Bloch, Landau, and Dirac: Hofstadter s Butterfly in Graphene. Philip Kim. Physics Department, Columbia University

Size: px
Start display at page:

Download "Bloch, Landau, and Dirac: Hofstadter s Butterfly in Graphene. Philip Kim. Physics Department, Columbia University"

Transcription

1 Bloch, Landau, and Dirac: Hofstadter s Butterfly in Graphene Philip Kim Physics Department, Columbia University

2

3 Acknowledgment Prof. Cory Dean (now at CUNY) Lei Wang Patrick Maher Fereshte Ghahari Carlos Forsythe Prof. Jim Hone Prof. Ken Shepard Theory: P. Moon & M. Koshino (Tohoku) hbn samples: T. Taniguchi & K. Watanabe (NIMS) Funding:

4 Bloch Waves: Periodic Structure & Band Filling Zeitschrift für Physik, 52, 555 (1929) Felix Bloch Periodic Lattice e A 0 : unit cell volume a k Block Waves:

5 Bloch Waves: Periodic Structure & Band Filling Zeitschrift für Physik, 52, 555 (1929) Felix Bloch Periodic Lattice e A 0 : unit cell volume e F a n(e) k Block Waves: Band Filling factor MacDonald (1983)

6 Landau Levels: Quantization of Cyclotron Orbits 2-D Density of States Zeitschrift für Physik, 64, 629 (1930) 2-dimensional electron systems Lev Landau Free electron under magnetic field e F Energy and orbit are quantized: Each Landau orbit contains magnetic flux quanta e Massively degenerated energy level Landau level filling fraction:

7 Harper s Equation: Competition of Two Length Scales Proc. Phys. Soc. Lond. A (1955) Tight binding on 2D Square lattice with magnetic field a Harper s Equation Two competing length scales: a : lattice periodicity l B : magnetic periodicity

8 Commensuration / Incommensuration of Two Length Scales Spirograph a / l B = p/q a l B

9 Hofstadter s Butterfly Harper s Equation 1 When b=p/q, where p, q are coprimes, each LL splits into q sub-bands that are p-fold degenerate f (in unit of f 0 ) Energy bands develop fractal structure when magnetic length is of order the periodic unit cell 0 1 energy (in unit of band width)

10 Energy Gaps in the Butterfly: Wannier Diagram Hofstadter s Energy Spectrum 1 1 Wannier, Phys. Status Solidi. 88, 757 (1978) Tracing Gaps in f and n t : slope, s : offset e /W 1/5 1/4 1/3 1/ /4 1/3 1/2 1 n 0 : # of state per unit cell f : magnetic flux in unit cell n : electron density Diophantine equation for gaps

11 Streda Formula and TKNN Integers What is the physical meaning of the integers s and t? Band Filling factor Quantum Hall Conductance

12 Experimental Challenges Bo (Tesla) 1 Obvious technical challenge: e /W a = 1nm Disorder, temperature Hofstadter (1976) unit cell (nm)

13 Experimental Search For Butterfly -Schlosser et al, Semicond. Sci. Technol. (1996) Albrecht et al, PRL. (2001); Geisler et al, PRL (2004) Unit cell limited to ~ nm limited field and density range accessible, weak perturbation Do not observe fully quantized mingaps in fractal spectrum

14 Electrons in Graphene: Effective Dirac Fermions Graphene, ultimate 2-d conducting system Band structure of graphene Novoselov et al. (2004) Effective Dirac Equations H eff v 0 F kx ik y k ik x 0 y v F k K K E k y k x Paul Dirac DiVincenzo and Mele, PRB (1984); Semenov, PRL (1984)

15 Graphene: Under Magnetic Fields Energy Energy (ev) E N = 3 N = N = k x ' k y ' N = 0 DOS N = N = -2 N = Quantum Hall Effect B (T) Quantization Condition Novoselov et al (2005) Zhang et al (2005)

16 Hexa Boron Nitride: Polymorphic Graphene a 0 = nm a 0 = nm graphene Boron Nitride Comparison of h-bn and SiO 2 Band Gap Dielectric Constant Optical Phonon Energy Structure BN 5.5 ev ~4 >150 mev Layered crystal SiO2 8.9 ev mev Amorphous

17 Stacking graphene on hbn Polymer coating/cleaving/peeling Dean et al. Nature Nano (2009) Micro-manipulated Deposition Co-lamination techniques Submicron size precision Atomically smooth interface Remove polymer Anealing Mobility > 100,000 cm 2 V -1 s -1

18 Graphen/hBN Moire Pattern 5 o 10 o 30 o 20 o 15 o

19 Moire pattern in Graphene on hbn: a new route to Hofstadter s butterfly? Graphene on BN exhibits clear Moiré pattern q=5.7 o q=2.0 o q=0.56 o 9.0 nm 13.4 nm Xue et al, Nature Mater (2011); Decker et al Nano Lett (2011) Minigap formation near the Dirac point due to Moire superlattice momentum

20 Transport Measurement Graphene with Moire Superlattice UHV AFM (Ishigami group) l T = 14.6 nm ~ 30 V ~ 30 V k Zone folding and mini-gap formation Dirac point 1 mm Moiré l AFM = 15.5 nm Second Dirac point E

21 B (Tesla) B (Tesla) Abnormal Landau Fan Diagram in Bilayer on hbn Special Samples with Large Moire Unit Cell Low Magnetic field regime I V xy I V xx R xx (kw) T= mk K T= mk K R xy (kw) V G (Volts) V G (Volts)

22 B (T) B (T) How to Read Normal Landau Fan Diagram? Landau Fan Diagram for typical graphene 0 5 R xx R xx (kw) 5 n =2 n =4 10 n =-10 R xx (kw) 1 n = n = n (cm -2 ) R xy R xy (kw) n = n = n (cm -2 ) 0

