel coupling with spatially-dependent Peierls phase j(r) Ĥ = Â R Ke ij(r) â RâR+dx + J â RâR+dy + h.c. y x J d x Fluxes corresponding to severals thousand Tesla Z d y magnetic field strength f = are BdS = j j possible! K e i K e i J Magnetic flux through a plaquette: D. Jaksch & P. Zoller, New J. Phys. (3) F. Gerbier & J. Dalibard, New J. Phys. () N. Cooper, PRL () E. Mueller, Phys. Rev. A (4) L.-K. Lim et al. Phys. Rev. A () A. Kolovsky, Europhys. Lett. () see also: lattice shaking E. Arimondo, PRL(7), K. Sengstock, Science (), M. Rechtsman & M. Segev, Nature (3)

7 Gauge Fields Harper Hamiltonian and Hofstadter Butterfly Harper Hamiltonian: J=K and φ uniform E/J The lowest band is topologically equivalent to the lowest Landau level. D.R. Hofstadter, Phys. Rev. B4, 39 (976) see alo Y. Avron, D. Osadchy, R. Seiler, Physics Today 38, 3 Artificial magnetic fields Experimental method Atoms in a D lattice Tunneling inhibited along one direction using energy offsets e.g. by using a linear potential y J x J x x M. Aidelsburger et al., PRL (); M. Aidelsburger et al., Appl. Phys. B (3)

8 Artificial magnetic fields Experimental method Atoms in a D lattice Tunneling inhibited along one direction using energy offsets!! = /~ e.g. by using a linear potential y J x J x x Induce resonant tunneling with a pair of far-detuned running-wave beams Reduced heating due to spontaneous emission compared to Raman-assisted tunneling! Independent of the internal structure of the atom M. Aidelsburger et al., PRL (); M. Aidelsburger et al., Appl. Phys. B (3) Artificial magnetic fields Experimental method Interference creates a running-wave that modulates the lattice The phase of the modulation depends on the position in the lattice k, k, y Lattice modulation: VKcos(!t + (r)) with spatial-dependent phase (r) = k r x k = k k! =!! Realization of time-dependent Hamiltonian, where tunneling is restored Discretization of the phase due to underlying lattice m,n M. Aidelsburger et al., PRL (); M. Aidelsburger et al., Appl. Phys. B (3)

9 Artificial magnetic fields Time-dependent Hamiltonian: Ĥ(t) = X J x â m+,nâm,n m,n Experimental method J y â m,n+âm,n +h.c. + X m,n m + V K cos(!t + m,n ) ˆn m,n Artificial magnetic fields Time-dependent Hamiltonian: Ĥ(t) = X J x â m+,nâm,n m,n Experimental method J y â m,n+âm,n +h.c. + X m,n m + V K cos(!t + m,n ) ˆn m,n Can be mapped on an effective time-averaged time-independent Hamiltonian for ~! J x,j y,u Ĥ eff = X m,n Ke i m,n â m+,nâm,n J â m,n+âm,n +h.c. To avoid excitations to higher bands has to be smaller than the band gap ~! F. Grossmann and P. Hänggi, EPL (99) M. Holthaus, PRL (99) A. Kolovsky, EPL (); A. Eckardt, PRL (5) A. Eckhardt, EPL (7); P. Hauke, PRL () A. Bermudez, PRL (); A. Bermudez, NJP ()

10 Artificial magnetic fields Time-dependent Hamiltonian: Ĥ(t) = X J x â m+,nâm,n m,n Experimental method J y â m,n+âm,n +h.c. + X m,n m + V K cos(!t + m,n ) ˆn m,n Note: Corrections could be important! Can be mapped on an effective see e.g. time-averaged N. Goldman & time-independent J. Dalibard arxiv: Hamiltonian for ~! J x,j y,u & related work A. Polkovnikov Ĥ eff = X m,n Ke i m,n â m+,nâm,n J â m,n+âm,n +h.c. To avoid excitations to higher bands has to be smaller than the band gap ~! F. Grossmann and P. Hänggi, EPL (99) M. Holthaus, PRL (99) A. Kolovsky, EPL (); A. Eckardt, PRL (5) A. Eckhardt, EPL (7); P. Hauke, PRL () A. Bermudez, PRL (); A. Bermudez, NJP () Artificial magnetic fields Effective coupling strength Effective coupling strength: J (x) : Bessel-functions of the first kind and K = J x J (x) J = J y J (x) x = f( )V K K/Jx J/Jy, x : Phase difference of the modulation between neighboring bonds.5 f () see also: H. Lignier et al. PRL (7)

11 Artificial magnetic fields Experimental setup Experimental parameters: d d k, y / k ' k = d m,n = (m + n) k, V K V K / x Artificial magnetic fields Experimental setup Experimental parameters: d d k, y / k ' k = d m,n = (m + n) k, Flux through one unit cell: V K = m,n+ m,n = V K / x depends only on phase difference along y!

12 Artificial magnetic fields Experimental setup Experimental parameters: d d k, y / k ' k = d m,n = (m + n) k, Flux through one unit cell: V K = m,n+ m,n = V K / x depends only on phase difference along y! The value of the flux is fully tunable by changing the geometry of the driving-beams! Uniform flux Laser-assisted tunneling Study laser-assisted tunneling in the presence of a magnet field gradient 87 Initial state: atoms ( Rb) in 3D lattice only populate even sites even odd B x M. Aidelsburger et al., PRL, 853 (3) similar work: H. Miyake et al., PRL, 853 (3)

13 Uniform flux Laser-assisted tunneling Study laser-assisted tunneling in the presence of a magnet field gradient 87 Initial state: atoms ( Rb) in 3D lattice only populate even sites even odd B x M. Aidelsburger et al., PRL, 853 (3) similar work: H. Miyake et al., PRL, 853 (3) Uniform flux Laser-assisted tunneling Study laser-assisted tunneling in the presence of a magnet field gradient 87 Initial state: atoms ( Rb) in 3D lattice only populate even sites even odd B x Atom population in odd sites vs. modulation frequency.5 n odd () (khz) M. Aidelsburger et al., PRL, 853 (3) similar work: H. Miyake et al., PRL, 853 (3)

14 Uniform flux Laser-assisted tunneling Study laser-assisted tunneling in the presence of a magnet field gradient 87 Initial state: atoms ( Rb) in 3D lattice only populate even sites even odd res/() (khz) 8 4 B x 3 4 B (mg/m) Atom population in odd sites vs. modulation frequency.5 n odd () (khz) Large range of values accessible! M. Aidelsburger et al., PRL, 853 (3) similar work: H. Miyake et al., PRL, 853 (3) Uniform flux Hamiltonian Realization of the Hofstadter-Harper Hamiltonian Ĥ = Ke i m,nâ m+,nâm,n + Jâ m,n+âm,n +h.c. X m,n k, k, J + _ Scheme allows for the realization of an effective uniform flux of = / K B x M. Aidelsburger et al., PRL, 853 (3) similar work: H. Miyake et al., PRL, 853 (3)

15 Uniform flux Local observable Classical: Charged particle in magnetic field e - B Uniform flux Local observable Classical: Charged particle in magnetic field e - Quantum Analogue: B Initial State: Single Atom in the ground state J D C J y i = Ai + Di p of a tilted plaquette. A B

16 Uniform flux Local observable Classical: Charged particle in magnetic field e - Quantum Analogue: B Initial State: Single Atom in the ground state J D C J y i = Ai + Di p of a tilted plaquette. A B Switch on running-wave to induce tunneling J D A K e i K C J B Uniform flux A Lattice of Plaquettes Using two superlattices, we realize a lattice whose elementary cell is a 4-site plaquette.

17 Uniform flux Mean atom position Site resolved detection along one direction S. Fölling et al., Nature (7); J. Sebby-Strabley et al., PRL (7) Uniform flux Mean atom position Site resolved detection along one direction bandmapping bandmapping S. Fölling et al., Nature (7); J. Sebby-Strabley et al., PRL (7) Site resolved detection in plaquettes D C A B

18 Uniform flux Mean atom position Site resolved detection along one direction bandmapping S. Fölling et al., Nature (7); J. Sebby-Strabley et al., PRL (7) Site resolved detection in plaquettes D C A B Mean atom position along x and y hxi = N A + N B + N C N D d x N and hy i = N A N B + N C + N D d y N Uniform flux Cyclotron orbit Quantum analogue of cyclotron orbit. D A v C B Ydy -. Time (ms) Xd x Parameters: J/h =.5kHz K/h =.3kHz D/h = 4.5kHz

19 Uniform flux Uniformity of the flux Observation of the uniformity of the effective flux: Superlattice potential shifted by one lattice constant Uniform flux Uniformity of the flux Observation of the uniformity of the effective flux: Superlattice potential shifted by one lattice constant

20 Uniform flux Uniformity of the flux Observation of the uniformity of the effective flux: Superlattice potential shifted by one lattice constant. Ydy -. Time (ms) Xd x Uniform flux Uniformity of the flux Observation of the uniformity of the effective flux: Superlattice potential shifted by one lattice constant Ydy. -. Time (ms) Xd x Ydy. -. Time (ms) Xd x

21 Uniform flux Uniformity of the flux Observation of the uniformity of the effective flux: Superlattice potential shifted by one lattice constant Ydy. -. Time (ms) Xd x Same chirality!! Ydy. -. Time (ms) Xd x Uniform flux Quantum Spin Hall Hamiltonian Value of the flux depends on the internal state of the atom "i = F =,m F = i B-field gradient tilted lattice potential

