Using Rank Propagation and Probabilistic Counting for Link-based Spam Detection

Size: px
Start display at page:

Download "Using Rank Propagation and Probabilistic Counting for Link-based Spam Detection"

Transcription

1 Using Rank Propagation and Probabilistic for Link-based Luca Becchetti, Carlos Castillo,Debora Donato, Stefano Leonardi and Ricardo Baeza-Yates 2. Università di Roma La Sapienza Rome, Italy 2. Yahoo! Research Barcelona, Spain and Santiago, Chile May 9th,

2 What is on the Web? Information + Porn + On-line casinos + Free movies + Cheap software + Buy a MBA diploma + Prescription -free drugs + V!-4-gra + Get rich now now now!!! Graphic:

3 Web spam (keywords + links) Web spam (mostly keywords)

4 Search engine? Fake search engine

5 Problem: normal pages that are spam Link farms Single-level farms can be detected by searching groups of nodes sharing their out-links [Gibson et al., 25]

6 [Fetterly et al., 24] hypothesized that studying the distribution of statistics about pages could be a good way of detecting spam pages: in a number of these distributions, outlier values are associated with web spam Research goal Statistical analysis of link-based spam Metrics Graph algorithms All shortest paths, centrality, betweenness, clustering coefficient... Streamed algorithms Breadth-first and depth-first search Count of neighbors Symmetric algorithms (Strongly) connected components Approximate count of neighbors,, Linear Rank HITS, Salsa,

7 Test collection U.K. collection 8.5 million pages downloaded from the.uk domain 5,344 hosts manually classified (6% of the hosts) Classified entire hosts: V A few hosts are mixed: spam and non-spam pages X More coverage: sample covers 32% of the pages

8 Degree.4 In degree δ =.35 Normal Spam.3.2. Number of in links (δ = max. difference in C.D.F. plot) Degree.3 Out degree δ =.28 Normal Spam.2. 5 Number of out links

9 Edge reciprocity Reciprocity of max. PR page δ =.35 Normal Spam Fraction of reciprocal links Assortativity Degree / Degree of neighbors δ =.3 Normal Spam... Degree/Degree ratio of home page

10 Automatic classifier All of the following attributes in the home page and the page with the maximum, plus a binary variable indicating if they are the same page: - In-degree, out-degree - Fraction of reciprocal edges - Degree divided by degree of direct neighbors - Average and sum of in-degree of out-neighbors - Average and sum of out-degree of in-neighbors Decision tree 72.6% of detection rate, with 3.% false positives

11 Let P N N be the normalized link matrix of a graph Row-normalized No sinks Definition () Stationary state of: αp + ( α) N N N Follow links with probability α Random jump with probability α Maximum in the Host.3.2. Maximum of the site δ =.23 Normal Spam e 8 e 7 e 6 e 5.

12 Variance of Suggested in [Benczúr et al., 25] Variance of of in-neighbors.3.2. Stdev. of PR of Neighbors (Home) δ =.4 Normal Spam σ 2 of the logarithm of

13 Automatic classifier Features: degree-based plus the following in the home page and the page with maximum : - - In-degree/ - Out-degree/ - Standard deviation of of in-neighbors = σ 2 - σ 2 / Plus the of the home page divided by the of the page with the maximum. Decision tree 74.4% of detection rate, with 2.6% false positives (: 72.6% of detection, 3.% false positives)

14 [Gyöngyi et al., 24] A node with high, but far away from a core set of trusted nodes is suspicious Start from a set of trusted nodes, then do a random walk, returning to the set of trusted nodes with probability α at each step i Trusted nodes: data from score.4 score of home page δ =.59 Normal Spam.3.2. e 6.

15 / Estimated relative non spam mass δ = Normal Spam.3 score/ Automatic classifier attributes, plus the following in the home page and the page with maximum : - TrustScore - TrustScore/ (estimated relative non-spam mass) - TrustScore/In-degree Plus the TrustScore in the home page divided by the TrustScore in the page with the maximum. Decision tree 77.3% of detection rate, with 3.% false positives (-based: 74.4% of detection, 2.6% false positives)

16 Path-based formula for Given a path p = x, x 2,..., x t of length t = p branching(p) = d d 2 d t where d i are the out-degrees of the members of the path Explicit formula for [Newman et al., 2] r i (α) = p Path(,i) Path(, i) are incoming paths in node i ( α)α p branching(p) N

17 General functional ranking In general: r i (α) = p Path(,i) damping( p ) N branching(p) There are many choices for damping( p ), including simply a linear function that is as good as in practice [Baeza-Yates et al., 26] Reduce the direct contribution of the first levels of links: damping(t) = { t T Cα t t > T V No extra reading of the graph after

18 (T=2) / T=2 / δ = Normal Spam (T=2) / Max. change of Maximum change of δ =.29.2 Normal Spam max(trpr /TrPr) i+ i

19 Automatic classifier attributes, plus the following in the home page and the page with maximum : - Trunc(T =... 4) - Trunc(T = 4) / Trunc(T = 3) - Trunc(T = 3) / Trunc(T = 2) - Trunc(T = 2) / Trunc(T = ) - Trunc(T =... 4) / - Minimum, maximum and average of: Trunc(T = i)/trunc(t = i ) Plus the (T =... 4) of the home page divided by the same value in the page with the maximum. Decision tree 76.9% of detection rate, with 2.5% false positives (-based: 77.3% of detection, 3.% false positives)

20 Idea: count at different distances Frequency Number of different nodes at a given distance:.uk 8 mill. nodes.eu.int 86, nodes Distance Frequency Distance Average distance Average distance 4.9 clicks. clicks High and low-ranked pages are different Number of Nodes x Top % % Top 4% 5% Top 6% 7% Distance Areas below the curves are equal if we are in the same strongly-connected component

