Unsupervised Machine Learning and Data Mining. DS 5230 / DS Fall Lecture 7. Jan-Willem van de Meent

Size: px
Start display at page:

Download "Unsupervised Machine Learning and Data Mining. DS 5230 / DS Fall Lecture 7. Jan-Willem van de Meent"

Transcription

1 Unsupervised Machine Learning and Data Mining DS 5230 / DS Fall 2018 Lecture 7 Jan-Willem van de Meent

2 DIMENSIONALITY REDUCTION Borrowing from: Percy Liang (Stanford)

3 Dimensionality Reduction Goal: Map high dimensional data onto lower-dimensional data in a manner that preserves distances/similarities Original Data (4 dims) Projection with PCA (2 dims) Objective: projection should preserve relative distances

4 Linear Dimensionality Reduction Idea: Project high-dimensional vector onto a lower dimensional space x 2 R z 2 R 10 z = U > x

5 Problem Setup Given n data points in d dimensions: x 1,...,x n 2 R d X = ( x 1 x n ) 2 Rd n Transpose of X used in regression!

6 Problem Setup Given n data points in d dimensions: x 1,...,x n 2 R d X = ( x 1 x n ) 2 Rd n Want to reduce dimensionality from d to k Choose k directions u 1,...,u k U = ( u 1 u k ) 2 Rd k u = u > x

7 Problem Setup Given n data points in d dimensions: x 1,...,x n 2 R d X = ( x 1 x n ) 2 Rd n Want to reduce dimensionality from d to k Choose k directions u 1,...,u k U = ( u 1 u k ) 2 Rd k For each u j, compute similarity z j = u > j x =( ) > = >

8 Problem Setup Given n data points in d dimensions: x 1,...,x n 2 R d X = ( x 1 x n ) 2 Rd n Want to reduce dimensionality from d to k Choose k directions u 1,...,u k U = ( u 1 u k ) 2 Rd k For each u j, compute similarity z j = u > j x Project x down to z =(z 1,...,z k ) > = U > x How to choose U?

9 Principal Component Analysis Top 2 components Bottom 2 components Data: three varieties of wheat: Kama, Rosa, Canadian Attributes: Area, Perimeter, Compactness, Length of Kernel, Width of Kernel, Asymmetry Coefficient, Length of Groove

10 Principal Component Analysis x 2 R z 2 R 10 z = U > x Optimize two equivalent objectives 1. Minimize the reconstruction error 2. Maximizes the projected variance

11 PCA Objective 1: Reconstruction Error U serves two functions: Encode: z = U > x, z j = u > j x P

12 PCA Objective 1: Reconstruction Error U serves two functions: Encode: z = U > x, z j = u > j x Decode: x = Uz = P k j=1 z ju j kx xk

13 PCA Objective 1: Reconstruction Error U serves two functions: Encode: z = U > x, z j = u > j x Decode: x = Uz = P k j=1 z ju j Want reconstruction error kx xk to be small

14 PCA Objective 1: Reconstruction Error U serves two functions: Encode: z = U > x, z j = u > j x Decode: x = Uz = P k j=1 z ju j Want reconstruction error kx xk to be small Objective: minimize total squared reconstruction error min U2R d k nx kx i UU > x i k 2 i=1

15 PCA Objective 2: Projected Variance Empirical distribution: uniform over x 1,...,x n Expectation (think sum over data points): Ê[f(x)] = 1 P n n i=1 f(x i) Variance (think sum of squares if centered): cvar[f(x)] + (Ê[f(x)])2 = Ê[f(x)2 ]= 1 P n n i=1 f(x i) 2

16 PCA Objective 2: Projected Variance Empirical distribution: uniform over x 1,...,x n Expectation (think sum over data points): Ê[f(x)] = 1 P n n i=1 f(x i) Variance (think sum of squares if centered): cvar[f(x)] + (Ê[f(x)])2 = Ê[f(x)2 ]= 1 P n n i=1 f(x i) 2 Assume data is centered: Ê[x] =0

17 PCA Objective 2: Projected Variance Empirical distribution: uniform over x 1,...,x n Expectation (think sum over data points): Ê[f(x)] = 1 P n n i=1 f(x i) Variance (think sum of squares if centered): cvar[f(x)] + (Ê[f(x)])2 = Ê[f(x)2 ]= 1 P n n i=1 f(x i) 2 Assume data is centered: Ê[x] =0

18 PCA Objective 2: Projected Variance Empirical distribution: uniform over x 1,...,x n Expectation (think sum over data points): Ê[f(x)] = 1 P n n i=1 f(x i) Variance (think sum of squares if centered): cvar[f(x)] + (Ê[f(x)])2 = Ê[f(x)2 ]= 1 P n n i=1 f(x i) 2 Assume data is centered: EÊ[x] =0 Objective: maximize variance of projected data max U2R d k,u > U=I Ê[kU > xk 2 ]

19 PCA Objective 2: Projected Variance Empirical distribution: uniform over x 1,...,x n Expectation (think sum over data points): Ê[f(x)] = 1 P n n i=1 f(x i) Variance (think sum of squares if centered): cvar[f(x)] + (Ê[f(x)])2 = Ê[f(x)2 ]= 1 P n n i=1 f(x i) 2 Assume data is centered: Ê[x] =0 (what s Ê[U> x]?) Objective: maximize variance of projected data max U2R d k,u > U=I Ê[kU > xk 2 ]

20 Equivalence of two objectives Key intuition: variance of data {z } fixed = captured variance {z } want large + reconstruction error {z } want small > >

21 Equivalence of two objectives Key intuition: variance of data {z } fixed = captured variance {z } want large + reconstruction error {z } want small Pythagorean decomposition: x = UU > x +(I UU > )x kxk k(i UU > )xk kuu > xk Take expectations; note rotation U doesn t a ect length: Ê[kxk 2 ]=Ê[kU> xk 2 ]+Ê[kx UU> xk 2 ] $

