Course 495: Advanced Statistical Machine Learning/Pattern Recognition

Size: px
Start display at page:

Download "Course 495: Advanced Statistical Machine Learning/Pattern Recognition"

Transcription

1 Course 495: Advanced Statistical Machine Learning/Pattern Recognition Lecturer: Stefanos Zafeiriou Goal (Lectures): To present discrete and continuous valued probabilistic linear dynamical systems (HMMs & Kalman Filters). Goal (Tutorials): To provide the students the necessary mathematical tools for deeply understanding the models. 1

2 Materials Chapter 13: Pattern Recognition & Machine Learning, Christopher M. Bishop. Chapter 17: Machine Learning a Probabilistic Perspective, Kevin Murphy Rabiner, Lawrence. "A tutorial on hidden Markov models and selected applications in speech recognition." Proceedings of the IEEE 77.2 (1989):

3 Linear Dynamical Systems Applications of probabilistic linear dynamical systems Language modelling Object/Face tracking Speech/Gesture recognition Finance Bioinformatics 3

4 Applications Object-target tracking 4

5 Applications Speech Recognition (voice Google search) Waveform Hello world 5

6 Applications Gesture recognition (Kinect games) Gestures 6

7 Latent Variable Models (Static) General Concept: y 1 y 2 y 3 y N Share a common linear structure x 1 x 2 x 3 x N x N We want to find the parameters: Joint likelihood maximization: N i=1 Ν ι=1 p(x 1,.., x N, y 1,.., y N θ) = p(x i y i, W, μ, σ) p(y i ) 7

8 Latent Variable Models (Dynamic, Continuous) 8

9 Latent Variable Models (Dynamic, Continuous) y 1 y 2 y 3 y T x 1 x 2 x 3 x T Generative Model x n = Wy n + e n y 1 = μ + u y n = Ay n 1 + v n Parameters: Noise distribution e~n(e, Σ) u~n u, P v~n(v, Γ) θ = {W, A, μ, Σ, Γ, P } 9

10 Latent Variable Models (Dynamic, Continuous) y 1 y 2 y 3 y T x 1 x 2 x 3 x T Markov Property: p(y i, y 1,.., y i 1 = p(y i y i 1 ) 1

11 Latent Variable Models (Dynamic, Discrete) Word: need Phonemes: n iy d y 1 x 1 y 2 x 2 y 3 x 3 y T x T Latent structure takes discrete values: y t {start,n,iy,d,end} 11

12 Summarize what we will study? Sequential data (2 weeks): y 1 y 2 y 3 y T x 1 x 2 x 3 x T What are the models?: The Markov & Hidden Markov Models (1 week). The Kalman Filter (1 week). What we will learn?: How to formulate probabilistically the problems and learn parameters. 12

13 Markov Chains with Discrete Random Variables x 1 x 2 x 3 x T Let s assume we have discrete random variables (e.g., taking 3 discrete 1 values x t = {, 1, }) 1 Markov Property: e.g. p(x t = p(x t x 1,.., x t 1 = p(x t x t 1 ) 1 x i 1 = 1 ) Stationary, Homogeneous or Time-Invariant if the distribution p x t x t 1 does not depend on t 13

14 Markov Chains with Discrete Random Variables x 1 x 2 x 3 x T p(x t x t 1 ) bigram model x 1 x 2 x 3 x T p(x t x t 1, x t 2 ) Tri-gram model x 1 x 2 x 3 x 4 x T p(x t x t 1, x t 2, x t 3 ) 4-gram model 14

15 Markov Chains with Discrete Random Variables Joint distribution in the first order case: p(x 1,.., x T ) = p x 1 p(x 2,.., x T x 1 = p x 1 p(x 2 x 1 )p(x 3,.., x T x 1, x 2 = p x 1 p(x 2 x 1 )p(x 3,.., x T x 2 = p x 1 p(x 2 x 1 )p(x 3 x 2 )p(x 4,.., x T x 2, x 3 = p x 1 p(x 2 x 1 )p(x 3 x 2 )p(x 4,.., x T x 3 15 T = p(x 1 ) p(x i x i 1 ) i=2

16 First Order Markov Chains p(x t x t 1 ) can be represented as a KxK transition matrix A = a ij which is the probability of going from state i to state j x t x t 1 3 a 11 a 21 a 12 a 22 a 13 a 23 a 31 a 32 a 33 p x t x t 1 2 A is a stochastic matrix, i.e., 3 a ik = 1 16

17 First Order Markov Chains If we make use of our vector notation of discrete random variable then if x t = 1 has only its j-th element activated x t 1 = has only its i-th element activated 1 then a ij = p(x tj = 1 x t 1i = 1)

18 Transition Matrices A stationary finite-state Markov chain is equivalent to a stochastic automaton. 1 α α 1 β 1 2 β Α = 1 α β α 1 β 18

19 Transition Matrices a 11 a 12 a 22 a a 33 A = a 11 a 12 a 22 a 23 1 a 12 = 1 a 11 a 23 = 1 a 22 19

20 Transition Matrices Transition matrix A specifies the probability of getting from i to j in one step. How can we compute the probability of i to j in exactly n-steps? a ij n = p x t+nj = 1 x ti = 1 2 Probability of getting from i to k in one step and then from k to j in n 1 steps and summing for all k K = p x t+1k = 1 x ti = 1 p x t+nj = 1 x t+1k = 1 K = a ik a kj (n 1) A(n) = AA(n 1) A(n) = A n

21 Stationary Distribution of the Markov Chain Markov model are used to define joint probability distributions over sequences. But can be also interpreted as stochastic dynamical systems, where we hop from one state to another over time. We are interested long term distribution over states, known as stationary distribution of the chain. Important application: Google s Page Rank 21

22 Stationary Distribution of the Markov Chain Assume a Markov Chain. A = [a ij ] = [p(x tj = 1 x t 1i = 1) ] π = [p x i = 1 ] then p x 1i = 1 = p x 1i = 1, x k = 1 π 1j = 22 K K = p x k = 1 p x 1i = 1 x k = 1 K π k a kj π 1 T = π T A