21 Probabilistic counting Target page Propagation of bits using the OR operation Count bits set to estimate Improvement of ANF algorithm [Palmer et al., 22] based on probabilistic counting [Flajolet and Martin, 985] General algorithm Require: N: number of nodes, d: distance, k: bits : for node :... N, bit:... k do 2: INIT(node,bit) 3: end for 4: for distance :... d do {Iteration step} 5: Aux k 6: for src :... N do {Follow links in the graph} 7: for all links from src to dest do 8: Aux[dest] Aux[dest] OR V[src, ] 9: end for : end for : V Aux 2: end for 3: for node:... N do {Estimate } 4: Supporters[node] ESTIMATE( V[node, ] ) 5: end for 6: return Supporters

22 Our estimator Initialize all bits to one with probability( ɛ ) Estimator: neighbors(node) = log ( ɛ) ones(node) Adaptive estimation Repeat the above process for ɛ = /2, /4, /8,..., and look for the transitions from more than ( /e)k ones to less than ( /e)k ones. k Convergence Fraction of nodes with estimates % 9% 8% 7% 6% 5% 4% 3% 2% % % Iteration d= d=2 d=3 d=4 d=5 d=6 d=7 d=8

23 Error rate Average Relative Error b i 768 b i 52 b i 52 b i 768 b i 832 b i Ours 64 bits, epsilon only estimator Ours 64 bits, combined estimator ANF 24 bits 24 iterations (576 b i) ANF 24 bits 48 iterations (52 b i) 96 b i 576 b i 52 b i 26 b i 344 b i 48 b i 832 b i 96 b i 52 b i 26 b i 344 b i 48 b i Distance Hosts at distance 4.4 Hosts at Distance Exactly 4 δ =.39 Normal Spam.3.2. S S 4 3

24 Minimum change of.4 Minimum change of δ =.39 Normal Spam min(s 2 /S, S 3 /S 2, S 4 /S 3 ) Automatic classifier attributes, plus the following in the home page and the page with maximum : - Supporters at Supporters at / - Supporters at i / Supporters at i (for i =..4) - Minimum, maximum and average of: Supporters at i / Supporters at i (for i =..4) - (Supporters at i - Supporters at i ) / Plus the number of at distance in the home page divided by the same feature in the page with the maximum. Decision tree 78.9% of detection rate, with 2.5% false positives (TruncPR: 76.9% of detection, 2.5% false positives) (: 77.7% of detection, 3.% false positives)

25 Summary of classifiers Detection False Metrics rate positives Degree (D) 72.6% 3.% D + (P) 74.4% 2.6% D + P % 3.% D + P + Trunc. 76.9% 2.5% D + P + Est. of Supporters 78.9% 2.5% All attributes 8.4% 2.8% All attributes (more rules) 8.8%.% Comparison Content-based analysis [Ntoulas et al., 26] has shown 86.2% detection rate with 2.2% false positives Single-attribute classifier with [Gyöngyi et al., 24]: 5.% detection rate, 3.4% error in our sample SpamRank [Benczúr et al., 25] reports similar detection rates

26 Top metrics. Binary variable indicating if homepage is the page with maximum of the site 2. Edge reciprocity 3. Different hosts at distance 4 4. Different hosts at distance 3 5. Minimum change of (different hosts) 6. Different hosts at distance 2 7. Pagerank (T=) / 8. score divided by 9. Different hosts at distance. Pagerank (T=2) / V Link-based statistics to detect 8% of spam X No magic bullet in link analysis X Precision still low compared to spam filters V Measure both home page and max. page V Host-based counts are important Next step: combine link analysis and content analysis

27 Thank you! Baeza-Yates, R., Boldi, P., and Castillo, C. (26). Generalizing pagerank: Damping functions for link-based ranking algorithms. In Proceedings of SIGIR, Seattle, Washington, USA. ACM Press. Becchetti, L., Castillo, C., Donato, D., Leonardi, S., and Baeza-Yates, R. (26). Using rank propagation and probabilistic counting for link-based spam detection. Technical report, DELIS Dynamically Evolving, Large-Scale Information Systems. Benczúr, A. A., Csalogány, K., Sarlós, T., and Uher, M. (25). Spamrank: fully automatic link spam detection. In Proceedings of the First International Workshop on Adversarial Information Retrieval on the Web, Chiba, Japan.

28 Fetterly, D., Manasse, M., and Najork, M. (24). Spam, damn spam, and statistics: Using statistical analysis to locate spam web pages. In Proceedings of the seventh workshop on the Web and databases (WebDB), pages 6, Paris, France. Flajolet, P. and Martin, N. G. (985). Probabilistic counting algorithms for data base applications. Journal of Computer and System Sciences, 3(2): Gibson, D., Kumar, R., and Tomkins, A. (25). Discovering large dense subgraphs in massive graphs. In VLDB 5: Proceedings of the 3st international conference on Very large data bases, pages VLDB Endowment. Gyöngyi, Z., Molina, H. G., and Pedersen, J. (24). Combating web spam with trustrank. In Proceedings of the Thirtieth International Conference on Very Large Data Bases (VLDB), pages , Toronto, Canada. Morgan Kaufmann. Newman, M. E., Strogatz, S. H., and Watts, D. J. (2). Random graphs with arbitrary degree distributions and their applications. Phys Rev E Stat Nonlin Soft Matter Phys, 64(2 Pt 2). Ntoulas, A., Najork, M., and Manasse, M. a. (26). Detecting spam web pages through content analysis. In To appear in proceedings of the World Wide Web conference, Edinburgh, Scotland.

29 Palmer, C. R., Gibbons, P. B., and Faloutsos, C. (22). ANF: a fast and scalable tool for data mining in massive graphs. In Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining, pages 8 9, New York, NY, USA. ACM Press.