22 Equivalence of two objectives Key intuition: variance of data {z } fixed = captured variance {z } want large + reconstruction error {z } want small Pythagorean decomposition: x = UU > x +(I UU > )x kxk k(i UU > )xk kuu > xk Take expectations; note rotation U doesn t a ect length: Ê[kxk 2 ]=Ê[kU> xk 2 ]+Ê[kx UU> xk 2 ] Minimize reconstruction error $ Maximize captured variance

23 Changes of Basis Data Orthonormal Basis X = ( x 1 x n ) 2 Rd n U = ( u 1 u k ) d 2 Rd d =

24 Changes of Basis Data Orthonormal Basis X = ( x 1 x n ) Change of basis 2 2 Rd n z =(z 1,...,z ) > d z j = u > j x U = ( u 1 u k ) 2 Rd = Inverse Change of basis > x = Uz d d d > z = U > x

25 Principal Component Analysis Data Orthonormal Basis X = ( x 1 x n ) 2 Rd n U = ( u 1 u k ) d 2 Rd d Eigenvectors of Covariance = Eigen-decomposition = C A Claim: Eigenvectors of a symmetric matrix are orthogonal d

26 Principal Component Analysis n (from stack exchange)

27 Principal Component Analysis Data Orthonormal Basis X = ( x 1 x n ) 2 Rd n Eigenvectors of Covariance U = ( u 1 u k ) 2 Rd = Eigen-decomposition d d = C A Idea: Take top-k eigenvectors to maximize variance d

28 Principal Component Analysis Data Truncated Basis X = ( x 1 x n ) 2 Rd n 2 Rd k U = ( u 1 u k ) Eigenvectors of Covariance = Truncated decomposition (k) = C A k

29 PCA: Complexity Data Truncated Basis X = ( x 1 x n ) 2 Rd n U = ( u 1 u k ) 2 Rd k = Using eigen-value decomposition Computation of covariance C: O(n d 2 ) Eigen-value decomposition: O(d 3 ) Total complexity: O(n d 2 +d 3 )

30 PCA: Complexity Data Truncated Basis X = ( x 1 x n ) 2 Rd n U = ( u 1 u k ) 2 Rd k = Using singular-value decomposition Full decomposition: O(min{nd 2, n 2 d}) Rank-k decomposition: O(k d n log(n)) (with power method)

31 Singular Value Decomposition Idea: Decompose a d x d matrix M into 1. Change of basis V (unitary matrix) 2. A scaling Σ (diagonal matrix) 3. Change of basis U (unitary matrix)

32 Singular Value Decomposition Idea: Decompose the d x n matrix X into 1. A n x n basis V (unitary matrix) 2. A d x n matrix Σ (diagonal projection) 3. A d x d basis U (unitary matrix) X = U d d d n V > n n U > U = V > V

33 Eigen-faces [Turk & Pentland 1991] d = number of pixels Each x i 2 R d is a face image x ji = intensity of the j-th pixel in image i

34 Eigen-faces [Turk & Pentland 1991] d = number of pixels Each x i 2 R d is a face image x ji = intensity of the j-th pixel in image i X d n u U d k Z k n (... ) u ( ) ( z 1... z n ) z x

35 Eigen-faces [Turk & Pentland 1991] d = number of pixels Each x i 2 R d is a face image x ji = intensity of the j-th pixel in image i X d n u U d k Z k n (... ) u ( ) ( z 1... z n ) Idea: z i more meaningful representation of i-th face than x i Can use z i for nearest-neighbor classification ( + ) ( )

36 Eigen-faces [Turk & Pentland 1991] d = number of pixels Each x i 2 R d is a face image x ji = intensity of the j-th pixel in image i X d n u U d k Z k n (... ) u ( ) ( z 1... z n ) Idea: z i more meaningful representation of i-th face than x i Can use z i for nearest-neighbor classification Much faster: O(dk + nk) time instead of O(dn) when n, d k

37 Eigen-faces [Turk & Pentland 1991] d = number of pixels Each x i 2 R d is a face image x ji = intensity of the j-th pixel in image i X d n u U d k Z k n (... ) u ( ) ( z 1... z n ) Idea: z i more meaningful representation of i-th face than x i Can use z i for nearest-neighbor classification Much faster: O(dk + nk) time instead of O(dn) when n, d Why no time savings for linear classifier? k

38 Aside: How many components? Magnitude of eigenvalues indicate fraction of variance captured. Eigenvalues on a face image dataset: i i Eigenvalues typically drop o sharply, so don t need that many. Of course variance isn t everything...

39 Latent Semantic Analysis [Deerwater 1990] d = number of words in the vocabulary Each x i 2 R d is a vector of word counts x =

40 Latent Semantic Analysis [Deerwater 1990] d = number of words in the vocabulary Each x i 2 R d is a vector of word counts x ji = frequency of word j in document i ( X d n u U d k Z ) ( k n ) u stocks: 2 0 chairman: 4 1 the: wins: 0 2 game: 1 3 ( z 1... z n )

41 Latent Semantic Analysis [Deerwater 1990] d = number of words in the vocabulary Each x i 2 R d is a vector of word counts x ji = frequency of word j in document i ( X d n u U d k Z ) ( k n ) u stocks: 2 0 chairman: 4 1 the: wins: 0 2 game: 1 3 ( z 1... z n ) How to measure similarity between two documents? z > 1 z 2 is probably better than x > 1 x 2

42 Latent Semantic Analysis [Deerwater 1990] d = number of words in the vocabulary Each x i 2 R d is a vector of word counts x ji = frequency of word j in document i ( X d n u U d k Z ) ( k n ) u stocks: 2 0 chairman: 4 1 the: wins: 0 2 game: 1 3 ( z 1... z n ) How to measure similarity between two documents? z > 1 z 2 is probably better than x > 1 x 2 Applications: information retrieval Note: no computational savings; original x is already sparse

43 PCA Summary Intuition: capture variance of data or minimize reconstruction error Algorithm: find eigendecomposition of covariance matrix or SVD Impact: reduce storage (from O(nd) to O(nk)), reduce time complexity Advantages: simple,fast Applications: eigen-faces, eigen-documents, network anomaly detection, etc.

