Measures the linear dependence or the correlation between r t and r t-p. (summarizes serial dependence)

Size: px
Start display at page:

Download "Measures the linear dependence or the correlation between r t and r t-p. (summarizes serial dependence)"

Transcription

1 . Definiions Saionay Time Seies- A ime seies is saionay if he popeies of he pocess such as he mean and vaiance ae consan houghou ime. i. If he auocoelaion dies ou quickly he seies should be consideed saionay ii. If he auocoelaion dies ou slowly his indicaes ha he pocess is non-saionay Nonsaionaiy- A ime seies is nonsaionay if he popeies of he pocess ae no consan houghou ime i. Uni Roo Nonsaionaiyii. Random Walk wih Dif- Whie Noise- A ime seies is called a whie noise if a sequence of independen and idenically disibued andom vaiables wih finie mean and vaiance, usually WN(, σ ). Whie noise has covaiance Backwad shif opeao a sho hand fo shif backwad in he ime seies. βy Y - β p Y Y -p. Auocoelaion Measues he linea dependence o he coelaion beween and -p. (summaizes seial dependence) ρ l Cov(, l ) Cov(, l ) Va( ) ( ) Va( ) Va l whee Va( ) Va( - ) fo weakly saionay pocess A way o check andomness in he daa Lag of he auocoelaion is by definiion i. If he auocoelaion dies ou slowly his indicaes ha he pocess is non-saionay. ii. If all he ACFs ae close o zeo, hen he seies should be consideed whie noise. No Memoy Seies i. Auocoelaion funcion is zeo Sho Memoy Seies i. Auocoelaion funcion decays exponenially as a funcion of lag Long Memoy Seies i. Auocoelaion funcion decays a polynomial ae ii. The diffeencing exponen is beween -½ and ½. 3. Paial Auocoelaion Coelaion beween obsevaions X and X +h afe emoving he linea elaionship of all obsevaions in ha fall beween X and X +h.

2 ,,,3 + φ + φ + φ, M Each φ is he lag-p PACF ˆ p, p,,,3 + e + φ + φ,,3 + e, + φ + e 3, 3 The PACF shows he added conibuion of -p o pedicing. 4. Diagnosics and Model Selecion Residual Diagnosics i. The esiduals should be saionay whie noise ii. The ACF and PACF should all be zeo a. If hee is a long memoy in he esiduals hen he assumpions ae violaed nonsaionaiy of esiduals 3, AIC (Akaike s Infomaion Cieion) i. A measue of fi plus a penaly em fo he numbe of paamees ii. Coeced AIC- songe penaly em ~ makes a diffeence wih smalle sample sizes iii. Choose he model ha minimizes his adjused measue fi iv. AIC k log(mle esimae of he noise vaiance) + k/t, whee T is he sample size and k is he numbe of paamees in he model Pomaneau Tes i. Tess whehe he fis m coelaions ae zeo vs. he alenaive ha a leas one diffes fom zeo. ii. The sum of he fis m squaed coelaion coefficiens H : ρ... ρ m iii. whee ρ i is he auocoelaion H a : ρi iv. Box and Piece * Q ( m) T m pˆ l l Q*(m) is asympoically a chi-squaed andom vaiable wih m degees of feedom v. Ljung and Box m ˆ ρl Q( m) T ( T + ) l T l Modified Box & Piece saisic o incease powe Uni Roo Tes i. Deived in 979 by Dickey and Fulle o es he pesence of a uni oo vs. a saionay pocess ii. φ ρ + e ρ φ + φ + e ρ ρ

3 If φ hen he seies is said o have uni oo and is no saionay. The uni oo es deemines if φ is significanly close o. H : φ H A : φ < iii. The behavio of he es saisics diffes if i is a andom walk wih dif o if i is a andom walk wihou dif. 5. Uni Roo Nonsaionay Pocess Random Walk i. The equaion fo a andom walk is ρ ρ + a, whee ρ denoes he saing values and a is whie noise. ii. A andom walk is no pedicable and his can no be foecased. iii. All foecass of a andom-walk model ae simply he value of he seies a he foes oigin. iv. The seies has a song memoy Random Walk wih Dif i. ρ µ + ρ + a, whee µ E( ρ ρ ) ρ µ + ρ + a 6. Diffeencing ρ µ + ρ + a M µ + ρ + a ρ µ + ρ + a + a a A posiive µ implies ha he seies evenually goes o infiniy. Reasons why he Diffeence is aken i. To ansfom non-saionay daa ino a saionay ime seies ii. To emove seasonal ends a. ake 4 h diffeence fo qualy daa b. ake h diffeence fo monhly daa Fis Diffeence- The fis diffeence of a ime seies is z y y i. A way o handle song seial coelaion of ACF is o ake he fis diffeence Second Diffeence- The second diffeence is z y y ) ( y y ) 7. Log Tansfomaion + a Reasons o ake log ansfomaion i. Used o handle exponenial gowh of a seies ii. Used o sabilize he vaiabiliy Values mus all be posiive befoe he log is aken (

4 8. Auoegessive Model i. If no all values ae posiive a posiive consan can be added o evey daa poin A egession model in which is pediced using pas values, -, -, i. AR() : + φ + a, whee a is a whie noise seies wih zeo mean and consan vaiance ii. AR(p): φ + φ φ + a p p Weak saionay is he sufficien and necessay condiion of an AR model i. Fo an AR model o be saionay all of is chaaceisic oos mus be less han in modulus ACF fo Auoegessive Model i. The ACF decays exponenially o zeo ) Fo φ >, he plo of ACF fo AR() should decay exponenially ) Fo φ <, he plo should consis of wo alenaing exponenial decays wih ae φ. ii. The ACF fo AR() ρ l ρ l, because ρ hen ρ l. So he ACF fo he AR() should decay o exponenially wih ae φ saing a ρ PACF fo Auoegessive Model ii. The PACF is zeo afe he lag of he AR pocess iii. ˆ φ conveges o zeo fo all l > p. Thus fo AR(p) he PACF cus l, l off a lag p. 9. Moving Aveage Model A linea egession of he cuen value of he seies agains he whie noise o andom shocks of one o moe pio values of he seies. i. X µ + a θa, whee µ is he mean of he seies, a -i ae whie noise, and θ is a model paamee. The MA model is always saionay as i is he linea funcion of uncoelaed o independen andom vaiables. The fis wo momens ae ime-invaian MA model can be viewed as a infinie ode AR model ACF fo Moving Aveage Model ii. The ACF is zeo afe he lages lag of he pocess PACF fo Moving Aveage Model i. The PACF decays o zeo. ARMA [p,q]