23 Stationary Distribution of the Markov Chain We image iterating these equations. If we ever reach a stage where: π T = π T A we have reached the stationary distribution (also called the invariant distribution or equilibrium distribution) In case of three states the above is written: (π 1 π 2 π 3 ) = (π 1 π 2 π 3 ) 1 a 12 a 13 a 12 a 13 a 21 1 a 21 a 23 a 23 a 31 a 32 1 a 31 a 32 23

24 Stationary Distribution of the Markov Chain so π 1 = π 1 1 a 12 a 13 + π 2 a 21 + π 3 a 31 or π 1 a 12 + a 13 = π 2 a 21 + π 3 a 31 similarly π 2 a 21 + a 23 = π 1 a 12 + π 3 a 13 and π 3 a 31 + a 32 = π 1 a 31 + π 2 a 32 In general, we have π i a ij = π j a ji and π j = 1 j i j i j The probability of being in state i times the net flow out of the state i must equal the probability of being in each other state j times the net flow from that state into i. 24

25 Stationary Distribution of the Markov Chain A T π = π looks like an eigen-analysis problem i.e., π is an eigenvector with eigenvalue 1 Such an eigenvector always exists since A is row-stochastic A1 = 1 and A and A T have the same eigenvalues But the eigenvectors of A are real-valued only when a ij > What happens in the case that a ij =? 25

26 Stationary Distribution of the Markov Chain π Τ (I A) = π Τ 1 = 1 K constraints 1 extra constraint Problem is over constrained Define matrix Μ = I A and replace one column with 1s (π 1 π 2 π 3 ) 1 a 11 a 12 1 a 21 1 a 22 1 a 31 a 32 1 = ( 1) 26

27 Stationary Distribution of the Markov Chain (π 1 π 2 π 3 ) = ( 1) (π 1 π 2 π 3 ) = (.4.4.2) 27

28 Stationary Distribution of the Markov Chain When does a stationary distribution exists State 4 is an absorbing state hence π = (,,,1) is a possible stationary distribution so is π = (.5,.5,,) 28

29 Stationary Distribution of the Markov Chain First necessary condition to have a unique stationary distribution is that the state transition diagram be a singly connected component. Such chains are called irreducible (i.e., you can go from any state to any other state). 1 α α 1 2 β 1 β α = β = 1 Let s start from state 2 t = 2b + 1 state 1 t = 2b state 2 oscillates 29

30 Stationary Distribution of the Markov Chain d i = gcd {t: a ii t > } d 1 = gcd 2,3,4,6,.. = 1 d 2 = gcd 2,3,4,6,.. = 1 d 3 = gcd 3,5,6,.. = State i is aperiodic if d(i) = 1 Markov Chain is aperiodic if d(i) = 1 for all i 3

31 Stationary Distribution of the Markov Chain Every irreducible (singly connected), aperiodic finite state Markov chain has a limiting distribution, which is equal to π, its unique stationary distribution. Special cases and sufficient conditions: Every regular finite state chain has a unique stationary distribution (i.e., a ij (t) > ). 31

32 Stationary Distribution of the Markov Chain Small web (uniform distribution over all states it is connected to) x 1 x 4 x 2 x 3 First step make it regular. x 6 x 5 (π 1 π 2 π 3 π 4 π 5 π 6 ) = ( ) 32

33 Markov Chain for Language Modelling. One important application of Markov Models is to make statistical language models (i.e., probability distributions over sequences of words). Sentence Completion. Predict next word based on the previous one. Data compression. Any density model can be used to define an encoding scheme, by assigning short code-words to more probably strings. Text classification. Any density model can be used as a classconditional density. Automatic essay writing. Sample from p(x 1,.., x T ) 33

34 Simple Parameter Estimation abbbcbbabcbbbabc bbcabbabbcbbbaba abccabbabbcbbbab p(x 1 1,.., x 1 T ) p(x 2 1,.., x 2 T ) p(x N 1,.., x N T ) x = { a b c 1, 1, 1 } 3 K K p x 1 π = π κ x 1k p x t x t 1 = a jk x t 1j x tk j=1 34

35 Maximum Likelihood for Markov Chains What are the parameters in this case? θ = {π, A} The problem is now formulated as: Given a set of observations D l = x l 1,.., x l T, l = 1,.., N find the parameters θ that maximize p D 1,.., D Ν θ p D 1,.., D Ν θ = p D l θ N l=1 35

36 Maximum Likelihood for Markov Chains p D l θ = p(x 1 l,.., x T l θ) = p(x 1 l ) p(x t l x t 1 l ) 3 T 3 = π κ x 1k l t=2 j=1 T t=2 3 x a l t 1j x l tk jk ln N 3 T K K p D 1,.., D Ν θ = π κ x 1k l l=1 t=2 j=1 N 3 N T K K a jk x t 1j l x tk l ln p(θ) = x 1k l ln π κ + x l t 1j x l tk ln a jk l=1 l=1 t=2 j=1 36

37 Maximum Likelihood for Markov Chains N 3 = x 1k l ln π κ N T x t 1j l x tk l ln a jk l=1 l=1 t=2 j=1 3 N 3 3 N T = x 1k l ln π κ + x t 1j l x tk l ln a jk l=1 j=1 l=1 t=2 Let us define the counts N N T N k 1 x 1k l N jk = x t 1j l x tk l l=1 l=1 t=2 37

38 Maximum Likelihood for Markov Chains = N 1 k ln π κ + N jk ln a jk j=1 3 3 Solve the above subject to: The Lagrangian is: 3 π κ 3 3 = 1 a jk = 1 L π, Α = N 1 k ln π κ + N jk ln a jk j=1 3 3 λ π κ 1 γ a jk 1