The Choice of a Damping Function for Propagating Importance in Link-Based Ranking

The Choice of a Damping Function for Propagating Importance in Link-Based Ranking The Choice of a Damping Function for Propagating Importance in Link-Based Ranking Technical report RI-DSI N. 305-05 Dipartimento di Scienze dell Informazione, Università degli Studi di Milano. 2005 A version

More information

Dirichlet PageRank and Ranking Algorithms Based on Trust and Distrust

Dirichlet PageRank and Ranking Algorithms Based on Trust and Distrust Dirichlet PageRank and Ranking Algorithms Based on Trust and Distrust Fan Chung, Alexander Tsiatas, and Wensong Xu Department of Computer Science and Engineering University of California, San Diego {fan,atsiatas,w4xu}@cs.ucsd.edu

More information

Slides based on those in:

Slides based on those in: Spyros Kontogiannis & Christos Zaroliagis Slides based on those in: http://www.mmds.org High dim. data Graph data Infinite data Machine learning Apps Locality sensitive hashing PageRank, SimRank Filtering

More information

Slide source: Mining of Massive Datasets Jure Leskovec, Anand Rajaraman, Jeff Ullman Stanford University.

Slide source: Mining of Massive Datasets Jure Leskovec, Anand Rajaraman, Jeff Ullman Stanford University. Slide source: Mining of Massive Datasets Jure Leskovec, Anand Rajaraman, Jeff Ullman Stanford University http://www.mmds.org #1: C4.5 Decision Tree - Classification (61 votes) #2: K-Means - Clustering

More information

CS246: Mining Massive Datasets Jure Leskovec, Stanford University.

CS246: Mining Massive Datasets Jure Leskovec, Stanford University. CS246: Mining Massive Datasets Jure Leskovec, Stanford University http://cs246.stanford.edu What is the structure of the Web? How is it organized? 2/7/2011 Jure Leskovec, Stanford C246: Mining Massive

More information

6.207/14.15: Networks Lecture 7: Search on Networks: Navigation and Web Search

6.207/14.15: Networks Lecture 7: Search on Networks: Navigation and Web Search 6.207/14.15: Networks Lecture 7: Search on Networks: Navigation and Web Search Daron Acemoglu and Asu Ozdaglar MIT September 30, 2009 1 Networks: Lecture 7 Outline Navigation (or decentralized search)

More information

Web Ranking. Classification (manual, automatic) Link Analysis (today s lesson)

Web Ranking. Classification (manual, automatic) Link Analysis (today s lesson) Link Analysis Web Ranking Documents on the web are first ranked according to their relevance vrs the query Additional ranking methods are needed to cope with huge amount of information Additional ranking

More information

DATA MINING LECTURE 13. Link Analysis Ranking PageRank -- Random walks HITS

DATA MINING LECTURE 13. Link Analysis Ranking PageRank -- Random walks HITS DATA MINING LECTURE 3 Link Analysis Ranking PageRank -- Random walks HITS How to organize the web First try: Manually curated Web Directories How to organize the web Second try: Web Search Information

More information

Link Analysis. Stony Brook University CSE545, Fall 2016

Link Analysis. Stony Brook University CSE545, Fall 2016 Link Analysis Stony Brook University CSE545, Fall 2016 The Web, circa 1998 The Web, circa 1998 The Web, circa 1998 Match keywords, language (information retrieval) Explore directory The Web, circa 1998

More information

LINK ANALYSIS. Dr. Gjergji Kasneci Introduction to Information Retrieval WS

LINK ANALYSIS. Dr. Gjergji Kasneci Introduction to Information Retrieval WS LINK ANALYSIS Dr. Gjergji Kasneci Introduction to Information Retrieval WS 2012-13 1 Outline Intro Basics of probability and information theory Retrieval models Retrieval evaluation Link analysis Models

More information

Computing Trusted Authority Scores in Peer-to-Peer Web Search Networks

Computing Trusted Authority Scores in Peer-to-Peer Web Search Networks Computing Trusted Authority Scores in Peer-to-Peer Web Search Networks Josiane Xavier Parreira, Debora Donato, Carlos Castillo, Gerhard Weikum Max-Planck Institute for Informatics Yahoo! Research May 8,

More information

CS246: Mining Massive Datasets Jure Leskovec, Stanford University

CS246: Mining Massive Datasets Jure Leskovec, Stanford University CS246: Mining Massive Datasets Jure Leskovec, Stanford University http://cs246.stanford.edu 2/7/2012 Jure Leskovec, Stanford C246: Mining Massive Datasets 2 Web pages are not equally important www.joe-schmoe.com

More information

Information Retrieval and Search. Web Linkage Mining. Miłosz Kadziński

Information Retrieval and Search. Web Linkage Mining. Miłosz Kadziński Web Linkage Analysis D24 D4 : Web Linkage Mining Miłosz Kadziński Institute of Computing Science Poznan University of Technology, Poland www.cs.put.poznan.pl/mkadzinski/wpi Web mining: Web Mining Discovery

More information

Mathematical Properties & Analysis of Google s PageRank

Mathematical Properties & Analysis of Google s PageRank Mathematical Properties & Analysis of Google s PageRank Ilse Ipsen North Carolina State University, USA Joint work with Rebecca M. Wills Cedya p.1 PageRank An objective measure of the citation importance

More information

Link Mining PageRank. From Stanford C246

Link Mining PageRank. From Stanford C246 Link Mining PageRank From Stanford C246 Broad Question: How to organize the Web? First try: Human curated Web dictionaries Yahoo, DMOZ LookSmart Second try: Web Search Information Retrieval investigates

More information

Online Social Networks and Media. Link Analysis and Web Search

Online Social Networks and Media. Link Analysis and Web Search Online Social Networks and Media Link Analysis and Web Search How to Organize the Web First try: Human curated Web directories Yahoo, DMOZ, LookSmart How to organize the web Second try: Web Search Information

More information

Link Analysis Ranking

Link Analysis Ranking Link Analysis Ranking How do search engines decide how to rank your query results? Guess why Google ranks the query results the way it does How would you do it? Naïve ranking of query results Given query

More information

Online Social Networks and Media. Link Analysis and Web Search

Online Social Networks and Media. Link Analysis and Web Search Online Social Networks and Media Link Analysis and Web Search How to Organize the Web First try: Human curated Web directories Yahoo, DMOZ, LookSmart How to organize the web Second try: Web Search Information