23 B (Tesla) Quantum Hall Effect in Graphene Moire R XX (kw) R XY (kw) Quantum Hall-like Transport Landau level filling factor R xx V xx I T=300 mk R xx (kw) Quantum Hall conductance B=18T R XX R XY V G (Volts) filling fraction (n) -16

24 Quantum Hall Effect with Two Integer Numbers n/n 0 : density per unit cell; f : flux per unit cell (t, s) R xx (kw) 0 15 (-4, 1) (-4, 2) (-3, 2) (-2, 1) (-1, 1) (-2, 2) (-1, 2) (3, 0) (4, 0) Quantization of xx and xy (-2, -2) (-4, 0) (-3, 1) (-8, 0) (8, 0) (-12, 0) (12, 0) (-16, 0) (16, 0)

25 B (T) Quantum Hall Effect with Two Integer Numbers B (T) t = -8 t = -4 R XX (kw) t =-6 t =-4 t =-2 t =0 t = -8 t = -4 t =-4 t =-2 R XY (kw) t =-6 t =0 t = -12 t =-8 t = -16 t = -12 t =-8 t = -16 R XX R XY s =-4 V g (V) s =-4 V g (V) s =-2 s = 0 s =-2 s = 0

26 B (T) Quantum Hall Effect with Two Integer Numbers B (T) t =-6 R XX (kw) t =-6 R XY (kw) t =-8 t =-8 R XX R XY V g (V) s =-2 V g (V) s =-2

27 R XY (kw) B (T) R XY (kw) Quantum Hall Effect with Two Integer Numbers 5 4 (1/6)h/e 2 t =-6 R XY (kw) 3 t = B (Tesla) t =-6, s = (1/8)h/e 2 R XY V g (V) s = B (Tesla) t =-8, s =-2

28 Recursive QHE near the Fractal Bands Higher quality sample with lower disorder σ xy 1/2 Hall conductivity across Fractal Band 1/2 1/3 1/4 1/5 1/ Recursive QHE! 20 At the Fractal Bands Sign reversal of xy xx (e 2 /h) xy (e 2 /h ) Large enhancement of xx f / f 0

29 Summary and Outlook Graphene on hbn with high quality interface created Moire pattern with supper lattice modulation Quantum Hall conductance are determined by two TKNN integers. Anomalous Hall conductance at the fractal bands Open Questions: Elementary excitation of the fractal gaps? Role of interactions, Hofstadter Butterfly in FQHE? Energy spectroscopy is needed for the next step

30 Fractal Gaps: Energy Scales Fractal Gap Size 83 K Large odd integer gap indicates (fractal) quantum Hall ferromagentism!!

31 SU(4) Quantum Hall Ferromagnet in Graphene K K E k y k x Magnetic Wave Function X Spin Valley spin q < SU(4) y K yk yk y K Degree of freedom: Spin (1/2), Valleys Under magnetic fields: pseudospin = valley spin Yang, Das Sarma and MacDonal, PRB (2006); Possible SU(4) Quantum Hall Ferromagnetism at the Neutrality FerroMagnetic Anti FerroMagnetic Kekule Distortion Charge Density Wave

32 Nature of Quantum Hall Ferromagnetism in Graphene Partial list of references Electron Interaction Fractal Spectrum

33 Graphene Franctional Quantum Hall Effect Dean et al. Nature Physics (2011) 5 mm Fractional Quantum Hall Gaps

34 B (T) Fractional Quantum Hall Effect in Moire Superlattice Single layer graphene on 20 mk up to 35 T Hall Conductivity xy (ms) Fractional Quantum Hall Effect 2/3 R xx R xy 4/3 5/3 7/3 V g (V) 4/3 5/3 7/3 8/3 10/3 (n) 13/3 xx (e 2 /h)

35 Acknowledgment Prof. Cory Dean (now at CUNY) Lei Wang Patrick Maher Fereshte Ghahari Carlos Forsythe Prof. Jim Hone Prof. Ken Shepard Theory: P. Moon & M. Koshino (Tohoku) hbn samples: T. Taniguchi & K. Watanabe (NIMS) Funding:

Commensuration and Incommensuration in the van der Waals Heterojunctions. Philip Kim Physics Department Harvard University

Commensuration and Incommensuration in the van der Waals Heterojunctions. Philip Kim Physics Department Harvard University Commensuration and Incommensuration in the van der Waals Heterojunctions Philip Kim Physics Department Harvard University Rise of 2D van der Waals Systems graphene Metal-Chalcogenide Bi 2 Sr 2 CaCu 2 O

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:1.138/nature12186 S1. WANNIER DIAGRAM B 1 1 a φ/φ O 1/2 1/3 1/4 1/5 1 E φ/φ O n/n O 1 FIG. S1: Left is a cartoon image of an electron subjected to both a magnetic field, and a square periodic lattice.

More information

Coulomb Drag in Graphene

Coulomb Drag in Graphene Graphene 2017 Coulomb Drag in Graphene -Toward Exciton Condensation Philip Kim Department of Physics, Harvard University Coulomb Drag Drag Resistance: R D = V 2 / I 1 Onsager Reciprocity V 2 (B)/ I 1 =

More information

TOPOLOGICAL BANDS IN GRAPHENE SUPERLATTICES

TOPOLOGICAL BANDS IN GRAPHENE SUPERLATTICES TOPOLOGICAL BANDS IN GRAPHENE SUPERLATTICES 1) Berry curvature in superlattice bands 2) Energy scales for Moire superlattices 3) Spin-Hall effect in graphene Leonid Levitov (MIT) @ ISSP U Tokyo MIT Manchester

More information

Effects of Interactions in Suspended Graphene

Effects of Interactions in Suspended Graphene Effects of Interactions in Suspended Graphene Ben Feldman, Andrei Levin, Amir Yacoby, Harvard University Broken and unbroken symmetries in the lowest LL: spin and valley symmetries. FQHE Discussions with