44 Probabilistic Interpretation Generative Model [Tipping and Bishop, 1999]: For each data point i =1,...,n: Draw the latent vector: z i N (0,I k k ) Create the data point: x i N (Uz i, 2 I d d ) PCA finds the U that maximizes the likelihood of the data max U p(x U)

45 Probabilistic Interpretation Generative Model [Tipping and Bishop, 1999]: For each data point i =1,...,n: Draw the latent vector: z i N (0,I k k ) Create the data point: x i N (Uz i, 2 I d d ) PCA finds the U that maximizes the likelihood of the data max U p(x U) Advantages: Handles missing data (important for collaborative filtering) Extension to factor analysis: allow non-isotropic noise (replace 2 I d d with arbitrary diagonal matrix)

46 Limitations of Linearity PCA is e ective PCA is ine ective

47 Limitations of Linearity PCA is e ective PCA is ine ective Problem is that PCA subspace is linear: In this example: S = {x = Uz : z 2 R k } S = {(x 1,x 2 ):x 2 = u 2 u 1 x 1 }

48 Nonlinear PCA Broken solution Desired solution We want desired solution: S = {(x 1,x 2 ):x 2 = u 2 u 1 x 2 1} = { (x) =Uz} (x) =( ) >

49 Nonlinear PCA Broken solution Desired solution We want desired solution: S = {(x 1,x 2 ):x 2 = u 2 u 1 x 2 1} We can get this: S = { (x) =Uz} with (x) =(x 2 1,x 2 ) >

50 Nonlinear PCA Broken solution Desired solution We want desired solution: S = {(x 1,x 2 ):x 2 = u 2 u 1 x 2 1} We can get this: S = { (x) =Uz} with (x) =(x 2 1,x 2 ) > { } > Linear dimensionality reduction in (x) space, Nonlinear dimensionality reduction in x space (x) =( sin( ) ) >

51 Nonlinear PCA Broken solution Desired solution We want desired solution: S = {(x 1,x 2 ):x 2 = u 2 u 1 x 2 1} We can get this: S = { (x) =Uz} with (x) =(x 2 1,x 2 ) > { } > Linear dimensionality reduction in (x) space, Nonlinear dimensionality reduction in x space (x) =( sin( ) ) > Idea: Use kernels

52 Kernel PCA Representer theorem: XX > u = u x X u = X = P n i=1 ix i

53 Kernel PCA Representer theorem: XX > u = x u Kernel function: k(x 1, x 2 ) such that K, thekernelmatrixformedbyk ij = k(x i, x j ), is positive semi-definite X u = X = P n i=1 ix i

54 Kernel PCA P Representer theorem: XX > u = x u Kernel function: k(x 1, x 2 ) such that K, thekernelmatrixformedbyk ij = k(x i, x j ), is positive semi-definite X u = X = P n i=1 ix i max kuk=1 u> XX > u = max > X > X =1 > (X > X)(X > X) = max > K =1 > K 2

55 Kernel PCA Direct method: Kernel PCA objective: max > K =1 > K 2 ) kernel PCA eigenvalue problem: X > X = 0 Modular method (if you don t want to think about kernels): Find vectors x 0 1,...,x 0 n such that x 0> i x 0 j = K ij = (x i ) > (x j ) Key: use any vectors that preserve inner products One possibility is Cholesky decomposition K = X x 0 n > Xx 0 n

56 Kernel PCA

57 Canonical Correlation Analysis (CCA)

58 Motivation for CCA [Hotelling 1936] Often, each data point consists of two views: Image retrieval: for each image, have the following: x: Pixels (or other visual features) y: Text around the image

59 Motivation for CCA [Hotelling 1936] Often, each data point consists of two views: Image retrieval: for each image, have the following: x: Pixels (or other visual features) y: Text around the image Time series: x: Signal at time t y: Signal at time t +1

60 Motivation for CCA [Hotelling 1936] Often, each data point consists of two views: Image retrieval: for each image, have the following: x: Pixels (or other visual features) y: Text around the image Time series: x: Signal at time t y: Signal at time t +1 Two-view learning: dividefeaturesintotwosets x: Features of a word/object, etc. y: Features of the context in which it appears

61 Motivation for CCA [Hotelling 1936] Often, each data point consists of two views: Image retrieval: for each image, have the following: x: Pixels (or other visual features) y: Text around the image Time series: x: Signal at time t y: Signal at time t +1 Two-view learning: dividefeaturesintotwosets x: Features of a word/object, etc. y: Features of the context in which it appears Goal: reduce the dimensionality of the two views jointly

62 CCA Example Setup: Input data: (x 1, y 1 ),...,(x n, y n ) (matrices X, Y) Goal: find pair of projections (u, v)

63 CCA Example Setup: Input data: (x 1, y 1 ),...,(x n, y n ) (matrices X, Y) Goal: find pair of projections (u, v) Dimensionality reduction solutions: Independent Joint x and y are paired by brightness

64 CCA Definition Definitions: Variance: cvar(u > x)=u > XX > u Covariance: ccov(u > x, v > y)=u > XY > v Correlation: ccov(u > x,v > y) p p cvar(u > x) cvar(v > y) Objective: maximize correlation between projected views Properties: max u,v dcorr(u> x, v > y) Focus on how variables are related, not how much they vary Invariant to any rotation and scaling of data

65 From PCA to CCA PCA on views separately: no covariance term max u,v u > XX > u u > u + v> YY > v v > v PCA on concatenation (X >, Y > ) > : includes covariance term max u,v u > XX > u +2u > XY > v + v > YY > v u > u + v > v

66 From PCA to CCA PCA on views separately: no covariance term max u,v u > XX > u u > u + v> YY > v v > v PCA on concatenation (X >, Y > ) > : includes covariance term max u,v u > XX > u +2u > XY > v + v > YY > v u > u + v > v Maximum covariance: drop variance terms max u,v u > XY > v p u> u p v > v

67 From PCA to CCA PCA on views separately: no covariance term max u,v u > XX > u u > u + v> YY > v v > v PCA on concatenation (X >, Y > ) > : includes covariance term max u,v u > XX > u +2u > XY > v + v > YY > v u > u + v > v Maximum covariance: drop variance terms max u,v u > XY > v p u> u p v > v Maximum correlation (CCA): divide out variance terms max u,v u > XY > v p u> XX > u p v > YY > v

68 Importance of Regularization Extreme examples of degeneracy: If x = Ay, thenany(u, v) with u = Av is optimal (correlation 1) If x and y are independent, then any (u, v) is optimal (correlation 0) X Y (u v)

69 Importance of Regularization Extreme examples of degeneracy: If x = Ay, thenany(u, v) with u = Av is optimal (correlation 1) If x and y are independent, then any (u, v) is optimal (correlation 0) Problem: ifx or Y has rank n, thenany(u, v) is optimal > (correlation 1) with u = X > Yv ) CCA is meaningless!