39 Maximum Likelihood for Markov Chains which gives us: π k = N k 1 N k 1 3 a jk = N jk 3 N jk 39

Linear Dynamical Systems (Kalman filter)

Linear Dynamical Systems (Kalman filter) Linear Dynamical Systems (Kalman filter) (a) Overview of HMMs (b) From HMMs to Linear Dynamical Systems (LDS) 1 Markov Chains with Discrete Random Variables x 1 x 2 x 3 x T Let s assume we have discrete

More information

LEARNING DYNAMIC SYSTEMS: MARKOV MODELS

LEARNING DYNAMIC SYSTEMS: MARKOV MODELS LEARNING DYNAMIC SYSTEMS: MARKOV MODELS Markov Process and Markov Chains Hidden Markov Models Kalman Filters Types of dynamic systems Problem of future state prediction Predictability Observability Easily

More information

CS 188: Artificial Intelligence Fall 2011

CS 188: Artificial Intelligence Fall 2011 CS 188: Artificial Intelligence Fall 2011 Lecture 20: HMMs / Speech / ML 11/8/2011 Dan Klein UC Berkeley Today HMMs Demo bonanza! Most likely explanation queries Speech recognition A massive HMM! Details

More information

Note Set 5: Hidden Markov Models

Note Set 5: Hidden Markov Models Note Set 5: Hidden Markov Models Probabilistic Learning: Theory and Algorithms, CS 274A, Winter 2016 1 Hidden Markov Models (HMMs) 1.1 Introduction Consider observed data vectors x t that are d-dimensional

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning Brown University CSCI 1950-F, Spring 2012 Prof. Erik Sudderth Lecture 25: Markov Chain Monte Carlo (MCMC) Course Review and Advanced Topics Many figures courtesy Kevin

More information

Course 495: Advanced Statistical Machine Learning/Pattern Recognition

Course 495: Advanced Statistical Machine Learning/Pattern Recognition Course 495: Advanced Statistical Machine Learning/Pattern Recognition Goal (Lecture): To present Probabilistic Principal Component Analysis (PPCA) using both Maximum Likelihood (ML) and Expectation Maximization

More information

Chapter 4 Dynamic Bayesian Networks Fall Jin Gu, Michael Zhang

Chapter 4 Dynamic Bayesian Networks Fall Jin Gu, Michael Zhang Chapter 4 Dynamic Bayesian Networks 2016 Fall Jin Gu, Michael Zhang Reviews: BN Representation Basic steps for BN representations Define variables Define the preliminary relations between variables Check

More information

COMS 4771 Probabilistic Reasoning via Graphical Models. Nakul Verma

COMS 4771 Probabilistic Reasoning via Graphical Models. Nakul Verma COMS 4771 Probabilistic Reasoning via Graphical Models Nakul Verma Last time Dimensionality Reduction Linear vs non-linear Dimensionality Reduction Principal Component Analysis (PCA) Non-linear methods

More information

Statistical Problem. . We may have an underlying evolving system. (new state) = f(old state, noise) Input data: series of observations X 1, X 2 X t

Statistical Problem. . We may have an underlying evolving system. (new state) = f(old state, noise) Input data: series of observations X 1, X 2 X t Markov Chains. Statistical Problem. We may have an underlying evolving system (new state) = f(old state, noise) Input data: series of observations X 1, X 2 X t Consecutive speech feature vectors are related

More information

STOCHASTIC PROCESSES Basic notions

STOCHASTIC PROCESSES Basic notions J. Virtamo 38.3143 Queueing Theory / Stochastic processes 1 STOCHASTIC PROCESSES Basic notions Often the systems we consider evolve in time and we are interested in their dynamic behaviour, usually involving

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! http://www.utstat.utoronto.ca/~rsalakhu/ Sidney Smith Hall, Room 6002 Lecture 11 Project

More information

Planning and Optimal Control

Planning and Optimal Control Planning and Optimal Control 1. Markov Models Lars Schmidt-Thieme Information Systems and Machine Learning Lab (ISMLL) Institute for Computer Science University of Hildesheim, Germany 1 / 22 Syllabus Tue.

More information

Probabilistic Machine Learning

Probabilistic Machine Learning Probabilistic Machine Learning Bayesian Nets, MCMC, and more Marek Petrik 4/18/2017 Based on: P. Murphy, K. (2012). Machine Learning: A Probabilistic Perspective. Chapter 10. Conditional Independence Independent

More information

Course 495: Advanced Statistical Machine Learning/Pattern Recognition

Course 495: Advanced Statistical Machine Learning/Pattern Recognition Course 495: Advanced Statistical Machine Learning/Pattern Recognition Deterministic Component Analysis Goal (Lecture): To present standard and modern Component Analysis (CA) techniques such as Principal

More information

ECE521 Lecture 19 HMM cont. Inference in HMM

ECE521 Lecture 19 HMM cont. Inference in HMM ECE521 Lecture 19 HMM cont. Inference in HMM Outline Hidden Markov models Model definitions and notations Inference in HMMs Learning in HMMs 2 Formally, a hidden Markov model defines a generative process

More information

8: Hidden Markov Models

8: Hidden Markov Models 8: Hidden Markov Models Machine Learning and Real-world Data Helen Yannakoudakis 1 Computer Laboratory University of Cambridge Lent 2018 1 Based on slides created by Simone Teufel So far we ve looked at

More information

Sequence labeling. Taking collective a set of interrelated instances x 1,, x T and jointly labeling them

Sequence labeling. Taking collective a set of interrelated instances x 1,, x T and jointly labeling them HMM, MEMM and CRF 40-957 Special opics in Artificial Intelligence: Probabilistic Graphical Models Sharif University of echnology Soleymani Spring 2014 Sequence labeling aking collective a set of interrelated

More information

Hidden Markov Models. Aarti Singh Slides courtesy: Eric Xing. Machine Learning / Nov 8, 2010