22 Uniform flux Quantum Spin Hall Hamiltonian Value of the flux depends on the internal state of the atom "i = F =,m F = i #i = F =,m F = i B-field gradient B-field gradient tilted lattice potential tilted lattice potential Uniform flux Quantum Spin Hall Hamiltonian Value of the flux depends on the internal state of the atom "i = F =,m F = i #i = F =,m F = i B-field gradient B-field gradient tilted lattice potential tilted lattice potential Spin-dependent optical potential: ()

23 Uniform flux Quantum Spin Hall Hamiltonian Value of the flux depends on the internal state of the atom "i = F =,m F = i #i = F =,m F = i B-field gradient B-field gradient tilted lattice potential tilted lattice potential Spin-dependent optical potential: () Spin-dependent complex tunneling amplitudes: Ke i mn () Ke i mn Uniform flux Quantum Spin Hall Hamiltonian Value of the flux depends on the internal state of the atom "i = F =,m F = i #i = F =,m F = i B-field gradient B-field gradient tilted lattice potential tilted lattice potential Spin-dependent optical potential: () Spin-dependent complex tunneling amplitudes: Ke i mn () Ke i mn Spin-dependent effective magnetic field: = / () = /

24 Uniform flux Quantum Spin Hall Hamiltonian Time-reversal-symmetric quantum spin Hall Hamiltonian: Ĥ ",# = Ke ±i m,nâ m+,nâm,n + Jâ m,n+âm,n X m,n +h.c. Bernevig and Zhang, PRL 96, 68 (6); N. Goldman et al., PRL () Uniform flux Quantum Spin Hall Hamiltonian Time-reversal-symmetric quantum spin Hall Hamiltonian: Ĥ ",# = Ke ±i m,nâ m+,nâm,n + Jâ m,n+âm,n X m,n +h.c. k, k, J + _ K B x " = / Bernevig and Zhang, PRL 96, 68 (6); N. Goldman et al., PRL ()

25 Uniform flux Quantum Spin Hall Hamiltonian Time-reversal-symmetric quantum spin Hall Hamiltonian: Ĥ ",# = Ke ±i m,nâ m+,nâm,n + Jâ m,n+âm,n X m,n +h.c. k, k, J + _ - _ K B x B x " = / # = / Bernevig and Zhang, PRL 96, 68 (6); N. Goldman et al., PRL () Uniform flux Spin-dependent cyclotron orbit Spin up: D C A B v "i =( Ai + Di)/ p Ydy. -. Time (ms) Xd x

26 Uniform flux Spin-dependent cyclotron orbit Spin up: D C A B v "i =( Ai + Di)/ p Ydy. -. Time (ms) Xd x Spin down: D C A v B #i =( Bi + Ci)/ p Uniform flux Spin-dependent cyclotron orbit Spin up: D C A B v "i =( Ai + Di)/ p Ydy. -. Time (ms) Xd x Spin down:. D C A B v #i =( Bi + Ci)/ p Ydy Time (ms) Xd x

27 Uniform flux Spin-dependent cyclotron orbit Spin up:. D C A B v "i =( Ai + Di)/ p Ydy -. Time (ms) Xd x Opposite chirality! Spin down:. D C A B v #i =( Bi + Ci)/ p Ydy Time (ms) Xd x Observation of chiral currents in bosonic flux ladders M. Atala et al., arxiv:4.89

28 Flux Ladder Flux ladder: experimental realization i i 3 i i k, i i resonant laser-assisted tunneling:!! = /~ Spatial dependent phase factors k, y J 3 i i i i K i i 3 i i 3 i i i i Uniform flux n = n / = / x Experiment: M. Atala et al., arxiv:4.89 (4) Theory: D. Hügel, B. Paredes, PRA 89, 369 (4) E. Orignac & T. Giamarchi PRB 64, 4455 () A. Tokuno & A. Georges arxiv:43.43 R. Wei & E. Mueller arxiv:45.3 Flux Ladder Flux ladder: experimental realization k, y J i i 3 i i i i K 3 i i i i 3 i i k, i i i Minimal 3 System for orbital magnetism i i i resonant laser-assisted tunneling:!! = /~ Spatial dependent phase factors Uniform flux n = n / = / x Experiment: M. Atala et al., arxiv:4.89 (4) Theory: D. Hügel, B. Paredes, PRA 89, 369 (4) E. Orignac & T. Giamarchi PRB 64, 4455 () A. Tokuno & A. Georges arxiv:43.43 R. Wei & E. Mueller arxiv:45.3

29 Flux Ladder Flux Ladder Hamiltonian Hamiltonian of the system written in a simpler theory gauge d x L R d y J e -i J e -i J e -i J e i J e i J e i H = J X` K X` e i`' â `+;Lâ`;L + e i`' â `+;Râ`;R â `;Lâ`;R +h.c. J e -i J e i J e -i J e i Flux: =' K Flux Ladder Flux Ladder Hamiltonian Hamiltonian of the system written in a simpler theory gauge d x L R d y J e -i J e -i J e -i J e i J e i J e i H = J X` K X` e i`' â `+;Lâ`;L + e i`' â `+;Râ`;R â `;Lâ`;R +h.c. J e -i J e i J e -i J e i Flux: =' Define: K â q;µ = X` e iq`â`;µ, and solve for the ansatz q i =( q â q;l + qâ q;r ) i

30 Flux Ladder Ladder Band Structure q =Jcos(q)cos(') ± q K 4J sin (')sin (q) d x L R d y J e -i J e i K Flux Ladder Ladder Band Structure q =Jcos(q)cos(') ± Two energy bands q K 4J sin (')sin (q) d x L R d y J e -i J e i K

31 Flux Ladder Ladder Band Structure q =Jcos(q)cos(') ± Two energy bands q K 4J sin (')sin (q) =' = / K/J= K/J=. d y L d x R Energy (J) q (/d y ) Energy (J) q (/d y ) K/J=.8 K/J= J e -i K J e i Energy (J) - - Energy (J) q (/d y ) q (/d y ) Flux Ladder Ladder Band Structure q =Jcos(q)cos(') ± Two energy bands q K 4J sin (')sin (q) =' = / K/J= K/J=. d y L d x R Energy (J) Energy (J) Critical point at K/J = p q (/d y ) q (/d y ) - K/J=.8 K/J= J e -i K J e i Energy (J) - - Energy (J) q (/d y ) q (/d y )

32 Flux Ladder Probability Currents in Ladder d x L R d y Current along the legs: ĵ ỳ ;µ = i â `+;µâ`;µh`!`+;µ ~ h.c µ = (L=left,R=right) J e -i K J e i In the experiment total current is measured j L = N leg Âj y l;l l Chiral current: j C = j L j R Flux Ladder Phase Diagram Chiral current j C (a.u.) Meissner phase K/J.5.5 Vortex phase Flux see E. Orignac & T. Giamarchi PRB 64, 4455 ()

33 Flux Ladder Phase Diagram Chiral current j C (a.u.) Meissner phase K/J.5.5 Vortex phase j C (a.u.) K/J= Flux C Flux see E. Orignac & T. Giamarchi PRB 64, 4455 () Flux Ladder Phase Diagram Chiral current j C (a.u.) Meissner phase Experiment K/J.5 (K/J)C.5 Vortex phase j C (a.u.) K/J= Flux j C (a.u.) C Flux see E. Orignac & T. Giamarchi PRB 64, 4455 ()

34 Flux Ladder Phase Diagram Chiral Chiral current current j C (a.u.) j C (a.u.) Experiment.5 Meissner Meissner phase phase Experiment 4 Meissner phase L R K/J K/J Vortex Vortex phase phase (K/J)C (K/J)C K/J 3 Vortex phase j C (a.u.) j C (a.u.) K/J= Flux K/J=..4 C C Flux.6.8 Flux j C (a.u.) j C (a.u.) Atom density (a.u.) see E. Orignac & T. Giamarchi PRB 64, 4455 () Flux ladder Spin-orbit coupling - short digression The flux ladder Hamiltonian can be mapped into a spin-orbit coupled system Left right legs are mapped into pseudo-spins: â`;r! â`;# â`;l! â`;" Spin-Momentum locking: D. Hügel, B. Paredes, PRA 89, 369 (4) Continuum: I. B. Spielman Nature 47, 83 ()

35 Flux ladder Spin-orbit coupling - short digression The flux ladder Hamiltonian can be mapped into a spin-orbit coupled system Left right legs are mapped into pseudo-spins: â`;r! â`;# â`;l! â`;" k, L = "i R = #i k, Spin-Momentum locking: D. Hügel, B. Paredes, PRA 89, 369 (4) Continuum: I. B. Spielman Nature 47, 83 () Flux ladder Spin-orbit coupling - short digression The flux ladder Hamiltonian can be mapped into a spin-orbit coupled system Left right legs are mapped into pseudo-spins: â`;r! â`;# â`;l! â`;" k, k, L = "i R = #i L = "i R = #i k, k, Spin-Momentum locking: D. Hügel, B. Paredes, PRA 89, 369 (4) Continuum: I. B. Spielman Nature 47, 83 ()