More information

Graphite, graphene and relativistic electrons

Graphite, graphene and relativistic electrons Graphite, graphene and relativistic electrons Introduction Physics of E. graphene Y. Andrei Experiments Rutgers University Transport electric field effect Quantum Hall Effect chiral fermions STM Dirac

More information

Band Structure Engineering of 2D materials using Patterned Dielectric Superlattices

Band Structure Engineering of 2D materials using Patterned Dielectric Superlattices Band Structure Engineering of 2D materials using Patterned Dielectric Superlattices Carlos Forsythe 1, Xiaodong Zhou 1,2, Takashi Taniguchi 3, Kenji Watanabe 3, Abhay Pasupathy 1, Pilkyung Moon 4, Mikito

More information

Distribution of Chern number by Landau level broadening in Hofstadter butterfly

Distribution of Chern number by Landau level broadening in Hofstadter butterfly Journal of Physics: Conference Series PAPER OPEN ACCESS Distribution of Chern number by Landau level broadening in Hofstadter butterfly To cite this article: Nobuyuki Yoshioka et al 205 J. Phys.: Conf.

More information

What is a topological insulator? Ming-Che Chang Dept of Physics, NTNU

What is a topological insulator? Ming-Che Chang Dept of Physics, NTNU What is a topological insulator? Ming-Che Chang Dept of Physics, NTNU A mini course on topology extrinsic curvature K vs intrinsic (Gaussian) curvature G K 0 G 0 G>0 G=0 K 0 G=0 G

More information

Magnetic fields and lattice systems

Magnetic fields and lattice systems Magnetic fields and lattice systems Harper-Hofstadter Hamiltonian Landau gauge A = (0, B x, 0) (homogeneous B-field). Transition amplitude along x gains y-dependence: J x J x e i a2 B e y = J x e i Φy

More information

Quantum Hall Effect in Graphene p-n Junctions

Quantum Hall Effect in Graphene p-n Junctions Quantum Hall Effect in Graphene p-n Junctions Dima Abanin (MIT) Collaboration: Leonid Levitov, Patrick Lee, Harvard and Columbia groups UIUC January 14, 2008 Electron transport in graphene monolayer New

More information

Tunable Moiré Bands and Strong Correlations in Small-Twist-Angle Bilayer Graphene

Tunable Moiré Bands and Strong Correlations in Small-Twist-Angle Bilayer Graphene Tunable Moiré Bands and Strong Correlations in Small-Twist-Angle Bilayer Graphene Authors: Kyounghwan Kim 1, Ashley DaSilva 2, Shengqiang Huang 3, Babak Fallahazad 1, Stefano Larentis 1, Takashi Taniguchi

More information

Graphene and Quantum Hall (2+1)D Physics

Graphene and Quantum Hall (2+1)D Physics The 4 th QMMRC-IPCMS Winter School 8 Feb 2011, ECC, Seoul, Korea Outline 2 Graphene and Quantum Hall (2+1)D Physics Lecture 1. Electronic structures of graphene and bilayer graphene Lecture 2. Electrons

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Dirac cones reshaped by interaction effects in suspended graphene D. C. Elias et al #1. Experimental devices Graphene monolayers were obtained by micromechanical cleavage of graphite on top of an oxidized

More information

Zooming in on the Quantum Hall Effect

Zooming in on the Quantum Hall Effect Zooming in on the Quantum Hall Effect Cristiane MORAIS SMITH Institute for Theoretical Physics, Utrecht University, The Netherlands Capri Spring School p.1/31 Experimental Motivation Historical Summary:

More information

Spin Superfluidity and Graphene in a Strong Magnetic Field

Spin Superfluidity and Graphene in a Strong Magnetic Field Spin Superfluidity and Graphene in a Strong Magnetic Field by B. I. Halperin Nano-QT 2016 Kyiv October 11, 2016 Based on work with So Takei (CUNY), Yaroslav Tserkovnyak (UCLA), and Amir Yacoby (Harvard)

More information

Supplementary Figure 1 Magneto-transmission spectra of graphene/h-bn sample 2 and Landau level transition energies of three other samples.

Supplementary Figure 1 Magneto-transmission spectra of graphene/h-bn sample 2 and Landau level transition energies of three other samples. Supplementary Figure 1 Magneto-transmission spectra of graphene/h-bn sample 2 and Landau level transition energies of three other samples. (a,b) Magneto-transmission ratio spectra T(B)/T(B 0 ) of graphene/h-bn

More information

The Quantum Hall Effects

The Quantum Hall Effects The Quantum Hall Effects Integer and Fractional Michael Adler July 1, 2010 1 / 20 Outline 1 Introduction Experiment Prerequisites 2 Integer Quantum Hall Effect Quantization of Conductance Edge States 3

More information

V bg

V bg SUPPLEMENTARY INFORMATION a b µ (1 6 cm V -1 s -1 ) 1..8.4-3 - -1 1 3 mfp (µm) 1 8 4-3 - -1 1 3 Supplementary Figure 1: Mobility and mean-free path. a) Drude mobility calculated from four-terminal resistance

More information

Vortices and vortex states of Rashba spin-orbit coupled condensates

Vortices and vortex states of Rashba spin-orbit coupled condensates Vortices and vortex states of Rashba spin-orbit coupled condensates Predrag Nikolić George Mason University Institute for Quantum Matter @ Johns Hopkins University March 5, 2014 P.N, T.Duric, Z.Tesanovic,

More information

Cloning of Dirac fermions in graphene superlattices

Cloning of Dirac fermions in graphene superlattices Cloning of Dirac fermions in graphene superlattices 1 L. A. Ponomarenko, R. V. Gorbachev2*, G. L. Yu1, D. C. Elias1, R. Jalil2, A. A. Patel3, A. Mishchenko1, A. S. Mayorov1, C. R. Woods1, J. R. Wallbank3,