More information

Hyperlinked-Induced Topic Search (HITS) identifies. authorities as good content sources (~high indegree) HITS [Kleinberg 99] considers a web page

Hyperlinked-Induced Topic Search (HITS) identifies. authorities as good content sources (~high indegree) HITS [Kleinberg 99] considers a web page IV.3 HITS Hyperlinked-Induced Topic Search (HITS) identifies authorities as good content sources (~high indegree) hubs as good link sources (~high outdegree) HITS [Kleinberg 99] considers a web page a

More information

Combating Web Spam with TrustRank

Combating Web Spam with TrustRank Combating Web Spam with rustrank Authors: Gyöngyi, Garcia-Molina, and Pederson Published in: Proceedings of the 0th VLDB Conference Year: 00 Presentation by: Rebecca Wills Date: April, 00 Questions we

More information

Link Analysis Information Retrieval and Data Mining. Prof. Matteo Matteucci

Link Analysis Information Retrieval and Data Mining. Prof. Matteo Matteucci Link Analysis Information Retrieval and Data Mining Prof. Matteo Matteucci Hyperlinks for Indexing and Ranking 2 Page A Hyperlink Page B Intuitions The anchor text might describe the target page B Anchor

More information

Analysis of Google s PageRank

Analysis of Google s PageRank Analysis of Google s PageRank Ilse Ipsen North Carolina State University Joint work with Rebecca M. Wills AN05 p.1 PageRank An objective measure of the citation importance of a web page [Brin & Page 1998]

More information

CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University

CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University http://cs224w.stanford.edu How to organize/navigate it? First try: Human curated Web directories Yahoo, DMOZ, LookSmart

More information

PageRank. Ryan Tibshirani /36-662: Data Mining. January Optional reading: ESL 14.10

PageRank. Ryan Tibshirani /36-662: Data Mining. January Optional reading: ESL 14.10 PageRank Ryan Tibshirani 36-462/36-662: Data Mining January 24 2012 Optional reading: ESL 14.10 1 Information retrieval with the web Last time we learned about information retrieval. We learned how to

More information

CS 277: Data Mining. Mining Web Link Structure. CS 277: Data Mining Lectures Analyzing Web Link Structure Padhraic Smyth, UC Irvine

CS 277: Data Mining. Mining Web Link Structure. CS 277: Data Mining Lectures Analyzing Web Link Structure Padhraic Smyth, UC Irvine CS 277: Data Mining Mining Web Link Structure Class Presentations In-class, Tuesday and Thursday next week 2-person teams: 6 minutes, up to 6 slides, 3 minutes/slides each person 1-person teams 4 minutes,

More information

CS6220: DATA MINING TECHNIQUES

CS6220: DATA MINING TECHNIQUES CS6220: DATA MINING TECHNIQUES Mining Graph/Network Data Instructor: Yizhou Sun yzsun@ccs.neu.edu March 16, 2016 Methods to Learn Classification Clustering Frequent Pattern Mining Matrix Data Decision

More information

Introduction to Data Mining

Introduction to Data Mining Introduction to Data Mining Lecture #9: Link Analysis Seoul National University 1 In This Lecture Motivation for link analysis Pagerank: an important graph ranking algorithm Flow and random walk formulation

More information

DiffusionRank: A Possible Penicillin for Web Spamming

DiffusionRank: A Possible Penicillin for Web Spamming SIGIR 27 Proceedings DiffusionRank: A Possible Penicillin for Web Spamming Haixuan Yang, Irwin King, and Michael R. Lyu Dept. of Computer Science and Engineering The Chinese University of Hong Kong Shatin,

More information

Data Mining and Analysis: Fundamental Concepts and Algorithms

Data Mining and Analysis: Fundamental Concepts and Algorithms Data Mining and Analysis: Fundamental Concepts and Algorithms dataminingbook.info Mohammed J. Zaki 1 Wagner Meira Jr. 2 1 Department of Computer Science Rensselaer Polytechnic Institute, Troy, NY, USA

More information

Link Analysis. Reference: Introduction to Information Retrieval by C. Manning, P. Raghavan, H. Schutze

Link Analysis. Reference: Introduction to Information Retrieval by C. Manning, P. Raghavan, H. Schutze Link Analysis Reference: Introduction to Information Retrieval by C. Manning, P. Raghavan, H. Schutze 1 The Web as a Directed Graph Page A Anchor hyperlink Page B Assumption 1: A hyperlink between pages

More information

Link Analysis. Leonid E. Zhukov

Link Analysis. Leonid E. Zhukov Link Analysis Leonid E. Zhukov School of Data Analysis and Artificial Intelligence Department of Computer Science National Research University Higher School of Economics Structural Analysis and Visualization

More information

Thanks to Jure Leskovec, Stanford and Panayiotis Tsaparas, Univ. of Ioannina for slides

Thanks to Jure Leskovec, Stanford and Panayiotis Tsaparas, Univ. of Ioannina for slides Thanks to Jure Leskovec, Stanford and Panayiotis Tsaparas, Univ. of Ioannina for slides Web Search: How to Organize the Web? Ranking Nodes on Graphs Hubs and Authorities PageRank How to Solve PageRank

More information

Finding central nodes in large networks

Finding central nodes in large networks Finding central nodes in large networks Nelly Litvak University of Twente Eindhoven University of Technology, The Netherlands Woudschoten Conference 2017 Complex networks Networks: Internet, WWW, social

More information

Thanks to Jure Leskovec, Stanford and Panayiotis Tsaparas, Univ. of Ioannina for slides

Thanks to Jure Leskovec, Stanford and Panayiotis Tsaparas, Univ. of Ioannina for slides Thanks to Jure Leskovec, Stanford and Panayiotis Tsaparas, Univ. of Ioannina for slides Web Search: How to Organize the Web? Ranking Nodes on Graphs Hubs and Authorities PageRank How to Solve PageRank

More information

Analysis and Computation of Google s PageRank

Analysis and Computation of Google s PageRank Analysis and Computation of Google s PageRank Ilse Ipsen North Carolina State University, USA Joint work with Rebecca S. Wills ANAW p.1 PageRank An objective measure of the citation importance of a web

More information

PageRank algorithm Hubs and Authorities. Data mining. Web Data Mining PageRank, Hubs and Authorities. University of Szeged.