5 The seies is a funcion of pas values plus cuen and pas values of he noise. Combines an AR(p) model wih a MA(q) model The equaion fo a ARMA(,) is + a + θa ACF fo ARMA i. The ACF begins o decay exponenially o zeo afe he lages lag of he MA componen.. ARIMA is an ARIMA model if he fis diffeence of is an ARMA model. In an ARMA model, if he AR polynomial has as he chaaceisic oo, hen he model is a ARIMA Uni-oo nonsaionay because i s AR has uni oo. ARIMA has song memoy. ARFIMA A pocess is a facional ARMA (ARFIMA) pocess if he facional diffeenced seies follows an ARMA(p,q) pocess. Thus if a seies ( B) d x follows ARMA(p,q) model, hen he seies is an ARFIMA(p,d,q). 3. Foecasing The mulisep foecas conveges o he mean of he seies and he vaiances of foecas eos convege o he vaiance of he seies. Fo AR Model i. The -sep ahead foecas is he condiional expecaion ˆ () E( h h+ h, h,...) + ii. Fo mulisep ahead foecas: p i φ i h+ i ˆ ( l) + h p φ i h+ l i i ˆ h ( ) h + h () ah+ iii. The foecas eo fo sep ahead: e iv. Mean eveing. Fo a saionay AR(p) model, long em poin foecass appoach hen uncondiional mean. Also, he vaiance of he foecas appoaches he uncondiional vaiance of. Fo MA Model i. Because he model has finie memoy, is poin foecass go o he mean of he seies quickly. ii. The -sep ahead foecas fo MA() is he condiional expecaion ˆ h () E( h + h, h,...) co θah The -sep ahead foecas fo MA() ˆh () E( h + h, h,...) co

6 iii. Fo a MA(q) model, he mulisep ahead foecass go o he mean afe he fis q seps. 4. Specal Densiy A way of epesening a ime seies in ems of hamonic componens a vaious fequencies. Tells he dominan cycles o peiods in he seies Specal Densiy is only appopiae fo saionay ime seies daa. A Peiodogam a a paicula fequency ω is popoional o he squaed ampliude of he coesponding cosine wave, α cos( ω) + β sin( ω), fied o he daa using leas squaes. Fo a Covaiance saionay ime seies(csts) wih auocovaiance funcion γ (v), v, ±, ± he specal densiy is given by f ( v) γ ( h) n / / γ ( h) e 5. VaR Value a Risk e πivh πivh f ( v) dv whee v [-/, /] Esimaes he amoun which an insiuion s posiion in a isk caegoy could decline due o geneal make movemens duing a given holding peiod. Concened wih make isk In ealiy, used o assess isk o se magin equiemens i. Ensues ha financial insiuions can sill be in business afe a caasophic even Deemined via foecasing If mulivaiae: i. VaR VaR + VaR + ρvarvar 6. VAR Veco Auoegessive Model A veco model used fo mulivaiae ime seies + Φ + a i. VAR(): - ; whee φ is a k-dim veco, Φ is a k x k maix, and {a } is a sequence of seially uncoelaed andom vecos wih mean zeo and covaiance maix Σ. Σ posiive definie. ii. VAR(p): + Φ Φ p-p + a Can also model VMA and VARMA models i. One issue, VARMA has an idenifiabiliy poblem (i.e. may no be uniquely defined ii. When VARMA models ae used, you should only eneain lowe ode models.

7 7. Volailiy Models ARCH i. Only an AR em a σ ε ii. ARCH(m): σ α + αa α ma m iii. Weaknesses: Assume +ve & -ve shocks have same effecs on volailiy (i.e. use squae of pevious shocks o deemine ode) use leveage o accoun fo he fac ha ve shocks (i.e. bad news ) have lage impac on volailiy han +ve shocks (i.e. good news ). Model is esicive (see p.86, 3.3.()) Only descibes he behavio of he condiional vaiance. Does no explain he souce of he vaiaions. Likely o ove-pedic he volailiy since he espond slowly o lage isolaed shocks o he eun seies. GARCH genealized ARCH i. Mean sucue can be descibed by an ARMA model a σ ε ii. GARCH(m,s): σ α + m i α a i + i s j β σ iii. Same weaknesses as he ARCH iv. If he AR componen has a uni oo, hen we have an IGARCH model (i.e. Inegaed GARCH; a.k.a. uni-oo GARCH model) v. EGARCH (i.e. Exponenial GARCH) allows fo asymmeic effecs beween +ve & -ve asse euns. Models he log(cond. vaiance) as an ARMA. PRO: vaiances ae guaaneed o be posiive. GARCH-M - GARCH in mean i. Used when he eun of a secuiy depends on is volailiy a σ ε ii. GARCH(,)-M: µ + cσ + a σ α + αa + βσ indicaes ha he eun is posiively elaed o is pas volailiy. iii. Coss-Coelaion: seies coelaed agains seies ; used o deemine whehe hee exiss volailiy in he mean sucue. Alenaive GARCH models ) CHARMA Condiional heeoscedasic ARMA uses andom coefficiens o poduce condiional heeoscedasiciy. ) RCA Random Coefficien Auoegessive model accouns fo vaiabiliy among diffeen subjecs unde sudy. Bee suied fo modeling he condiional mean as i allows fo he paamees o evolve ove ime. 3) SV Sochasic Volailiy model is simila o an EGARCH bu incopoaes an innovaion o he condiional vaiance equaion. j j ; whee µ, c consan. A +ve c

8 4) LMSV Long-Memoy SV model allows fo long memoy in he volailiy. NOTE: Diffeencing ONLY effecs mean sucue, Log Tansfomaion effecs volailiy sucue. 8. MCMC Mehods (Makov Chain Mone Calo) Makov chain simulaion ceaes a Makov pocess on Θ, which conveges o a saionay ansiion disibuion, P(θ, X). GIBBS SAMPLING (p.397) o Likelihood unknown, condiional dis n s known. o Need saing values o Sampling fom cond. dis n s conveges o sampling fom he join dis n. o PRO: Compaed o MCMC, Gibbs can decompose a high-dim esimaion poblem ino seveal lowe-dim ones. o CON: When paamees ae highly coelaed, you should daw hem joinly. o In pacice, epea seveal imes wih diffeen saing values o ensue he algoihm has conveged. BAYESIAN INFERENCE (p. 4) o Combines pio belief wih daa o obain poseio dis n s on which saisical infeence is based.

Lecture-V Stochastic Processes and the Basic Term-Structure Equation 1 Stochastic Processes Any variable whose value changes over time in an uncertain

Lecture-V Stochastic Processes and the Basic Term-Structure Equation 1 Stochastic Processes Any variable whose value changes over time in an uncertain Lecue-V Sochasic Pocesses and he Basic Tem-Sucue Equaion 1 Sochasic Pocesses Any vaiable whose value changes ove ime in an unceain way is called a Sochasic Pocess. Sochasic Pocesses can be classied as

More information

A Weighted Moving Average Process for Forecasting. Shou Hsing Shih Chris P. Tsokos

A Weighted Moving Average Process for Forecasting. Shou Hsing Shih Chris P. Tsokos A Weighed Moving Aveage Pocess fo Foecasing Shou Hsing Shih Chis P. Tsokos Depamen of Mahemaics and Saisics Univesiy of Souh Floida, USA Absac The objec of he pesen sudy is o popose a foecasing model fo

More information

Chapter 5. Heterocedastic Models. Introduction to time series (2008) 1

Chapter 5. Heterocedastic Models. Introduction to time series (2008) 1 Chaper 5 Heerocedasic Models Inroducion o ime series (2008) 1 Chaper 5. Conens. 5.1. The ARCH model. 5.2. The GARCH model. 5.3. The exponenial GARCH model. 5.4. The CHARMA model. 5.5. Random coefficien