More information

Basic Semiconductor Physics

Basic Semiconductor Physics Chihiro Hamaguchi Basic Semiconductor Physics With 177 Figures and 25 Tables Springer 1. Energy Band Structures of Semiconductors 1 1.1 Free-Electron Model 1 1.2 Bloch Theorem 3 1.3 Nearly Free Electron

More information

Hartmut Buhmann. Physikalisches Institut, EP3 Universität Würzburg Germany

Hartmut Buhmann. Physikalisches Institut, EP3 Universität Würzburg Germany Hartmut Buhmann Physikalisches Institut, EP3 Universität Würzburg Germany Part I and II Insulators and Topological Insulators HgTe crystal structure Part III quantum wells Two-Dimensional TI Quantum Spin

More information

Beyond the Quantum Hall Effect

Beyond the Quantum Hall Effect Beyond the Quantum Hall Effect Jim Eisenstein California Institute of Technology School on Low Dimensional Nanoscopic Systems Harish-chandra Research Institute January February 2008 Outline of the Lectures

More information

Les états de bord d un. isolant de Hall atomique

Les états de bord d un. isolant de Hall atomique Les états de bord d un isolant de Hall atomique séminaire Atomes Froids 2/9/22 Nathan Goldman (ULB), Jérôme Beugnon and Fabrice Gerbier Outline Quantum Hall effect : bulk Landau levels and edge states

More information

Topological Insulators

Topological Insulators Topological Insulators Aira Furusai (Condensed Matter Theory Lab.) = topological insulators (3d and 2d) Outline Introduction: band theory Example of topological insulators: integer quantum Hall effect

More information

The Quantum Spin Hall Effect

The Quantum Spin Hall Effect The Quantum Spin Hall Effect Shou-Cheng Zhang Stanford University with Andrei Bernevig, Taylor Hughes Science, 314,1757 2006 Molenamp et al, Science, 318, 766 2007 XL Qi, T. Hughes, SCZ preprint The quantum

More information

Spring College on Computational Nanoscience May Electric Transport in Carbon Nanotubes and Graphene

Spring College on Computational Nanoscience May Electric Transport in Carbon Nanotubes and Graphene 145-8 Spring College on Computational Nanoscience 17-8 May 1 Electric Transport in Carbon Nanotubes and Graphene Philip KIM Dept. of Physics, Columbia University New York U.S.A. Electric Transport in Nanotubes

More information

Quantum Hall effect and Landau level crossing of Dirac fermions in trilayer graphene Supplementary Information

Quantum Hall effect and Landau level crossing of Dirac fermions in trilayer graphene Supplementary Information Quantum Hall effect and Landau level crossing of Dirac fermions in trilayer graphene Supplementary Information Thiti Taychatanapat, Kenji Watanabe, Takashi Taniguchi, Pablo Jarillo-Herrero Department of

More information

Physics in two dimensions in the lab

Physics in two dimensions in the lab Physics in two dimensions in the lab Nanodevice Physics Lab David Cobden PAB 308 Collaborators at UW Oscar Vilches (Low Temperature Lab) Xiaodong Xu (Nanoscale Optoelectronics Lab) Jiun Haw Chu (Quantum

More information

Berry Phase Effects on Electronic Properties

Berry Phase Effects on Electronic Properties Berry Phase Effects on Electronic Properties Qian Niu University of Texas at Austin Collaborators: D. Xiao, W. Yao, C.P. Chuu, D. Culcer, J.R.Shi, Y.G. Yao, G. Sundaram, M.C. Chang, T. Jungwirth, A.H.MacDonald,

More information

Introduction to topological insulators. Jennifer Cano

Introduction to topological insulators. Jennifer Cano Introduction to topological insulators Jennifer Cano Adapted from Charlie Kane s Windsor Lectures: http://www.physics.upenn.edu/~kane/ Review article: Hasan & Kane Rev. Mod. Phys. 2010 What is an insulator?

More information

Mesoscopic superlattices

Mesoscopic superlattices Mesoscopic superlattices Mesoscopic superlattices Periodic arrays of mesoscopic elements. Lateral superlattices can be imposed onto a 2DEG by lithographic techniques. One-dimensional superlattices Patterned

More information

Correlated 2D Electron Aspects of the Quantum Hall Effect

Correlated 2D Electron Aspects of the Quantum Hall Effect Correlated 2D Electron Aspects of the Quantum Hall Effect Magnetic field spectrum of the correlated 2D electron system: Electron interactions lead to a range of manifestations 10? = 4? = 2 Resistance (arb.

More information

Luttinger Liquid at the Edge of a Graphene Vacuum

Luttinger Liquid at the Edge of a Graphene Vacuum Luttinger Liquid at the Edge of a Graphene Vacuum H.A. Fertig, Indiana University Luis Brey, CSIC, Madrid I. Introduction: Graphene Edge States (Non-Interacting) II. III. Quantum Hall Ferromagnetism and

More information

Minimal Update of Solid State Physics

Minimal Update of Solid State Physics Minimal Update of Solid State Physics It is expected that participants are acquainted with basics of solid state physics. Therefore here we will refresh only those aspects, which are absolutely necessary

More information

Vortex States in a Non-Abelian Magnetic Field

Vortex States in a Non-Abelian Magnetic Field Vortex States in a Non-Abelian Magnetic Field Predrag Nikolić George Mason University Institute for Quantum Matter @ Johns Hopkins University SESAPS November 10, 2016 Acknowledgments Collin Broholm IQM