70 Importance of Regularization Extreme examples of degeneracy: If x = Ay, thenany(u, v) with u = Av is optimal (correlation 1) If x and y are independent, then any (u, v) is optimal (correlation 0) Problem: ifx or Y has rank n, thenany(u, v) is optimal (correlation 1) with u = X > ) > > Yv ) CCA is meaningless! Solution: regularization (interpolate between maximum covariance and maximum correlation) max u,v u > XY > v p u> (XX > + I)u p v > (YY > + I)v

Data Mining Techniques

Data Mining Techniques Data Mining Techniques CS 6220 - Section 3 - Fall 2016 Lecture 12 Jan-Willem van de Meent (credit: Yijun Zhao, Percy Liang) DIMENSIONALITY REDUCTION Borrowing from: Percy Liang (Stanford) Linear Dimensionality

More information

Data Mining Techniques

Data Mining Techniques Data Mining Techniques CS 6220 - Section 2 - Spring 2017 Lecture 4 Jan-Willem van de Meent (credit: Yijun Zhao, Arthur Gretton Rasmussen & Williams, Percy Liang) Kernel Regression Basis function regression

More information

Linear Dimensionality Reduction

Linear Dimensionality Reduction Linear Dimensionality Reduction Practical Machine Learning (CS294-34) September 24, 2009 Percy Liang Lots of high-dimensional data... face images Zambian President Levy Mwanawasa has won a second term

More information

Introduction to Machine Learning. PCA and Spectral Clustering. Introduction to Machine Learning, Slides: Eran Halperin

Introduction to Machine Learning. PCA and Spectral Clustering. Introduction to Machine Learning, Slides: Eran Halperin 1 Introduction to Machine Learning PCA and Spectral Clustering Introduction to Machine Learning, 2013-14 Slides: Eran Halperin Singular Value Decomposition (SVD) The singular value decomposition (SVD)

More information

Lecture 8: Principal Component Analysis; Kernel PCA

Lecture 8: Principal Component Analysis; Kernel PCA Lecture 8: Principal Component Analysis; Kernel PCA Lester Mackey April 23, 2014 Stats 306B: Unsupervised Learning Sta306b April 19, 2011 Principal components: 16 PCA example: digit data 130 threes, a

More information

Dimensionality Reduction

Dimensionality Reduction Lecture 5 1 Outline 1. Overview a) What is? b) Why? 2. Principal Component Analysis (PCA) a) Objectives b) Explaining variability c) SVD 3. Related approaches a) ICA b) Autoencoders 2 Example 1: Sportsball

More information

Principal Component Analysis

Principal Component Analysis Principal Component Analysis Yingyu Liang yliang@cs.wisc.edu Computer Sciences Department University of Wisconsin, Madison [based on slides from Nina Balcan] slide 1 Goals for the lecture you should understand

More information

Multivariate Statistical Analysis

Multivariate Statistical Analysis Multivariate Statistical Analysis Fall 2011 C. L. Williams, Ph.D. Lecture 4 for Applied Multivariate Analysis Outline 1 Eigen values and eigen vectors Characteristic equation Some properties of eigendecompositions

More information

CS 340 Lec. 6: Linear Dimensionality Reduction

CS 340 Lec. 6: Linear Dimensionality Reduction CS 340 Lec. 6: Linear Dimensionality Reduction AD January 2011 AD () January 2011 1 / 46 Linear Dimensionality Reduction Introduction & Motivation Brief Review of Linear Algebra Principal Component Analysis

More information

Machine Learning. B. Unsupervised Learning B.2 Dimensionality Reduction. Lars Schmidt-Thieme, Nicolas Schilling

Machine Learning. B. Unsupervised Learning B.2 Dimensionality Reduction. Lars Schmidt-Thieme, Nicolas Schilling Machine Learning B. Unsupervised Learning B.2 Dimensionality Reduction Lars Schmidt-Thieme, Nicolas Schilling Information Systems and Machine Learning Lab (ISMLL) Institute for Computer Science University

More information

Lecture 24: Principal Component Analysis. Aykut Erdem May 2016 Hacettepe University

Lecture 24: Principal Component Analysis. Aykut Erdem May 2016 Hacettepe University Lecture 4: Principal Component Analysis Aykut Erdem May 016 Hacettepe University This week Motivation PCA algorithms Applications PCA shortcomings Autoencoders Kernel PCA PCA Applications Data Visualization

More information

PCA, Kernel PCA, ICA

PCA, Kernel PCA, ICA PCA, Kernel PCA, ICA Learning Representations. Dimensionality Reduction. Maria-Florina Balcan 04/08/2015 Big & High-Dimensional Data High-Dimensions = Lot of Features Document classification Features per

More information

Expectation Maximization

Expectation Maximization Expectation Maximization Machine Learning CSE546 Carlos Guestrin University of Washington November 13, 2014 1 E.M.: The General Case E.M. widely used beyond mixtures of Gaussians The recipe is the same

More information

Introduction PCA classic Generative models Beyond and summary. PCA, ICA and beyond

Introduction PCA classic Generative models Beyond and summary. PCA, ICA and beyond PCA, ICA and beyond Summer School on Manifold Learning in Image and Signal Analysis, August 17-21, 2009, Hven Technical University of Denmark (DTU) & University of Copenhagen (KU) August 18, 2009 Motivation