Hidden Markov Models. Aarti Singh Slides courtesy: Eric Xing. Machine Learning / Nov 8, 2010 Hidden Markov Models Aarti Singh Slides courtesy: Eric Xing Machine Learning 10-701/15-781 Nov 8, 2010 i.i.d to sequential data So far we assumed independent, identically distributed data Sequential data

More information

Parametric Models Part III: Hidden Markov Models

Parametric Models Part III: Hidden Markov Models Parametric Models Part III: Hidden Markov Models Selim Aksoy Department of Computer Engineering Bilkent University saksoy@cs.bilkent.edu.tr CS 551, Spring 2014 CS 551, Spring 2014 c 2014, Selim Aksoy (Bilkent

More information

STA 414/2104: Machine Learning

STA 414/2104: Machine Learning STA 414/2104: Machine Learning Russ Salakhutdinov Department of Computer Science! Department of Statistics! rsalakhu@cs.toronto.edu! http://www.cs.toronto.edu/~rsalakhu/ Lecture 9 Sequential Data So far

More information

Entropy Rate of Stochastic Processes

Entropy Rate of Stochastic Processes Entropy Rate of Stochastic Processes Timo Mulder tmamulder@gmail.com Jorn Peters jornpeters@gmail.com February 8, 205 The entropy rate of independent and identically distributed events can on average be

More information

COMS 4721: Machine Learning for Data Science Lecture 20, 4/11/2017

COMS 4721: Machine Learning for Data Science Lecture 20, 4/11/2017 COMS 4721: Machine Learning for Data Science Lecture 20, 4/11/2017 Prof. John Paisley Department of Electrical Engineering & Data Science Institute Columbia University SEQUENTIAL DATA So far, when thinking

More information

Robert Collins CSE586 CSE 586, Spring 2015 Computer Vision II

Robert Collins CSE586 CSE 586, Spring 2015 Computer Vision II CSE 586, Spring 2015 Computer Vision II Hidden Markov Model and Kalman Filter Recall: Modeling Time Series State-Space Model: You have a Markov chain of latent (unobserved) states Each state generates

More information

Introduction to Neural Networks

Introduction to Neural Networks Introduction to Neural Networks Steve Renals Automatic Speech Recognition ASR Lecture 10 24 February 2014 ASR Lecture 10 Introduction to Neural Networks 1 Neural networks for speech recognition Introduction

More information

Forward algorithm vs. particle filtering

Forward algorithm vs. particle filtering Particle Filtering ØSometimes X is too big to use exact inference X may be too big to even store B(X) E.g. X is continuous X 2 may be too big to do updates ØSolution: approximate inference Track samples

More information

The Noisy Channel Model and Markov Models

The Noisy Channel Model and Markov Models 1/24 The Noisy Channel Model and Markov Models Mark Johnson September 3, 2014 2/24 The big ideas The story so far: machine learning classifiers learn a function that maps a data item X to a label Y handle

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Probabilistic Graphical Models Brown University CSCI 2950-P, Spring 2013 Prof. Erik Sudderth Lecture 13: Learning in Gaussian Graphical Models, Non-Gaussian Inference, Monte Carlo Methods Some figures

More information

order is number of previous outputs

order is number of previous outputs Markov Models Lecture : Markov and Hidden Markov Models PSfrag Use past replacements as state. Next output depends on previous output(s): y t = f[y t, y t,...] order is number of previous outputs y t y

More information

Shankar Shivappa University of California, San Diego April 26, CSE 254 Seminar in learning algorithms

Shankar Shivappa University of California, San Diego April 26, CSE 254 Seminar in learning algorithms Recognition of Visual Speech Elements Using Adaptively Boosted Hidden Markov Models. Say Wei Foo, Yong Lian, Liang Dong. IEEE Transactions on Circuits and Systems for Video Technology, May 2004. Shankar

More information

Announcements. CS 188: Artificial Intelligence Fall Markov Models. Example: Markov Chain. Mini-Forward Algorithm. Example

Announcements. CS 188: Artificial Intelligence Fall Markov Models. Example: Markov Chain. Mini-Forward Algorithm. Example CS 88: Artificial Intelligence Fall 29 Lecture 9: Hidden Markov Models /3/29 Announcements Written 3 is up! Due on /2 (i.e. under two weeks) Project 4 up very soon! Due on /9 (i.e. a little over two weeks)

More information

Chapter 05: Hidden Markov Models

Chapter 05: Hidden Markov Models LEARNING AND INFERENCE IN GRAPHICAL MODELS Chapter 05: Hidden Markov Models Dr. Martin Lauer University of Freiburg Machine Learning Lab Karlsruhe Institute of Technology Institute of Measurement and Control

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning Brown University CSCI 1950-F, Spring 2012 Prof. Erik Sudderth Lecture 20: Expectation Maximization Algorithm EM for Mixture Models Many figures courtesy Kevin Murphy s

More information

Lecture 6: Entropy Rate

Lecture 6: Entropy Rate Lecture 6: Entropy Rate Entropy rate H(X) Random walk on graph Dr. Yao Xie, ECE587, Information Theory, Duke University Coin tossing versus poker Toss a fair coin and see and sequence Head, Tail, Tail,

More information

CS145: Probability & Computing Lecture 18: Discrete Markov Chains, Equilibrium Distributions

CS145: Probability & Computing Lecture 18: Discrete Markov Chains, Equilibrium Distributions CS145: Probability & Computing Lecture 18: Discrete Markov Chains, Equilibrium Distributions Instructor: Erik Sudderth Brown University Computer Science April 14, 215 Review: Discrete Markov Chains Some

More information

Lecture 4: Hidden Markov Models: An Introduction to Dynamic Decision Making. November 11, 2010

Lecture 4: Hidden Markov Models: An Introduction to Dynamic Decision Making. November 11, 2010 Hidden Lecture 4: Hidden : An Introduction to Dynamic Decision Making November 11, 2010 Special Meeting 1/26 Markov Model Hidden When a dynamical system is probabilistic it may be determined by the transition