36 Spin-orbit coupling - short digression Flux ladder The flux ladder Hamiltonian can be mapped into a spin-orbit coupled system Left right legs are mapped into pseudo-spins: a `;R! a `;# a `;L! a `;" q K/J -qk/j Spin-Momentum locking: D. Hügel, B. Paredes, PRA 89, 369 (4) Continuum: I. B. Spielman Nature 47, 83 () Current Measurements: Sequence Flux Ladder How to measure currents in our setup? project the state into isolated double wells S. Trotzky et al. Nature Physics 8, 35 () S. Kessler & F. Marquardt, arxiv: () J K Groundstate Josephson oscillations in double wells

37 Flux Ladder Current Measurements: Sequence How to measure currents in our setup? project the state into isolated double wells S. Trotzky et al. Nature Physics 8, 35 () S. Kessler & F. Marquardt, arxiv: () J Project Isolated doublewells K Groundstate Josephson oscillations in double wells Flux Ladder Current Measurements: Sequence How to measure currents in our setup? project the state into isolated double wells S. Trotzky et al. Nature Physics 8, 35 () S. Kessler & F. Marquardt, arxiv: () J Project Isolated doublewells Hold in double wells for a time t K Groundstate Josephson oscillations in double wells

38 Flux Ladder Current Measurements: Sequence How to measure currents in our setup? project the state into isolated double wells S. Trotzky et al. Nature Physics 8, 35 () S. Kessler & F. Marquardt, arxiv: () Project Hold in double wells for a time t J Isolated doublewells Measure even-odd population in double well K Groundstate Josephson oscillations in double wells Flux Ladder Double well oscillations - currents In the experiment we measure the average of all the oscillations on either side of the ladder: n even;µ (t) = [ + (n even;µ() n odd;µ ())cos(!t) j µ J/~ sin(!t)] L R Even site Odd site Even site Odd site

39 Flux Ladder Oscillations in double wells Prepare ground state of the flux ladder with K/J= and project into isolated double wells.6 n odd;l n odd;r Time (ms) Flux Ladder Oscillations in double wells Prepare ground state of the flux ladder with K/J= and project into isolated double wells n odd;l n odd;r Time (ms) n odd;l n odd;r Reversed flux Time (ms) When inverting the flux the current gets reversed

40 Zero flux ladders Prepare ground state of the ladder with zero flux project into isolated double wells.6 n odd;l n odd;r Time (ms) Flux Ladder Extracting the Chiral current The chiral current can be reliably calculated by n even;µ (t) = [ + (n even;µ() n odd;µ ())cos(!t) j µ J/~ sin(!t)] n even;l (t) n even;r (t) = j C J/~ sin(!t)

41 Flux Ladder Extracting the Chiral current The chiral current can be reliably calculated by n even;l (t) n even;r (t) = j C J/~ sin(!t) Chiral current j C (a.u.)..8.4 Vortex phase Meissner phase 3 K/J Flux Ladder Experimental Results - Momentum Distribution.5 Vortex phase Meissner phase Peak separation (/d y ) Momentum k y (/d y ) K/J 3 3 K/J

42 Summary and Outlook New detection method for probability currents Measurement of Chiral Edge States in Ladders Identification of Meissner-like effect in bosonic ladder Outlook: Entering the strongly correlated regime Chiral Mott Insulators Spin Meissner effect Connection of chiral ladder states to Hoftstadter model edge states Spin-Orbit Coupling in D E. Orignac & T. Giamarchi PRB 64, 4455 () Dhar, A et al., PRA 85, 46 () Petrescu, A. & Le Hur, K. PRL, 56 (3) A Tokuno & A Georges, arxiv:43.43 Probing Band Topology

43 Measuring the Zak-Berry s Phase of Topological Bands M. Atala et al., Nature Physics (3) Berry Phase Berry Phase in Quantum Mechanics (R)! e i(' Berry+' dyn ) (R) Adiabatic evolution through closed loop I ' Berry = C I ' Berry = I A n (R)dR = i hn(r) r R n(r)i dr C A n (R) da Berry Phase M.V. Berry, Proc. R. Soc. A (984) Berry connection A n (R) =ihn(r) r R n(r)i Berry curvature n,µ µ A n,µ Example: Spin-/ particle in magnetic field

44 Berry Phase Berry Phase for Periodic Potentials k(r) =e ikr u k (r) Bloch wave in periodic potential Adiabatic motion in momentum space generates Berry phase! ky kx Mention Problem with going on a line is generally NOT A LOOP IN PARAMETER SPACE! Berry Phase Berry Phase for Periodic Potentials k(r) =e ikr u k (r) Bloch wave in periodic potential Adiabatic motion in momentum space generates Berry phase! ky ky kx kx Mention Problem with going on a line is generally NOT A LOOP IN PARAMETER SPACE!

45 Berry Phase Berry Phase for Periodic Potentials k(r) =e ikr u k (r) Bloch wave in periodic potential Adiabatic motion in momentum space generates Berry phase! ky ky ky kx kx kx Mention Problem with going on a line is generally NOT A LOOP IN PARAMETER SPACE! Berry Phase Berry Phase for Periodic Potentials k(r) =e ikr u k (r) Bloch wave in periodic potential Adiabatic motion in momentum space generates Berry phase! ky ky ky Berry phase is fundamental to characterize topology of energy bands kx n Chern = I BZ kx A k dk = Z BZ kx k d k xy = n Chern e /h Chern Number (Topological Invariant) Quantized Hall Conductance Thouless, Kohmoto, den Nijs, and Nightingale (TKNN), PRL 98 Kohmoto Ann. of Phys. 985 Mention Problem with going on a line is generally NOT A LOOP IN PARAMETER SPACE!

46 Berry Phase Berry Phase for Periodic Potentials k(r) =e ikr u k (r) Bloch wave in periodic potential Adiabatic motion in momentum space generates Berry phase! ky ky ky Berry phase is fundamental to characterize topology of energy bands kx n Chern = I BZ kx A k dk = Z BZ kx k d k xy = n Chern e /h Chern Number (Topological Invariant) Quantized Hall Conductance Thouless, Kohmoto, den Nijs, and Nightingale (TKNN), PRL 98 Kohmoto Ann. of Phys. 985 What is the extension to D? Mention Problem with going on a line is generally NOT A LOOP IN PARAMETER SPACE! Berry Phase Zak Phase D Brillouin Zone ky kx going straight means going around! Band structure has torus topology!

47 Berry Phase Zak Phase D Brillouin Zone ky kx going straight means going around! Band structure has torus topology! ' Zak = i Z k +G k hu k u k i dk Zak Phase - the D Berry Phase J. Zak, Phys. Rev. Lett. 6, 747 (989) Berry Phase Zak Phase D Brillouin Zone ky kx going straight means going around! Band structure has torus topology! ' Zak = i Z k +G k hu k u k i dk Zak Phase - the D Berry Phase J. Zak, Phys. Rev. Lett. 6, 747 (989) Non-trivial Zak phase: Topological Band Edge States (for finite system) Domain walls with fractional quantum numbers R. Jackiw and C. Rebbi, Phys. Rev. D 3, 3398 (976) J. Goldstone and F. Wilczek, Phys. Rev. Lett. 47, 986 (98)

48 Berry Phase Su-Shrieffer-Heeger Model (SSH) Polyacetylene W. P. Su, J. R. Schrieffer & A. J. Heeger Phys. Rev. Lett. 4, 698 (979). H SSH = Â n Jâ n ˆb n + J â n ˆb n + h.c. Berry Phase Su-Shrieffer-Heeger Model (SSH) Polyacetylene W. P. Su, J. R. Schrieffer & A. J. Heeger Phys. Rev. Lett. 4, 698 (979). H SSH = Â n Jâ n ˆb n + J â n ˆb n + h.c. Two topologically distinct phases: D: J>J D: J >J J J J J J J J J J J

49 Berry Phase Su-Shrieffer-Heeger Model (SSH) Polyacetylene W. P. Su, J. R. Schrieffer & A. J. Heeger Phys. Rev. Lett. 4, 698 (979). H SSH = Â n Jâ n ˆb n + J â n ˆb n + h.c. Two topologically distinct phases: D: J>J D: J >J J J J J J J J J J J ' Zak = ' D Zak ' D Zak = Topological properties: domain wall features fractionalized excitations Zak phase difference ' Zak is gauge-invariant Berry Phase SSH Energy Bands - Eigenstates V(x) x d a n- b n- a n b n a n+ b n+ J J J J J J J

50 Berry Phase SSH Energy Bands - Eigenstates V(x) x d a n- b n- a n b n a n+ b n+...ababa... Lattice Structure... J J J J J J J X x x = X x e ikx ( k k e ikd/ Berry Phase SSH Energy Bands - Eigenstates V(x) x d a n- b n- a n b n a n+ b n+...ababa... Lattice Structure... x Hamiltonian: J J J J J J J apple X x k k x = X x k k e ikx ( k = k k k k e ikd/ with k = Je ikd/ + J e ikd/ = k e i k

51 Berry Phase SSH Energy Bands - Eigenstates...ABABA... Lattice Structure... X x = X ( e ikx k x x k e ikd/ Eigenstates k, = p ± e i k k, /4 Energy k /4 /d /d /d /d Berry Phase SSH Energy Bands - Eigenstates...ABABA... Lattice Structure... X x = X ( e ikx k x x k e ikd/ Eigenstates k, = p ± e i k k, /4 Energy k /4 /d /d /d /d Adiabatic evolution in momentum space