More information

Lecture Notes 2: Matrices

Lecture Notes 2: Matrices Optimization-based data analysis Fall 2017 Lecture Notes 2: Matrices Matrices are rectangular arrays of numbers, which are extremely useful for data analysis. They can be interpreted as vectors in a vector

More information

PCA & ICA. CE-717: Machine Learning Sharif University of Technology Spring Soleymani

PCA & ICA. CE-717: Machine Learning Sharif University of Technology Spring Soleymani PCA & ICA CE-717: Machine Learning Sharif University of Technology Spring 2015 Soleymani Dimensionality Reduction: Feature Selection vs. Feature Extraction Feature selection Select a subset of a given

More information

COMS 4721: Machine Learning for Data Science Lecture 19, 4/6/2017

COMS 4721: Machine Learning for Data Science Lecture 19, 4/6/2017 COMS 4721: Machine Learning for Data Science Lecture 19, 4/6/2017 Prof. John Paisley Department of Electrical Engineering & Data Science Institute Columbia University PRINCIPAL COMPONENT ANALYSIS DIMENSIONALITY

More information

DATA MINING LECTURE 8. Dimensionality Reduction PCA -- SVD

DATA MINING LECTURE 8. Dimensionality Reduction PCA -- SVD DATA MINING LECTURE 8 Dimensionality Reduction PCA -- SVD The curse of dimensionality Real data usually have thousands, or millions of dimensions E.g., web documents, where the dimensionality is the vocabulary

More information

CS281 Section 4: Factor Analysis and PCA

CS281 Section 4: Factor Analysis and PCA CS81 Section 4: Factor Analysis and PCA Scott Linderman At this point we have seen a variety of machine learning models, with a particular emphasis on models for supervised learning. In particular, we

More information

Introduction to Machine Learning

Introduction to Machine Learning 10-701 Introduction to Machine Learning PCA Slides based on 18-661 Fall 2018 PCA Raw data can be Complex, High-dimensional To understand a phenomenon we measure various related quantities If we knew what

More information

Principal Component Analysis

Principal Component Analysis B: Chapter 1 HTF: Chapter 1.5 Principal Component Analysis Barnabás Póczos University of Alberta Nov, 009 Contents Motivation PCA algorithms Applications Face recognition Facial expression recognition

More information

Lecture 8. Principal Component Analysis. Luigi Freda. ALCOR Lab DIAG University of Rome La Sapienza. December 13, 2016

Lecture 8. Principal Component Analysis. Luigi Freda. ALCOR Lab DIAG University of Rome La Sapienza. December 13, 2016 Lecture 8 Principal Component Analysis Luigi Freda ALCOR Lab DIAG University of Rome La Sapienza December 13, 2016 Luigi Freda ( La Sapienza University) Lecture 8 December 13, 2016 1 / 31 Outline 1 Eigen

More information

PCA and admixture models

PCA and admixture models PCA and admixture models CM226: Machine Learning for Bioinformatics. Fall 2016 Sriram Sankararaman Acknowledgments: Fei Sha, Ameet Talwalkar, Alkes Price PCA and admixture models 1 / 57 Announcements HW1

More information

Face Recognition. Face Recognition. Subspace-Based Face Recognition Algorithms. Application of Face Recognition

Face Recognition. Face Recognition. Subspace-Based Face Recognition Algorithms. Application of Face Recognition ace Recognition Identify person based on the appearance of face CSED441:Introduction to Computer Vision (2017) Lecture10: Subspace Methods and ace Recognition Bohyung Han CSE, POSTECH bhhan@postech.ac.kr

More information

Machine Learning (Spring 2012) Principal Component Analysis

Machine Learning (Spring 2012) Principal Component Analysis 1-71 Machine Learning (Spring 1) Principal Component Analysis Yang Xu This note is partly based on Chapter 1.1 in Chris Bishop s book on PRML and the lecture slides on PCA written by Carlos Guestrin in

More information

Dimensionality reduction

Dimensionality reduction Dimensionality Reduction PCA continued Machine Learning CSE446 Carlos Guestrin University of Washington May 22, 2013 Carlos Guestrin 2005-2013 1 Dimensionality reduction n Input data may have thousands

More information

Tutorial on Principal Component Analysis

Tutorial on Principal Component Analysis Tutorial on Principal Component Analysis Copyright c 1997, 2003 Javier R. Movellan. This is an open source document. Permission is granted to copy, distribute and/or modify this document under the terms

More information

Machine learning for pervasive systems Classification in high-dimensional spaces

Machine learning for pervasive systems Classification in high-dimensional spaces Machine learning for pervasive systems Classification in high-dimensional spaces Department of Communications and Networking Aalto University, School of Electrical Engineering stephan.sigg@aalto.fi Version

More information

Classification. The goal: map from input X to a label Y. Y has a discrete set of possible values. We focused on binary Y (values 0 or 1).

Classification. The goal: map from input X to a label Y. Y has a discrete set of possible values. We focused on binary Y (values 0 or 1). Regression and PCA Classification The goal: map from input X to a label Y. Y has a discrete set of possible values We focused on binary Y (values 0 or 1). But we also discussed larger number of classes

More information

Machine Learning. Principal Components Analysis. Le Song. CSE6740/CS7641/ISYE6740, Fall 2012

Machine Learning. Principal Components Analysis. Le Song. CSE6740/CS7641/ISYE6740, Fall 2012 Machine Learning CSE6740/CS7641/ISYE6740, Fall 2012 Principal Components Analysis Le Song Lecture 22, Nov 13, 2012 Based on slides from Eric Xing, CMU Reading: Chap 12.1, CB book 1 2 Factor or Component

More information

Machine Learning - MT & 14. PCA and MDS

Machine Learning - MT & 14. PCA and MDS Machine Learning - MT 2016 13 & 14. PCA and MDS Varun Kanade University of Oxford November 21 & 23, 2016 Announcements Sheet 4 due this Friday by noon Practical 3 this week (continue next week if necessary)

