Single particle Green s functions and interacting topological insulators

Size: px
Start display at page:

Download "Single particle Green s functions and interacting topological insulators"

Transcription

1 1 Single particle Green s functions and interacting topological insulators Victor Gurarie Nordita, Jan 2011

2 Topological insulators are free fermion systems characterized by topological invariants. 2 In this talk 1. All the invariants can be constructed out of single particle Green s functions of these insulators 2. It is generally believed that at the boundaries of topological insulators there must be zero energy edge states. The Green s functions provide a very simple proof of this statement. 3. In the presence of interactions, edge states can disappear and get replaced by the zeroes of the Green s functions. VG, arxiv: A. Essin, VG, work in progress Discussions with A.W.W. Ludwig

3 3 Noninteracting topological insulators

4 Topological insulators 4 Topological insulators are free fermion systems fermionic creation and annihilation operators which happen to be band insulators of a special type

5 Band insulators 5 Spectrum is essentially the same regardless of whether the boundary conditions in the y-direction periodic or hard wall.

6 Integer quantum Hall effect as a topogical insulator 6 Periodic boundary conditions in the y-direction Same tight binding model but with 2π/3 magnetic flux through each plaquette

7 Integer quantum Hall effect as a topogical insulator 6 Hard wall boundary conditions in the y-direction Same tight binding model but with 2π/3 magnetic flux through each plaquette

8 Integer quantum Hall effect as a topogical insulator 6 Hard wall boundary conditions in the y-direction Same tight binding model but with 2π/3 magnetic flux through each plaquette Edge states

9 Laughlin s argument 7 increasing flux though a point outward current Outward current deposits charge somewhere. There must be zero energy edge states to absorb the charge

10 TKNN invariant 8 Thouless, Kohmoto, Nightingale, Den Nijs, 1982 { This is a topological invariant (always integer times 2πi) Bloch waves

11 TKNN invariant 9 Band structure topological invariant quantized Hall conductance Laughlin argument edge states

12 Other topological insulators? 10

13 Other topological insulators? D px+ipy superconductor ( insulator since its Bogoliubov quasiparticles have a gap in the spectrum). Kopnin, Salomaa, Read and Green, 2000.

14 Other topological insulators? D px+ipy superconductor ( insulator since its Bogoliubov quasiparticles have a gap in the spectrum). Kopnin, Salomaa, Read and Green, D quantum Hall effect. Zhang, Hu, 2001

15 Other topological insulators? D px+ipy superconductor ( insulator since its Bogoliubov quasiparticles have a gap in the spectrum). Kopnin, Salomaa, Read and Green, D quantum Hall effect. Zhang, Hu, Solitons in 1D chains. Su, Schrieffer, Heeger (1978)

16 Other topological insulators? D px+ipy superconductor ( insulator since its Bogoliubov quasiparticles have a gap in the spectrum). Kopnin, Salomaa, Read and Green, D quantum Hall effect. Zhang, Hu, Solitons in 1D chains. Su, Schrieffer, Heeger (1978) 4. Modern 2D and 3D topological insulators. Kane and Mele (2005); Zhang, Hughes, Bernevig, (2006); Moore, Balents, (2007); Fu, Kane, Mele (2007)

17 Altland-Zirnbauer s tenfold way 11

18 Altland-Zirnbauer s tenfold way 11 Symmetries: 1. Time-reversal

19 Altland-Zirnbauer s tenfold way 11 Symmetries: 1. Time-reversal 2. Particle-hole

20 Altland-Zirnbauer s tenfold way 11 Symmetries: 1. Time-reversal 2. Particle-hole 3. Chiral (sublattice)

21 Altland-Zirnbauer s tenfold way 11 Symmetries: 1. Time-reversal 2. Particle-hole 3. Chiral (sublattice) localization physics at long w Cartan label T C S A (unitary) AI (orthogonal) AII (symplectic) AIII (ch. unit.) BDI (ch. orth.) CII (ch. sympl.) D (BdG) C (BdG) DIII (BdG) CI (BdG) From: Ryu, Schnyder, Furusaki, Ludwig, 2010

22 Altland-Zirnbauer s tenfold way 11 Symmetries: 1. Time-reversal 2. Particle-hole 3. Chiral (sublattice) IQHE spin-orbit coupling coupling: modern top. ins. Su-Schrieffer-Heeger solitons p-wave spin-polarized superconductors 3 He, phase B s-wave superconductors localization physics at long w Cartan label T C S A (unitary) AI (orthogonal) AII (symplectic) AIII (ch. unit.) BDI (ch. orth.) CII (ch. sympl.) D (BdG) C (BdG) DIII (BdG) CI (BdG) From: Ryu, Schnyder, Furusaki, Ludwig, 2010

23 Classification table of topological 12 insulators and superconductors topologically equivalent to the trivial state. Table from Ryu, Schnyder, Furusaki, Ludwig, 2010 d space dimensionality Cartan Complex case: A Z 0 Z 0 Z 0 Z 0 Z 0 Z 0... AIII 0 Z 0 Z 0 Z 0 Z 0 Z 0 Z... Real case: AI Z Z 0 Z 2 Z 2 Z BDI Z 2 Z Z 0 Z 2 Z 2 Z D Z 2 Z 2 Z Z 0 Z 2 Z 2 Z 0... DIII 0 Z 2 Z 2 Z Z 0 Z 2 Z 2 Z... AII 2Z 0 Z 2 Z 2 Z Z 0 Z 2 Z 2... CII 0 2Z 0 Z 2 Z 2 Z Z 0 Z 2... C 0 0 2Z 0 Z 2 Z 2 Z Z 0... CI Z 0 Z 2 Z 2 Z Z... symmetry classes Kitaev, 2009; Ludwig, Ryu, Schnyder, Furusaki, 2009.

24 Classification table of topological 12 insulators and superconductors topologically equivalent to the trivial state. Table from Ryu, Schnyder, Furusaki, Ludwig, 2010 d space dimensionality Cartan IQHE Complex case: A Z 0 Z 0 Z 0 Z 0 Z 0 Z 0... AIII 0 Z 0 Z 0 Z 0 Z 0 Z 0 Z... Real case: AI Z Z 0 Z 2 Z 2 Z BDI Z 2 Z Z 0 Z 2 Z 2 Z D Z 2 Z 2 Z Z 0 Z 2 Z 2 Z 0... DIII 0 Z 2 Z 2 Z Z 0 Z 2 Z 2 Z... AII 2Z 0 Z 2 Z 2 Z Z 0 Z 2 Z 2... CII 0 2Z 0 Z 2 Z 2 Z Z 0 Z 2... C 0 0 2Z 0 Z 2 Z 2 Z Z 0... CI Z 0 Z 2 Z 2 Z Z... symmetry classes Kitaev, 2009; Ludwig, Ryu, Schnyder, Furusaki, 2009.