PageRank algorithm Hubs and Authorities. Data mining. Web Data Mining PageRank, Hubs and Authorities. University of Szeged. Web Data Mining PageRank, University of Szeged Why ranking web pages is useful? We are starving for knowledge It earns Google a bunch of money. How? How does the Web looks like? Big strongly connected

More information

Introduction to Search Engine Technology Introduction to Link Structure Analysis. Ronny Lempel Yahoo Labs, Haifa

Introduction to Search Engine Technology Introduction to Link Structure Analysis. Ronny Lempel Yahoo Labs, Haifa Introduction to Search Engine Technology Introduction to Link Structure Analysis Ronny Lempel Yahoo Labs, Haifa Outline Anchor-text indexing Mathematical Background Motivation for link structure analysis

More information

Data and Algorithms of the Web

Data and Algorithms of the Web Data and Algorithms of the Web Link Analysis Algorithms Page Rank some slides from: Anand Rajaraman, Jeffrey D. Ullman InfoLab (Stanford University) Link Analysis Algorithms Page Rank Hubs and Authorities

More information

CS6220: DATA MINING TECHNIQUES

CS6220: DATA MINING TECHNIQUES CS6220: DATA MINING TECHNIQUES Mining Graph/Network Data Instructor: Yizhou Sun yzsun@ccs.neu.edu November 16, 2015 Methods to Learn Classification Clustering Frequent Pattern Mining Matrix Data Decision

More information

CS249: ADVANCED DATA MINING

CS249: ADVANCED DATA MINING CS249: ADVANCED DATA MINING Graph and Network Instructor: Yizhou Sun yzsun@cs.ucla.edu May 31, 2017 Methods Learnt Classification Clustering Vector Data Text Data Recommender System Decision Tree; Naïve

More information

PAGERANK PARAMETERS. Amy N. Langville. American Institute of Mathematics Workshop on Ranking Palo Alto, CA August 17th, 2010

PAGERANK PARAMETERS. Amy N. Langville. American Institute of Mathematics Workshop on Ranking Palo Alto, CA August 17th, 2010 PAGERANK PARAMETERS 100David F. Gleich 120 Amy N. Langville American Institute of Mathematics Workshop on Ranking Palo Alto, CA August 17th, 2010 Gleich & Langville AIM 1 / 21 The most important page on

More information

Introduction to Randomized Algorithms III

Introduction to Randomized Algorithms III Introduction to Randomized Algorithms III Joaquim Madeira Version 0.1 November 2017 U. Aveiro, November 2017 1 Overview Probabilistic counters Counting with probability 1 / 2 Counting with probability

More information

Lecture 12: Link Analysis for Web Retrieval

Lecture 12: Link Analysis for Web Retrieval Lecture 12: Link Analysis for Web Retrieval Trevor Cohn COMP90042, 2015, Semester 1 What we ll learn in this lecture The web as a graph Page-rank method for deriving the importance of pages Hubs and authorities

More information

The Static Absorbing Model for the Web a

The Static Absorbing Model for the Web a Journal of Web Engineering, Vol. 0, No. 0 (2003) 000 000 c Rinton Press The Static Absorbing Model for the Web a Vassilis Plachouras University of Glasgow Glasgow G12 8QQ UK vassilis@dcs.gla.ac.uk Iadh

More information

Graph Analysis Using Map/Reduce

Graph Analysis Using Map/Reduce Seminar: Massive-Scale Graph Analysis Summer Semester 2015 Graph Analysis Using Map/Reduce Laurent Linden s9lalind@stud.uni-saarland.de May 14, 2015 Introduction Peta-Scale Graph + Graph mining + MapReduce

More information

Data Mining Techniques

Data Mining Techniques Data Mining Techniques CS 622 - Section 2 - Spring 27 Pre-final Review Jan-Willem van de Meent Feedback Feedback https://goo.gl/er7eo8 (also posted on Piazza) Also, please fill out your TRACE evaluations!

More information

CSI 445/660 Part 6 (Centrality Measures for Networks) 6 1 / 68

CSI 445/660 Part 6 (Centrality Measures for Networks) 6 1 / 68 CSI 445/660 Part 6 (Centrality Measures for Networks) 6 1 / 68 References 1 L. Freeman, Centrality in Social Networks: Conceptual Clarification, Social Networks, Vol. 1, 1978/1979, pp. 215 239. 2 S. Wasserman

More information

MAE 298, Lecture 8 Feb 4, Web search and decentralized search on small-worlds

MAE 298, Lecture 8 Feb 4, Web search and decentralized search on small-worlds MAE 298, Lecture 8 Feb 4, 2008 Web search and decentralized search on small-worlds Search for information Assume some resource of interest is stored at the vertices of a network: Web pages Files in a file-sharing

More information

arxiv:cond-mat/ v1 3 Sep 2004

arxiv:cond-mat/ v1 3 Sep 2004 Effects of Community Structure on Search and Ranking in Information Networks Huafeng Xie 1,3, Koon-Kiu Yan 2,3, Sergei Maslov 3 1 New Media Lab, The Graduate Center, CUNY New York, NY 10016, USA 2 Department

More information

To Randomize or Not To

To Randomize or Not To To Randomize or Not To Randomize: Space Optimal Summaries for Hyperlink Analysis Tamás Sarlós, Eötvös University and Computer and Automation Institute, Hungarian Academy of Sciences Joint work with András