More information

Advanced Introduction to Machine Learning CMU-10715

Advanced Introduction to Machine Learning CMU-10715 Advanced Introduction to Machine Learning CMU-10715 Principal Component Analysis Barnabás Póczos Contents Motivation PCA algorithms Applications Some of these slides are taken from Karl Booksh Research

More information

1 Principal Components Analysis

1 Principal Components Analysis Lecture 3 and 4 Sept. 18 and Sept.20-2006 Data Visualization STAT 442 / 890, CM 462 Lecture: Ali Ghodsi 1 Principal Components Analysis Principal components analysis (PCA) is a very popular technique for

More information

MACHINE LEARNING. Methods for feature extraction and reduction of dimensionality: Probabilistic PCA and kernel PCA

MACHINE LEARNING. Methods for feature extraction and reduction of dimensionality: Probabilistic PCA and kernel PCA 1 MACHINE LEARNING Methods for feature extraction and reduction of dimensionality: Probabilistic PCA and kernel PCA 2 Practicals Next Week Next Week, Practical Session on Computer Takes Place in Room GR

More information

Exercise Sheet 1. 1 Probability revision 1: Student-t as an infinite mixture of Gaussians

Exercise Sheet 1. 1 Probability revision 1: Student-t as an infinite mixture of Gaussians Exercise Sheet 1 1 Probability revision 1: Student-t as an infinite mixture of Gaussians Show that an infinite mixture of Gaussian distributions, with Gamma distributions as mixing weights in the following

More information

Lecture 7: Con3nuous Latent Variable Models

Lecture 7: Con3nuous Latent Variable Models CSC2515 Fall 2015 Introduc3on to Machine Learning Lecture 7: Con3nuous Latent Variable Models All lecture slides will be available as.pdf on the course website: http://www.cs.toronto.edu/~urtasun/courses/csc2515/

More information

Principal Component Analysis (PCA)

Principal Component Analysis (PCA) Principal Component Analysis (PCA) Salvador Dalí, Galatea of the Spheres CSC411/2515: Machine Learning and Data Mining, Winter 2018 Michael Guerzhoy and Lisa Zhang Some slides from Derek Hoiem and Alysha

More information

Deriving Principal Component Analysis (PCA)

Deriving Principal Component Analysis (PCA) -0 Mathematical Foundations for Machine Learning Machine Learning Department School of Computer Science Carnegie Mellon University Deriving Principal Component Analysis (PCA) Matt Gormley Lecture 11 Oct.

More information

1 Singular Value Decomposition and Principal Component

1 Singular Value Decomposition and Principal Component Singular Value Decomposition and Principal Component Analysis In these lectures we discuss the SVD and the PCA, two of the most widely used tools in machine learning. Principal Component Analysis (PCA)

More information

Mathematical foundations - linear algebra

Mathematical foundations - linear algebra Mathematical foundations - linear algebra Andrea Passerini passerini@disi.unitn.it Machine Learning Vector space Definition (over reals) A set X is called a vector space over IR if addition and scalar

More information

Dimensionality Reduction

Dimensionality Reduction Dimensionality Reduction Le Song Machine Learning I CSE 674, Fall 23 Unsupervised learning Learning from raw (unlabeled, unannotated, etc) data, as opposed to supervised data where a classification of

More information

STA 414/2104: Machine Learning

STA 414/2104: Machine Learning STA 414/2104: Machine Learning Russ Salakhutdinov Department of Computer Science! Department of Statistics! rsalakhu@cs.toronto.edu! http://www.cs.toronto.edu/~rsalakhu/ Lecture 8 Continuous Latent Variable

More information

Descriptive Statistics

Descriptive Statistics Descriptive Statistics DS GA 1002 Probability and Statistics for Data Science http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall17 Carlos Fernandez-Granda Descriptive statistics Techniques to visualize

More information

Principal Component Analysis (PCA)

Principal Component Analysis (PCA) Principal Component Analysis (PCA) Additional reading can be found from non-assessed exercises (week 8) in this course unit teaching page. Textbooks: Sect. 6.3 in [1] and Ch. 12 in [2] Outline Introduction

More information

Principal Component Analysis -- PCA (also called Karhunen-Loeve transformation)

Principal Component Analysis -- PCA (also called Karhunen-Loeve transformation) Principal Component Analysis -- PCA (also called Karhunen-Loeve transformation) PCA transforms the original input space into a lower dimensional space, by constructing dimensions that are linear combinations

More information

Principal components analysis COMS 4771

Principal components analysis COMS 4771 Principal components analysis COMS 4771 1. Representation learning Useful representations of data Representation learning: Given: raw feature vectors x 1, x 2,..., x n R d. Goal: learn a useful feature

More information

What is Principal Component Analysis?

What is Principal Component Analysis? What is Principal Component Analysis? Principal component analysis (PCA) Reduce the dimensionality of a data set by finding a new set of variables, smaller than the original set of variables Retains most

More information

Lecture 5 Supspace Tranformations Eigendecompositions, kernel PCA and CCA

Lecture 5 Supspace Tranformations Eigendecompositions, kernel PCA and CCA Lecture 5 Supspace Tranformations Eigendecompositions, kernel PCA and CCA Pavel Laskov 1 Blaine Nelson 1 1 Cognitive Systems Group Wilhelm Schickard Institute for Computer Science Universität Tübingen,

More information

COMP 551 Applied Machine Learning Lecture 13: Dimension reduction and feature selection

COMP 551 Applied Machine Learning Lecture 13: Dimension reduction and feature selection COMP 551 Applied Machine Learning Lecture 13: Dimension reduction and feature selection Instructor: Herke van Hoof (herke.vanhoof@cs.mcgill.ca) Based on slides by:, Jackie Chi Kit Cheung Class web page:

More information

https://goo.gl/kfxweg KYOTO UNIVERSITY Statistical Machine Learning Theory Sparsity Hisashi Kashima kashima@i.kyoto-u.ac.jp DEPARTMENT OF INTELLIGENCE SCIENCE AND TECHNOLOGY 1 KYOTO UNIVERSITY Topics:

More information

Deep Learning Basics Lecture 7: Factor Analysis. Princeton University COS 495 Instructor: Yingyu Liang