25 Classification table of topological 12 insulators and superconductors topologically equivalent to the trivial state. Table from Ryu, Schnyder, Furusaki, Ludwig, 2010 d space dimensionality Cartan IQHE Su, Schrieffer, Heeger Complex case: A Z 0 Z 0 Z 0 Z 0 Z 0 Z 0... AIII 0 Z 0 Z 0 Z 0 Z 0 Z 0 Z... Real case: AI Z Z 0 Z 2 Z 2 Z BDI Z 2 Z Z 0 Z 2 Z 2 Z D Z 2 Z 2 Z Z 0 Z 2 Z 2 Z 0... DIII 0 Z 2 Z 2 Z Z 0 Z 2 Z 2 Z... AII 2Z 0 Z 2 Z 2 Z Z 0 Z 2 Z 2... CII 0 2Z 0 Z 2 Z 2 Z Z 0 Z 2... C 0 0 2Z 0 Z 2 Z 2 Z Z 0... CI Z 0 Z 2 Z 2 Z Z... symmetry classes Kitaev, 2009; Ludwig, Ryu, Schnyder, Furusaki, 2009.

26 Classification table of topological 12 insulators and superconductors topologically equivalent to the trivial state. Table from Ryu, Schnyder, Furusaki, Ludwig, 2010 d space dimensionality Cartan IQHE Su, Schrieffer, Heeger D p-wave supercond uctor Complex case: A Z 0 Z 0 Z 0 Z 0 Z 0 Z 0... AIII 0 Z 0 Z 0 Z 0 Z 0 Z 0 Z... Real case: AI Z Z 0 Z 2 Z 2 Z BDI Z 2 Z Z 0 Z 2 Z 2 Z D Z 2 Z 2 Z Z 0 Z 2 Z 2 Z 0... DIII 0 Z 2 Z 2 Z Z 0 Z 2 Z 2 Z... AII 2Z 0 Z 2 Z 2 Z Z 0 Z 2 Z 2... CII 0 2Z 0 Z 2 Z 2 Z Z 0 Z 2... C 0 0 2Z 0 Z 2 Z 2 Z Z 0... CI Z 0 Z 2 Z 2 Z Z... symmetry classes Kitaev, 2009; Ludwig, Ryu, Schnyder, Furusaki, 2009.

27 Classification table of topological 12 insulators and superconductors topologically equivalent to the trivial state. Table from Ryu, Schnyder, Furusaki, Ludwig, 2010 d space dimensionality Cartan IQHE Su, Schrieffer, Heeger D p-wave supercond uctor Complex case: A Z 0 Z 0 Z 0 Z 0 Z 0 Z 0... AIII 0 Z 0 Z 0 Z 0 Z 0 Z 0 Z... Real case: AI Z Z 0 Z 2 Z 2 Z BDI Z 2 Z Z 0 Z 2 Z 2 Z D Z 2 Z 2 Z Z 0 Z 2 Z 2 Z 0... DIII 0 Z 2 Z 2 Z Z 0 Z 2 Z 2 Z... AII 2Z 0 Z 2 Z 2 Z Z 0 Z 2 Z 2... CII 0 2Z 0 Z 2 Z 2 Z Z 0 Z 2... C 0 0 2Z 0 Z 2 Z 2 Z Z 0... CI Z 0 Z 2 Z 2 Z Z... symmetry classes 3 He, phase B Kitaev, 2009; Ludwig, Ryu, Schnyder, Furusaki, 2009.

28 Classification table of topological 12 insulators and superconductors topologically equivalent to the trivial state. Table from Ryu, Schnyder, Furusaki, Ludwig, 2010 d space dimensionality Cartan IQHE Su, Schrieffer, Heeger D p-wave supercond uctor Complex case: A Z 0 Z 0 Z 0 Z 0 Z 0 Z 0... AIII 0 Z 0 Z 0 Z 0 Z 0 Z 0 Z... Real case: AI Z Z 0 Z 2 Z 2 Z BDI Z 2 Z Z 0 Z 2 Z 2 Z D Z 2 Z 2 Z Z 0 Z 2 Z 2 Z 0... DIII 0 Z 2 Z 2 Z Z 0 Z 2 Z 2 Z... AII 2Z 0 Z 2 Z 2 Z Z 0 Z 2 Z 2... CII 0 2Z 0 Z 2 Z 2 Z Z 0 Z 2... C 0 0 2Z 0 Z 2 Z 2 Z Z 0... CI Z 0 Z 2 Z 2 Z Z... symmetry classes New Kane-Mele topological insulators 3 He, phase B Kitaev, 2009; Ludwig, Ryu, Schnyder, Furusaki, 2009.

29 Chiral symmetry 13

30 Chiral symmetry 13 Often realized as hopping on a bipartite lattice

31 Chiral symmetry 13 Often realized as hopping on a bipartite lattice Properties of chiral systems All levels come in pairs

32 Chiral symmetry 13 Often realized as hopping on a bipartite lattice Properties of chiral systems All levels come in pairs { right zero modes left zero modes

33 Chiral symmetry 13 Often realized as hopping on a bipartite lattice Properties of chiral systems All levels come in pairs { right zero modes left zero modes #R-#L is a topological invariant (index theorem)

34 Chiral vs nonchiral systems 14 Non-chiral systems Chiral systems can be characterized by an integer topological invariant in even spacial dimensions only can be characterized by an integer topological invariant in odd spacial dimensions only

35 Chiral vs nonchiral systems 15 topologically equivalent to the trivial state. d Cartan Complex case: A Z 0 Z 0 Z 0 Z 0 Z 0 Z 0... AIII 0 Z 0 Z 0 Z 0 Z 0 Z 0 Z... Real case: AI Z Z 0 Z 2 Z 2 Z BDI Z 2 Z Z 0 Z 2 Z 2 Z D Z 2 Z 2 Z Z 0 Z 2 Z 2 Z 0... DIII 0 Z 2 Z 2 Z Z 0 Z 2 Z 2 Z... AII 2Z 0 Z 2 Z 2 Z Z 0 Z 2 Z 2... CII 0 2Z 0 Z 2 Z 2 Z Z 0 Z 2... C 0 0 2Z 0 Z 2 Z 2 Z Z 0... CI Z 0 Z 2 Z 2 Z Z... Chiral Nonchiral

36 16 Topological invariants via single particle Green s functions

37 Topological invariants for nonchiral insulators 17

38 Topological invariants for nonchiral insulators 17 space-time space

39 Topological invariants for nonchiral insulators 17 space-time space

40 Topological invariants for nonchiral insulators 17 space-time space Translational invariance

41 Topological invariants for nonchiral insulators 17 space-time space Translational invariance map { D-dim space-time

42 Topological invariants for nonchiral insulators 17 space-time space Translational invariance map { D-dim space-time Notes: 1. d must be even. If d=2 this coincides with the TKNN invariant Niu, Thouless, Wu (1985) 2. Subsequently used by Volovik in a variety of contexts (80 s and 90 s)

43 The meaning of the invariant at d=0, D=1 18 Some parameter As long as the system remains gapful, N1 is an invariant

44 Topological invariants for chiral insulators 19 space-time space VG, 2010

45 Topological invariants for chiral insulators 19 space-time space Translational invariance VG, 2010

46 Topological invariants for chiral insulators 19 space-time space Translational invariance VG, 2010 Skyrmion number pic. by N. Cooper

47 Topological invariants for chiral insulators 19 space-time space Translational invariance VG, 2010 Skyrmion number pic. by N. Cooper

48 The meaning of the invariant at D=0 20 I 0 =trq =trσ =# R # L Properties of chiral systems All levels come in pairs { right zero modes left zero modes #R-#L is a topological invariant (index theorem)

49 Simplest d=1 chiral topological insulator 21 t 1 t 2 t 1 Ĥ = x even t 1 t 2 t 1 â x+1âx + t 2 â x+2âx+1 t 1 + h.c. Su, Schrieffer, Heeger (1978)