More information

[ ] 0. = (2) = a q dimensional vector of observable instrumental variables that are in the information set m constituents of u

[ ] 0. = (2) = a q dimensional vector of observable instrumental variables that are in the information set m constituents of u Genealized Mehods of Momens he genealized mehod momens (GMM) appoach of Hansen (98) can be hough of a geneal pocedue fo esing economics and financial models. he GMM is especially appopiae fo models ha

More information

Stationary Time Series

Stationary Time Series 3-Jul-3 Time Series Analysis Assoc. Prof. Dr. Sevap Kesel July 03 Saionary Time Series Sricly saionary process: If he oin dis. of is he same as he oin dis. of ( X,... X n) ( X h,... X nh) Weakly Saionary

More information

Sections 3.1 and 3.4 Exponential Functions (Growth and Decay)

Sections 3.1 and 3.4 Exponential Functions (Growth and Decay) Secions 3.1 and 3.4 Eponenial Funcions (Gowh and Decay) Chape 3. Secions 1 and 4 Page 1 of 5 Wha Would You Rahe Have... $1million, o double you money evey day fo 31 days saing wih 1cen? Day Cens Day Cens

More information

Lecture 18: Kinetics of Phase Growth in a Two-component System: general kinetics analysis based on the dilute-solution approximation

Lecture 18: Kinetics of Phase Growth in a Two-component System: general kinetics analysis based on the dilute-solution approximation Lecue 8: Kineics of Phase Gowh in a Two-componen Sysem: geneal kineics analysis based on he dilue-soluion appoximaion Today s opics: In he las Lecues, we leaned hee diffeen ways o descibe he diffusion

More information

Low-complexity Algorithms for MIMO Multiplexing Systems

Low-complexity Algorithms for MIMO Multiplexing Systems Low-complexiy Algoihms fo MIMO Muliplexing Sysems Ouline Inoducion QRD-M M algoihm Algoihm I: : o educe he numbe of suviving pahs. Algoihm II: : o educe he numbe of candidaes fo each ansmied signal. :

More information

OBJECTIVES OF TIME SERIES ANALYSIS

OBJECTIVES OF TIME SERIES ANALYSIS OBJECTIVES OF TIME SERIES ANALYSIS Undersanding he dynamic or imedependen srucure of he observaions of a single series (univariae analysis) Forecasing of fuure observaions Asceraining he leading, lagging

More information

Predictive Regressions. Based on AP Chap. 20

Predictive Regressions. Based on AP Chap. 20 Peicive Regessions Base on AP Chap. 20 Ealy auhos, incluing Jensen (969) an Fama (970) viewe ha he efficien mae hypohesis mean euns wee no peicable. Lae wo, noably Lucas (978) showe ha aional expecaions

More information

MEEN 617 Handout #11 MODAL ANALYSIS OF MDOF Systems with VISCOUS DAMPING

MEEN 617 Handout #11 MODAL ANALYSIS OF MDOF Systems with VISCOUS DAMPING MEEN 67 Handou # MODAL ANALYSIS OF MDOF Sysems wih VISCOS DAMPING ^ Symmeic Moion of a n-dof linea sysem is descibed by he second ode diffeenial equaions M+C+K=F whee () and F () ae n ows vecos of displacemens

More information

Orthotropic Materials

Orthotropic Materials Kapiel 2 Ohoopic Maeials 2. Elasic Sain maix Elasic sains ae elaed o sesses by Hooke's law, as saed below. The sesssain elaionship is in each maeial poin fomulaed in he local caesian coodinae sysem. ε

More information

General Non-Arbitrage Model. I. Partial Differential Equation for Pricing A. Traded Underlying Security

General Non-Arbitrage Model. I. Partial Differential Equation for Pricing A. Traded Underlying Security 1 Geneal Non-Abiage Model I. Paial Diffeenial Equaion fo Picing A. aded Undelying Secuiy 1. Dynamics of he Asse Given by: a. ds = µ (S, )d + σ (S, )dz b. he asse can be eihe a sock, o a cuency, an index,

More information

Modelling Dynamic Conditional Correlations in the Volatility of Spot and Forward Oil Price Returns

Modelling Dynamic Conditional Correlations in the Volatility of Spot and Forward Oil Price Returns Modelling Dynamic Condiional Coelaions in he Volailiy of Spo and Fowad Oil Pice Reuns Maeo Manea a, Michael McAlee b and Magheia Gasso c a Depamen of Saisics, Univesiy of Milan-Bicocca and FEEM, Milan,

More information

On Control Problem Described by Infinite System of First-Order Differential Equations

On Control Problem Described by Infinite System of First-Order Differential Equations Ausalian Jounal of Basic and Applied Sciences 5(): 736-74 ISS 99-878 On Conol Poblem Descibed by Infinie Sysem of Fis-Ode Diffeenial Equaions Gafujan Ibagimov and Abbas Badaaya J'afau Insiue fo Mahemaical

More information

Variance and Covariance Processes

Variance and Covariance Processes Vaiance and Covaiance Pocesses Pakash Balachandan Depamen of Mahemaics Duke Univesiy May 26, 2008 These noes ae based on Due s Sochasic Calculus, Revuz and Yo s Coninuous Maingales and Bownian Moion, Kaazas

More information

CS 188: Artificial Intelligence Fall Probabilistic Models

CS 188: Artificial Intelligence Fall Probabilistic Models CS 188: Aificial Inelligence Fall 2007 Lecue 15: Bayes Nes 10/18/2007 Dan Klein UC Bekeley Pobabilisic Models A pobabilisic model is a join disibuion ove a se of vaiables Given a join disibuion, we can

More information

Lecture 17: Kinetics of Phase Growth in a Two-component System:

Lecture 17: Kinetics of Phase Growth in a Two-component System: Lecue 17: Kineics of Phase Gowh in a Two-componen Sysem: descipion of diffusion flux acoss he α/ ineface Today s opics Majo asks of oday s Lecue: how o deive he diffusion flux of aoms. Once an incipien

More information

TESTING FOR SERIAL CORRELATION: GENERALIZED ANDREWS- PLOBERGER TESTS ABSTRACT

TESTING FOR SERIAL CORRELATION: GENERALIZED ANDREWS- PLOBERGER TESTS ABSTRACT ESING FOR SERIAL CORRELAION: GENERALIZED ANDREWS- PLOBERGER ESS John C. Nankevis Essex Finance Cene, Essex Business School Univesiy of Essex, Colchese, CO4 3SQ U.K. N. E. Savin Depamen of Economics, Univesiy

More information

, on the power of the transmitter P t fed to it, and on the distance R between the antenna and the observation point as. r r t

, on the power of the transmitter P t fed to it, and on the distance R between the antenna and the observation point as. r r t Lecue 6: Fiis Tansmission Equaion and Rada Range Equaion (Fiis equaion. Maximum ange of a wieless link. Rada coss secion. Rada equaion. Maximum ange of a ada. 1. Fiis ansmission equaion Fiis ansmission

More information

Representing Knowledge. CS 188: Artificial Intelligence Fall Properties of BNs. Independence? Reachability (the Bayes Ball) Example

Representing Knowledge. CS 188: Artificial Intelligence Fall Properties of BNs. Independence? Reachability (the Bayes Ball) Example C 188: Aificial Inelligence Fall 2007 epesening Knowledge ecue 17: ayes Nes III 10/25/2007 an Klein UC ekeley Popeies of Ns Independence? ayes nes: pecify complex join disibuions using simple local condiional

More information

7 Wave Equation in Higher Dimensions

7 Wave Equation in Higher Dimensions 7 Wave Equaion in Highe Dimensions We now conside he iniial-value poblem fo he wave equaion in n dimensions, u c u x R n u(x, φ(x u (x, ψ(x whee u n i u x i x i. (7. 7. Mehod of Spheical Means Ref: Evans,

More information

- The whole joint distribution is independent of the date at which it is measured and depends only on the lag.