Deep Learning Basics Lecture 7: Factor Analysis. Princeton University COS 495 Instructor: Yingyu Liang Deep Learning Basics Lecture 7: Factor Analysis Princeton University COS 495 Instructor: Yingyu Liang Supervised v.s. Unsupervised Math formulation for supervised learning Given training data x i, y i

More information

Maximum variance formulation

Maximum variance formulation 12.1. Principal Component Analysis 561 Figure 12.2 Principal component analysis seeks a space of lower dimensionality, known as the principal subspace and denoted by the magenta line, such that the orthogonal

More information

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen PCA. Tobias Scheffer

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen PCA. Tobias Scheffer Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen PCA Tobias Scheffer Overview Principal Component Analysis (PCA) Kernel-PCA Fisher Linear Discriminant Analysis t-sne 2 PCA: Motivation

More information

ECE 521. Lecture 11 (not on midterm material) 13 February K-means clustering, Dimensionality reduction

ECE 521. Lecture 11 (not on midterm material) 13 February K-means clustering, Dimensionality reduction ECE 521 Lecture 11 (not on midterm material) 13 February 2017 K-means clustering, Dimensionality reduction With thanks to Ruslan Salakhutdinov for an earlier version of the slides Overview K-means clustering

More information

Unsupervised Learning

Unsupervised Learning 2018 EE448, Big Data Mining, Lecture 7 Unsupervised Learning Weinan Zhang Shanghai Jiao Tong University http://wnzhang.net http://wnzhang.net/teaching/ee448/index.html ML Problem Setting First build and

More information

MATH 829: Introduction to Data Mining and Analysis Principal component analysis

MATH 829: Introduction to Data Mining and Analysis Principal component analysis 1/11 MATH 829: Introduction to Data Mining and Analysis Principal component analysis Dominique Guillot Departments of Mathematical Sciences University of Delaware April 4, 2016 Motivation 2/11 High-dimensional

More information

Notes on Latent Semantic Analysis

Notes on Latent Semantic Analysis Notes on Latent Semantic Analysis Costas Boulis 1 Introduction One of the most fundamental problems of information retrieval (IR) is to find all documents (and nothing but those) that are semantically

More information

STATISTICAL LEARNING SYSTEMS

STATISTICAL LEARNING SYSTEMS STATISTICAL LEARNING SYSTEMS LECTURE 8: UNSUPERVISED LEARNING: FINDING STRUCTURE IN DATA Institute of Computer Science, Polish Academy of Sciences Ph. D. Program 2013/2014 Principal Component Analysis

More information

Principal Component Analysis and Singular Value Decomposition. Volker Tresp, Clemens Otte Summer 2014

Principal Component Analysis and Singular Value Decomposition. Volker Tresp, Clemens Otte Summer 2014 Principal Component Analysis and Singular Value Decomposition Volker Tresp, Clemens Otte Summer 2014 1 Motivation So far we always argued for a high-dimensional feature space Still, in some cases it makes

More information

Focus was on solving matrix inversion problems Now we look at other properties of matrices Useful when A represents a transformations.

Focus was on solving matrix inversion problems Now we look at other properties of matrices Useful when A represents a transformations. Previously Focus was on solving matrix inversion problems Now we look at other properties of matrices Useful when A represents a transformations y = Ax Or A simply represents data Notion of eigenvectors,

More information

Dimensionality Reduction and Principle Components Analysis

Dimensionality Reduction and Principle Components Analysis Dimensionality Reduction and Principle Components Analysis 1 Outline What is dimensionality reduction? Principle Components Analysis (PCA) Example (Bishop, ch 12) PCA vs linear regression PCA as a mixture

More information

Nonlinear Dimensionality Reduction

Nonlinear Dimensionality Reduction Nonlinear Dimensionality Reduction Piyush Rai CS5350/6350: Machine Learning October 25, 2011 Recap: Linear Dimensionality Reduction Linear Dimensionality Reduction: Based on a linear projection of the

More information

Dimensionality Reduction: PCA. Nicholas Ruozzi University of Texas at Dallas

Dimensionality Reduction: PCA. Nicholas Ruozzi University of Texas at Dallas Dimensionality Reduction: PCA Nicholas Ruozzi University of Texas at Dallas Eigenvalues λ is an eigenvalue of a matrix A R n n if the linear system Ax = λx has at least one non-zero solution If Ax = λx

More information

MLCC 2015 Dimensionality Reduction and PCA

MLCC 2015 Dimensionality Reduction and PCA MLCC 2015 Dimensionality Reduction and PCA Lorenzo Rosasco UNIGE-MIT-IIT June 25, 2015 Outline PCA & Reconstruction PCA and Maximum Variance PCA and Associated Eigenproblem Beyond the First Principal Component

More information

Principal Component Analysis (PCA) CSC411/2515 Tutorial

Principal Component Analysis (PCA) CSC411/2515 Tutorial Principal Component Analysis (PCA) CSC411/2515 Tutorial Harris Chan Based on previous tutorial slides by Wenjie Luo, Ladislav Rampasek University of Toronto hchan@cs.toronto.edu October 19th, 2017 (UofT)

More information

Structure in Data. A major objective in data analysis is to identify interesting features or structure in the data.