50 Simplest d=1 chiral topological insulator 21 t 1 t 2 t 1 Ĥ = x even t 1 t 2 t 1 â x+1âx + t 2 â x+2âx+1 t 1 + h.c. t 1 + t 2 e ik I 2 π π dk 2πi k ln t 1 + t 2 e ik I 2 =1 t 1 <t 2 Su, Schrieffer, Heeger (1978)

51 Simplest d=1 chiral topological insulator 21 t 1 t 2 t 1 Ĥ = x even t 1 t 2 t 1 â x+1âx + t 2 â x+2âx+1 t 1 + h.c. t 1 + t 2 e ik I 2 π π dk 2πi k ln t 1 + t 2 e ik I 2 =0 t 1 >t 2 Su, Schrieffer, Heeger (1978)

52 Simplest d=1 chiral topological insulator 21 t 1 t 2 t 1 Ĥ = x even t 1 t 2 t 1 â x+1âx + t 2 â x+2âx+1 t 1 + h.c. t 1 + t 2 e ik I 2 π π dk 2πi k ln t 1 + t 2 e ik Zero mode (edge state) satisfy t 1 ψ x + t 2 ψ x+2 =0 ψ x = t x 2 1 t 2 If x>0, exist only if t1<t2. I 2 =0 t 1 >t 2 Su, Schrieffer, Heeger (1978)

53 22 Topological invariants and the edge states

54 d=2; Classes A, D, C G. Volovik, 1980s 23 topologically equivalent to the trivial state. d Cartan Complex case: A IQHE Z 0 Z 0 Z 0 Z 0 Z 0 Z 0... AIII 0 Z 0 Z 0 Z 0 Z 0 Z 0 Z... Real case: AI Z Z 0 Z 2 Z 2 Z BDI Z 2 Z Z 0 Z 2 Z 2 Z D p-wave s.c. Z 2 Z 2 Z Z 0 Z 2 Z 2 Z 0... DIII 3 He B 0 Z 2 Z 2 Z Z 0 Z 2 Z 2 Z... AII 2Z 0 Z 2 Z 2 Z Z 0 Z 2 Z 2... CII 0 2Z 0 Z 2 Z 2 Z Z 0 Z 2... C 0 0 2Z 0 Z 2 Z 2 Z Z 0... CI singlet s.c Z 0 Z 2 Z 2 Z Z... Chiral Nonchiral

55 d=2; Classes A, D, C G. Volovik, 1980s 23 N L N R Domain wall

56 d=2; Classes A, D, C G. Volovik, 1980s 23 N L N R Green s function Domain wall

57 d=2; Classes A, D, C G. Volovik, 1980s 23 N L N R Green s function Inverse green s function Domain wall

58 d=2; Classes A, D, C G. Volovik, 1980s 23 N L N R Green s function Inverse green s function Domain wall Construct the simplest topological invariant

59 d=2; Classes A, D, C G. Volovik, 1980s 23 N L N R Green s function Inverse green s function Domain wall Construct the simplest topological invariant zero mode

60 d=2; Classes A, D, C G. Volovik, 1980s 24 N L N R Domain wall

61 d=2; Classes A, D, C G. Volovik, 1980s 24 Wigner transformed Green s function N L N R Domain wall

62 d=2; Classes A, D, C G. Volovik, 1980s 24 Wigner transformed Green s function N L N R Gradient (Moyal product) expansion Domain wall

63 d=2; Classes A, D, C G. Volovik, 1980s 24 Wigner transformed Green s function N L N R Gradient (Moyal product) expansion Domain wall

64 d=2; Classes A, D, C G. Volovik, 1980s 24 Wigner transformed Green s function N L N R Gradient (Moyal product) expansion Domain wall 4-dim vector, space ω, px, ps, s

65 d=2; Classes A, D, C G. Volovik, 1980s 24 Wigner transformed Green s function N L N R Gradient (Moyal product) expansion Domain wall 4-dim vector, space ω, px, ps, s #(zero modes) = N R N L

66 d=2; Classes A, D, C G. Volovik, 1980s 24 N L N R Domain wall #(zero modes) = N R N L

67 d=1, classes AIII, BDI, CII 25 I L I R s Q(ω, p s,s)=g 1 (ω, p s,s) Σ G(ω, p s,s) I(s) = 1 16πi tr 0 dω I(L) I( L) = 1 16πi lim tr ω 0 dp s Q ( ω Q ps Q ps Q ω Q) dxdk Q ( x Q ps Q ps Q x Q)

68 d=1, classes AIII, BDI, CII 25 I L I R s Q(ω, p s,s)=g 1 (ω, p s,s) Σ G(ω, p s,s) I(s) = 1 16πi tr 0 dω I(L) I( L) = 1 16πi lim tr ω 0 #(zero modes) = lim ω 0 ω tr Σ K ω G dp s Q ( ω Q ps Q ps Q ω Q) dxdk Q ( x Q ps Q ps Q x Q)

69 d=1, classes AIII, BDI, CII 25 I L I R s Q(ω, p s,s)=g 1 (ω, p s,s) Σ G(ω, p s,s) I(s) = 1 16πi tr 0 dω I(L) I( L) = 1 16πi lim tr ω 0 #(zero modes) = lim ω 0 ω tr Σ K ω G gradient expansion #(zero modes)=i(l) I( L) dp s Q ( ω Q ps Q ps Q ω Q) dxdk Q ( x Q ps Q ps Q x Q)

70 Other classes of topological insulators 26 Relationship between the edge states and the Green s function topological invariant 1. All nonchiral classes in even d higher than 2: A.W.W. Ludwig, A. Essin, VG, 2010 (in preparation) 2. Chiral classes in odd d higher than 1. A. Essin, VG, 2010 (in preparation) 3. Z2 topological invariants, A. Essin, VG, 2010 (in preparation)

71 27 Topological invariants in the presence of interactions

72 The invariant at d=0, D=1 with interactions 28 VG, 2010 No interactions

73 The invariant at d=0, D=1 with interactions 28 VG, 2010 No interactions In the presence of interactions

74 The invariant at d=0, D=1 with interactions 28 VG, 2010 G = Df Matrix elements D h 1 No interactions iω n Matrix elements In the presence of interactions det G = Dh D f n=1 (iω r n ) Dh n=1 (iω n) zeroes of the Green s function poles of the Green s function

75 The invariant at d=0, D=1 with interactions 28 VG, 2010 No interactions In the presence of interactions det G = Dh D f n=1 (iω r n ) Dh n=1 (iω n) zeroes of the Green s function poles of the Green s function

76 The invariant at d=0, D=1 with interactions 29 VG, 2010 det G = Switching on interactions Dh D f n=1 (iω r n ) Dh n=1 (iω n)

77 The invariant at d=0, D=1 with interactions 29 VG, 2010 G. Volovik, 2006 det G = Switching on interactions Dh D f n=1 (iω r n ) Dh n=1 (iω n)

78 The invariant at d=0, D=1 with interactions 29 VG, 2010 G. Volovik, 2006 Poles and zeroes can emerge and disappear in pairs det G = Switching on interactions Dh D f n=1 (iω r n ) Dh n=1 (iω n)

79 The invariant at d=0, D=1 with interactions 29 VG, 2010 G. Volovik, 2006 Poles and zeroes can emerge and disappear in pairs energy det G = Switching on interactions Dh D f n=1 (iω r n ) Dh n=1 (iω n) pole parameter