- The whole joint distribution is independent of the date at which it is measured and depends only on the lag. Saionary Processes Sricly saionary - The whole join disribuion is indeenden of he dae a which i is measured and deends only on he lag. - E y ) is a finie consan. ( - V y ) is a finie consan. ( ( y, y s

More information

The Global Trade and Environment Model: GTEM

The Global Trade and Environment Model: GTEM The Global Tade and Envionmen Model: A pojecion of non-seady sae daa using Ineempoal GTEM Hom Pan, Vivek Tulpulé and Bian S. Fishe Ausalian Bueau of Agiculual and Resouce Economics OBJECTIVES Deive an

More information

The sudden release of a large amount of energy E into a background fluid of density

The sudden release of a large amount of energy E into a background fluid of density 10 Poin explosion The sudden elease of a lage amoun of enegy E ino a backgound fluid of densiy ceaes a song explosion, chaaceized by a song shock wave (a blas wave ) emanaing fom he poin whee he enegy

More information

Sample Autocorrelations for Financial Time Series Models. Richard A. Davis Colorado State University Thomas Mikosch University of Copenhagen

Sample Autocorrelations for Financial Time Series Models. Richard A. Davis Colorado State University Thomas Mikosch University of Copenhagen Sample Auocorrelaions for Financial Time Series Models Richard A. Davis Colorado Sae Universiy Thomas Mikosch Universiy of Copenhagen Ouline Characerisics of some financial ime series IBM reurns NZ-USA

More information

Volatility. Many economic series, and most financial series, display conditional volatility

Volatility. Many economic series, and most financial series, display conditional volatility Volailiy Many economic series, and mos financial series, display condiional volailiy The condiional variance changes over ime There are periods of high volailiy When large changes frequenly occur And periods

More information

Reinforcement learning

Reinforcement learning Lecue 3 Reinfocemen leaning Milos Hauskech milos@cs.pi.edu 539 Senno Squae Reinfocemen leaning We wan o lean he conol policy: : X A We see examples of x (bu oupus a ae no given) Insead of a we ge a feedback

More information

On The Estimation of Two Missing Values in Randomized Complete Block Designs

On The Estimation of Two Missing Values in Randomized Complete Block Designs Mahemaical Theoy and Modeling ISSN 45804 (Pape ISSN 505 (Online Vol.6, No.7, 06 www.iise.og On The Esimaion of Two Missing Values in Randomized Complee Bloc Designs EFFANGA, EFFANGA OKON AND BASSE, E.

More information

Licenciatura de ADE y Licenciatura conjunta Derecho y ADE. Hoja de ejercicios 2 PARTE A

Licenciatura de ADE y Licenciatura conjunta Derecho y ADE. Hoja de ejercicios 2 PARTE A Licenciaura de ADE y Licenciaura conjuna Derecho y ADE Hoja de ejercicios PARTE A 1. Consider he following models Δy = 0.8 + ε (1 + 0.8L) Δ 1 y = ε where ε and ε are independen whie noise processes. In

More information

Combinatorial Approach to M/M/1 Queues. Using Hypergeometric Functions

Combinatorial Approach to M/M/1 Queues. Using Hypergeometric Functions Inenaional Mahemaical Foum, Vol 8, 03, no 0, 463-47 HIKARI Ld, wwwm-hikaicom Combinaoial Appoach o M/M/ Queues Using Hypegeomeic Funcions Jagdish Saan and Kamal Nain Depamen of Saisics, Univesiy of Delhi,

More information

A Negative Log Likelihood Function-Based Nonlinear Neural Network Approach

A Negative Log Likelihood Function-Based Nonlinear Neural Network Approach A Negaive Log Likelihood Funcion-Based Nonlinea Neual Newok Appoach Ponip Dechpichai,* and Pamela Davy School of Mahemaics and Applied Saisics Univesiy of Wollongong, Wollongong NSW 5, AUSTRALIA * Coesponding

More information

STUDY OF THE STRESS-STRENGTH RELIABILITY AMONG THE PARAMETERS OF GENERALIZED INVERSE WEIBULL DISTRIBUTION

STUDY OF THE STRESS-STRENGTH RELIABILITY AMONG THE PARAMETERS OF GENERALIZED INVERSE WEIBULL DISTRIBUTION Inenaional Jounal of Science, Technology & Managemen Volume No 04, Special Issue No. 0, Mach 205 ISSN (online): 2394-537 STUDY OF THE STRESS-STRENGTH RELIABILITY AMONG THE PARAMETERS OF GENERALIZED INVERSE

More information

Fig. 1S. The antenna construction: (a) main geometrical parameters, (b) the wire support pillar and (c) the console link between wire and coaxial

Fig. 1S. The antenna construction: (a) main geometrical parameters, (b) the wire support pillar and (c) the console link between wire and coaxial a b c Fig. S. The anenna consucion: (a) ain geoeical paaees, (b) he wie suppo pilla and (c) he console link beween wie and coaial pobe. Fig. S. The anenna coss-secion in he y-z plane. Accoding o [], he

More information

STAD57 Time Series Analysis. Lecture 17

STAD57 Time Series Analysis. Lecture 17 STAD57 Time Series Analysis Lecure 17 1 Exponenially Weighed Moving Average Model Consider ARIMA(0,1,1), or IMA(1,1), model 1 s order differences follow MA(1) X X W W Y X X W W 1 1 1 1 Very common model

More information

STAD57 Time Series Analysis. Lecture 17

STAD57 Time Series Analysis. Lecture 17 STAD57 Time Series Analysis Lecure 17 1 Exponenially Weighed Moving Average Model Consider ARIMA(0,1,1), or IMA(1,1), model 1 s order differences follow MA(1) X X W W Y X X W W 1 1 1 1 Very common model

More information

Lecture 5. Time series: ECM. Bernardina Algieri Department Economics, Statistics and Finance

Lecture 5. Time series: ECM. Bernardina Algieri Department Economics, Statistics and Finance Lecure 5 Time series: ECM Bernardina Algieri Deparmen Economics, Saisics and Finance Conens Time Series Modelling Coinegraion Error Correcion Model Two Seps, Engle-Granger procedure Error Correcion Model