More information

Recall: Modeling Time Series. CSE 586, Spring 2015 Computer Vision II. Hidden Markov Model and Kalman Filter. Modeling Time Series

Recall: Modeling Time Series. CSE 586, Spring 2015 Computer Vision II. Hidden Markov Model and Kalman Filter. Modeling Time Series Recall: Modeling Time Series CSE 586, Spring 2015 Computer Vision II Hidden Markov Model and Kalman Filter State-Space Model: You have a Markov chain of latent (unobserved) states Each state generates

More information

Introduction to Restricted Boltzmann Machines

Introduction to Restricted Boltzmann Machines Introduction to Restricted Boltzmann Machines Ilija Bogunovic and Edo Collins EPFL {ilija.bogunovic,edo.collins}@epfl.ch October 13, 2014 Introduction Ingredients: 1. Probabilistic graphical models (undirected,

More information

A Higher-Order Interactive Hidden Markov Model and Its Applications Wai-Ki Ching Department of Mathematics The University of Hong Kong

A Higher-Order Interactive Hidden Markov Model and Its Applications Wai-Ki Ching Department of Mathematics The University of Hong Kong A Higher-Order Interactive Hidden Markov Model and Its Applications Wai-Ki Ching Department of Mathematics The University of Hong Kong Abstract: In this talk, a higher-order Interactive Hidden Markov Model

More information

The Particle Filter. PD Dr. Rudolph Triebel Computer Vision Group. Machine Learning for Computer Vision

The Particle Filter. PD Dr. Rudolph Triebel Computer Vision Group. Machine Learning for Computer Vision The Particle Filter Non-parametric implementation of Bayes filter Represents the belief (posterior) random state samples. by a set of This representation is approximate. Can represent distributions that

More information

COMP90051 Statistical Machine Learning

COMP90051 Statistical Machine Learning COMP90051 Statistical Machine Learning Semester 2, 2017 Lecturer: Trevor Cohn 24. Hidden Markov Models & message passing Looking back Representation of joint distributions Conditional/marginal independence

More information

Basic math for biology

Basic math for biology Basic math for biology Lei Li Florida State University, Feb 6, 2002 The EM algorithm: setup Parametric models: {P θ }. Data: full data (Y, X); partial data Y. Missing data: X. Likelihood and maximum likelihood

More information

Lecture 21: Spectral Learning for Graphical Models

Lecture 21: Spectral Learning for Graphical Models 10-708: Probabilistic Graphical Models 10-708, Spring 2016 Lecture 21: Spectral Learning for Graphical Models Lecturer: Eric P. Xing Scribes: Maruan Al-Shedivat, Wei-Cheng Chang, Frederick Liu 1 Motivation

More information

Convex Optimization CMU-10725

Convex Optimization CMU-10725 Convex Optimization CMU-10725 Simulated Annealing Barnabás Póczos & Ryan Tibshirani Andrey Markov Markov Chains 2 Markov Chains Markov chain: Homogen Markov chain: 3 Markov Chains Assume that the state

More information

We Live in Exciting Times. CSCI-567: Machine Learning (Spring 2019) Outline. Outline. ACM (an international computing research society) has named

We Live in Exciting Times. CSCI-567: Machine Learning (Spring 2019) Outline. Outline. ACM (an international computing research society) has named We Live in Exciting Times ACM (an international computing research society) has named CSCI-567: Machine Learning (Spring 2019) Prof. Victor Adamchik U of Southern California Apr. 2, 2019 Yoshua Bengio,

More information

Lecture 12: Link Analysis for Web Retrieval

Lecture 12: Link Analysis for Web Retrieval Lecture 12: Link Analysis for Web Retrieval Trevor Cohn COMP90042, 2015, Semester 1 What we ll learn in this lecture The web as a graph Page-rank method for deriving the importance of pages Hubs and authorities

More information

HMM part 1. Dr Philip Jackson

HMM part 1. Dr Philip Jackson Centre for Vision Speech & Signal Processing University of Surrey, Guildford GU2 7XH. HMM part 1 Dr Philip Jackson Probability fundamentals Markov models State topology diagrams Hidden Markov models -

More information

STA141C: Big Data & High Performance Statistical Computing

STA141C: Big Data & High Performance Statistical Computing STA141C: Big Data & High Performance Statistical Computing Lecture 6: Numerical Linear Algebra: Applications in Machine Learning Cho-Jui Hsieh UC Davis April 27, 2017 Principal Component Analysis Principal

More information

Markov Chains. Sarah Filippi Department of Statistics TA: Luke Kelly

Markov Chains. Sarah Filippi Department of Statistics  TA: Luke Kelly Markov Chains Sarah Filippi Department of Statistics http://www.stats.ox.ac.uk/~filippi TA: Luke Kelly With grateful acknowledgements to Prof. Yee Whye Teh's slides from 2013 14. Schedule 09:30-10:30 Lecture:

More information

Information Theory. Lecture 5 Entropy rate and Markov sources STEFAN HÖST

Information Theory. Lecture 5 Entropy rate and Markov sources STEFAN HÖST Information Theory Lecture 5 Entropy rate and Markov sources STEFAN HÖST Universal Source Coding Huffman coding is optimal, what is the problem? In the previous coding schemes (Huffman and Shannon-Fano)it

More information

Modelling Time Series with Neural Networks. Volker Tresp Summer 2017

Modelling Time Series with Neural Networks. Volker Tresp Summer 2017 Modelling Time Series with Neural Networks Volker Tresp Summer 2017 1 Modelling of Time Series The next figure shows a time series (DAX) Other interesting time-series: energy prize, energy consumption,

More information

Lecture 3: ASR: HMMs, Forward, Viterbi

Lecture 3: ASR: HMMs, Forward, Viterbi Original slides by Dan Jurafsky CS 224S / LINGUIST 285 Spoken Language Processing Andrew Maas Stanford University Spring 2017 Lecture 3: ASR: HMMs, Forward, Viterbi Fun informative read on phonetics The