80 The invariant at d=0, D=1 with interactions 29 VG, 2010 G. Volovik, 2006 Poles and zeroes can emerge and disappear in pairs energy det G = Switching on interactions Dh D f n=1 (iω r n ) Dh n=1 (iω n) pole zero parameter parameter

81 The invariant at d=0, D=1 with interactions 29 VG, 2010 G. Volovik, 2006 Poles and zeroes can emerge and disappear in pairs energy det G = Switching on interactions Dh D f n=1 (iω r n ) Dh n=1 (iω n) pole zero parameter parameter parameter

82 The invariant at d=0, D=1 with interactions 29 VG, 2010 G. Volovik, 2006 Poles and zeroes can emerge and disappear in pairs energy det G = Switching on interactions Dh D f n=1 (iω r n ) Dh n=1 (iω n) pole zero parameter parameter parameter parameter

83 Fidkowski-Kitaev model (2010) 30 t 1 t 2 t 1 t 1 t 2 t 1 quartic interactions g t 1 t 2 t 1 = t 2

84 Fidkowski-Kitaev model (2010) 30 t 1 t 2 t 1 t 1 t 2 t 1 quartic interactions g t 1 t 2 t 1 = t 2 Phase transition

85 Fidkowski-Kitaev model (2010) 30 t 1 t 2 t 1 t 1 t 2 t 1 quartic interactions g No phase transition t 1 t 2 t 1 = t 2 Phase transition

86 Fidkowski-Kitaev model (2010) 30 t 1 t 2 t 1 t 1 t 2 t 1 quartic interactions g A. Essin, VG: Green s function has No phase transition a zero at zero energy t 1 t 2 t 1 = t 2 Phase transition

87 Conclusions and open questions Single particle Green s functions - a powerful tool to understand topological insulators without or even with interactions. 2. Zeroes of the Green s functions. What are they, when do they appear, how can they be detected, why are they important for interacting topological insulators?

88 32 The end

Classification theory of topological insulators with Clifford algebras and its application to interacting fermions. Takahiro Morimoto.

Classification theory of topological insulators with Clifford algebras and its application to interacting fermions. Takahiro Morimoto. QMath13, 10 th October 2016 Classification theory of topological insulators with Clifford algebras and its application to interacting fermions Takahiro Morimoto UC Berkeley Collaborators Akira Furusaki

More information

Topological Insulators

Topological Insulators Topological Insulators Aira Furusai (Condensed Matter Theory Lab.) = topological insulators (3d and 2d) Outline Introduction: band theory Example of topological insulators: integer quantum Hall effect

More information

A Short Introduction to Topological Superconductors

A Short Introduction to Topological Superconductors A Short Introduction to Topological Superconductors --- A Glimpse of Topological Phases of Matter Jyong-Hao Chen Condensed Matter Theory, PSI & Institute for Theoretical Physics, ETHZ Dec. 09, 2015 @ Superconductivity

More information

Symmetric Surfaces of Topological Superconductor

Symmetric Surfaces of Topological Superconductor Symmetric Surfaces of Topological Superconductor Sharmistha Sahoo Zhao Zhang Jeffrey Teo Outline Introduction Brief description of time reversal symmetric topological superconductor. Coupled wire model

More information

Introduction to topological insulators. Jennifer Cano

Introduction to topological insulators. Jennifer Cano Introduction to topological insulators Jennifer Cano Adapted from Charlie Kane s Windsor Lectures: http://www.physics.upenn.edu/~kane/ Review article: Hasan & Kane Rev. Mod. Phys. 2010 What is an insulator?

More information

Modern Topics in Solid-State Theory: Topological insulators and superconductors

Modern Topics in Solid-State Theory: Topological insulators and superconductors Modern Topics in Solid-State Theory: Topological insulators and superconductors Andreas P. Schnyder Max-Planck-Institut für Festkörperforschung, Stuttgart Universität Stuttgart January 2016 Lecture Four:

More information

Reducing and increasing dimensionality of topological insulators

Reducing and increasing dimensionality of topological insulators Reducing and increasing dimensionality of topological insulators Anton Akhmerov with Bernard van Heck, Cosma Fulga, Fabian Hassler, and Jonathan Edge PRB 85, 165409 (2012), PRB 89, 155424 (2014). ESI,

More information

arxiv: v1 [cond-mat.mes-hall] 13 May 2009

arxiv: v1 [cond-mat.mes-hall] 13 May 2009 Classification of Topological Insulators and Superconductors arxiv:0905.2029v1 [cond-mat.mes-hall] 13 May 2009 Andreas P. Schnyder, Shinsei Ryu, Akira Furusaki and Andreas W. W. Ludwig Kavli Institute

More information

Topological Phases of Matter Out of Equilibrium

Topological Phases of Matter Out of Equilibrium Topological Phases of Matter Out of Equilibrium Nigel Cooper T.C.M. Group, Cavendish Laboratory, University of Cambridge Solvay Workshop on Quantum Simulation ULB, Brussels, 18 February 2019 Max McGinley

More information

Topological invariants for 1-dimensional superconductors

Topological invariants for 1-dimensional superconductors Topological invariants for 1-dimensional superconductors Eddy Ardonne Jan Budich 1306.4459 1308.soon SPORE 13 2013-07-31 Intro: Transverse field Ising model H TFI = L 1 i=0 hσ z i + σ x i σ x i+1 σ s:

More information

Effective Field Theories of Topological Insulators

Effective Field Theories of Topological Insulators Effective Field Theories of Topological Insulators Eduardo Fradkin University of Illinois at Urbana-Champaign Workshop on Field Theoretic Computer Simulations for Particle Physics and Condensed Matter

More information

Topological Electromagnetic and Thermal Responses of Time-Reversal Invariant Superconductors and Chiral-Symmetric band insulators

Topological Electromagnetic and Thermal Responses of Time-Reversal Invariant Superconductors and Chiral-Symmetric band insulators Topological Electromagnetic and Thermal Responses of Time-Reversal Invariant Superconductors and Chiral-Symmetric band insulators Satoshi Fujimoto Dept. Phys., Kyoto University Collaborator: Ken Shiozaki

More information

Topological Insulators and Superconductors

Topological Insulators and Superconductors Topological Insulators and Superconductors Lecture #1: Topology and Band Theory Lecture #: Topological Insulators in and 3 dimensions Lecture #3: Topological Superconductors, Majorana Fermions an Topological

More information

disordered topological matter time line

disordered topological matter time line disordered topological matter time line disordered topological matter time line 80s quantum Hall SSH quantum Hall effect (class A) quantum Hall effect (class A) 1998 Nobel prize press release quantum Hall

More information

Field Theory Description of Topological States of Matter. Andrea Cappelli INFN, Florence (w. E. Randellini, J. Sisti)

Field Theory Description of Topological States of Matter. Andrea Cappelli INFN, Florence (w. E. Randellini, J. Sisti) Field Theory Description of Topological States of Matter Andrea Cappelli INFN, Florence (w. E. Randellini, J. Sisti) Topological States of Matter System with bulk gap but non-trivial at energies below