52 Berry Phase SSH Energy Bands - Eigenstates...ABABA... Lattice Structure... X x = X ( e ikx k x x k e ikd/ Eigenstates k, = p ± e i k k, /4 Energy k /4 /d /d /d /d Adiabatic evolution in momentum space Berry Phase SSH Energy Bands - Eigenstates...ABABA... Lattice Structure... X x = X ( e ikx k x x k e ikd/ Eigenstates k, = p ± e i k k, /4 Energy k /4 /d /d /d /d ' Zak = i Z k +G k ( k@ k k + k@ k k ) dk Zak Phase SSH Model

53 Berry Phase SSH Energy Bands - Eigenstates...ABABA... Lattice Structure... X x = X ( e ikx k x x k e ikd/ Eigenstates k, = p ± e i k k, /4 Energy k /4 /d /d /d /d ' Zak = Z G+k k k dk Berry Phase SSH Energy Bands - Eigenstates...ABABA... Lattice Structure... X x = X ( e ikx k x x k e ikd/ Eigenstates k, = p ± e i k k, /4 D: Energy k /4 /d /d /d /d D: J>J ' D Zak =

54 Berry Phase SSH Energy Bands - Eigenstates...ABABA... Lattice Structure... X x = X ( e ikx k x x k e ikd/ Eigenstates k, = p ± e i k k, /4 D: Energy k /4 D: /d /d /d /d D: J>J ' D Zak = D: J >J ' D Zak = Berry Phase Realization with ultracold atoms H SSH = Â n Ja nb n + J a nb n + h.c. 767 nm 534 nm D: J>J D: J >J Phase shift J J J J J J J J J J ' Zak = ' D Zak ' D Zak =

55 Berry Phase D: J>J Measuring the Berry-Zak Phase (SSH Model) Spin-dependent Bloch oscillations + Ramsey interferometry /4 Energy k /4 /d /d /d /d Prepare BEC in state,ki = #, i, with =", # Berry Phase Measuring the Berry-Zak Phase (SSH Model) D: J>J /4 Energy k /4 /d /d /d /d MW /-pulse Create coherent superposition p ( ", i + #, i)

56 Berry Phase Measuring the Berry-Zak Phase (SSH Model) D: J>J /4 Energy k /4 /d /d /d /d MW /-pulse Create coherent superposition p ( ", i + #, i) Spin components with opposite magnetic moments! Berry Phase Measuring the Berry-Zak Phase (SSH Model) D: J>J /4 Energy k /4 /d /d /d /d Closed Loop in k-space Apply magnetic field gradient! adiabatic evolution in momentum space

57 Berry Phase Measuring the Berry-Zak Phase (SSH Model) D: J>J /4 Energy k /4 /d /d /d /d Closed Loop in k-space Apply magnetic field gradient! adiabatic evolution in momentum space Berry Phase Measuring the Berry-Zak Phase (SSH Model) D: J>J /4 Energy k /4 /d /d /d /d ' Zak = ' D Zak + ' dyn + ' Zeeman

58 Berry Phase Measuring the Berry-Zak Phase (SSH Model) D: J>J /4 Energy k /4 /d /d ' Zak = ' D Zak + ' X dyn + ' Zeeman /d /d Z ' dyn = E(t)/~ dt E(k) =E( k) Berry Phase Measuring the Berry-Zak Phase (SSH Model) D: J>J D: J >J /4 Energy k /4 /d /d /d /d MW -pulse Apply Spin-Echo pulse + dimerization change

59 Berry Phase Measuring the Berry-Zak Phase (SSH Model) D: J>J D: J >J /4 Energy k /4 /d /d /d /d MW -pulse Apply Spin-Echo pulse + dimerization change Berry Phase Measuring the Berry-Zak Phase (SSH Model) D: J >J /4 Energy k /4 /d /d /d /d Apply magnetic field gradient! adiabatic evolution in momentum space

60 Berry Phase Measuring the Berry-Zak Phase (SSH Model) D: J >J /4 Energy k /4 /d /d /d /d Apply magnetic field gradient! adiabatic evolution in momentum space Berry Phase Measuring the Berry-Zak Phase (SSH Model) D: J >J /4 Energy k /4 /d /d /d /d ' Zak = ' D Zak ' D Zak + ' Zeeman

61 Berry Phase Measuring the Berry-Zak Phase (SSH Model) D: J >J /4 Energy k /4 /d /d /d /d ' Zak = ' D Zak Spin-Echo pulse ' D Zak + ' Zeeman X Berry Phase Measuring the Berry-Zak Phase (SSH Model) D: J >J /4 Energy k /4 /d /d /d /d MW /-pulse, with phase MW Detect phase difference with Ramsey interferometry ' Zak = ' D Zak ' D Zak

62 Berry Phase Reference measurement Phase of reference fringe: Fraction in / 3/ Microwave pulse MW () ' 6= Average of five individual measurements Exp. imperfections: - Small detuning of the MW-pulse - Magnetic field drifts Berry Phase Measuring the Zak Phase (SSH Model) Measured Topological invariant: Zak phase difference ' D Zak ' D Zak = Fraction in / 3/ Microwave pulse MW () ' Zak =.97() obtained from 4 independent measurements

63 Berry Phase Measuring the Zak Phase (SSH Model) Measured Topological invariant: Zak phase difference ' D Zak ' D Zak = Fraction in Zak / 3/ Microwave pulse MW () 5 5 Data set 4 Occurences ' Zak =.97() obtained from 4 independent measurements Geometric Phase Fractional Zak Phase Zak Phase becomes fractional for heteropolar dimerization!

64 SSH Measuring Fractional Charge Probability Density of Eigenstates Lattice Topology Mode function Topologically Trivial Lattice site Mode function Lattice site Topologically Non-Trivial SSH Fractional Charge /4 Energy k /4 /d /d /d /d R. Rajaraman & J. Bell, Phys. Lett B 98, Nucl. Phys. B 983

65 SSH Fractional Charge /4 Energy k /4 /d /d /d /d R. Rajaraman & J. Bell, Phys. Lett B 98, Nucl. Phys. B 983 SSH Fractional Charge /4. Energy k Density.5 /d /d / /d Lattice Site /d R. Rajaraman & J. Bell, Phys. Lett B 98, Nucl. Phys. B 983

66 SSH Fractional Charge /4. Energy k Density.5 /d Always one atom /4 on the Lattice Site /dedge! /d /d R. Rajaraman & J. Bell, Phys. Lett B 98, Nucl. Phys. B 983 Aharonov-Bohm Interferometer for Measuring Berry Curvature

67 Band Topology Lattice: A and B degenerate sublattices H = H JÂ R 3 Â i= â R ˆb R+d i + h.c. Hexagonal Lattices Real Space Lowest energy bands: Reciprocal Space Dirac points at the corners of the first BZ k y A. Castro Neto et al., Rev. Mod. Phys. 8, 9 (9) cold atoms: hexagonal - K. Sengtsock (Hamburg), brick wall - T. Esslinger (Zürich) k x Band Topology Scalar & Geometric Features Band structure characterized by scalar & geometric features! Eigenstates: Bloch waves y q,n (r)=e iqr u q,n (r) Scalar Features Dispersion relation E q,n Geometric Features Berry connection A n (q)=ihu q,n q u q,n i Berry curvature W n (q)= q A n (q) e z k y ' k x

68 Band Topolgy Aharonov Bohm Interferometer in Momentum Space Real Space y B I x j AB = q h A(r)dr = q h A(r) d r C S j AB = q h Z BdS = p F/F Z Aharonov-Bohm Phase Band Topolgy Aharonov Bohm Interferometer in Momentum Space Real Space Momentum Space B y q y I x j AB = q h A(r)dr = q h A(r) d r C S j AB = q h Z BdS = p F/F Z Aharonov-Bohm Phase I j Berry = C q x Z A n (q)dq = A n (r) ds q S q Z j Berry = Berry Phase W n (q)ds q

69 Band Topology Berry Curvature in Hexagonal Lattices Berry curvature concentrated to Dirac cones, alternating in sign! Breaking time reversal or inversion symmetry gaps Dirac cones and spreads Berry curvature out Hexagonal Lattice Hamiltonian D f (q) H(q)= f (q) D Expanding momenta close to K Dirac point q H( q)= x + i q y q x i q y ' Eigenstates u ± K, q = e iq(q)/ ± e iq(q)/ Band Topology Berry Phases in Graphene Berry Phase around K-Dirac cone I j Berry,K = C A(q)dq = p Berry Phase around K -Dirac cone j Berry,K = p k y K K ' k x

70 Band Topology The Interferometer k y k x /,, /, MW t Forces applied by lattice acceleration and magnetic gradients! Band Topology The Interferometer k y k x /,, /, MW t Forces applied by lattice acceleration and magnetic gradients!

71 Band Topology The Interferometer k y k x /,, /, MW t Forces applied by lattice acceleration and magnetic gradients! Band Topology The Interferometer k y k x /,, /, MW t Forces applied by lattice acceleration and magnetic gradients!