More information

Personalized PageRank with node-dependent restart

Personalized PageRank with node-dependent restart Personalized PageRank with node-dependent restart Konstantin Avrachenkov Remco van der Hofstad Marina Sokol May 204 Abstract Personalized PageRank is an algorithm to classify the improtance of web pages

More information

Random Surfing on Multipartite Graphs

Random Surfing on Multipartite Graphs Random Surfing on Multipartite Graphs Athanasios N. Nikolakopoulos, Antonia Korba and John D. Garofalakis Department of Computer Engineering and Informatics, University of Patras December 07, 2016 IEEE

More information

1998: enter Link Analysis

1998: enter Link Analysis 1998: enter Link Analysis uses hyperlink structure to focus the relevant set combine traditional IR score with popularity score Page and Brin 1998 Kleinberg Web Information Retrieval IR before the Web

More information

Streaming multiscale anomaly detection

Streaming multiscale anomaly detection Streaming multiscale anomaly detection DATA-ENS Paris and ThalesAlenia Space B Ravi Kiran, Université Lille 3, CRISTaL Joint work with Mathieu Andreux beedotkiran@gmail.com June 20, 2017 (CRISTaL) Streaming

More information

Data Mining and Matrices

Data Mining and Matrices Data Mining and Matrices 10 Graphs II Rainer Gemulla, Pauli Miettinen Jul 4, 2013 Link analysis The web as a directed graph Set of web pages with associated textual content Hyperlinks between webpages

More information

Wiki Definition. Reputation Systems I. Outline. Introduction to Reputations. Yury Lifshits. HITS, PageRank, SALSA, ebay, EigenTrust, VKontakte

Wiki Definition. Reputation Systems I. Outline. Introduction to Reputations. Yury Lifshits. HITS, PageRank, SALSA, ebay, EigenTrust, VKontakte Reputation Systems I HITS, PageRank, SALSA, ebay, EigenTrust, VKontakte Yury Lifshits Wiki Definition Reputation is the opinion (more technically, a social evaluation) of the public toward a person, a

More information

Manipulability of PageRank under Sybil Strategies

Manipulability of PageRank under Sybil Strategies Manipulability of PageRank under Sybil Strategies Alice Cheng Eric Friedman Abstract The sybil attack is one of the easiest and most common methods of manipulating reputation systems. In this paper, we

More information

Spectral Graph Theory and You: Matrix Tree Theorem and Centrality Metrics

Spectral Graph Theory and You: Matrix Tree Theorem and Centrality Metrics Spectral Graph Theory and You: and Centrality Metrics Jonathan Gootenberg March 11, 2013 1 / 19 Outline of Topics 1 Motivation Basics of Spectral Graph Theory Understanding the characteristic polynomial

More information

Manipulation-resistant Reputations Using Hitting Time

Manipulation-resistant Reputations Using Hitting Time Manipulation-resistant Reputations Using Hitting Time John Hopcroft and Daniel Sheldon Cornell University Abstract. Popular reputation systems for linked networks can be manipulated by spammers who strategically

More information

0.1 Naive formulation of PageRank

0.1 Naive formulation of PageRank PageRank is a ranking system designed to find the best pages on the web. A webpage is considered good if it is endorsed (i.e. linked to) by other good webpages. The more webpages link to it, and the more

More information

CS246 Final Exam, Winter 2011

CS246 Final Exam, Winter 2011 CS246 Final Exam, Winter 2011 1. Your name and student ID. Name:... Student ID:... 2. I agree to comply with Stanford Honor Code. Signature:... 3. There should be 17 numbered pages in this exam (including

More information

Deterministic Decentralized Search in Random Graphs

Deterministic Decentralized Search in Random Graphs Deterministic Decentralized Search in Random Graphs Esteban Arcaute 1,, Ning Chen 2,, Ravi Kumar 3, David Liben-Nowell 4,, Mohammad Mahdian 3, Hamid Nazerzadeh 1,, and Ying Xu 1, 1 Stanford University.

More information

Web Ranking. Classification (manual, automatic) Link Analysis (today s lesson)

Web Ranking. Classification (manual, automatic) Link Analysis (today s lesson) Link Analysis Web Ranking Documents on the web are first ranked according to their relevance vrs the query Additional ranking methods are needed to cope with huge amount of information Additional ranking

More information

Results: MCMC Dancers, q=10, n=500

Results: MCMC Dancers, q=10, n=500 Motivation Sampling Methods for Bayesian Inference How to track many INTERACTING targets? A Tutorial Frank Dellaert Results: MCMC Dancers, q=10, n=500 1 Probabilistic Topological Maps Results Real-Time

More information

Improving Diversity in Ranking using Absorbing Random Walks

Improving Diversity in Ranking using Absorbing Random Walks Improving Diversity in Ranking using Absorbing Random Walks Andrew B. Goldberg with Xiaojin Zhu, Jurgen Van Gael, and David Andrzejewski Department of Computer Sciences, University of Wisconsin, Madison

More information

In-core computation of distance distributions and geometric centralities with HyperBall: A hundred billion nodes and beyond

In-core computation of distance distributions and geometric centralities with HyperBall: A hundred billion nodes and beyond In-core computation of distance distributions and geometric centralities with HyperBall: A hundred billion nodes and beyond Paolo Boldi, Sebastiano Vigna Laboratory for Web Algorithmics Università degli

More information

Data Mining Recitation Notes Week 3

Data Mining Recitation Notes Week 3 Data Mining Recitation Notes Week 3 Jack Rae January 28, 2013 1 Information Retrieval Given a set of documents, pull the (k) most similar document(s) to a given query. 1.1 Setup Say we have D documents

More information

Data mining in large graphs

Data mining in large graphs Data mining in large graphs Christos Faloutsos University www.cs.cmu.edu/~christos ALLADIN 2003 C. Faloutsos 1 Outline Introduction - motivation Patterns & Power laws Scalability & Fast algorithms Fractals,

More information

CS 3750 Advanced Machine Learning. Applications of SVD and PCA (LSA and Link analysis) Cem Akkaya