More information

Disordered topological insulators with time-reversal symmetry: Z 2 invariants

Disordered topological insulators with time-reversal symmetry: Z 2 invariants Keio Topo. Science (2016/11/18) Disordered topological insulators with time-reversal symmetry: Z 2 invariants Hosho Katsura Department of Physics, UTokyo Collaborators: Yutaka Akagi (UTokyo) Tohru Koma

More information

Konstantin Y. Bliokh, Daria Smirnova, Franco Nori. Center for Emergent Matter Science, RIKEN, Japan. Science 348, 1448 (2015)

Konstantin Y. Bliokh, Daria Smirnova, Franco Nori. Center for Emergent Matter Science, RIKEN, Japan. Science 348, 1448 (2015) Konstantin Y. Bliokh, Daria Smirnova, Franco Nori Center for Emergent Matter Science, RIKEN, Japan Science 348, 1448 (2015) QSHE and topological insulators The quantum spin Hall effect means the presence

More information

Topological nonsymmorphic crystalline superconductors

Topological nonsymmorphic crystalline superconductors UIUC, 10/26/2015 Topological nonsymmorphic crystalline superconductors Chaoxing Liu Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA Chao-Xing Liu, Rui-Xing

More information

Topological Phases in One Dimension

Topological Phases in One Dimension Topological Phases in One Dimension Lukasz Fidkowski and Alexei Kitaev arxiv:1008.4138 Topological phases in 2 dimensions: - Integer quantum Hall effect - quantized σ xy - robust chiral edge modes - Fractional

More information

SSH Model. Alessandro David. November 3, 2016

SSH Model. Alessandro David. November 3, 2016 SSH Model Alessandro David November 3, 2016 Adapted from Lecture Notes at: https://arxiv.org/abs/1509.02295 and from article: Nature Physics 9, 795 (2013) Motivations SSH = Su-Schrieffer-Heeger Polyacetylene

More information

Interpolating between Wishart and inverse-wishart distributions

Interpolating between Wishart and inverse-wishart distributions Interpolating between Wishart and inverse-wishart distributions Topological phase transitions in 1D multichannel disordered wires with a chiral symmetry Christophe Texier December 11, 2015 with Aurélien

More information

Symmetry, Topology and Phases of Matter

Symmetry, Topology and Phases of Matter Symmetry, Topology and Phases of Matter E E k=λ a k=λ b k=λ a k=λ b Topological Phases of Matter Many examples of topological band phenomena States adiabatically connected to independent electrons: - Quantum

More information

arxiv: v1 [math-ph] 31 Jan 2016

arxiv: v1 [math-ph] 31 Jan 2016 February 2, 2016 1:43 ws-procs961x669 WSPC Proceedings - 9.61in x 6.69in ProdanICMP2015 page 1 1 Topological Insulators at Strong Disorder Emil Prodan Physics Department, Yeshiva University, New York,

More information

Organizing Principles for Understanding Matter

Organizing Principles for Understanding Matter Organizing Principles for Understanding Matter Symmetry Conceptual simplification Conservation laws Distinguish phases of matter by pattern of broken symmetries Topology Properties insensitive to smooth

More information

Time Reversal Invariant Ζ 2 Topological Insulator

Time Reversal Invariant Ζ 2 Topological Insulator Time Reversal Invariant Ζ Topological Insulator D Bloch Hamiltonians subject to the T constraint 1 ( ) ΘH Θ = H( ) with Θ = 1 are classified by a Ζ topological invariant (ν =,1) Understand via Bul-Boundary

More information

C. Mudry (PSI) The breakdown of the topological classification Z for gapped phases of noninteracting 1 / fermio 93. quartic interactions

C. Mudry (PSI) The breakdown of the topological classification Z for gapped phases of noninteracting 1 / fermio 93. quartic interactions The breakdown of the topological classification Z for gapped phases of noninteracting fermions by quartic interactions Christopher Mudry 1 Takahiro Morimoto 2,3 Akira Furusaki 2 1 Paul Scherrer Institut,

More information

The Quantum Spin Hall Effect

The Quantum Spin Hall Effect The Quantum Spin Hall Effect Shou-Cheng Zhang Stanford University with Andrei Bernevig, Taylor Hughes Science, 314,1757 2006 Molenamp et al, Science, 318, 766 2007 XL Qi, T. Hughes, SCZ preprint The quantum

More information

Topological properties of superconducting chains

Topological properties of superconducting chains Bachelor's thesis Theoretical Physics Topological properties of superconducting chains Kim Pöyhönen 213 Advisor: Supervisor: Teemu Ojanen Tommy Ahlgren Helsinki University Department of Physics Postbox

More information

Anderson localization, topology, and interaction

Anderson localization, topology, and interaction Anderson localization, topology, and interaction Pavel Ostrovsky in collaboration with I. V. Gornyi, E. J. König, A. D. Mirlin, and I. V. Protopopov PRL 105, 036803 (2010), PRB 85, 195130 (2012) Cambridge,

More information

On the K-theory classification of topological states of matter

On the K-theory classification of topological states of matter On the K-theory classification of topological states of matter (1,2) (1) Department of Mathematics Mathematical Sciences Institute (2) Department of Theoretical Physics Research School of Physics and Engineering

More information

Field Theory Description of Topological States of Matter

Field Theory Description of Topological States of Matter Field Theory Description of Topological States of Matter Andrea Cappelli, INFN Florence (w. E. Randellini, J. Sisti) Outline Topological states of matter Quantum Hall effect: bulk and edge Effective field

More information

Topological insulators

Topological insulators http://www.physik.uni-regensburg.de/forschung/fabian Topological insulators Jaroslav Fabian Institute for Theoretical Physics University of Regensburg Stara Lesna, 21.8.212 DFG SFB 689 what are topological

More information

Topological Insulators in 3D and Bosonization

Topological Insulators in 3D and Bosonization Topological Insulators in 3D and Bosonization Andrea Cappelli, INFN Florence (w. E. Randellini, J. Sisti) Outline Topological states of matter: bulk and edge Fermions and bosons on the (1+1)-dimensional

More information

arxiv: v2 [cond-mat.str-el] 22 Oct 2018

arxiv: v2 [cond-mat.str-el] 22 Oct 2018 Pseudo topological insulators C. Yuce Department of Physics, Anadolu University, Turkey Department of Physics, Eskisehir Technical University, Turkey (Dated: October 23, 2018) arxiv:1808.07862v2 [cond-mat.str-el]

More information

arxiv: v2 [cond-mat.mes-hall] 31 Mar 2016

arxiv: v2 [cond-mat.mes-hall] 31 Mar 2016 Journal of the Physical Society of Japan LETTERS Entanglement Chern Number of the ane Mele Model with Ferromagnetism Hiromu Araki, Toshikaze ariyado,, Takahiro Fukui 3, and Yasuhiro Hatsugai, Graduate

More information

Crystalline Symmetry and Topology. YITP, Kyoto University Masatoshi Sato

Crystalline Symmetry and Topology. YITP, Kyoto University Masatoshi Sato Crystalline Symmetry and Topology YITP, Kyoto University Masatoshi Sato In collaboration with Ken Shiozaki (YITP) Kiyonori Gomi (Shinshu University) Nobuyuki Okuma (YITP) Ai Yamakage (Nagoya University)

More information

K-theory in Condensed Matter Physics

K-theory in Condensed Matter Physics (1,2) (1) Department of Mathematics Mathematical Sciences Institute (2) Department of Theoretical Physics Research School of Physics and Engineering The Australian National University Canberra, AUSTRALIA