72 Band Topology The Interferometer k y k x /,, /, MW t Forces applied by lattice acceleration and magnetic gradients! Band Topology Interferometry Results 3 k y k x

73 Band Topology Interferometry Results 3 k y k x Band Topology Interferometry Results 3 k y k x

74 Band Topology Stückelberg Interferometry Lattice acceleration allows for arbitrary path choice Has allowed us to detect off-diagonal Berry connection through Wilson loops! Outlook Rectified Flux, Hofstadter Butterfly Novel Correlated Phases in Strong Fields, Transport Measurements Adiabatic loading schemes Spectroscopy of Hoftstadter bands Novel Topological Insulators Image Edge States - directly/spectroscopically Measure spatially resolved full current distribution Non-equilibrium dynamics in gauge fields Thermalization?

75 Gauge Field Team From left to right: Christian Schweizer Monika Aidelsburger I.B. Michael Lohse Marcos Atala Julio Barreiro D Berry Curvature Interferometer Team Lucia Duca Tracy Li Martin Reitter Monika Schleier-Smith IB Ulrich Schneider

76

LECTURE 3 - Artificial Gauge Fields

LECTURE 3 - Artificial Gauge Fields LECTURE 3 - Artificial Gauge Fields SSH model - the simplest Topological Insulator Probing the Zak Phase in the SSH model - Bulk-Edge correspondence in 1d - Aharonov Bohm Interferometry for Measuring Band

More information

Quantum Quenches in Chern Insulators

Quantum Quenches in Chern Insulators Quantum Quenches in Chern Insulators Nigel Cooper Cavendish Laboratory, University of Cambridge CUA Seminar M.I.T., November 10th, 2015 Marcello Caio & Joe Bhaseen (KCL), Stefan Baur (Cambridge) M.D. Caio,

More information

Experimental Reconstruction of the Berry Curvature in a Floquet Bloch Band

Experimental Reconstruction of the Berry Curvature in a Floquet Bloch Band Experimental Reconstruction of the Berry Curvature in a Floquet Bloch Band Christof Weitenberg with: Nick Fläschner, Benno Rem, Matthias Tarnowski, Dominik Vogel, Dirk-Sören Lühmann, Klaus Sengstock Rice

More information

Experimental reconstruction of the Berry curvature in a topological Bloch band

Experimental reconstruction of the Berry curvature in a topological Bloch band Experimental reconstruction of the Berry curvature in a topological Bloch band Christof Weitenberg Workshop Geometry and Quantum Dynamics Natal 29.10.2015 arxiv:1509.05763 (2015) Topological Insulators

More information

Magnetic fields and lattice systems

Magnetic fields and lattice systems Magnetic fields and lattice systems Harper-Hofstadter Hamiltonian Landau gauge A = (0, B x, 0) (homogeneous B-field). Transition amplitude along x gains y-dependence: J x J x e i a2 B e y = J x e i Φy

More information

Introduction to topological insulators. Jennifer Cano

Introduction to topological insulators. Jennifer Cano Introduction to topological insulators Jennifer Cano Adapted from Charlie Kane s Windsor Lectures: http://www.physics.upenn.edu/~kane/ Review article: Hasan & Kane Rev. Mod. Phys. 2010 What is an insulator?

More information

Exploring topological states with cold atoms and photons

Exploring topological states with cold atoms and photons Exploring topological states with cold atoms and photons Theory: Takuya Kitagawa, Dima Abanin, Erez Berg, Mark Rudner, Liang Fu, Takashi Oka, Immanuel Bloch, Eugene Demler Experiments: I. Bloch s group

More information

Phases of strongly-interacting bosons on a two-leg ladder

Phases of strongly-interacting bosons on a two-leg ladder Phases of strongly-interacting bosons on a two-leg ladder Marie Piraud Arnold Sommerfeld Center for Theoretical Physics, LMU, Munich April 20, 2015 M. Piraud Phases of strongly-interacting bosons on a

More information

Measuring many-body topological invariants using polarons

Measuring many-body topological invariants using polarons 1 Anyon workshop, Kaiserslautern, 12/15/2014 Measuring many-body topological invariants using polarons Fabian Grusdt Physics Department and Research Center OPTIMAS, University of Kaiserslautern, Germany

More information

Symmetry, Topology and Phases of Matter

Symmetry, Topology and Phases of Matter Symmetry, Topology and Phases of Matter E E k=λ a k=λ b k=λ a k=λ b Topological Phases of Matter Many examples of topological band phenomena States adiabatically connected to independent electrons: - Quantum

More information

Les états de bord d un. isolant de Hall atomique

Les états de bord d un. isolant de Hall atomique Les états de bord d un isolant de Hall atomique séminaire Atomes Froids 2/9/22 Nathan Goldman (ULB), Jérôme Beugnon and Fabrice Gerbier Outline Quantum Hall effect : bulk Landau levels and edge states

More information

Takuya Kitagawa, Dima Abanin, Immanuel Bloch, Erez Berg, Mark Rudner, Liang Fu, Takashi Oka, Eugene Demler

Takuya Kitagawa, Dima Abanin, Immanuel Bloch, Erez Berg, Mark Rudner, Liang Fu, Takashi Oka, Eugene Demler Exploring topological states with synthetic matter Takuya Kitagawa, Dima Abanin, Immanuel Bloch, Erez Berg, Mark Rudner, Liang Fu, Takashi Oka, Eugene Demler Harvard-MIT $$ NSF, AFOSR MURI, DARPA OLE,

More information

Topological Insulators and Superconductors

Topological Insulators and Superconductors Topological Insulators and Superconductors Lecture #1: Topology and Band Theory Lecture #: Topological Insulators in and 3 dimensions Lecture #3: Topological Superconductors, Majorana Fermions an Topological

More information

Organizing Principles for Understanding Matter

Organizing Principles for Understanding Matter Organizing Principles for Understanding Matter Symmetry Conceptual simplification Conservation laws Distinguish phases of matter by pattern of broken symmetries Topology Properties insensitive to smooth

More information

Mapping the Berry Curvature of Optical Lattices

Mapping the Berry Curvature of Optical Lattices Mapping the Berry Curvature of Optical Lattices Nigel Cooper Cavendish Laboratory, University of Cambridge Quantum Simulations with Ultracold Atoms ICTP, Trieste, 16 July 2012 Hannah Price & NRC, PRA 85,

More information

Laboratoire Kastler Brossel Collège de France, ENS, UPMC, CNRS. Artificial gauge potentials for neutral atoms

Laboratoire Kastler Brossel Collège de France, ENS, UPMC, CNRS. Artificial gauge potentials for neutral atoms Laboratoire Kastler Brossel Collège de France, ENS, UPMC, CNRS Artificial gauge potentials for neutral atoms Fabrice Gerbier Workshop Hadrons and Nuclear Physics meet ultracold atoms, IHP, Paris January

More information

Optical Flux Lattices for Cold Atom Gases

Optical Flux Lattices for Cold Atom Gases for Cold Atom Gases Nigel Cooper Cavendish Laboratory, University of Cambridge Artificial Magnetism for Cold Atom Gases Collège de France, 11 June 2014 Jean Dalibard (Collège de France) Roderich Moessner

More information

Correlated Phases of Bosons in the Flat Lowest Band of the Dice Lattice

Correlated Phases of Bosons in the Flat Lowest Band of the Dice Lattice Correlated Phases of Bosons in the Flat Lowest Band of the Dice Lattice Gunnar Möller & Nigel R Cooper Cavendish Laboratory, University of Cambridge Physical Review Letters 108, 043506 (2012) LPTHE / LPTMC

More information

(Noise) correlations in optical lattices

(Noise) correlations in optical lattices (Noise) correlations in optical lattices Dries van Oosten WA QUANTUM http://www.quantum.physik.uni mainz.de/bec The Teams The Fermions: Christoph Clausen Thorsten Best Ulrich Schneider Sebastian Will Lucia

More information

POEM: Physics of Emergent Materials

POEM: Physics of Emergent Materials POEM: Physics of Emergent Materials Nandini Trivedi L1: Spin Orbit Coupling L2: Topology and Topological Insulators Tutorials: May 24, 25 (2017) Scope of Lectures and Anchor Points: 1.Spin-Orbit Interaction

More information

Artificial Gauge Fields for Neutral Atoms

Artificial Gauge Fields for Neutral Atoms Artificial Gauge Fields for Neutral Atoms Simon Ristok University of Stuttgart 07/16/2013, Hauptseminar Physik der kalten Gase 1 / 29 Outline 1 2 3 4 5 2 / 29 Outline 1 2 3 4 5 3 / 29 What are artificial

More information

Topology and many-body physics in synthetic lattices

Topology and many-body physics in synthetic lattices Topology and many-body physics in synthetic lattices Alessio Celi Synthetic dimensions workshop, Zurich 20-23/11/17 Synthetic Hofstadter strips as minimal quantum Hall experimental systems Alessio Celi

More information

Artificial magnetism and optical flux lattices for ultra cold atoms

Artificial magnetism and optical flux lattices for ultra cold atoms Artificial magnetism and optical flux lattices for ultra cold atoms Gediminas Juzeliūnas Institute of Theoretical Physics and Astronomy,Vilnius University, Vilnius, Lithuania Kraków, QTC, 31 August 2011

More information

Topological insulators. Pavel Buividovich (Regensburg)

Topological insulators. Pavel Buividovich (Regensburg) Topological insulators Pavel Buividovich (Regensburg) Hall effect Classical treatment Dissipative motion for point-like particles (Drude theory) Steady motion Classical Hall effect Cyclotron frequency