More information

Hartmut Buhmann. Physikalisches Institut, EP3 Universität Würzburg Germany

Hartmut Buhmann. Physikalisches Institut, EP3 Universität Würzburg Germany Hartmut Buhmann Physikalisches Institut, EP3 Universität Würzburg Germany Outline Insulators and Topological Insulators HgTe quantum well structures Two-Dimensional TI Quantum Spin Hall Effect experimental

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Trilayer graphene is a semimetal with a gate-tuneable band overlap M. F. Craciun, S. Russo, M. Yamamoto, J. B. Oostinga, A. F. Morpurgo and S. Tarucha

More information

Supplemental material for Effect of structural relaxation on the electronic structure of graphene on hexagonal boron nitride

Supplemental material for Effect of structural relaxation on the electronic structure of graphene on hexagonal boron nitride Supplemental material for Effect of structural relaxation on the electronic structure of graphene on hexagonal boron nitride G.J. Slotman, 1 M.M. van Wijk, 1 Pei-Liang Zhao, 2 A. Fasolino, 1 M.I. Katsnelson,

More information

Topological Properties of Quantum States of Condensed Matter: some recent surprises.

Topological Properties of Quantum States of Condensed Matter: some recent surprises. Topological Properties of Quantum States of Condensed Matter: some recent surprises. F. D. M. Haldane Princeton University and Instituut Lorentz 1. Berry phases, zero-field Hall effect, and one-way light

More information

Spin orbit interaction in graphene monolayers & carbon nanotubes

Spin orbit interaction in graphene monolayers & carbon nanotubes Spin orbit interaction in graphene monolayers & carbon nanotubes Reinhold Egger Institut für Theoretische Physik, Düsseldorf Alessandro De Martino Andreas Schulz, Artur Hütten MPI Dresden, 25.10.2011 Overview

More information

Topological Photonics with Heavy-Photon Bands

Topological Photonics with Heavy-Photon Bands Topological Photonics with Heavy-Photon Bands Vassilios Yannopapas Dept. of Physics, National Technical University of Athens (NTUA) Quantum simulations and many-body physics with light, 4-11/6/2016, Hania,

More information

Quantum Hall Effect in Vanishing Magnetic Fields

Quantum Hall Effect in Vanishing Magnetic Fields Quantum Hall Effect in Vanishing Magnetic Fields Wei Pan Sandia National Labs Sandia is a multi-mission laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department

More information

A BIT OF MATERIALS SCIENCE THEN PHYSICS

A BIT OF MATERIALS SCIENCE THEN PHYSICS GRAPHENE AND OTHER D ATOMIC CRYSTALS Andre Geim with many thanks to K. Novoselov, S. Morozov, D. Jiang, F. Schedin, I. Grigorieva, J. Meyer, M. Katsnelson A BIT OF MATERIALS SCIENCE THEN PHYSICS CARBON

More information

Nanostructured Carbon Allotropes as Weyl-Like Semimetals

Nanostructured Carbon Allotropes as Weyl-Like Semimetals Nanostructured Carbon Allotropes as Weyl-Like Semimetals Shengbai Zhang Department of Physics, Applied Physics & Astronomy Rensselaer Polytechnic Institute symmetry In quantum mechanics, symmetry can be

More information

Interaction-induced Symmetry Protected Topological Phase in Harper-Hofstadter models

Interaction-induced Symmetry Protected Topological Phase in Harper-Hofstadter models Interaction-induced Symmetry Protected Topological Phase in Harper-Hofstadter models arxiv:1609.03760 Lode Pollet Dario Hügel Hugo Strand, Philipp Werner (Uni Fribourg) Algorithmic developments diagrammatic

More information

Chemical Potential and Quantum Hall Ferromagnetism in Bilayer Graphene

Chemical Potential and Quantum Hall Ferromagnetism in Bilayer Graphene 7 July 2014 Chemical Potential and Quantum Hall Ferromagnetism in Bilayer Graphene Authors: Kayoung Lee 1, Babak Fallahazad 1, Jiamin Xue 1, David C. Dillen 1, Kyounghwan Kim 1, Takashi Taniguchi 2, Kenji

More information

Electron interactions in graphene in a strong magnetic field

Electron interactions in graphene in a strong magnetic field Electron interactions in graphene in a strong magnetic field Benoit Douçot Mark O. Goerbig Roderich Moessner K = K K CNRS and ENS Paris VI+XI cond-mat/0604554 Overview Recent experiments: integer QHE in

More information

Pseudospin Soliton in the ν=1 Bilayer Quantum Hall State. A. Sawada. Research Center for Low Temperature and Materials Sciences Kyoto University

Pseudospin Soliton in the ν=1 Bilayer Quantum Hall State. A. Sawada. Research Center for Low Temperature and Materials Sciences Kyoto University YKIS2007, Sawada Pseudospin Soliton in the ν=1 Bilayer Quantum Hall State A. Sawada Research Center for Low Temperature and Materials Sciences Kyoto University Collaborators Fukuda (Kyoto Univ.) K. Iwata

More information

Ferromagnetism and Anomalous Hall Effect in Graphene

Ferromagnetism and Anomalous Hall Effect in Graphene Ferromagnetism and Anomalous Hall Effect in Graphene Jing Shi Department of Physics & Astronomy, University of California, Riverside Graphene/YIG Introduction Outline Proximity induced ferromagnetism Quantized

More information

Dirac matter: Magneto-optical studies

Dirac matter: Magneto-optical studies Dirac matter: Magneto-optical studies Marek Potemski Laboratoire National des Champs Magnétiques Intenses Grenoble High Magnetic Field Laboratory CNRS/UGA/UPS/INSA/EMFL MOMB nd International Conference

More information

Topological Physics in Band Insulators II

Topological Physics in Band Insulators II Topological Physics in Band Insulators II Gene Mele University of Pennsylvania Topological Insulators in Two and Three Dimensions The canonical list of electric forms of matter is actually incomplete Conductor