More information

14 Autoregressive Moving Average Models

14 Autoregressive Moving Average Models 14 Auoregressive Moving Average Models In his chaper an imporan parameric family of saionary ime series is inroduced, he family of he auoregressive moving average, or ARMA, processes. For a large class

More information

Kalman Filter: an instance of Bayes Filter. Kalman Filter: an instance of Bayes Filter. Kalman Filter. Linear dynamics with Gaussian noise

Kalman Filter: an instance of Bayes Filter. Kalman Filter: an instance of Bayes Filter. Kalman Filter. Linear dynamics with Gaussian noise COM47 Inoducion o Roboics and Inelligen ysems he alman File alman File: an insance of Bayes File alman File: an insance of Bayes File Linea dynamics wih Gaussian noise alman File Linea dynamics wih Gaussian

More information

Lecture 22 Electromagnetic Waves

Lecture 22 Electromagnetic Waves Lecue Elecomagneic Waves Pogam: 1. Enegy caied by he wave (Poyning veco).. Maxwell s equaions and Bounday condiions a inefaces. 3. Maeials boundaies: eflecion and efacion. Snell s Law. Quesions you should

More information

Richard A. Davis Colorado State University Bojan Basrak Eurandom Thomas Mikosch University of Groningen

Richard A. Davis Colorado State University Bojan Basrak Eurandom Thomas Mikosch University of Groningen Mulivariae Regular Variaion wih Applicaion o Financial Time Series Models Richard A. Davis Colorado Sae Universiy Bojan Basrak Eurandom Thomas Mikosch Universiy of Groningen Ouline + Characerisics of some

More information

Today - Lecture 13. Today s lecture continue with rotations, torque, Note that chapters 11, 12, 13 all involve rotations

Today - Lecture 13. Today s lecture continue with rotations, torque, Note that chapters 11, 12, 13 all involve rotations Today - Lecue 13 Today s lecue coninue wih oaions, oque, Noe ha chapes 11, 1, 13 all inole oaions slide 1 eiew Roaions Chapes 11 & 1 Viewed fom aboe (+z) Roaional, o angula elociy, gies angenial elociy

More information

The k-filtering Applied to Wave Electric and Magnetic Field Measurements from Cluster

The k-filtering Applied to Wave Electric and Magnetic Field Measurements from Cluster The -fileing pplied o Wave lecic and Magneic Field Measuemens fom Cluse Jean-Louis PINÇON and ndes TJULIN LPC-CNRS 3 av. de la Recheche Scienifique 4507 Oléans Fance jlpincon@cns-oleans.f OUTLINS The -fileing

More information

Risk tolerance and optimal portfolio choice

Risk tolerance and optimal portfolio choice Risk oleance and opimal pofolio choice Maek Musiela BNP Paibas London Copoae and Invesmen Join wok wih T. Zaiphopoulou (UT usin) Invesmens and fowad uiliies Pepin 6 Backwad and fowad dynamic uiliies and

More information

Probabilistic Models. CS 188: Artificial Intelligence Fall Independence. Example: Independence. Example: Independence? Conditional Independence

Probabilistic Models. CS 188: Artificial Intelligence Fall Independence. Example: Independence. Example: Independence? Conditional Independence C 188: Aificial Inelligence Fall 2007 obabilisic Models A pobabilisic model is a join disibuion ove a se of vaiables Lecue 15: Bayes Nes 10/18/2007 Given a join disibuion, we can eason abou unobseved vaiables

More information

The Production of Polarization

The Production of Polarization Physics 36: Waves Lecue 13 3/31/211 The Poducion of Polaizaion Today we will alk abou he poducion of polaized ligh. We aleady inoduced he concep of he polaizaion of ligh, a ansvese EM wave. To biefly eview

More information

DYNAMIC ECONOMETRIC MODELS vol NICHOLAS COPERNICUS UNIVERSITY - TORUŃ Józef Stawicki and Joanna Górka Nicholas Copernicus University

DYNAMIC ECONOMETRIC MODELS vol NICHOLAS COPERNICUS UNIVERSITY - TORUŃ Józef Stawicki and Joanna Górka Nicholas Copernicus University DYNAMIC ECONOMETRIC MODELS vol.. - NICHOLAS COPERNICUS UNIVERSITY - TORUŃ 996 Józef Sawicki and Joanna Górka Nicholas Copernicus Universiy ARMA represenaion for a sum of auoregressive processes In he ime

More information

Financial Econometrics Jeffrey R. Russell Midterm Winter 2009 SOLUTIONS

Financial Econometrics Jeffrey R. Russell Midterm Winter 2009 SOLUTIONS Name SOLUTIONS Financial Economerics Jeffrey R. Russell Miderm Winer 009 SOLUTIONS You have 80 minues o complee he exam. Use can use a calculaor and noes. Try o fi all your work in he space provided. If

More information

Exponential and Logarithmic Equations and Properties of Logarithms. Properties. Properties. log. Exponential. Logarithmic.

Exponential and Logarithmic Equations and Properties of Logarithms. Properties. Properties. log. Exponential. Logarithmic. Eponenial and Logaihmic Equaions and Popeies of Logaihms Popeies Eponenial a a s = a +s a /a s = a -s (a ) s = a s a b = (ab) Logaihmic log s = log + logs log/s = log - logs log s = s log log a b = loga

More information

Lecture 5. Chapter 3. Electromagnetic Theory, Photons, and Light

Lecture 5. Chapter 3. Electromagnetic Theory, Photons, and Light Lecue 5 Chape 3 lecomagneic Theo, Phoons, and Ligh Gauss s Gauss s Faada s Ampèe- Mawell s + Loen foce: S C ds ds S C F dl dl q Mawell equaions d d qv A q A J ds ds In mae fields ae defined hough ineacion

More information

KINEMATICS OF RIGID BODIES

KINEMATICS OF RIGID BODIES KINEMTICS OF RIGID ODIES In igid body kinemaics, we use he elaionships govening he displacemen, velociy and acceleaion, bu mus also accoun fo he oaional moion of he body. Descipion of he moion of igid

More information

NBER WORKING PAPER SERIES A MULTIPLE INDICATORS MODEL FOR VOLATILITY USING INTRA-DAILY DATA. Robert F. Engle Giampiero M. Gallo

NBER WORKING PAPER SERIES A MULTIPLE INDICATORS MODEL FOR VOLATILITY USING INTRA-DAILY DATA. Robert F. Engle Giampiero M. Gallo NBER WORKING PAPER SERIES A MULTIPLE INDICATORS MODEL FOR VOLATILITY USING INTRA-DAILY DATA Robe F. Engle Giampieo M. Gallo Woking Pape 10117 p://www.nbe.og/papes/w10117 NATIONAL BUREAU OF ECONOMIC RESEARCH

More information

Exponential Smoothing

Exponential Smoothing Exponenial moohing Inroducion A simple mehod for forecasing. Does no require long series. Enables o decompose he series ino a rend and seasonal effecs. Paricularly useful mehod when here is a need o forecas