More information

1. Markov models. 1.1 Markov-chain

1. Markov models. 1.1 Markov-chain 1. Markov models 1.1 Markov-chain Let X be a random variable X = (X 1,..., X t ) taking values in some set S = {s 1,..., s N }. The sequence is Markov chain if it has the following properties: 1. Limited

More information

Hidden Markov Models. Terminology, Representation and Basic Problems

Hidden Markov Models. Terminology, Representation and Basic Problems Hidden Markov Models Terminology, Representation and Basic Problems Data analysis? Machine learning? In bioinformatics, we analyze a lot of (sequential) data (biological sequences) to learn unknown parameters

More information

Hidden Markov Models Hamid R. Rabiee

Hidden Markov Models Hamid R. Rabiee Hidden Markov Models Hamid R. Rabiee 1 Hidden Markov Models (HMMs) In the previous slides, we have seen that in many cases the underlying behavior of nature could be modeled as a Markov process. However

More information

CS 188: Artificial Intelligence Spring Announcements

CS 188: Artificial Intelligence Spring Announcements CS 188: Artificial Intelligence Spring 2011 Lecture 18: HMMs and Particle Filtering 4/4/2011 Pieter Abbeel --- UC Berkeley Many slides over this course adapted from Dan Klein, Stuart Russell, Andrew Moore

More information

LECTURE 15 Markov chain Monte Carlo

LECTURE 15 Markov chain Monte Carlo LECTURE 15 Markov chain Monte Carlo There are many settings when posterior computation is a challenge in that one does not have a closed form expression for the posterior distribution. Markov chain Monte

More information

Sequence modelling. Marco Saerens (UCL) Slides references

Sequence modelling. Marco Saerens (UCL) Slides references Sequence modelling Marco Saerens (UCL) Slides references Many slides and figures have been adapted from the slides associated to the following books: Alpaydin (2004), Introduction to machine learning.

More information

Probability and Time: Hidden Markov Models (HMMs)

Probability and Time: Hidden Markov Models (HMMs) Probability and Time: Hidden Markov Models (HMMs) Computer Science cpsc322, Lecture 32 (Textbook Chpt 6.5.2) Nov, 25, 2013 CPSC 322, Lecture 32 Slide 1 Lecture Overview Recap Markov Models Markov Chain

More information

Hidden Markov Models and Gaussian Mixture Models

Hidden Markov Models and Gaussian Mixture Models Hidden Markov Models and Gaussian Mixture Models Hiroshi Shimodaira and Steve Renals Automatic Speech Recognition ASR Lectures 4&5 23&27 January 2014 ASR Lectures 4&5 Hidden Markov Models and Gaussian

More information

Artificial Intelligence Markov Chains

Artificial Intelligence Markov Chains Artificial Intelligence Markov Chains Stephan Dreiseitl FH Hagenberg Software Engineering & Interactive Media Stephan Dreiseitl (Hagenberg/SE/IM) Lecture 12: Markov Chains Artificial Intelligence SS2010

More information

Chapter 11. Stochastic Methods Rooted in Statistical Mechanics

Chapter 11. Stochastic Methods Rooted in Statistical Mechanics Chapter 11. Stochastic Methods Rooted in Statistical Mechanics Neural Networks and Learning Machines (Haykin) Lecture Notes on Self-learning Neural Algorithms Byoung-Tak Zhang School of Computer Science

More information

Statistical Machine Learning from Data

Statistical Machine Learning from Data Samy Bengio Statistical Machine Learning from Data Statistical Machine Learning from Data Samy Bengio IDIAP Research Institute, Martigny, Switzerland, and Ecole Polytechnique Fédérale de Lausanne (EPFL),

More information

Introduction to Machine Learning CMU-10701

Introduction to Machine Learning CMU-10701 Introduction to Machine Learning CMU-10701 Hidden Markov Models Barnabás Póczos & Aarti Singh Slides courtesy: Eric Xing i.i.d to sequential data So far we assumed independent, identically distributed

More information

CS 188: Artificial Intelligence Spring 2009

CS 188: Artificial Intelligence Spring 2009 CS 188: Artificial Intelligence Spring 2009 Lecture 21: Hidden Markov Models 4/7/2009 John DeNero UC Berkeley Slides adapted from Dan Klein Announcements Written 3 deadline extended! Posted last Friday

More information

Unsupervised Machine Learning and Data Mining. DS 5230 / DS Fall Lecture 7. Jan-Willem van de Meent

Unsupervised Machine Learning and Data Mining. DS 5230 / DS Fall Lecture 7. Jan-Willem van de Meent Unsupervised Machine Learning and Data Mining DS 5230 / DS 4420 - Fall 2018 Lecture 7 Jan-Willem van de Meent DIMENSIONALITY REDUCTION Borrowing from: Percy Liang (Stanford) Dimensionality Reduction Goal:

More information

Approximate Inference

Approximate Inference Approximate Inference Simulation has a name: sampling Sampling is a hot topic in machine learning, and it s really simple Basic idea: Draw N samples from a sampling distribution S Compute an approximate

More information

Markov Processes Hamid R. Rabiee

Markov Processes Hamid R. Rabiee Markov Processes Hamid R. Rabiee Overview Markov Property Markov Chains Definition Stationary Property Paths in Markov Chains Classification of States Steady States in MCs. 2 Markov Property A discrete

More information

Hidden Markov Models

Hidden Markov Models CS769 Spring 2010 Advanced Natural Language Processing Hidden Markov Models Lecturer: Xiaojin Zhu jerryzhu@cs.wisc.edu 1 Part-of-Speech Tagging The goal of Part-of-Speech (POS) tagging is to label each

More information

An Evolutionary Programming Based Algorithm for HMM training

An Evolutionary Programming Based Algorithm for HMM training An Evolutionary Programming Based Algorithm for HMM training Ewa Figielska,Wlodzimierz Kasprzak Institute of Control and Computation Engineering, Warsaw University of Technology ul. Nowowiejska 15/19,