More information

Topological insulators. Pavel Buividovich (Regensburg)

Topological insulators. Pavel Buividovich (Regensburg) Topological insulators Pavel Buividovich (Regensburg) Hall effect Classical treatment Dissipative motion for point-like particles (Drude theory) Steady motion Classical Hall effect Cyclotron frequency

More information

Floquet theory of photo-induced topological phase transitions: Application to graphene

Floquet theory of photo-induced topological phase transitions: Application to graphene Floquet theory of photo-induced topological phase transitions: Application to graphene Takashi Oka (University of Tokyo) T. Kitagawa (Harvard) L. Fu (Harvard) E. Demler (Harvard) A. Brataas (Norweigian

More information

Topological Superconductivity and Superfluidity

Topological Superconductivity and Superfluidity Topological Superconductivity and Superfluidity SLAC-PUB-13926 Xiao-Liang Qi, Taylor L. Hughes, Srinivas Raghu and Shou-Cheng Zhang Department of Physics, McCullough Building, Stanford University, Stanford,

More information

Symmetries in Quantum Transport : From Random Matrix Theory to Topological Insulators. Philippe Jacquod. U of Arizona

Symmetries in Quantum Transport : From Random Matrix Theory to Topological Insulators. Philippe Jacquod. U of Arizona Symmetries in Quantum Transport : From Random Matrix Theory to Topological Insulators Philippe Jacquod U of Arizona UA Phys colloquium - feb 1, 2013 Continuous symmetries and conservation laws Noether

More information

Entanglement Chern numbers for random systems

Entanglement Chern numbers for random systems POSTECH, Korea, July 31 (2015) Ψ = 1 D D Entanglement Chern numbers for random systems j Ψ j Ψj Yasuhiro Hatsugai Institute of Physics, Univ. of Tsukuba Ref: T. Fukui & Y. Hatsugai, J. Phys. Soc. Jpn.

More information

Topological Physics in Band Insulators. Gene Mele DRL 2N17a

Topological Physics in Band Insulators. Gene Mele DRL 2N17a Topological Physics in Band Insulators Gene Mele DRL 2N17a Electronic States of Matter Benjamin Franklin (University of Pennsylvania) That the Electrical Fire freely removes from Place to Place in and

More information

Braid Group, Gauge Invariance and Topological Order

Braid Group, Gauge Invariance and Topological Order Braid Group, Gauge Invariance and Topological Order Yong-Shi Wu Department of Physics University of Utah Topological Quantum Computing IPAM, UCLA; March 2, 2007 Outline Motivation: Topological Matter (Phases)

More information

Twisted Equivariant Matter

Twisted Equivariant Matter Twisted Equivariant Matter Gregory Moore, Rutgers University, SCGP, June 12, 2013 References: 1. D. Freed and G. Moore, Twisted Equivariant Matter, arxiv:1208.5055 2. G. Moore, Quantum Symmetries and K

More information

Defects in topologically ordered states. Xiao-Liang Qi Stanford University Mag Lab, Tallahassee, 01/09/2014

Defects in topologically ordered states. Xiao-Liang Qi Stanford University Mag Lab, Tallahassee, 01/09/2014 Defects in topologically ordered states Xiao-Liang Qi Stanford University Mag Lab, Tallahassee, 01/09/2014 References Maissam Barkeshli & XLQ, PRX, 2, 031013 (2012) Maissam Barkeshli, Chaoming Jian, XLQ,

More information

arxiv: v1 [cond-mat.mes-hall] 5 Jan 2015

arxiv: v1 [cond-mat.mes-hall] 5 Jan 2015 Equivalence of topological mirror and chiral superconductivity in one dimension Eugene Dumitrescu 1, Girish Sharma 1, Jay D. Sau 2, and Sumanta Tewari 1 1 Department of Physics and Astronomy, Clemson University,

More information

Introductory lecture on topological insulators. Reza Asgari

Introductory lecture on topological insulators. Reza Asgari Introductory lecture on topological insulators Reza Asgari Workshop on graphene and topological insulators, IPM. 19-20 Oct. 2011 Outlines -Introduction New phases of materials, Insulators -Theory quantum

More information

arxiv: v1 [cond-mat.str-el] 16 May 2018

arxiv: v1 [cond-mat.str-el] 16 May 2018 Extended Creutz ladder with spin-orbit coupling: a one-dimensional analog of the Kane-Mele model S. Gholizadeh and M. Yahyavi Department of Physics, Bilkent University, TR-68 Bilkent, Ankara, Turkey arxiv:186.1111v1

More information

arxiv: v1 [cond-mat.other] 20 Apr 2010

arxiv: v1 [cond-mat.other] 20 Apr 2010 Characterization of 3d topological insulators by 2d invariants Rahul Roy Rudolf Peierls Centre for Theoretical Physics, 1 Keble Road, Oxford, OX1 3NP, UK arxiv:1004.3507v1 [cond-mat.other] 20 Apr 2010

More information

Fractional Abelian topological phases of matter for fermions in two-dimensional space

Fractional Abelian topological phases of matter for fermions in two-dimensional space Fractional Abelian topological phases of matter for fermions in two-dimensional space Christopher Mudry Condensed Matter Theory Group, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland 1 Introduction

More information

Topological Phases in Floquet Systems

Topological Phases in Floquet Systems Rahul Roy University of California, Los Angeles June 2, 2016 arxiv:1602.08089, arxiv:1603.06944 Post-doc: Fenner Harper Outline 1 Introduction 2 Free Fermionic Systems 3 Interacting Systems in Class D

More information

Topological protection, disorder, and interactions: Life and death at the surface of a topological superconductor

Topological protection, disorder, and interactions: Life and death at the surface of a topological superconductor Topological protection, disorder, and interactions: Life and death at the surface of a topological superconductor Matthew S. Foster Rice University March 14 th, 2014 Collaborators: Emil Yuzbashyan (Rutgers),

More information

SU(N) magnets: from a theoretical abstraction to reality

SU(N) magnets: from a theoretical abstraction to reality 1 SU(N) magnets: from a theoretical abstraction to reality Victor Gurarie University of Colorado, Boulder collaboration with M. Hermele, A.M. Rey Aspen, May 2009 In this talk 2 SU(N) spin models are more

More information

Many-body topological invariants for topological superconductors (and insulators)

Many-body topological invariants for topological superconductors (and insulators) Many-body topological invariants for topological superconductors (and insulators) Shinsei Ryu The University of Chicago June 6, 2017 Outline Motivations: the Kitaev chain with interactions The kitaev chain

More information

Interactions in Topological Matter

Interactions in Topological Matter Interactions in Topological Matter Christopher Mudry 1 1 Paul Scherrer Institute, Switzerland Harish-Chandra Research Institute, Allahabad, February 9-20 2015 C. Mudry (PSI) Interactions in Topological

More information

KITP miniprogram, Dec. 11, 2008

KITP miniprogram, Dec. 11, 2008 1. Magnetoelectric polarizability in 3D insulators and experiments! 2. Topological insulators with interactions (3. Critical Majorana fermion chain at the QSH edge) KITP miniprogram, Dec. 11, 2008 Joel

More information

Floquet Topological Insulators and Majorana Modes

Floquet Topological Insulators and Majorana Modes Floquet Topological Insulators and Majorana Modes Manisha Thakurathi Journal Club Centre for High Energy Physics IISc Bangalore January 17, 2013 References Floquet Topological Insulators by J. Cayssol