More information

Box-Jenkins Modelling of Nigerian Stock Prices Data

Box-Jenkins Modelling of Nigerian Stock Prices Data Greener Journal of Science Engineering and Technological Research ISSN: 76-7835 Vol. (), pp. 03-038, Sepember 0. Research Aricle Box-Jenkins Modelling of Nigerian Sock Prices Daa Ee Harrison Euk*, Barholomew

More information

Why Can the Yield Curve Predict Output Growth, Inflation, and. Interest Rates? An Analysis with Affine Term Structure Model

Why Can the Yield Curve Predict Output Growth, Inflation, and. Interest Rates? An Analysis with Affine Term Structure Model Why Can he Yield Cuve Pedic Oupu Gowh, Inflaion, and Inees Raes? An Analysis wih Affine Tem Sucue Model Hibiki Ichiue Depamen of Economics, Univesiy of Califonia, San Diego The Bank of Japan Augus, 2003

More information

Two-dimensional Effects on the CSR Interaction Forces for an Energy-Chirped Bunch. Rui Li, J. Bisognano, R. Legg, and R. Bosch

Two-dimensional Effects on the CSR Interaction Forces for an Energy-Chirped Bunch. Rui Li, J. Bisognano, R. Legg, and R. Bosch Two-dimensional Effecs on he CS Ineacion Foces fo an Enegy-Chiped Bunch ui Li, J. Bisognano,. Legg, and. Bosch Ouline 1. Inoducion 2. Pevious 1D and 2D esuls fo Effecive CS Foce 3. Bunch Disibuion Vaiaion

More information

156 There are 9 books stacked on a shelf. The thickness of each book is either 1 inch or 2

156 There are 9 books stacked on a shelf. The thickness of each book is either 1 inch or 2 156 Thee ae 9 books sacked on a shelf. The hickness of each book is eihe 1 inch o 2 F inches. The heigh of he sack of 9 books is 14 inches. Which sysem of equaions can be used o deemine x, he numbe of

More information

R t. C t P t. + u t. C t = αp t + βr t + v t. + β + w t

R t. C t P t. + u t. C t = αp t + βr t + v t. + β + w t Exercise 7 C P = α + β R P + u C = αp + βr + v (a) (b) C R = α P R + β + w (c) Assumpions abou he disurbances u, v, w : Classical assumions on he disurbance of one of he equaions, eg. on (b): E(v v s P,

More information

Modeling and Forecasting Volatility Autoregressive Conditional Heteroskedasticity Models. Economic Forecasting Anthony Tay Slide 1

Modeling and Forecasting Volatility Autoregressive Conditional Heteroskedasticity Models. Economic Forecasting Anthony Tay Slide 1 Modeling and Forecasing Volailiy Auoregressive Condiional Heeroskedasiciy Models Anhony Tay Slide 1 smpl @all line(m) sii dl_sii S TII D L _ S TII 4,000. 3,000.1.0,000 -.1 1,000 -. 0 86 88 90 9 94 96 98

More information

The shortest path between two truths in the real domain passes through the complex domain. J. Hadamard

The shortest path between two truths in the real domain passes through the complex domain. J. Hadamard Complex Analysis R.G. Halbud R.Halbud@ucl.ac.uk Depamen of Mahemaics Univesiy College London 202 The shoes pah beween wo uhs in he eal domain passes hough he complex domain. J. Hadamad Chape The fis fundamenal

More information

Diebold, Chapter 7. Francis X. Diebold, Elements of Forecasting, 4th Edition (Mason, Ohio: Cengage Learning, 2006). Chapter 7. Characterizing Cycles

Diebold, Chapter 7. Francis X. Diebold, Elements of Forecasting, 4th Edition (Mason, Ohio: Cengage Learning, 2006). Chapter 7. Characterizing Cycles Diebold, Chaper 7 Francis X. Diebold, Elemens of Forecasing, 4h Ediion (Mason, Ohio: Cengage Learning, 006). Chaper 7. Characerizing Cycles Afer compleing his reading you should be able o: Define covariance

More information

A Multiple Indicators Model for Volatility Using Intra-Daily Data

A Multiple Indicators Model for Volatility Using Intra-Daily Data A Muliple Indicaos Model fo Volailiy Using Ina-Daily Daa Robe F. Engle and Giampieo M. Gallo ** Tis vesion: Novembe 11, 004 Absac Many ways exis o measue and model financial asse volailiy. In pinciple,

More information

( ) exp i ω b ( ) [ III-1 ] exp( i ω ab. exp( i ω ba

( ) exp i ω b ( ) [ III-1 ] exp( i ω ab. exp( i ω ba THE INTEACTION OF ADIATION AND MATTE: SEMICLASSICAL THEOY PAGE 26 III. EVIEW OF BASIC QUANTUM MECHANICS : TWO -LEVEL QUANTUM SYSTEMS : The lieaue of quanum opics and lase specoscop abounds wih discussions

More information

Dynamic Estimation of OD Matrices for Freeways and Arterials

Dynamic Estimation of OD Matrices for Freeways and Arterials Novembe 2007 Final Repo: ITS Dynamic Esimaion of OD Maices fo Feeways and Aeials Auhos: Juan Calos Heea, Sauabh Amin, Alexande Bayen, Same Madana, Michael Zhang, Yu Nie, Zhen Qian, Yingyan Lou, Yafeng

More information

Methodology. -ratios are biased and that the appropriate critical values have to be increased by an amount. that depends on the sample size.

Methodology. -ratios are biased and that the appropriate critical values have to be increased by an amount. that depends on the sample size. Mehodology. Uni Roo Tess A ime series is inegraed when i has a mean revering propery and a finie variance. I is only emporarily ou of equilibrium and is called saionary in I(0). However a ime series ha

More information

Finite-Sample Effects on the Standardized Returns of the Tokyo Stock Exchange

Finite-Sample Effects on the Standardized Returns of the Tokyo Stock Exchange Available online a www.sciencediec.com Pocedia - Social and Behavioal Sciences 65 ( 01 ) 968 973 Inenaional Congess on Inedisciplinay Business and Social Science 01 (ICIBSoS 01) Finie-Sample Effecs on

More information

International Journal of Pure and Applied Sciences and Technology

International Journal of Pure and Applied Sciences and Technology In. J. Pue Appl. Sci. Technol., 4 (211, pp. 23-29 Inenaional Jounal of Pue and Applied Sciences and Technology ISS 2229-617 Available online a www.ijopaasa.in eseach Pape Opizaion of he Uiliy of a Sucual

More information

Vectorautoregressive Model and Cointegration Analysis. Time Series Analysis Dr. Sevtap Kestel 1

Vectorautoregressive Model and Cointegration Analysis. Time Series Analysis Dr. Sevtap Kestel 1 Vecorauoregressive Model and Coinegraion Analysis Par V Time Series Analysis Dr. Sevap Kesel 1 Vecorauoregression Vecor auoregression (VAR) is an economeric model used o capure he evoluion and he inerdependencies

More information

State-Space Models. Initialization, Estimation and Smoothing of the Kalman Filter

State-Space Models. Initialization, Estimation and Smoothing of the Kalman Filter Sae-Space Models Iniializaion, Esimaion and Smoohing of he Kalman Filer Iniializaion of he Kalman Filer The Kalman filer shows how o updae pas predicors and he corresponding predicion error variances when