More information

Monte Carlo Methods. Leon Gu CSD, CMU

Monte Carlo Methods. Leon Gu CSD, CMU Monte Carlo Methods Leon Gu CSD, CMU Approximate Inference EM: y-observed variables; x-hidden variables; θ-parameters; E-step: q(x) = p(x y, θ t 1 ) M-step: θ t = arg max E q(x) [log p(y, x θ)] θ Monte

More information

Linear Dynamical Systems

Linear Dynamical Systems Linear Dynamical Systems Sargur N. srihari@cedar.buffalo.edu Machine Learning Course: http://www.cedar.buffalo.edu/~srihari/cse574/index.html Two Models Described by Same Graph Latent variables Observations

More information

Introduction to Artificial Intelligence (AI)

Introduction to Artificial Intelligence (AI) Introduction to Artificial Intelligence (AI) Computer Science cpsc502, Lecture 10 Oct, 13, 2011 CPSC 502, Lecture 10 Slide 1 Today Oct 13 Inference in HMMs More on Robot Localization CPSC 502, Lecture

More information

Master 2 Informatique Probabilistic Learning and Data Analysis

Master 2 Informatique Probabilistic Learning and Data Analysis Master 2 Informatique Probabilistic Learning and Data Analysis Faicel Chamroukhi Maître de Conférences USTV, LSIS UMR CNRS 7296 email: chamroukhi@univ-tln.fr web: chamroukhi.univ-tln.fr 2013/2014 Faicel

More information

Introduction to Artificial Intelligence (AI)

Introduction to Artificial Intelligence (AI) Introduction to Artificial Intelligence (AI) Computer Science cpsc502, Lecture 9 Oct, 11, 2011 Slide credit Approx. Inference : S. Thrun, P, Norvig, D. Klein CPSC 502, Lecture 9 Slide 1 Today Oct 11 Bayesian

More information

Cheng Soon Ong & Christian Walder. Canberra February June 2018

Cheng Soon Ong & Christian Walder. Canberra February June 2018 Cheng Soon Ong & Christian Walder Research Group and College of Engineering and Computer Science Canberra February June 2018 Outlines Overview Introduction Linear Algebra Probability Linear Regression

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning Mark Schmidt University of British Columbia Winter 2019 Last Time: Monte Carlo Methods If we want to approximate expectations of random functions, E[g(x)] = g(x)p(x) or E[g(x)]

More information

Temporal Modeling and Basic Speech Recognition

Temporal Modeling and Basic Speech Recognition UNIVERSITY ILLINOIS @ URBANA-CHAMPAIGN OF CS 498PS Audio Computing Lab Temporal Modeling and Basic Speech Recognition Paris Smaragdis paris@illinois.edu paris.cs.illinois.edu Today s lecture Recognizing

More information

Language Acquisition and Parameters: Part II

Language Acquisition and Parameters: Part II Language Acquisition and Parameters: Part II Matilde Marcolli CS0: Mathematical and Computational Linguistics Winter 205 Transition Matrices in the Markov Chain Model absorbing states correspond to local

More information

Human-Oriented Robotics. Temporal Reasoning. Kai Arras Social Robotics Lab, University of Freiburg

Human-Oriented Robotics. Temporal Reasoning. Kai Arras Social Robotics Lab, University of Freiburg Temporal Reasoning Kai Arras, University of Freiburg 1 Temporal Reasoning Contents Introduction Temporal Reasoning Hidden Markov Models Linear Dynamical Systems (LDS) Kalman Filter 2 Temporal Reasoning

More information

Hidden Markov Models. By Parisa Abedi. Slides courtesy: Eric Xing

Hidden Markov Models. By Parisa Abedi. Slides courtesy: Eric Xing Hidden Markov Models By Parisa Abedi Slides courtesy: Eric Xing i.i.d to sequential data So far we assumed independent, identically distributed data Sequential (non i.i.d.) data Time-series data E.g. Speech

More information

Lecture 11: Introduction to Markov Chains. Copyright G. Caire (Sample Lectures) 321

Lecture 11: Introduction to Markov Chains. Copyright G. Caire (Sample Lectures) 321 Lecture 11: Introduction to Markov Chains Copyright G. Caire (Sample Lectures) 321 Discrete-time random processes A sequence of RVs indexed by a variable n 2 {0, 1, 2,...} forms a discretetime random process

More information

MATH 56A: STOCHASTIC PROCESSES CHAPTER 1

MATH 56A: STOCHASTIC PROCESSES CHAPTER 1 MATH 56A: STOCHASTIC PROCESSES CHAPTER. Finite Markov chains For the sake of completeness of these notes I decided to write a summary of the basic concepts of finite Markov chains. The topics in this chapter

More information

CSC401/2511 Spring CSC401/2511 Natural Language Computing Spring 2019 Lecture 5 Frank Rudzicz and Chloé Pou-Prom University of Toronto

CSC401/2511 Spring CSC401/2511 Natural Language Computing Spring 2019 Lecture 5 Frank Rudzicz and Chloé Pou-Prom University of Toronto CSC401/2511 Natural Language Computing Spring 2019 Lecture 5 Frank Rudzicz and Chloé Pou-Prom University of Toronto Revisiting PoS tagging Will/MD the/dt chair/nn chair/?? the/dt meeting/nn from/in that/dt

More information

Statistical Processing of Natural Language

Statistical Processing of Natural Language Statistical Processing of Natural Language and DMKM - Universitat Politècnica de Catalunya and 1 2 and 3 1. Observation Probability 2. Best State Sequence 3. Parameter Estimation 4 Graphical and Generative

More information

STA414/2104. Lecture 11: Gaussian Processes. Department of Statistics

STA414/2104. Lecture 11: Gaussian Processes. Department of Statistics STA414/2104 Lecture 11: Gaussian Processes Department of Statistics www.utstat.utoronto.ca Delivered by Mark Ebden with thanks to Russ Salakhutdinov Outline Gaussian Processes Exam review Course evaluations