More information

team Hans Peter Büchler Nicolai Lang Mikhail Lukin Norman Yao Sebastian Huber

team Hans Peter Büchler Nicolai Lang Mikhail Lukin Norman Yao Sebastian Huber title 1 team 2 Hans Peter Büchler Nicolai Lang Mikhail Lukin Norman Yao Sebastian Huber motivation: topological states of matter 3 fermions non-interacting, filled band (single particle physics) topological

More information

Fractional quantum Hall effect and duality. Dam T. Son (University of Chicago) Canterbury Tales of hot QFTs, Oxford July 11, 2017

Fractional quantum Hall effect and duality. Dam T. Son (University of Chicago) Canterbury Tales of hot QFTs, Oxford July 11, 2017 Fractional quantum Hall effect and duality Dam T. Son (University of Chicago) Canterbury Tales of hot QFTs, Oxford July 11, 2017 Plan Plan General prologue: Fractional Quantum Hall Effect (FQHE) Plan General

More information

Valley Hall effect in electrically spatial inversion symmetry broken bilayer graphene

Valley Hall effect in electrically spatial inversion symmetry broken bilayer graphene NPSMP2015 Symposium 2015/6/11 Valley Hall effect in electrically spatial inversion symmetry broken bilayer graphene Yuya Shimazaki 1, Michihisa Yamamoto 1, 2, Ivan V. Borzenets 1, Kenji Watanabe 3, Takashi

More information

Observation of neutral modes in the fractional quantum hall effect regime. Aveek Bid

Observation of neutral modes in the fractional quantum hall effect regime. Aveek Bid Observation of neutral modes in the fractional quantum hall effect regime Aveek Bid Department of Physics, Indian Institute of Science, Bangalore Nature 585 466 (2010) Quantum Hall Effect Magnetic field

More information

Topological insulator (TI)

Topological insulator (TI) Topological insulator (TI) Haldane model: QHE without Landau level Quantized spin Hall effect: 2D topological insulators: Kane-Mele model for graphene HgTe quantum well InAs/GaSb quantum well 3D topological

More information

Graphene and Carbon Nanotubes

Graphene and Carbon Nanotubes Graphene and Carbon Nanotubes 1 atom thick films of graphite atomic chicken wire Novoselov et al - Science 306, 666 (004) 100μm Geim s group at Manchester Novoselov et al - Nature 438, 197 (005) Kim-Stormer

More information

Hall plateau diagram for the Hofstadter butterfly energy spectrum

Hall plateau diagram for the Hofstadter butterfly energy spectrum Hall plateau diagram for the Hofstadter butterfly energy spectrum Mikito Koshino and Tsuneya ndo Department of Physics, Tokyo Institute of Technology -- Ookayama, Meguro-ku, Tokyo 5-855, Japan (Dated:

More information

Outline. Introduction: graphene. Adsorption on graphene: - Chemisorption - Physisorption. Summary

Outline. Introduction: graphene. Adsorption on graphene: - Chemisorption - Physisorption. Summary Outline Introduction: graphene Adsorption on graphene: - Chemisorption - Physisorption Summary 1 Electronic band structure: Electronic properties K Γ M v F = 10 6 ms -1 = c/300 massless Dirac particles!

More information

Organizing Principles for Understanding Matter

Organizing Principles for Understanding Matter Organizing Principles for Understanding Matter Symmetry Conceptual simplification Conservation laws Distinguish phases of matter by pattern of broken symmetries Topology Properties insensitive to smooth

More information

Proximity-induced magnetization dynamics, interaction effects, and phase transitions on a topological surface

Proximity-induced magnetization dynamics, interaction effects, and phase transitions on a topological surface Proximity-induced magnetization dynamics, interaction effects, and phase transitions on a topological surface Ilya Eremin Theoretische Physik III, Ruhr-Uni Bochum Work done in collaboration with: F. Nogueira

More information

New Quantum Transport Results in Type-II InAs/GaSb Quantum Wells

New Quantum Transport Results in Type-II InAs/GaSb Quantum Wells New Quantum Transport Results in Type-II InAs/GaSb Quantum Wells Wei Pan Sandia National Laboratories Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation,

More information

Supporting Information. by Hexagonal Boron Nitride

Supporting Information. by Hexagonal Boron Nitride Supporting Information High Velocity Saturation in Graphene Encapsulated by Hexagonal Boron Nitride Megan A. Yamoah 1,2,, Wenmin Yang 1,3, Eric Pop 4,5,6, David Goldhaber-Gordon 1 * 1 Department of Physics,

More information

Topological Physics in Band Insulators. Gene Mele Department of Physics University of Pennsylvania

Topological Physics in Band Insulators. Gene Mele Department of Physics University of Pennsylvania Topological Physics in Band Insulators Gene Mele Department of Physics University of Pennsylvania A Brief History of Topological Insulators What they are How they were discovered Why they are important

More information

Dirac fermions in Graphite:

Dirac fermions in Graphite: Igor Lukyanchuk Amiens University, France, Yakov Kopelevich University of Campinas, Brazil Dirac fermions in Graphite: I. Lukyanchuk, Y. Kopelevich et al. - Phys. Rev. Lett. 93, 166402 (2004) - Phys. Rev.