More information

An Automatic Door Sensor Using Image Processing

An Automatic Door Sensor Using Image Processing An Auomaic Doo Senso Using Image Pocessing Depamen o Elecical and Eleconic Engineeing Faculy o Engineeing Tooi Univesiy MENDEL 2004 -Insiue o Auomaion and Compue Science- in BRNO CZECH REPUBLIC 1. Inoducion

More information

Mixture Regression-Cum-Ratio Estimator Using Multi-Auxiliary Variables and Attributes in Single-Phase Sampling

Mixture Regression-Cum-Ratio Estimator Using Multi-Auxiliary Variables and Attributes in Single-Phase Sampling Open Jounal of Saisics, 04, 4, 367-376 Published Online Augus 04 in Scies. hp://www.scip.og/ounal/os hp://dx.doi.og/0.436/os.04.45036 Mixue egession-um-aio Esimao Using Muli-Auxilia Vaiables and Aibues

More information

Unit Root Time Series. Univariate random walk

Unit Root Time Series. Univariate random walk Uni Roo ime Series Univariae random walk Consider he regression y y where ~ iid N 0, he leas squares esimae of is: ˆ yy y y yy Now wha if = If y y hen le y 0 =0 so ha y j j If ~ iid N 0, hen y ~ N 0, he

More information

Section 4 NABE ASTEF 232

Section 4 NABE ASTEF 232 Secion 4 NABE ASTEF 3 APPLIED ECONOMETRICS: TIME-SERIES ANALYSIS 33 Inroducion and Review The Naure of Economic Modeling Judgemen calls unavoidable Economerics an ar Componens of Applied Economerics Specificaion

More information

Why Can the Yield Curve Predict Output Growth, Inflation, and Interest Rates? An Analysis with an Affine Term Structure Model

Why Can the Yield Curve Predict Output Growth, Inflation, and Interest Rates? An Analysis with an Affine Term Structure Model Bank of Japan Woking Pape Seies Why Can he Yield Cuve Pedic Oupu Gowh, Inflaion, and Inees Raes? An Analysis wih an Affine Tem Sucue Model Hibiki Ichiue * hibiki.ichiue@boj.o.jp No.04-E-11 July 2004 Bank

More information

Molecular Evolution and Phylogeny. Based on: Durbin et al Chapter 8

Molecular Evolution and Phylogeny. Based on: Durbin et al Chapter 8 Molecula Evoluion and hylogeny Baed on: Dubin e al Chape 8. hylogeneic Tee umpion banch inenal node leaf Topology T : bifucaing Leave - N Inenal node N+ N- Lengh { i } fo each banch hylogeneic ee Topology

More information

Bayes Nets. CS 188: Artificial Intelligence Spring Example: Alarm Network. Building the (Entire) Joint

Bayes Nets. CS 188: Artificial Intelligence Spring Example: Alarm Network. Building the (Entire) Joint C 188: Aificial Inelligence ping 2008 Bayes Nes 2/5/08, 2/7/08 Dan Klein UC Bekeley Bayes Nes A Bayes ne is an efficien encoding of a pobabilisic model of a domain Quesions we can ask: Infeence: given

More information

Massive MIMO Systems with Non-Ideal Hardware: Energy Efficiency, Estimation, and Capacity Limits

Massive MIMO Systems with Non-Ideal Hardware: Energy Efficiency, Estimation, and Capacity Limits Massive MIMO Sysems wih on-ideal Hadwae: negy fficiency, simaion, and Capaciy Limis mil Bjönson, Membe, I, Jakob Hoydis, Membe, I, Maios Kounouis, Membe, I, and Méouane Debbah, Senio Membe, I axiv:307.584v3

More information

Institute for Mathematical Methods in Economics. University of Technology Vienna. Singapore, May Manfred Deistler

Institute for Mathematical Methods in Economics. University of Technology Vienna. Singapore, May Manfred Deistler MULTIVARIATE TIME SERIES ANALYSIS AND FORECASTING Manfred Deisler E O S Economerics and Sysems Theory Insiue for Mahemaical Mehods in Economics Universiy of Technology Vienna Singapore, May 2004 Inroducion

More information

Econ Autocorrelation. Sanjaya DeSilva

Econ Autocorrelation. Sanjaya DeSilva Econ 39 - Auocorrelaion Sanjaya DeSilva Ocober 3, 008 1 Definiion Auocorrelaion (or serial correlaion) occurs when he error erm of one observaion is correlaed wih he error erm of any oher observaion. This

More information

Forecasting optimally

Forecasting optimally I) ile: Forecas Evaluaion II) Conens: Evaluaing forecass, properies of opimal forecass, esing properies of opimal forecass, saisical comparison of forecas accuracy III) Documenaion: - Diebold, Francis

More information

AN EVOLUTIONARY APPROACH FOR SOLVING DIFFERENTIAL EQUATIONS

AN EVOLUTIONARY APPROACH FOR SOLVING DIFFERENTIAL EQUATIONS AN EVOLUTIONARY APPROACH FOR SOLVING DIFFERENTIAL EQUATIONS M. KAMESWAR RAO AND K.P. RAVINDRAN Depamen of Mechanical Engineeing, Calicu Regional Engineeing College, Keala-67 6, INDIA. Absac:- We eploe

More information

MATHEMATICAL FOUNDATIONS FOR APPROXIMATING PARTICLE BEHAVIOUR AT RADIUS OF THE PLANCK LENGTH

MATHEMATICAL FOUNDATIONS FOR APPROXIMATING PARTICLE BEHAVIOUR AT RADIUS OF THE PLANCK LENGTH Fundamenal Jounal of Mahemaical Phsics Vol 3 Issue 013 Pages 55-6 Published online a hp://wwwfdincom/ MATHEMATICAL FOUNDATIONS FOR APPROXIMATING PARTICLE BEHAVIOUR AT RADIUS OF THE PLANCK LENGTH Univesias

More information

arxiv: v2 [stat.me] 13 Jul 2015

arxiv: v2 [stat.me] 13 Jul 2015 One- and wo-sample nonpaameic ess fo he al-o-noise aio based on ecod saisics axiv:1502.05367v2 [sa.me] 13 Jul 2015 Damien Challe 1,2 1 Laboaoie de mahémaiques appliquées aux sysèmes, CenaleSupélec, 92295

More information

Servomechanism Design

Servomechanism Design Sevomechanism Design Sevomechanism (sevo-sysem) is a conol sysem in which he efeence () (age, Se poin) changes as ime passes. Design mehods PID Conol u () Ke P () + K I ed () + KDe () Sae Feedback u()

More information

Control Volume Derivation

Control Volume Derivation School of eospace Engineeing Conol Volume -1 Copyigh 1 by Jey M. Seizman. ll ighs esee. Conol Volume Deiaion How o cone ou elaionships fo a close sysem (conol mass) o an open sysem (conol olume) Fo mass

More information

COMPARISON OF THE DIFFERENCING PARAMETER ESTIMATION FROM ARFIMA MODEL BY SPECTRAL REGRESSION METHODS. By Gumgum Darmawan, Nur Iriawan, Suhartono