More information

synthetic condensed matter systems

synthetic condensed matter systems Ramsey interference as a probe of synthetic condensed matter systems Takuya Kitagawa (Harvard) DimaAbanin i (Harvard) Mikhael Knap (TU Graz/Harvard) Eugene Demler (Harvard) Supported by NSF, DARPA OLE,

More information

Topological Bandstructures for Ultracold Atoms

Topological Bandstructures for Ultracold Atoms Topological Bandstructures for Ultracold Atoms Nigel Cooper Cavendish Laboratory, University of Cambridge New quantum states of matter in and out of equilibrium GGI, Florence, 12 April 2012 NRC, PRL 106,

More information

Loop current order in optical lattices

Loop current order in optical lattices JQI Summer School June 13, 2014 Loop current order in optical lattices Xiaopeng Li JQI/CMTC Outline Ultracold atoms confined in optical lattices 1. Why we care about lattice? 2. Band structures and Berry

More information

Synthetic topology and manybody physics in synthetic lattices

Synthetic topology and manybody physics in synthetic lattices Synthetic topology and manybody physics in synthetic lattices Alessio Celi EU STREP EQuaM May 16th, 2017 Atomtronics - Benasque Plan Integer Quantum Hall systems and Edge states Cold atom realizations:

More information

Synthetic Creutz-Hubbard model: interacting topological insulators with ultracold atoms

Synthetic Creutz-Hubbard model: interacting topological insulators with ultracold atoms interacting topological insulators Matteo Rizzi Johannes Gutenberg Universität Mainz J. Jünemann, et al., -- accepted on PRX ICTP Trieste, 14 September 2017 Motivation Topological phases of matter: academic

More information

Design and realization of exotic quantum phases in atomic gases

Design and realization of exotic quantum phases in atomic gases Design and realization of exotic quantum phases in atomic gases H.P. Büchler and P. Zoller Theoretische Physik, Universität Innsbruck, Austria Institut für Quantenoptik und Quanteninformation der Österreichischen

More information

Topological Insulators

Topological Insulators Topological Insulators Aira Furusai (Condensed Matter Theory Lab.) = topological insulators (3d and 2d) Outline Introduction: band theory Example of topological insulators: integer quantum Hall effect

More information

Topological phases of matter give rise to quantized physical quantities

Topological phases of matter give rise to quantized physical quantities Quantized electric multipole insulators Benalcazar, W. A., Bernevig, B. A., & Hughes, T. L. (2017). Quantized electric multipole insulators. Science, 357(6346), 61 66. Presented by Mark Hirsbrunner, Weizhan

More information

Spin-injection Spectroscopy of a Spin-orbit coupled Fermi Gas

Spin-injection Spectroscopy of a Spin-orbit coupled Fermi Gas Spin-injection Spectroscopy of a Spin-orbit coupled Fermi Gas Tarik Yefsah Lawrence Cheuk, Ariel Sommer, Zoran Hadzibabic, Waseem Bakr and Martin Zwierlein July 20, 2012 ENS Why spin-orbit coupling? A

More information

Interaction-induced Symmetry Protected Topological Phase in Harper-Hofstadter models

Interaction-induced Symmetry Protected Topological Phase in Harper-Hofstadter models Interaction-induced Symmetry Protected Topological Phase in Harper-Hofstadter models arxiv:1609.03760 Lode Pollet Dario Hügel Hugo Strand, Philipp Werner (Uni Fribourg) Algorithmic developments diagrammatic

More information

Ytterbium quantum gases in Florence

Ytterbium quantum gases in Florence Ytterbium quantum gases in Florence Leonardo Fallani University of Florence & LENS Credits Marco Mancini Giacomo Cappellini Guido Pagano Florian Schäfer Jacopo Catani Leonardo Fallani Massimo Inguscio

More information

Conference on Research Frontiers in Ultra-Cold Atoms. 4-8 May Generation of a synthetic vector potential in ultracold neutral Rubidium

Conference on Research Frontiers in Ultra-Cold Atoms. 4-8 May Generation of a synthetic vector potential in ultracold neutral Rubidium 3-8 Conference on Research Frontiers in Ultra-Cold Atoms 4-8 May 9 Generation of a synthetic vector potential in ultracold neutral Rubidium SPIELMAN Ian National Institute of Standards and Technology Laser

More information

Topological pumps and topological quasicrystals

Topological pumps and topological quasicrystals Topological pumps and topological quasicrstals PRL 109, 10640 (01); PRL 109, 116404 (01); PRL 110, 076403 (013); PRL 111, 6401 (013); PRB 91, 06401 (015); PRL 115, 195303 (015), PRA 93, 04387 (016), PRB

More information

ROTONS AND STRIPES IN SPIN-ORBIT COUPLED BECs

ROTONS AND STRIPES IN SPIN-ORBIT COUPLED BECs INT Seattle 5 March 5 ROTONS AND STRIPES IN SPIN-ORBIT COUPLED BECs Yun Li, Giovanni Martone, Lev Pitaevskii and Sandro Stringari University of Trento CNR-INO Now in Swinburne Now in Bari Stimulating discussions

More information

Effective Field Theories of Topological Insulators

Effective Field Theories of Topological Insulators Effective Field Theories of Topological Insulators Eduardo Fradkin University of Illinois at Urbana-Champaign Workshop on Field Theoretic Computer Simulations for Particle Physics and Condensed Matter

More information

Drag force and superfluidity in the supersolid striped phase of a spin-orbit-coupled Bose gas

Drag force and superfluidity in the supersolid striped phase of a spin-orbit-coupled Bose gas / 6 Drag force and superfluidity in the supersolid striped phase of a spin-orbit-coupled Bose gas Giovanni Italo Martone with G. V. Shlyapnikov Worhshop on Exploring Nuclear Physics with Ultracold Atoms

More information

Synthetic gauge fields in Bose-Einstein Condensates 1. Alexander Fetter Stanford University. University of Hannover, May 2015

Synthetic gauge fields in Bose-Einstein Condensates 1. Alexander Fetter Stanford University. University of Hannover, May 2015 Synthetic gauge fields in Bose-Einstein Condensates 1 Alexander Fetter Stanford University University of Hannover, May 2015 1. Two-component trapped spin-orbit coupled Bose-Einstein condensate (BEC) 2.

More information

Exploring long-range interacting quantum many-body systems with Rydberg atoms

Exploring long-range interacting quantum many-body systems with Rydberg atoms Exploring long-range interacting quantum many-body systems with Rydberg atoms Christian Groß Max-Planck-Institut für Quantenoptik Hannover, November 2015 Motivation: Quantum simulation Idea: Mimicking

More information

Exploring Topological Phases With Quantum Walks

Exploring Topological Phases With Quantum Walks Exploring Topological Phases With Quantum Walks Tk Takuya Kitagawa, Erez Berg, Mark Rudner Eugene Demler Harvard University References: PRA 82:33429 and PRB 82:235114 (2010) Collaboration with A. White

More information

Interplay of micromotion and interactions

Interplay of micromotion and interactions Interplay of micromotion and interactions in fractional Floquet Chern insulators Egidijus Anisimovas and André Eckardt Vilnius University and Max-Planck Institut Dresden Quantum Technologies VI Warsaw

More information

Floquet theory of photo-induced topological phase transitions: Application to graphene

Floquet theory of photo-induced topological phase transitions: Application to graphene Floquet theory of photo-induced topological phase transitions: Application to graphene Takashi Oka (University of Tokyo) T. Kitagawa (Harvard) L. Fu (Harvard) E. Demler (Harvard) A. Brataas (Norweigian

More information

Engineering Synthetic Gauge Fields, Weyl Semimetals, and Anyons

Engineering Synthetic Gauge Fields, Weyl Semimetals, and Anyons Engineering Synthetic Gauge Fields, Weyl Semimetals, and Anyons Φ q Φ q Φ q T. Dubček 1, M. Todorić 1, B. Klajn 1, C. J. Kennedy 2, L. Lu 2, R. Pezer 5, D. Radić 1, D. Jukić 4, W. Ketterle 2, M. Soljačić

More information

Magnetic Crystals and Helical Liquids in Alkaline-Earth 1D Fermionic Gases

Magnetic Crystals and Helical Liquids in Alkaline-Earth 1D Fermionic Gases Magnetic Crystals and Helical Liquids in Alkaline-Earth 1D Fermionic Gases Leonardo Mazza Scuola Normale Superiore, Pisa Seattle March 24, 2015 Leonardo Mazza (SNS) Exotic Phases in Alkaline-Earth Fermi

More information

The Quantum Spin Hall Effect

The Quantum Spin Hall Effect The Quantum Spin Hall Effect Shou-Cheng Zhang Stanford University with Andrei Bernevig, Taylor Hughes Science, 314,1757 2006 Molenamp et al, Science, 318, 766 2007 XL Qi, T. Hughes, SCZ preprint The quantum

More information

3.15. Some symmetry properties of the Berry curvature and the Chern number.

3.15. Some symmetry properties of the Berry curvature and the Chern number. 50 Phys620.nb z M 3 at the K point z M 3 3 t ' sin 3 t ' sin (3.36) (3.362) Therefore, as long as M 3 3 t ' sin, the system is an topological insulator ( z flips sign). If M 3 3 t ' sin, z is always positive

More information

Topological Phases of Matter Out of Equilibrium

Topological Phases of Matter Out of Equilibrium Topological Phases of Matter Out of Equilibrium Nigel Cooper T.C.M. Group, Cavendish Laboratory, University of Cambridge Solvay Workshop on Quantum Simulation ULB, Brussels, 18 February 2019 Max McGinley

More information

Distribution of Chern number by Landau level broadening in Hofstadter butterfly

Distribution of Chern number by Landau level broadening in Hofstadter butterfly Journal of Physics: Conference Series PAPER OPEN ACCESS Distribution of Chern number by Landau level broadening in Hofstadter butterfly To cite this article: Nobuyuki Yoshioka et al 205 J. Phys.: Conf.