CS 3750 Advanced Machine Learning. Applications of SVD and PCA (LSA and Link analysis) Cem Akkaya CS 375 Advanced Machine Learning Applications of SVD and PCA (LSA and Link analysis) Cem Akkaya Outline SVD and LSI Kleinberg s Algorithm PageRank Algorithm Vector Space Model Vector space model represents

More information

Latent Dirichlet Allocation in Web Spam Filtering

Latent Dirichlet Allocation in Web Spam Filtering Latent Dirichlet Allocation in Web Spam Filtering István Bíró Jácint Szabó Anrás A. Benczúr Data Mining an Web search Research Group, Informatics Laboratory Computer an Automation Research Institute of

More information

Pseudocode for calculating Eigenfactor TM Score and Article Influence TM Score using data from Thomson-Reuters Journal Citations Reports

Pseudocode for calculating Eigenfactor TM Score and Article Influence TM Score using data from Thomson-Reuters Journal Citations Reports Pseudocode for calculating Eigenfactor TM Score and Article Influence TM Score using data from Thomson-Reuters Journal Citations Reports Jevin West and Carl T. Bergstrom November 25, 2008 1 Overview There

More information

Personalized PageRank with Node-dependent Restart

Personalized PageRank with Node-dependent Restart Reprint from Moscow Journal of Combinatorics and Number Theory 204, vol. 4, iss. 4, pp. 5 20, [pp. 387 402] Scale =.7 PS:./fig-eps/Logo-MJCNT.eps Personalized PageRank with Node-dependent Restart Konstantin

More information

Google PageRank. Francesco Ricci Faculty of Computer Science Free University of Bozen-Bolzano

Google PageRank. Francesco Ricci Faculty of Computer Science Free University of Bozen-Bolzano Google PageRank Francesco Ricci Faculty of Computer Science Free University of Bozen-Bolzano fricci@unibz.it 1 Content p Linear Algebra p Matrices p Eigenvalues and eigenvectors p Markov chains p Google

More information

Complex Social System, Elections. Introduction to Network Analysis 1

Complex Social System, Elections. Introduction to Network Analysis 1 Complex Social System, Elections Introduction to Network Analysis 1 Complex Social System, Network I person A voted for B A is more central than B if more people voted for A In-degree centrality index

More information

CS345a: Data Mining Jure Leskovec and Anand Rajaraman Stanford University

CS345a: Data Mining Jure Leskovec and Anand Rajaraman Stanford University CS345a: Data Mining Jure Leskovec and Anand Rajaraman Stanford University TheFind.com Large set of products (~6GB compressed) For each product A=ributes Related products Craigslist About 3 weeks of data

More information

Link Prediction. Eman Badr Mohammed Saquib Akmal Khan

Link Prediction. Eman Badr Mohammed Saquib Akmal Khan Link Prediction Eman Badr Mohammed Saquib Akmal Khan 11-06-2013 Link Prediction Which pair of nodes should be connected? Applications Facebook friend suggestion Recommendation systems Monitoring and controlling

More information

Scalable robust hypothesis tests using graphical models

Scalable robust hypothesis tests using graphical models Scalable robust hypothesis tests using graphical models Umamahesh Srinivas ipal Group Meeting October 22, 2010 Binary hypothesis testing problem Random vector x = (x 1,...,x n ) R n generated from either

More information

BEWARE OF RELATIVELY LARGE BUT MEANINGLESS IMPROVEMENTS

BEWARE OF RELATIVELY LARGE BUT MEANINGLESS IMPROVEMENTS TECHNICAL REPORT YL-2011-001 BEWARE OF RELATIVELY LARGE BUT MEANINGLESS IMPROVEMENTS Roi Blanco, Hugo Zaragoza Yahoo! Research Diagonal 177, Barcelona, Spain {roi,hugoz}@yahoo-inc.com Bangalore Barcelona

More information

Semantics with Dense Vectors. Reference: D. Jurafsky and J. Martin, Speech and Language Processing

Semantics with Dense Vectors. Reference: D. Jurafsky and J. Martin, Speech and Language Processing Semantics with Dense Vectors Reference: D. Jurafsky and J. Martin, Speech and Language Processing 1 Semantics with Dense Vectors We saw how to represent a word as a sparse vector with dimensions corresponding

More information

Computing PageRank using Power Extrapolation

Computing PageRank using Power Extrapolation Computing PageRank using Power Extrapolation Taher Haveliwala, Sepandar Kamvar, Dan Klein, Chris Manning, and Gene Golub Stanford University Abstract. We present a novel technique for speeding up the computation

More information

Mining of Massive Datasets Jure Leskovec, AnandRajaraman, Jeff Ullman Stanford University

Mining of Massive Datasets Jure Leskovec, AnandRajaraman, Jeff Ullman Stanford University Note to other teachers and users of these slides: We would be delighted if you found this our material useful in giving your own lectures. Feel free to use these slides verbatim, or to modify them to fit

More information

Online Sampling of High Centrality Individuals in Social Networks

Online Sampling of High Centrality Individuals in Social Networks Online Sampling of High Centrality Individuals in Social Networks Arun S. Maiya and Tanya Y. Berger-Wolf Department of Computer Science University of Illinois at Chicago 85 S. Morgan, Chicago, IL 667,

More information

Performance evaluation of binary classifiers

Performance evaluation of binary classifiers Performance evaluation of binary classifiers Kevin P. Murphy Last updated October 10, 2007 1 ROC curves We frequently design systems to detect events of interest, such as diseases in patients, faces in

More information

Text Mining. Dr. Yanjun Li. Associate Professor. Department of Computer and Information Sciences Fordham University

Text Mining. Dr. Yanjun Li. Associate Professor. Department of Computer and Information Sciences Fordham University Text Mining Dr. Yanjun Li Associate Professor Department of Computer and Information Sciences Fordham University Outline Introduction: Data Mining Part One: Text Mining Part Two: Preprocessing Text Data