COMPARISON OF THE DIFFERENCING PARAMETER ESTIMATION FROM ARFIMA MODEL BY SPECTRAL REGRESSION METHODS. By Gumgum Darmawan, Nur Iriawan, Suhartono COMPARISON OF THE DIFFERENCING PARAMETER ESTIMATION FROM ARFIMA MODEL BY SPECTRAL REGRESSION METHODS By Gumgum Darmawan, Nur Iriawan, Suharono INTRODUCTION (1) TIME SERIES MODELS BASED ON VALUE OF DIFFERENCING

More information

DEPARTMENT OF ECONOMICS AND FINANCE COLLEGE OF BUSINESS AND ECONOMICS UNIVERSITY OF CANTERBURY CHRISTCHURCH, NEW ZEALAND

DEPARTMENT OF ECONOMICS AND FINANCE COLLEGE OF BUSINESS AND ECONOMICS UNIVERSITY OF CANTERBURY CHRISTCHURCH, NEW ZEALAND DEPARTMENT OF ECONOMICS AND FINANCE COLLEGE OF BUSINESS AND ECONOMICS UNIVERSITY OF CANTERBURY CHRISTCHURCH, NEW ZEALAND Asymmery and Leverage in Condiional Volailiy Models Michael McAleer WORKING PAPER

More information

r P + '% 2 r v(r) End pressures P 1 (high) and P 2 (low) P 1 , which must be independent of z, so # dz dz = P 2 " P 1 = " #P L L,

r P + '% 2 r v(r) End pressures P 1 (high) and P 2 (low) P 1 , which must be independent of z, so # dz dz = P 2  P 1 =  #P L L, Lecue 36 Pipe Flow and Low-eynolds numbe hydodynamics 36.1 eading fo Lecues 34-35: PKT Chape 12. Will y fo Monday?: new daa shee and daf fomula shee fo final exam. Ou saing poin fo hydodynamics ae wo equaions:

More information

Cointegration and Implications for Forecasting

Cointegration and Implications for Forecasting Coinegraion and Implicaions for Forecasing Two examples (A) Y Y 1 1 1 2 (B) Y 0.3 0.9 1 1 2 Example B: Coinegraion Y and coinegraed wih coinegraing vecor [1, 0.9] because Y 0.9 0.3 is a saionary process

More information

336 ERIDANI kfk Lp = sup jf(y) ; f () jj j p p whee he supemum is aken ove all open balls = (a ) inr n, jj is he Lebesgue measue of in R n, () =(), f

336 ERIDANI kfk Lp = sup jf(y) ; f () jj j p p whee he supemum is aken ove all open balls = (a ) inr n, jj is he Lebesgue measue of in R n, () =(), f TAMKANG JOURNAL OF MATHEMATIS Volume 33, Numbe 4, Wine 2002 ON THE OUNDEDNESS OF A GENERALIED FRATIONAL INTEGRAL ON GENERALIED MORREY SPAES ERIDANI Absac. In his pape we exend Nakai's esul on he boundedness

More information

Modeling Economic Time Series with Stochastic Linear Difference Equations

Modeling Economic Time Series with Stochastic Linear Difference Equations A. Thiemer, SLDG.mcd, 6..6 FH-Kiel Universiy of Applied Sciences Prof. Dr. Andreas Thiemer e-mail: andreas.hiemer@fh-kiel.de Modeling Economic Time Series wih Sochasic Linear Difference Equaions Summary:

More information

Camera Models class 8

Camera Models class 8 Camea Models class 8 Mulile View Geomey Com 29-89 Mac ollefeys Mulile View Geomey couse schedule (subjec o change) Jan. 7, 9 Ino & moivaion ojecive 2D Geomey Jan. 4, 6 (no class) ojecive 2D Geomey Jan.

More information

Time series Decomposition method

Time series Decomposition method Time series Decomposiion mehod A ime series is described using a mulifacor model such as = f (rend, cyclical, seasonal, error) = f (T, C, S, e) Long- Iner-mediaed Seasonal Irregular erm erm effec, effec,

More information

Generalized Least Squares

Generalized Least Squares Generalized Leas Squares Augus 006 1 Modified Model Original assumpions: 1 Specificaion: y = Xβ + ε (1) Eε =0 3 EX 0 ε =0 4 Eεε 0 = σ I In his secion, we consider relaxing assumpion (4) Insead, assume

More information

CH Sean Han QF, NTHU, Taiwan BFS2010. (Joint work with T.-Y. Chen and W.-H. Liu)

CH Sean Han QF, NTHU, Taiwan BFS2010. (Joint work with T.-Y. Chen and W.-H. Liu) CH Sean Han QF, NTHU, Taiwan BFS2010 (Join work wih T.-Y. Chen and W.-H. Liu) Risk Managemen in Pracice: Value a Risk (VaR) / Condiional Value a Risk (CVaR) Volailiy Esimaion: Correced Fourier Transform

More information

Γ(h)=0 h 0. Γ(h)=cov(X 0,X 0-h ). A stationary process is called white noise if its autocovariance

Γ(h)=0 h 0. Γ(h)=cov(X 0,X 0-h ). A stationary process is called white noise if its autocovariance A family, Z,of random vecors : Ω R k defined on a probabiliy space Ω, A,P) is called a saionary process if he mean vecors E E =E M = M k E and he auocovariance marices are independen of. k cov, -h )=E

More information

Ecological Archives E A1. Meghan A. Duffy, Spencer R. Hall, Carla E. Cáceres, and Anthony R. Ives.

Ecological Archives E A1. Meghan A. Duffy, Spencer R. Hall, Carla E. Cáceres, and Anthony R. Ives. Ecological Archives E9-95-A1 Meghan A. Duffy, pencer R. Hall, Carla E. Cáceres, and Anhony R. ves. 29. Rapid evoluion, seasonaliy, and he erminaion of parasie epidemics. Ecology 9:1441 1448. Appendix A.

More information

ST4064. Time Series Analysis. Lecture notes

ST4064. Time Series Analysis. Lecture notes ST4064 Time Series Analysis ST4064 Time Series Analysis Lecure noes ST4064 Time Series Analysis Ouline I II Inroducion o ime series analysis Saionariy and ARMA modelling. Saionariy a. Definiions b. Sric

More information

Computer Propagation Analysis Tools

Computer Propagation Analysis Tools Compue Popagaion Analysis Tools. Compue Popagaion Analysis Tools Inoducion By now you ae pobably geing he idea ha pedicing eceived signal sengh is a eally impoan as in he design of a wieless communicaion

More information

12: AUTOREGRESSIVE AND MOVING AVERAGE PROCESSES IN DISCRETE TIME. Σ j =

12: AUTOREGRESSIVE AND MOVING AVERAGE PROCESSES IN DISCRETE TIME. Σ j = 1: AUTOREGRESSIVE AND MOVING AVERAGE PROCESSES IN DISCRETE TIME Moving Averages Recall ha a whie noise process is a series { } = having variance σ. The whie noise process has specral densiy f (λ) = of

More information