More information

Ψ({z i }) = i<j(z i z j ) m e P i z i 2 /4, q = ± e m.

Ψ({z i }) = i<j(z i z j ) m e P i z i 2 /4, q = ± e m. Fractionalization of charge and statistics in graphene and related structures M. Franz University of British Columbia franz@physics.ubc.ca January 5, 2008 In collaboration with: C. Weeks, G. Rosenberg,

More information

Single particle Green s functions and interacting topological insulators

Single particle Green s functions and interacting topological insulators 1 Single particle Green s functions and interacting topological insulators Victor Gurarie Nordita, Jan 2011 Topological insulators are free fermion systems characterized by topological invariants. 2 In

More information

arxiv: v1 [cond-mat.other] 20 Apr 2010

arxiv: v1 [cond-mat.other] 20 Apr 2010 Characterization of 3d topological insulators by 2d invariants Rahul Roy Rudolf Peierls Centre for Theoretical Physics, 1 Keble Road, Oxford, OX1 3NP, UK arxiv:1004.3507v1 [cond-mat.other] 20 Apr 2010

More information

Philipp T. Ernst, Sören Götze, Jannes Heinze, Jasper Krauser, Christoph Becker & Klaus Sengstock. Project within FerMix collaboration

Philipp T. Ernst, Sören Götze, Jannes Heinze, Jasper Krauser, Christoph Becker & Klaus Sengstock. Project within FerMix collaboration Analysis ofbose Bose-Fermi Mixturesin in Optical Lattices Philipp T. Ernst, Sören Götze, Jannes Heinze, Jasper Krauser, Christoph Becker & Klaus Sengstock Project within FerMix collaboration Motivation

More information

Artificial electromagnetism and spin-orbit coupling for ultracold atoms

Artificial electromagnetism and spin-orbit coupling for ultracold atoms Artificial electromagnetism and spin-orbit coupling for ultracold atoms Gediminas Juzeliūnas Institute of Theoretical Physics and Astronomy,Vilnius University, Vilnius, Lithuania *******************************************************************

More information

Quantum simulation with SU(N) fermions: orbital magnetism and synthetic dimensions. Leonardo Fallani

Quantum simulation with SU(N) fermions: orbital magnetism and synthetic dimensions. Leonardo Fallani Quantum simulation with SU(N) fermions: orbital magnetism and synthetic dimensions Frontiers in Quantum Simulation with Cold Atoms, Seattle, April 1 st 2015 Leonardo Fallani Department of Physics and Astronomy

More information

team Hans Peter Büchler Nicolai Lang Mikhail Lukin Norman Yao Sebastian Huber

team Hans Peter Büchler Nicolai Lang Mikhail Lukin Norman Yao Sebastian Huber title 1 team 2 Hans Peter Büchler Nicolai Lang Mikhail Lukin Norman Yao Sebastian Huber motivation: topological states of matter 3 fermions non-interacting, filled band (single particle physics) topological

More information

Kouki Nakata. University of Basel. KN, S. K. Kim (UCLA), J. Klinovaja, D. Loss (2017) arxiv:

Kouki Nakata. University of Basel. KN, S. K. Kim (UCLA), J. Klinovaja, D. Loss (2017) arxiv: Magnon Transport Both in Ferromagnetic and Antiferromagnetic Insulating Magnets Kouki Nakata University of Basel KN, S. K. Kim (UCLA), J. Klinovaja, D. Loss (2017) arxiv:1707.07427 See also review article

More information

Adiabatic trap deformation for preparing Quantum Hall states

Adiabatic trap deformation for preparing Quantum Hall states Marco Roncaglia, Matteo Rizzi, and Jean Dalibard Adiabatic trap deformation for preparing Quantum Hall states Max-Planck Institut für Quantenoptik, München, Germany Dipartimento di Fisica del Politecnico,

More information

SSH Model. Alessandro David. November 3, 2016

SSH Model. Alessandro David. November 3, 2016 SSH Model Alessandro David November 3, 2016 Adapted from Lecture Notes at: https://arxiv.org/abs/1509.02295 and from article: Nature Physics 9, 795 (2013) Motivations SSH = Su-Schrieffer-Heeger Polyacetylene

More information

Topological Physics in Band Insulators. Gene Mele DRL 2N17a

Topological Physics in Band Insulators. Gene Mele DRL 2N17a Topological Physics in Band Insulators Gene Mele DRL 2N17a Electronic States of Matter Benjamin Franklin (University of Pennsylvania) That the Electrical Fire freely removes from Place to Place in and

More information

Creating novel quantum phases by artificial magnetic fields

Creating novel quantum phases by artificial magnetic fields Creating novel quantum phases by artificial magnetic fields Gunnar Möller Cavendish Laboratory, University of Cambridge Theory of Condensed Matter Group Cavendish Laboratory Outline A brief introduction

More information

Interferometric probes of quantum many-body systems of ultracold atoms

Interferometric probes of quantum many-body systems of ultracold atoms Interferometric probes of quantum many-body systems of ultracold atoms Eugene Demler Harvard University Collaborators: Dima Abanin, Thierry Giamarchi, Sarang Gopalakrishnan, Adilet Imambekov, Takuya Kitagawa,

More information

Introductory lecture on topological insulators. Reza Asgari

Introductory lecture on topological insulators. Reza Asgari Introductory lecture on topological insulators Reza Asgari Workshop on graphene and topological insulators, IPM. 19-20 Oct. 2011 Outlines -Introduction New phases of materials, Insulators -Theory quantum

More information

Floquet Topological Insulator:

Floquet Topological Insulator: Floquet Topological Insulator: Understanding Floquet topological insulator in semiconductor quantum wells by Lindner et al. Condensed Matter Journal Club Caltech February 12 2014 Motivation Motivation

More information

SYNTHETIC GAUGE FIELDS IN ULTRACOLD ATOMIC GASES

SYNTHETIC GAUGE FIELDS IN ULTRACOLD ATOMIC GASES Congresso Nazionale della Società Italiana di Fisica Università della Calabria 17/21 Settembre 2018 SYNTHETIC GAUGE FIELDS IN ULTRACOLD ATOMIC GASES Sandro Stringari Università di Trento CNR-INO - Bose-Einstein

More information

Spontaneous Loop Currents and Emergent Gauge Fields in Optical Lattices

Spontaneous Loop Currents and Emergent Gauge Fields in Optical Lattices IASTU Condensed Matter Seminar July, 2015 Spontaneous Loop Currents and Emergent Gauge Fields in Optical Lattices Xiaopeng Li ( 李晓鹏 ) CMTC/JQI University of Maryland [Figure from JQI website] Gauge fields

More information

Berry-phase Approach to Electric Polarization and Charge Fractionalization. Dennis P. Clougherty Department of Physics University of Vermont

Berry-phase Approach to Electric Polarization and Charge Fractionalization. Dennis P. Clougherty Department of Physics University of Vermont Berry-phase Approach to Electric Polarization and Charge Fractionalization Dennis P. Clougherty Department of Physics University of Vermont Outline Quick Review Berry phase in quantum systems adiabatic

More information

Learning about order from noise

Learning about order from noise Learning about order from noise Quantum noise studies of ultracold atoms Eugene Demler Harvard University Collaborators: Ehud Altman, Robert Cherng, Adilet Imambekov, Vladimir Gritsev, Mikhail Lukin, Anatoli

More information

From graphene to Z2 topological insulator

From graphene to Z2 topological insulator From graphene to Z2 topological insulator single Dirac topological AL mass U U valley WL ordinary mass or ripples WL U WL AL AL U AL WL Rashba Ken-Ichiro Imura Condensed-Matter Theory / Tohoku Univ. Dirac

More information

Adiabatic Control of Atomic Dressed States for Transport and Sensing

Adiabatic Control of Atomic Dressed States for Transport and Sensing Adiabatic Control of Atomic Dressed States for Transport and Sensing N. R. Cooper T.C.M. Group, Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 HE, United Kingdom A.

More information

Classification theory of topological insulators with Clifford algebras and its application to interacting fermions. Takahiro Morimoto.

Classification theory of topological insulators with Clifford algebras and its application to interacting fermions. Takahiro Morimoto. QMath13, 10 th October 2016 Classification theory of topological insulators with Clifford algebras and its application to interacting fermions Takahiro Morimoto UC Berkeley Collaborators Akira Furusaki

More information

3.14. The model of Haldane on a honeycomb lattice

3.14. The model of Haldane on a honeycomb lattice 4 Phys60.n..7. Marginal case: 4 t Dirac points at k=(,). Not an insulator. No topological index...8. case IV: 4 t All the four special points has z 0. We just use u I for the whole BZ. No singularity.