More information

The space group classification of topological band insulators

The space group classification of topological band insulators arxiv:1209.2610v2 [cond-mat.mes-hall] 19 Nov 2012 The space group classification of topological band insulators Robert-Jan Slager 1, Andrej Mesaros 2, Vladimir Juričić 1 and Jan Zaanen 1 1 Instituut-Lorentz

More information

Exploring Topological Phases With Quantum Walks

Exploring Topological Phases With Quantum Walks Exploring Topological Phases With Quantum Walks Tk Takuya Kitagawa, Erez Berg, Mark Rudner Eugene Demler Harvard University References: PRA 82:33429 and PRB 82:235114 (2010) Collaboration with A. White

More information

Room temperature topological insulators

Room temperature topological insulators Room temperature topological insulators Ronny Thomale Julius-Maximilians Universität Würzburg ERC Topolectrics SFB Tocotronics Synquant Workshop, KITP, UC Santa Barbara, Nov. 22 2016 Correlated electron

More information

Multichannel Majorana Wires

Multichannel Majorana Wires Multichannel Majorana Wires Piet Brouwer Frascati, 2014 Dahlem Center for Complex Quantum Systems Physics Department Inanc Adagideli Freie Universität Berlin Mathias Duckheim Dganit Meidan Graham Kells

More information

Topological Defects inside a Topological Band Insulator

Topological Defects inside a Topological Band Insulator Topological Defects inside a Topological Band Insulator Ashvin Vishwanath UC Berkeley Refs: Ran, Zhang A.V., Nature Physics 5, 289 (2009). Hosur, Ryu, AV arxiv: 0908.2691 Part 1: Outline A toy model of

More information

Classification of topological quantum matter with reflection symmetries

Classification of topological quantum matter with reflection symmetries Classification of topological quantum matter with reflection symmetries Andreas P. Schnyder Max Planck Institute for Solid State Research, Stuttgart June 14th, 2016 SPICE Workshop on New Paradigms in Dirac-Weyl

More information

Topological Kondo Insulators!

Topological Kondo Insulators! Topological Kondo Insulators! Maxim Dzero, University of Maryland Collaborators: Kai Sun, University of Maryland Victor Galitski, University of Maryland Piers Coleman, Rutgers University Main idea Kondo

More information

Topological Physics in Band Insulators. Gene Mele Department of Physics University of Pennsylvania

Topological Physics in Band Insulators. Gene Mele Department of Physics University of Pennsylvania Topological Physics in Band Insulators Gene Mele Department of Physics University of Pennsylvania A Brief History of Topological Insulators What they are How they were discovered Why they are important

More information

Topological insulator (TI)

Topological insulator (TI) Topological insulator (TI) Haldane model: QHE without Landau level Quantized spin Hall effect: 2D topological insulators: Kane-Mele model for graphene HgTe quantum well InAs/GaSb quantum well 3D topological

More information

Symmetry Protected Topological Phases of Matter

Symmetry Protected Topological Phases of Matter Symmetry Protected Topological Phases of Matter T. Senthil (MIT) Review: T. Senthil, Annual Reviews of Condensed Matter Physics, 2015 Topological insulators 1.0 Free electron band theory: distinct insulating

More information

Kouki Nakata. University of Basel. KN, S. K. Kim (UCLA), J. Klinovaja, D. Loss (2017) arxiv:

Kouki Nakata. University of Basel. KN, S. K. Kim (UCLA), J. Klinovaja, D. Loss (2017) arxiv: Magnon Transport Both in Ferromagnetic and Antiferromagnetic Insulating Magnets Kouki Nakata University of Basel KN, S. K. Kim (UCLA), J. Klinovaja, D. Loss (2017) arxiv:1707.07427 See also review article

More information

Recent developments in topological materials

Recent developments in topological materials Recent developments in topological materials NHMFL Winter School January 6, 2014 Joel Moore University of California, Berkeley, and Lawrence Berkeley National Laboratory Berkeley students: Andrew Essin,

More information

arxiv: v2 [cond-mat.mes-hall] 27 Dec 2012

arxiv: v2 [cond-mat.mes-hall] 27 Dec 2012 Topological protection of bound states against the hybridization Bohm-Jung Yang, 1 Mohammad Saeed Bahramy, 1 and Naoto Nagaosa 1,2,3 1 Correlated Electron Research Group (CERG), RIKEN-ASI, Wako, Saitama

More information

Lecture notes on topological insulators

Lecture notes on topological insulators Lecture notes on topological insulators Ming-Che Chang Department of Physics, National Taiwan Normal University, Taipei, Taiwan Dated: May 8, 07 I. D p-wave SUPERCONDUCTOR Here we study p-wave SC in D

More information

Underdoped superconducting cuprates as topological superconductors

Underdoped superconducting cuprates as topological superconductors Underdoped superconducting cuprates as topological superconductors Yuan-Ming Lu 1,2, Tao Xiang 3 & Dung-Hai Lee 1,2 SUPPLEMENTARY INFORMATION 1 Department of Physics, University of California, Berkeley,

More information

Measuring many-body topological invariants using polarons

Measuring many-body topological invariants using polarons 1 Anyon workshop, Kaiserslautern, 12/15/2014 Measuring many-body topological invariants using polarons Fabian Grusdt Physics Department and Research Center OPTIMAS, University of Kaiserslautern, Germany

More information

Symmetry Protected Topological Insulators and Semimetals

Symmetry Protected Topological Insulators and Semimetals Symmetry Protected Topological Insulators and Semimetals I. Introduction : Many examples of topological band phenomena II. Recent developments : - Line node semimetal Kim, Wieder, Kane, Rappe, PRL 115,

More information

Quantum Quenches in Chern Insulators

Quantum Quenches in Chern Insulators Quantum Quenches in Chern Insulators Nigel Cooper Cavendish Laboratory, University of Cambridge CUA Seminar M.I.T., November 10th, 2015 Marcello Caio & Joe Bhaseen (KCL), Stefan Baur (Cambridge) M.D. Caio,

More information

Takuya Kitagawa, Dima Abanin, Immanuel Bloch, Erez Berg, Mark Rudner, Liang Fu, Takashi Oka, Eugene Demler

Takuya Kitagawa, Dima Abanin, Immanuel Bloch, Erez Berg, Mark Rudner, Liang Fu, Takashi Oka, Eugene Demler Exploring topological states with synthetic matter Takuya Kitagawa, Dima Abanin, Immanuel Bloch, Erez Berg, Mark Rudner, Liang Fu, Takashi Oka, Eugene Demler Harvard-MIT $$ NSF, AFOSR MURI, DARPA OLE,

More information

Qualitative theory of finite-particle quantum systems. Comparison of fully quantum, semi-quantum and completely classical models.