More information

Hidden Markov Models in Language Processing

Hidden Markov Models in Language Processing Hidden Markov Models in Language Processing Dustin Hillard Lecture notes courtesy of Prof. Mari Ostendorf Outline Review of Markov models What is an HMM? Examples General idea of hidden variables: implications

More information

Markov Chains CK eqns Classes Hitting times Rec./trans. Strong Markov Stat. distr. Reversibility * Markov Chains

Markov Chains CK eqns Classes Hitting times Rec./trans. Strong Markov Stat. distr. Reversibility * Markov Chains Markov Chains A random process X is a family {X t : t T } of random variables indexed by some set T. When T = {0, 1, 2,... } one speaks about a discrete-time process, for T = R or T = [0, ) one has a continuous-time

More information

Recent Advances in Bayesian Inference Techniques

Recent Advances in Bayesian Inference Techniques Recent Advances in Bayesian Inference Techniques Christopher M. Bishop Microsoft Research, Cambridge, U.K. research.microsoft.com/~cmbishop SIAM Conference on Data Mining, April 2004 Abstract Bayesian

More information

8. Statistical Equilibrium and Classification of States: Discrete Time Markov Chains

8. Statistical Equilibrium and Classification of States: Discrete Time Markov Chains 8. Statistical Equilibrium and Classification of States: Discrete Time Markov Chains 8.1 Review 8.2 Statistical Equilibrium 8.3 Two-State Markov Chain 8.4 Existence of P ( ) 8.5 Classification of States

More information

Learning from Sequential and Time-Series Data

Learning from Sequential and Time-Series Data Learning from Sequential and Time-Series Data Sridhar Mahadevan mahadeva@cs.umass.edu University of Massachusetts Sridhar Mahadevan: CMPSCI 689 p. 1/? Sequential and Time-Series Data Many real-world applications

More information

Data Mining and Matrices

Data Mining and Matrices Data Mining and Matrices 10 Graphs II Rainer Gemulla, Pauli Miettinen Jul 4, 2013 Link analysis The web as a directed graph Set of web pages with associated textual content Hyperlinks between webpages

More information

Bayesian Networks: Construction, Inference, Learning and Causal Interpretation. Volker Tresp Summer 2016

Bayesian Networks: Construction, Inference, Learning and Causal Interpretation. Volker Tresp Summer 2016 Bayesian Networks: Construction, Inference, Learning and Causal Interpretation Volker Tresp Summer 2016 1 Introduction So far we were mostly concerned with supervised learning: we predicted one or several

More information

Computer Vision Group Prof. Daniel Cremers. 11. Sampling Methods: Markov Chain Monte Carlo

Computer Vision Group Prof. Daniel Cremers. 11. Sampling Methods: Markov Chain Monte Carlo Group Prof. Daniel Cremers 11. Sampling Methods: Markov Chain Monte Carlo Markov Chain Monte Carlo In high-dimensional spaces, rejection sampling and importance sampling are very inefficient An alternative

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning Mark Schmidt University of British Columbia Winter 2018 Last Time: Monte Carlo Methods If we want to approximate expectations of random functions, E[g(x)] = g(x)p(x) or E[g(x)]

More information

Dynamic Approaches: The Hidden Markov Model

Dynamic Approaches: The Hidden Markov Model Dynamic Approaches: The Hidden Markov Model Davide Bacciu Dipartimento di Informatica Università di Pisa bacciu@di.unipi.it Machine Learning: Neural Networks and Advanced Models (AA2) Inference as Message

More information

Discrete time Markov chains. Discrete Time Markov Chains, Limiting. Limiting Distribution and Classification. Regular Transition Probability Matrices

Discrete time Markov chains. Discrete Time Markov Chains, Limiting. Limiting Distribution and Classification. Regular Transition Probability Matrices Discrete time Markov chains Discrete Time Markov Chains, Limiting Distribution and Classification DTU Informatics 02407 Stochastic Processes 3, September 9 207 Today: Discrete time Markov chains - invariant

More information

CISC 889 Bioinformatics (Spring 2004) Hidden Markov Models (II)

CISC 889 Bioinformatics (Spring 2004) Hidden Markov Models (II) CISC 889 Bioinformatics (Spring 24) Hidden Markov Models (II) a. Likelihood: forward algorithm b. Decoding: Viterbi algorithm c. Model building: Baum-Welch algorithm Viterbi training Hidden Markov models

More information

Markov Models. CS 188: Artificial Intelligence Fall Example. Mini-Forward Algorithm. Stationary Distributions.

Markov Models. CS 188: Artificial Intelligence Fall Example. Mini-Forward Algorithm. Stationary Distributions. CS 88: Artificial Intelligence Fall 27 Lecture 2: HMMs /6/27 Markov Models A Markov model is a chain-structured BN Each node is identically distributed (stationarity) Value of X at a given time is called

More information

Undirected Graphical Models

Undirected Graphical Models Outline Hong Chang Institute of Computing Technology, Chinese Academy of Sciences Machine Learning Methods (Fall 2012) Outline Outline I 1 Introduction 2 Properties Properties 3 Generative vs. Conditional

More information

Part A. P (w 1 )P (w 2 w 1 )P (w 3 w 1 w 2 ) P (w M w 1 w 2 w M 1 ) P (w 1 )P (w 2 w 1 )P (w 3 w 2 ) P (w M w M 1 )

Part A. P (w 1 )P (w 2 w 1 )P (w 3 w 1 w 2 ) P (w M w 1 w 2 w M 1 ) P (w 1 )P (w 2 w 1 )P (w 3 w 2 ) P (w M w M 1 ) Part A 1. A Markov chain is a discrete-time stochastic process, defined by a set of states, a set of transition probabilities (between states), and a set of initial state probabilities; the process proceeds

More information