More information

Quantum Transport in Nanostructured Graphene Antti-Pekka Jauho

Quantum Transport in Nanostructured Graphene Antti-Pekka Jauho Quantum Transport in Nanostructured Graphene Antti-Pekka Jauho ICSNN, July 23 rd 2018, Madrid CNG Group Photo Three stories 1. Conductance quantization suppression in the Quantum Hall Regime, Caridad et

More information

Topological Kondo Insulator SmB 6. Tetsuya Takimoto

Topological Kondo Insulator SmB 6. Tetsuya Takimoto Topological Kondo Insulator SmB 6 J. Phys. Soc. Jpn. 80 123720, (2011). Tetsuya Takimoto Department of Physics, Hanyang University Collaborator: Ki-Hoon Lee (POSTECH) Content 1. Introduction of SmB 6 in-gap

More information

Quantum transport through graphene nanostructures

Quantum transport through graphene nanostructures Quantum transport through graphene nanostructures S. Rotter, F. Libisch, L. Wirtz, C. Stampfer, F. Aigner, I. Březinová, and J. Burgdörfer Institute for Theoretical Physics/E136 December 9, 2009 Graphene

More information

Topological Insulators and Superconductors

Topological Insulators and Superconductors Topological Insulators and Superconductors Lecture #1: Topology and Band Theory Lecture #: Topological Insulators in and 3 dimensions Lecture #3: Topological Superconductors, Majorana Fermions an Topological

More information

Composite Fermions and Broken Symmetries in Graphene

Composite Fermions and Broken Symmetries in Graphene Composite Fermions and Broken Symmetries in Graphene F. Amet, A. J. Bestwick, J. R. Williams, L. Balicas, K. Watanabe 4, T. Taniguchi 4 & D. Goldhaber- Gordon, Department of Applied Physics, Stanford University,

More information

Symmetry, Topology and Phases of Matter

Symmetry, Topology and Phases of Matter Symmetry, Topology and Phases of Matter E E k=λ a k=λ b k=λ a k=λ b Topological Phases of Matter Many examples of topological band phenomena States adiabatically connected to independent electrons: - Quantum

More information

arxiv: v1 [cond-mat.mes-hall] 22 Jun 2018

arxiv: v1 [cond-mat.mes-hall] 22 Jun 2018 Enhanced Robustness of Zero-line Modes in Graphene via a Magnetic Field Ke Wang, 1,2 Tao Hou, 1,2 Yafei Ren, 1,2 and Zhenhua Qiao 1,2, 1 ICQD, Hefei National Laboratory for Physical Sciences at Microscale,

More information

2D Materials with Strong Spin-orbit Coupling: Topological and Electronic Transport Properties

2D Materials with Strong Spin-orbit Coupling: Topological and Electronic Transport Properties 2D Materials with Strong Spin-orbit Coupling: Topological and Electronic Transport Properties Artem Pulkin California Institute of Technology (Caltech), Pasadena, CA 91125, US Institute of Physics, Ecole

More information

Floquet theory of photo-induced topological phase transitions: Application to graphene

Floquet theory of photo-induced topological phase transitions: Application to graphene Floquet theory of photo-induced topological phase transitions: Application to graphene Takashi Oka (University of Tokyo) T. Kitagawa (Harvard) L. Fu (Harvard) E. Demler (Harvard) A. Brataas (Norweigian

More information

Nuclear spin spectroscopy for semiconductor hetero and nano structures

Nuclear spin spectroscopy for semiconductor hetero and nano structures (Interaction and Nanostructural Effects in Low-Dimensional Systems) November 16th, Kyoto, Japan Nuclear spin spectroscopy for semiconductor hetero and nano structures Yoshiro Hirayama Tohoku University

More information

Tutorial: Berry phase and Berry curvature in solids

Tutorial: Berry phase and Berry curvature in solids Tutorial: Berry phase and Berry curvature in solids Justin Song Division of Physics, Nanyang Technological University (Singapore) & Institute of High Performance Computing (Singapore) Funding: (Singapore)

More information

NONLOCAL TRANSPORT IN GRAPHENE: VALLEY CURRENTS, HYDRODYNAMICS AND ELECTRON VISCOSITY

NONLOCAL TRANSPORT IN GRAPHENE: VALLEY CURRENTS, HYDRODYNAMICS AND ELECTRON VISCOSITY NONLOCAL TRANSPORT IN GRAPHENE: VALLEY CURRENTS, HYDRODYNAMICS AND ELECTRON VISCOSITY Leonid Levitov (MIT) Frontiers of Nanoscience ICTP Trieste, August, 2015 Boris @ 60 2 Boris @ 60 3 Boris Blinks the

More information

Experimental reconstruction of the Berry curvature in a topological Bloch band

Experimental reconstruction of the Berry curvature in a topological Bloch band Experimental reconstruction of the Berry curvature in a topological Bloch band Christof Weitenberg Workshop Geometry and Quantum Dynamics Natal 29.10.2015 arxiv:1509.05763 (2015) Topological Insulators

More information

Disordered topological insulators with time-reversal symmetry: Z 2 invariants

Disordered topological insulators with time-reversal symmetry: Z 2 invariants Keio Topo. Science (2016/11/18) Disordered topological insulators with time-reversal symmetry: Z 2 invariants Hosho Katsura Department of Physics, UTokyo Collaborators: Yutaka Akagi (UTokyo) Tohru Koma

More information

Boron nitride substrates for high quality graphene electronics

Boron nitride substrates for high quality graphene electronics Boron nitride substrates for high quality graphene electronics C.R. Dean 1,, A.F. Young 3, I. Meric 1, C. Lee, L. Wang, S. Sorgenfrei 1, K. Watanabe 4, T. Taniguchi 4, P. Kim 3, K.L. Shepard 1, J. Hone

More information

InAs/GaSb A New Quantum Spin Hall Insulator

InAs/GaSb A New Quantum Spin Hall Insulator InAs/GaSb A New Quantum Spin Hall Insulator Rui-Rui Du Rice University 1. Old Material for New Physics 2. Quantized Edge Modes 3. Andreev Reflection 4. Summary KITP Workshop on Topological Insulator/Superconductor

More information

Fractal Hofstadter Band Structure in Patterned Dielectric Superlattice Graphene Systems. Carlos Forsythe

Fractal Hofstadter Band Structure in Patterned Dielectric Superlattice Graphene Systems. Carlos Forsythe Fractal Hofstadter Band Structure in Patterned Dielectric Superlattice Graphene Systems Carlos Forsythe Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the