Qualitative theory of finite-particle quantum systems. Comparison of fully quantum, semi-quantum and completely classical models. Qualitative theory of finite-particle quantum systems. Comparison of fully quantum, semi-quantum and completely classical models. B. I. Zhilinskii Université du Littoral Côte d Opale, 59 4 Dunkerque, France

More information

arxiv: v2 [cond-mat.mes-hall] 29 Oct 2013

arxiv: v2 [cond-mat.mes-hall] 29 Oct 2013 Topological invariant for generic 1D time reversal symmetric superconductors in class DIII Jan Carl Budich, Eddy Ardonne Department of Physics, Stockholm University, SE-106 91 Stockholm, Sweden Dated:

More information

Quantum transport of 2D Dirac fermions: the case for a topological metal

Quantum transport of 2D Dirac fermions: the case for a topological metal Quantum transport of 2D Dirac fermions: the case for a topological metal Christopher Mudry 1 Shinsei Ryu 2 Akira Furusaki 3 Hideaki Obuse 3,4 1 Paul Scherrer Institut, Switzerland 2 University of California

More information

Topological Insulators and Superconductors. Tokyo 2010 Shoucheng Zhang, Stanford University

Topological Insulators and Superconductors. Tokyo 2010 Shoucheng Zhang, Stanford University Topological Insulators and Superconductors Tokyo 2010 Shoucheng Zhang, Stanford University Colloborators Stanford group: Xiaoliang Qi, Andrei Bernevig, Congjun Wu, Chaoxing Liu, Taylor Hughes, Sri Raghu,

More information

Basics of topological insulator

Basics of topological insulator 011/11/18 @ NTU Basics of topological insulator Ming-Che Chang Dept of Physics, NTNU A brief history of insulators Band insulator (Wilson, Bloch) Mott insulator Anderson insulator Quantum Hall insulator

More information

Quantum interference meets topology: Quantum Hall effect, topological insulators, and graphene. Alexander D. Mirlin

Quantum interference meets topology: Quantum Hall effect, topological insulators, and graphene. Alexander D. Mirlin Quantum interference meets topology: Quantum Hall effect, topological insulators, and graphene Alexander D. Mirlin Karlsruhe Institute of Technology & PNPI St. Petersburg P. Ostrovsky, Karlsruhe Institute

More information

Antiferromagnetic topological insulators

Antiferromagnetic topological insulators Antiferromagnetic topological insulators Roger S. K. Mong, Andrew M. Essin, and Joel E. Moore, Department of Physics, University of California, Berkeley, California 9470, USA Materials Sciences Division,

More information

First-Principles Calculation of Topological Invariants (Wannier Functions Approach) Alexey A. Soluyanov

First-Principles Calculation of Topological Invariants (Wannier Functions Approach) Alexey A. Soluyanov First-Principles Calculation of Topological Invariants (Wannier Functions Approach) Alexey A. Soluyanov ES'12, WFU, June 8, 212 The present work was done in collaboration with David Vanderbilt Outline:

More information

Distribution of Chern number by Landau level broadening in Hofstadter butterfly

Distribution of Chern number by Landau level broadening in Hofstadter butterfly Journal of Physics: Conference Series PAPER OPEN ACCESS Distribution of Chern number by Landau level broadening in Hofstadter butterfly To cite this article: Nobuyuki Yoshioka et al 205 J. Phys.: Conf.

More information

Introduction to topological insulators

Introduction to topological insulators Introduction to topological insulators Janos Asboth1, Laszlo Oroszlany2, Andras Palyi3 1: Wigner Research Centre for Physics, Hungarian Academy of Sciences 2: Eotvos University, Budapest 3: Technical University,

More information

Classification of Crystalline Topological Phases with Point Group Symmetries

Classification of Crystalline Topological Phases with Point Group Symmetries Classification of Crystalline Topological Phases with Point Group Symmetries Eyal Cornfeld - Tel Aviv University Adam Chapman - Tel Hai Academic College Upper Galilee Bad Honnef Physics School on Gauge

More information

Topological Kondo Insulator SmB 6. Tetsuya Takimoto

Topological Kondo Insulator SmB 6. Tetsuya Takimoto Topological Kondo Insulator SmB 6 J. Phys. Soc. Jpn. 80 123720, (2011). Tetsuya Takimoto Department of Physics, Hanyang University Collaborator: Ki-Hoon Lee (POSTECH) Content 1. Introduction of SmB 6 in-gap

More information

arxiv: v3 [cond-mat.dis-nn] 28 Jun 2014

arxiv: v3 [cond-mat.dis-nn] 28 Jun 2014 AIII and BDI Topological Systems at Strong Disorder Juntao Song 1, and Emil Prodan 1 1 Department of Physics, Yeshiva University, New York, NY 116, USA Department of Physics, Hebei Normal University, Hebei

More information

Lecture notes on topological insulators

Lecture notes on topological insulators Lecture notes on topological insulators Ming-Che Chang Department of Physics, National Taiwan Normal University, Taipei, Taiwan (Dated: November 1, 18) Contents I. D Topological insulator 1 A. General

More information

Universal phase transitions in Topological lattice models

Universal phase transitions in Topological lattice models Universal phase transitions in Topological lattice models F. J. Burnell Collaborators: J. Slingerland S. H. Simon September 2, 2010 Overview Matter: classified by orders Symmetry Breaking (Ferromagnet)

More information

Topological states of matter in correlated electron systems

Topological states of matter in correlated electron systems Seminar @ Tsinghua, Dec.5/2012 Topological states of matter in correlated electron systems Qiang-Hua Wang National Lab of Solid State Microstructures, Nanjing University, Nanjing 210093, China Collaborators:Dunghai

More information

arxiv: v3 [cond-mat.supr-con] 4 Apr 2017

arxiv: v3 [cond-mat.supr-con] 4 Apr 2017 Topological superconductors: a review Masatoshi Sato 1, and Yoichi Ando 2, 1 Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan 2 Physics Institute II, University of Cologne,

More information

Les états de bord d un. isolant de Hall atomique

Les états de bord d un. isolant de Hall atomique Les états de bord d un isolant de Hall atomique séminaire Atomes Froids 2/9/22 Nathan Goldman (ULB), Jérôme Beugnon and Fabrice Gerbier Outline Quantum Hall effect : bulk Landau levels and edge states

More information

5 Topological insulator with time-reversal symmetry

5 Topological insulator with time-reversal symmetry Phys62.nb 63 5 Topological insulator with time-reversal symmetry It is impossible to have quantum Hall effect without breaking the time-reversal symmetry. xy xy. If we want xy to be invariant under, xy

More information

Cenke Xu. Quantum Phase Transitions between Bosonic Symmetry Protected Topological States without sign problem 许岑珂

Cenke Xu. Quantum Phase Transitions between Bosonic Symmetry Protected Topological States without sign problem 许岑珂 Quantum Phase Transitions between Bosonic Symmetry Protected Topological States without sign problem Cenke Xu 许岑珂 University of California, Santa Barbara Quantum Phase Transitions between bosonic Symmetry

More information

Topological Physics in Band Insulators IV

Topological Physics in Band Insulators IV Topological Physics in Band Insulators IV Gene Mele University of Pennsylvania Wannier representation and band projectors Modern view: Gapped electronic states are equivalent Kohn (1964): insulator is

More information

T-duality and the Bulk-Boundary Correspondence

T-duality and the Bulk-Boundary Correspondence T-duality and the Bulk-Boundary Correspondence Keith Hannabuss IGA/AMSI Workshop, Adelaide 2016: Topological matter, strings, K-theory, and related areas. 28 September 2016 Joint work with Mathai and Guo

More information

Topological insulator with time-reversal symmetry

Topological insulator with time-reversal symmetry Phys620.nb 101 7 Topological insulator with time-reversal symmetry Q: Can we get a topological insulator that preserves the time-reversal symmetry? A: Yes, with the help of the spin degree of freedom.

More information