More information

Bloch, Landau, and Dirac: Hofstadter s Butterfly in Graphene. Philip Kim. Physics Department, Columbia University

Bloch, Landau, and Dirac: Hofstadter s Butterfly in Graphene. Philip Kim. Physics Department, Columbia University Bloch, Landau, and Dirac: Hofstadter s Butterfly in Graphene Philip Kim Physics Department, Columbia University Acknowledgment Prof. Cory Dean (now at CUNY) Lei Wang Patrick Maher Fereshte Ghahari Carlos

More information

Topological insulators

Topological insulators Oddelek za fiziko Seminar 1 b 1. letnik, II. stopnja Topological insulators Author: Žiga Kos Supervisor: prof. dr. Dragan Mihailović Ljubljana, June 24, 2013 Abstract In the seminar, the basic ideas behind

More information

Measuring Entanglement Entropy in Synthetic Matter

Measuring Entanglement Entropy in Synthetic Matter Measuring Entanglement Entropy in Synthetic Matter Markus Greiner Harvard University H A R V A R D U N I V E R S I T Y M I T CENTER FOR ULTRACOLD ATOMS Ultracold atom synthetic quantum matter: First Principles

More information

Ref: Bikash Padhi, and SG, Phys. Rev. Lett, 111, (2013) HRI, Allahabad,Cold Atom Workshop, February, 2014

Ref: Bikash Padhi, and SG, Phys. Rev. Lett, 111, (2013) HRI, Allahabad,Cold Atom Workshop, February, 2014 Cavity Optomechanics with synthetic Landau Levels of ultra cold atoms: Sankalpa Ghosh, Physics Department, IIT Delhi Ref: Bikash Padhi, and SG, Phys. Rev. Lett, 111, 043603 (2013)! HRI, Allahabad,Cold

More information

Adiabatic particle pumping and anomalous velocity

Adiabatic particle pumping and anomalous velocity Adiabatic particle pumping and anomalous velocity November 17, 2015 November 17, 2015 1 / 31 Literature: 1 J. K. Asbóth, L. Oroszlány, and A. Pályi, arxiv:1509.02295 2 D. Xiao, M-Ch Chang, and Q. Niu,

More information

INT International Conference, Frontiers in Quantum Simulation with Cold Atoms, March 30 April 2, 2015

INT International Conference, Frontiers in Quantum Simulation with Cold Atoms, March 30 April 2, 2015 Ana Maria Rey INT International Conference, Frontiers in Quantum Simulation with Cold Atoms, March 30 April 2, 2015 The JILA Sr team: Jun Ye A. Koller Theory: S. Li X. Zhang M. Bishof S. Bromley M. Martin

More information

Berry Phase Effects on Charge and Spin Transport

Berry Phase Effects on Charge and Spin Transport Berry Phase Effects on Charge and Spin Transport Qian Niu 牛谦 University of Texas at Austin 北京大学 Collaborators: Shengyuan Yang, C.P. Chuu, D. Xiao, W. Yao, D. Culcer, J.R.Shi, Y.G. Yao, G. Sundaram, M.C.

More information

Manipulation of Dirac cones in artificial graphenes

Manipulation of Dirac cones in artificial graphenes Manipulation of Dirac cones in artificial graphenes Gilles Montambaux Laboratoire de Physique des Solides, Orsay CNRS, Université Paris-Sud, France - Berry phase Berry phase K K -p Graphene electronic

More information

Vortex States in a Non-Abelian Magnetic Field

Vortex States in a Non-Abelian Magnetic Field Vortex States in a Non-Abelian Magnetic Field Predrag Nikolić George Mason University Institute for Quantum Matter @ Johns Hopkins University SESAPS November 10, 2016 Acknowledgments Collin Broholm IQM

More information

Quantum noise studies of ultracold atoms

Quantum noise studies of ultracold atoms Quantum noise studies of ultracold atoms Eugene Demler Harvard University Collaborators: Ehud Altman, Robert Cherng, Adilet Imambekov, Vladimir Gritsev, Mikhail Lukin, Anatoli Polkovnikov Funded by NSF,

More information

Experimental realization of spin-orbit coupled degenerate Fermi gas. Jing Zhang

Experimental realization of spin-orbit coupled degenerate Fermi gas. Jing Zhang Hangzhou Workshop on Quantum Matter, 2013 Experimental realization of spin-orbit coupled degenerate Fermi gas Jing Zhang State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of

More information

Cooperative Phenomena

Cooperative Phenomena Cooperative Phenomena Frankfurt am Main Kaiserslautern Mainz B1, B2, B4, B6, B13N A7, A9, A12 A10, B5, B8 Materials Design - Synthesis & Modelling A3, A8, B1, B2, B4, B6, B9, B11, B13N A5, A7, A9, A12,

More information

What is a topological insulator? Ming-Che Chang Dept of Physics, NTNU

What is a topological insulator? Ming-Che Chang Dept of Physics, NTNU What is a topological insulator? Ming-Che Chang Dept of Physics, NTNU A mini course on topology extrinsic curvature K vs intrinsic (Gaussian) curvature G K 0 G 0 G>0 G=0 K 0 G=0 G

More information

Is the composite fermion a Dirac particle?

Is the composite fermion a Dirac particle? Is the composite fermion a Dirac particle? Dam T. Son (University of Chicago) Cold atoms meet QFT, 2015 Ref.: 1502.03446 Plan Plan Composite fermion: quasiparticle of Fractional Quantum Hall Effect (FQHE)

More information

Nonequilibrium dynamics of interacting systems of cold atoms

Nonequilibrium dynamics of interacting systems of cold atoms Nonequilibrium dynamics of interacting systems of cold atoms Eugene Demler Harvard University Collaborators: Ehud Altman, Anton Burkov, Robert Cherng, Adilet Imambekov, Vladimir Gritsev, Mikhail Lukin,

More information

Manipulation of Artificial Gauge Fields for Ultra-cold Atoms

Manipulation of Artificial Gauge Fields for Ultra-cold Atoms Manipulation of Artificial Gauge Fields for Ultra-cold Atoms Shi-Liang Zhu ( 朱诗亮 ) slzhu@scnu.edu.cn Laboratory of Quantum Information Technology and School of Physics South China Normal University, Guangzhou,

More information

Topological Physics in Band Insulators II

Topological Physics in Band Insulators II Topological Physics in Band Insulators II Gene Mele University of Pennsylvania Topological Insulators in Two and Three Dimensions The canonical list of electric forms of matter is actually incomplete Conductor

More information

Characterization of Topological States on a Lattice with Chern Number

Characterization of Topological States on a Lattice with Chern Number Characterization of Topological States on a Lattice with Chern Number The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation

More information

Vortices and other topological defects in ultracold atomic gases

Vortices and other topological defects in ultracold atomic gases Vortices and other topological defects in ultracold atomic gases Michikazu Kobayashi (Kyoto Univ.) 1. Introduction of topological defects in ultracold atoms 2. Kosterlitz-Thouless transition in spinor

More information

Berry s phase in Hall Effects and Topological Insulators

Berry s phase in Hall Effects and Topological Insulators Lecture 6 Berry s phase in Hall Effects and Topological Insulators Given the analogs between Berry s phase and vector potentials, it is not surprising that Berry s phase can be important in the Hall effect.

More information

Quantum simulation of an extra dimension

Quantum simulation of an extra dimension Quantum simulation of an extra dimension Alessio Celi based on PRL 108, 133001 (2012), with O. Boada, J.I. Latorre, M. Lewenstein, Quantum Technologies Conference III QTC III, Warzsawa, 14/09/2012 p. 1/14

More information

The Center for Ultracold Atoms at MIT and Harvard Theoretical work at CUA. NSF Visiting Committee, April 28-29, 2014

The Center for Ultracold Atoms at MIT and Harvard Theoretical work at CUA. NSF Visiting Committee, April 28-29, 2014 The Center for Ultracold Atoms at MIT and Harvard Theoretical work at CUA NSF Visiting Committee, April 28-29, 2014 Paola Cappellaro Mikhail Lukin Susanne Yelin Eugene Demler CUA Theory quantum control

More information

Two Dimensional Chern Insulators, the Qi-Wu-Zhang and Haldane Models

Two Dimensional Chern Insulators, the Qi-Wu-Zhang and Haldane Models Two Dimensional Chern Insulators, the Qi-Wu-Zhang and Haldane Models Matthew Brooks, Introduction to Topological Insulators Seminar, Universität Konstanz Contents QWZ Model of Chern Insulators Haldane

More information

Controlling Spin Exchange Interactions of Ultracold Atoms in Optical Lattices

Controlling Spin Exchange Interactions of Ultracold Atoms in Optical Lattices Controlling Spin Exchange Interactions of Ultracold Atoms in Optical Lattices The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters.

More information

Quantum Physics III (8.06) Spring 2007 FINAL EXAMINATION Monday May 21, 9:00 am You have 3 hours.

Quantum Physics III (8.06) Spring 2007 FINAL EXAMINATION Monday May 21, 9:00 am You have 3 hours. Quantum Physics III (8.06) Spring 2007 FINAL EXAMINATION Monday May 21, 9:00 am You have 3 hours. There are 10 problems, totalling 180 points. Do all problems. Answer all problems in the white books provided.

More information

Room temperature topological insulators

Room temperature topological insulators Room temperature topological insulators Ronny Thomale Julius-Maximilians Universität Würzburg ERC Topolectrics SFB Tocotronics Synquant Workshop, KITP, UC Santa Barbara, Nov. 22 2016 Correlated electron

More information