More information

Fully symmetric and non-fractionalized Mott insulators at fractional site-filling

Fully symmetric and non-fractionalized Mott insulators at fractional site-filling Fully symmetric and non-fractionalized Mott insulators at fractional site-filling Itamar Kimchi University of California, Berkeley EQPCM @ ISSP June 19, 2013 PRL 2013 (kagome), 1207.0498...[PNAS] (honeycomb)

More information

Magneto-plasmonic effects in epitaxial graphene

Magneto-plasmonic effects in epitaxial graphene Magneto-plasmonic effects in epitaxial graphene Alexey Kuzmenko University of Geneva Graphene Nanophotonics Benasque, 4 March 13 Collaborators I. Crassee, N. Ubrig, I. Nedoliuk, J. Levallois, D. van der

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Dirac electron states formed at the heterointerface between a topological insulator and a conventional semiconductor 1. Surface morphology of InP substrate and the device Figure S1(a) shows a 10-μm-square

More information

Physics in Quasi-2D Materials for Spintronics Applications

Physics in Quasi-2D Materials for Spintronics Applications Physics in Quasi-2D Materials for Spintronics Applications Topological Insulators and Graphene Ching-Tzu Chen IBM TJ Watson Research Center May 13, 2016 2016 C-SPIN Topological Spintronics Device Workshop

More information

Phase transitions in Bi-layer quantum Hall systems

Phase transitions in Bi-layer quantum Hall systems Phase transitions in Bi-layer quantum Hall systems Ming-Che Chang Department of Physics Taiwan Normal University Min-Fong Yang Departmant of Physics Tung-Hai University Landau levels Ferromagnetism near

More information

ARPES experiments on 3D topological insulators. Inna Vishik Physics 250 (Special topics: spectroscopies of quantum materials) UC Davis, Fall 2016

ARPES experiments on 3D topological insulators. Inna Vishik Physics 250 (Special topics: spectroscopies of quantum materials) UC Davis, Fall 2016 ARPES experiments on 3D topological insulators Inna Vishik Physics 250 (Special topics: spectroscopies of quantum materials) UC Davis, Fall 2016 Outline Using ARPES to demonstrate that certain materials

More information

Shuichi Murakami Department of Physics, Tokyo Institute of Technology

Shuichi Murakami Department of Physics, Tokyo Institute of Technology EQPCM, ISSP, U. Tokyo June, 2013 Berry curvature and topological phases for magnons Shuichi Murakami Department of Physics, Tokyo Institute of Technology Collaborators: R. Shindou (Tokyo Tech. Peking Univ.)

More information

From graphene to Z2 topological insulator

From graphene to Z2 topological insulator From graphene to Z2 topological insulator single Dirac topological AL mass U U valley WL ordinary mass or ripples WL U WL AL AL U AL WL Rashba Ken-Ichiro Imura Condensed-Matter Theory / Tohoku Univ. Dirac

More information

Broken Symmetry States and Divergent Resistance in Suspended Bilayer Graphene

Broken Symmetry States and Divergent Resistance in Suspended Bilayer Graphene Broken Symmetry States and Divergent Resistance in Suspended Bilayer Graphene The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters.

More information

Introductory lecture on topological insulators. Reza Asgari

Introductory lecture on topological insulators. Reza Asgari Introductory lecture on topological insulators Reza Asgari Workshop on graphene and topological insulators, IPM. 19-20 Oct. 2011 Outlines -Introduction New phases of materials, Insulators -Theory quantum

More information

Majorana single-charge transistor. Reinhold Egger Institut für Theoretische Physik

Majorana single-charge transistor. Reinhold Egger Institut für Theoretische Physik Majorana single-charge transistor Reinhold Egger Institut für Theoretische Physik Overview Coulomb charging effects on quantum transport through Majorana nanowires: Two-terminal device: Majorana singlecharge

More information

High-temperature quantum oscillations caused by recurring Bloch states in graphene superlattices

High-temperature quantum oscillations caused by recurring Bloch states in graphene superlattices High-temperature quantum oscillations caused by recurring Bloch states in graphene superlattices R. Krishna Kumar 1,2,3, X. Chen 2, G. H. Auton 2, A. Mishchenko 1, D. A. Bandurin 1, S. V. Morozov 4,5,

More information

Berry s phase in Hall Effects and Topological Insulators

Berry s phase in Hall Effects and Topological Insulators Lecture 6 Berry s phase in Hall Effects and Topological Insulators Given the analogs between Berry s phase and vector potentials, it is not surprising that Berry s phase can be important in the Hall effect.

More information

BIASED TWISTED BILAYER GRAPHENE: MAGNETISM AND GAP

BIASED TWISTED BILAYER GRAPHENE: MAGNETISM AND GAP BIASED TWISTED BILAYER GRAPHENE: MAGNETISM AND GAP A.V. Rozhkov, A.O. Sboychakov, A.L. Rakhmanov, F. Nori ITAE RAS, Moscow, Russia RIKEN, Wako-shi, Japan Presentation outline: General properties of twisted

More information

Topological insulators and the quantum anomalous Hall state. David Vanderbilt Rutgers University

Topological insulators and the quantum anomalous Hall state. David Vanderbilt Rutgers University Topological insulators and the quantum anomalous Hall state David Vanderbilt Rutgers University Outline Berry curvature and topology 2D quantum anomalous Hall (QAH) insulator TR-invariant insulators (Z

More information

Protected/non-protected edge states in two-dimensional lattices

Protected/non-protected edge states in two-dimensional lattices Protected/non-protected edge states in two-dimensional lattices (a review of edge states behavior) A. Aldea, M. Niţa and B. Ostahie National Institute of Materials Physics Bucharest-Magurele, Romania MESO-III,

More information