More information

Outline for today. Information Retrieval. Cosine similarity between query and document. tf-idf weighting

Outline for today. Information Retrieval. Cosine similarity between query and document. tf-idf weighting Outline for today Information Retrieval Efficient Scoring and Ranking Recap on ranked retrieval Jörg Tiedemann jorg.tiedemann@lingfil.uu.se Department of Linguistics and Philology Uppsala University Efficient

More information

Hub, Authority and Relevance Scores in Multi-Relational Data for Query Search

Hub, Authority and Relevance Scores in Multi-Relational Data for Query Search Hub, Authority and Relevance Scores in Multi-Relational Data for Query Search Xutao Li 1 Michael Ng 2 Yunming Ye 1 1 Department of Computer Science, Shenzhen Graduate School, Harbin Institute of Technology,

More information

A Convolutional Neural Network-based

A Convolutional Neural Network-based A Convolutional Neural Network-based Model for Knowledge Base Completion Dat Quoc Nguyen Joint work with: Dai Quoc Nguyen, Tu Dinh Nguyen and Dinh Phung April 16, 2018 Introduction Word vectors learned

More information

AXIOMS FOR CENTRALITY

AXIOMS FOR CENTRALITY AXIOMS FOR CENTRALITY From a paper by Paolo Boldi, Sebastiano Vigna Università degli Studi di Milano! Internet Math., 10(3-4):222 262, 2014. Proc. 13th ICDMW. IEEE, 2013. Proc. 4th WebScience. ACM, 2012.!

More information

CS54701 Information Retrieval. Link Analysis. Luo Si. Department of Computer Science Purdue University. Borrowed Slides from Prof.

CS54701 Information Retrieval. Link Analysis. Luo Si. Department of Computer Science Purdue University. Borrowed Slides from Prof. CS54701 Information Retrieval Link Analysis Luo Si Department of Computer Science Purdue University Borrowed Slides from Prof. Rong Jin (MSU) Citation Analysis Web Structure Web is a graph Each web site

More information

Matrix Analysis of Genetic Programming Mutation

Matrix Analysis of Genetic Programming Mutation See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/255568988 Matrix Analysis of Genetic Programming Mutation Article in Lecture Notes in Computer

More information

CS341 info session is on Thu 3/1 5pm in Gates415. CS246: Mining Massive Datasets Jure Leskovec, Stanford University

CS341 info session is on Thu 3/1 5pm in Gates415. CS246: Mining Massive Datasets Jure Leskovec, Stanford University CS341 info session is on Thu 3/1 5pm in Gates415 CS246: Mining Massive Datasets Jure Leskovec, Stanford University http://cs246.stanford.edu 2/28/18 Jure Leskovec, Stanford CS246: Mining Massive Datasets,

More information

Traps and Pitfalls of Topic-Biased PageRank

Traps and Pitfalls of Topic-Biased PageRank Traps and Pitfalls of Topic-Biased PageRank Paolo Boldi Roberto Posenato Massimo Santini Sebastiano Vigna Dipartimento di Scienze dell Informazione, Università degli Studi di Milano, Italy and Dipartimento

More information

DS504/CS586: Big Data Analytics Graph Mining II

DS504/CS586: Big Data Analytics Graph Mining II Welcome to DS504/CS586: Big Data Analytics Graph Mining II Prof. Yanhua Li Time: 6:00pm 8:50pm Mon. and Wed. Location: SL105 Spring 2016 Reading assignments We will increase the bar a little bit Please

More information

Pr[positive test virus] Pr[virus] Pr[positive test] = Pr[positive test] = Pr[positive test]

Pr[positive test virus] Pr[virus] Pr[positive test] = Pr[positive test] = Pr[positive test] 146 Probability Pr[virus] = 0.00001 Pr[no virus] = 0.99999 Pr[positive test virus] = 0.99 Pr[positive test no virus] = 0.01 Pr[virus positive test] = Pr[positive test virus] Pr[virus] = 0.99 0.00001 =

More information

Node Centrality and Ranking on Networks

Node Centrality and Ranking on Networks Node Centrality and Ranking on Networks Leonid E. Zhukov School of Data Analysis and Artificial Intelligence Department of Computer Science National Research University Higher School of Economics Social

More information

4/26/2017. More algorithms for streams: Each element of data stream is a tuple Given a list of keys S Determine which tuples of stream are in S

4/26/2017. More algorithms for streams: Each element of data stream is a tuple Given a list of keys S Determine which tuples of stream are in S Note to other teachers and users of these slides: We would be delighted if you found this our material useful in giving your own lectures. Feel free to use these slides verbatim, or to modify them to fit

More information

Modeling the Score Distributions of Relevant and Non-relevant Documents

Modeling the Score Distributions of Relevant and Non-relevant Documents Modeling the Score Distributions of Relevant and Non-relevant Documents Evangelos Kanoulas, Virgil Pavlu, Keshi Dai, and Javed A. Aslam College of Computer and Information Science Northeastern University,

More information

Model Accuracy Measures

Model Accuracy Measures Model Accuracy Measures Master in Bioinformatics UPF 2017-2018 Eduardo Eyras Computational Genomics Pompeu Fabra University - ICREA Barcelona, Spain Variables What we can measure (attributes) Hypotheses

More information

Overview course module Stochastic Modelling. I. Introduction II. Actor-based models for network evolution

Overview course module Stochastic Modelling. I. Introduction II. Actor-based models for network evolution Overview course module Stochastic Modelling I. Introduction II. Actor-based models for network evolution A. Data requirements B. Modelling principles & assumptions C. The network evolution algorithm D.

More information

PROBABILISTIC LATENT SEMANTIC ANALYSIS

PROBABILISTIC LATENT SEMANTIC ANALYSIS PROBABILISTIC LATENT SEMANTIC ANALYSIS Lingjia Deng Revised from slides of Shuguang Wang Outline Review of previous notes PCA/SVD HITS Latent Semantic Analysis Probabilistic Latent Semantic Analysis Applications

More information