Structure in Data. A major objective in data analysis is to identify interesting features or structure in the data. Structure in Data A major objective in data analysis is to identify interesting features or structure in the data. The graphical methods are very useful in discovering structure. There are basically two

More information

Lecture: Face Recognition and Feature Reduction

Lecture: Face Recognition and Feature Reduction Lecture: Face Recognition and Feature Reduction Juan Carlos Niebles and Ranjay Krishna Stanford Vision and Learning Lab 1 Recap - Curse of dimensionality Assume 5000 points uniformly distributed in the

More information

Statistical Machine Learning

Statistical Machine Learning Statistical Machine Learning Christoph Lampert Spring Semester 2015/2016 // Lecture 12 1 / 36 Unsupervised Learning Dimensionality Reduction 2 / 36 Dimensionality Reduction Given: data X = {x 1,..., x

More information

Subspace Methods for Visual Learning and Recognition

Subspace Methods for Visual Learning and Recognition This is a shortened version of the tutorial given at the ECCV 2002, Copenhagen, and ICPR 2002, Quebec City. Copyright 2002 by Aleš Leonardis, University of Ljubljana, and Horst Bischof, Graz University

More information

A Least Squares Formulation for Canonical Correlation Analysis

A Least Squares Formulation for Canonical Correlation Analysis A Least Squares Formulation for Canonical Correlation Analysis Liang Sun, Shuiwang Ji, and Jieping Ye Department of Computer Science and Engineering Arizona State University Motivation Canonical Correlation

More information

Cheng Soon Ong & Christian Walder. Canberra February June 2018

Cheng Soon Ong & Christian Walder. Canberra February June 2018 Cheng Soon Ong & Christian Walder Research Group and College of Engineering and Computer Science Canberra February June 2018 Outlines Overview Introduction Linear Algebra Probability Linear Regression

More information

Exercises * on Principal Component Analysis

Exercises * on Principal Component Analysis Exercises * on Principal Component Analysis Laurenz Wiskott Institut für Neuroinformatik Ruhr-Universität Bochum, Germany, EU 4 February 207 Contents Intuition 3. Problem statement..........................................

More information

14 Singular Value Decomposition

14 Singular Value Decomposition 14 Singular Value Decomposition For any high-dimensional data analysis, one s first thought should often be: can I use an SVD? The singular value decomposition is an invaluable analysis tool for dealing

More information

Vector Space Models. wine_spectral.r

Vector Space Models. wine_spectral.r Vector Space Models 137 wine_spectral.r Latent Semantic Analysis Problem with words Even a small vocabulary as in wine example is challenging LSA Reduce number of columns of DTM by principal components

More information

Learning with Singular Vectors

Learning with Singular Vectors Learning with Singular Vectors CIS 520 Lecture 30 October 2015 Barry Slaff Based on: CIS 520 Wiki Materials Slides by Jia Li (PSU) Works cited throughout Overview Linear regression: Given X, Y find w:

More information

Lecture: Face Recognition and Feature Reduction

Lecture: Face Recognition and Feature Reduction Lecture: Face Recognition and Feature Reduction Juan Carlos Niebles and Ranjay Krishna Stanford Vision and Learning Lab Lecture 11-1 Recap - Curse of dimensionality Assume 5000 points uniformly distributed

More information

Computer Vision Group Prof. Daniel Cremers. 2. Regression (cont.)

Computer Vision Group Prof. Daniel Cremers. 2. Regression (cont.) Prof. Daniel Cremers 2. Regression (cont.) Regression with MLE (Rep.) Assume that y is affected by Gaussian noise : t = f(x, w)+ where Thus, we have p(t x, w, )=N (t; f(x, w), 2 ) 2 Maximum A-Posteriori

More information

Data Mining Lecture 4: Covariance, EVD, PCA & SVD

Data Mining Lecture 4: Covariance, EVD, PCA & SVD Data Mining Lecture 4: Covariance, EVD, PCA & SVD Jo Houghton ECS Southampton February 25, 2019 1 / 28 Variance and Covariance - Expectation A random variable takes on different values due to chance The

More information

CSC 411 Lecture 12: Principal Component Analysis

CSC 411 Lecture 12: Principal Component Analysis CSC 411 Lecture 12: Principal Component Analysis Roger Grosse, Amir-massoud Farahmand, and Juan Carrasquilla University of Toronto UofT CSC 411: 12-PCA 1 / 23 Overview Today we ll cover the first unsupervised

More information

Principal Component Analysis

Principal Component Analysis CSci 5525: Machine Learning Dec 3, 2008 The Main Idea Given a dataset X = {x 1,..., x N } The Main Idea Given a dataset X = {x 1,..., x N } Find a low-dimensional linear projection The Main Idea Given

More information

APPENDIX A. Background Mathematics. A.1 Linear Algebra. Vector algebra. Let x denote the n-dimensional column vector with components x 1 x 2.

APPENDIX A. Background Mathematics. A.1 Linear Algebra. Vector algebra. Let x denote the n-dimensional column vector with components x 1 x 2. APPENDIX A Background Mathematics A. Linear Algebra A.. Vector algebra Let x denote the n-dimensional column vector with components 0 x x 2 B C @. A x n Definition 6 (scalar product). The scalar product

More information

Manifold Learning for Signal and Visual Processing Lecture 9: Probabilistic PCA (PPCA), Factor Analysis, Mixtures of PPCA

Manifold Learning for Signal and Visual Processing Lecture 9: Probabilistic PCA (PPCA), Factor Analysis, Mixtures of PPCA Manifold Learning for Signal and Visual Processing Lecture 9: Probabilistic PCA (PPCA), Factor Analysis, Mixtures of PPCA Radu Horaud INRIA Grenoble Rhone-Alpes, France Radu.Horaud@inria.fr http://perception.inrialpes.fr/

More information

CS168: The Modern Algorithmic Toolbox Lecture #7: Understanding Principal Component Analysis (PCA)

CS168: The Modern Algorithmic Toolbox Lecture #7: Understanding Principal Component Analysis (PCA) CS68: The Modern Algorithmic Toolbox Lecture #7: Understanding Principal Component Analysis (PCA) Tim Roughgarden & Gregory Valiant April 0, 05 Introduction. Lecture Goal Principal components analysis

More information

CPSC 340: Machine Learning and Data Mining. More PCA Fall 2017

CPSC 340: Machine Learning and Data Mining. More PCA Fall 2017 CPSC 340: Machine Learning and Data Mining More PCA Fall 2017 Admin Assignment 4: Due Friday of next week. No class Monday due to holiday. There will be tutorials next week on MAP/PCA (except Monday).

More information

Dimension Reduction Techniques. Presented by Jie (Jerry) Yu

Dimension Reduction Techniques. Presented by Jie (Jerry) Yu Dimension Reduction Techniques Presented by Jie (Jerry) Yu Outline Problem Modeling Review of PCA and MDS Isomap Local Linear Embedding (LLE) Charting Background Advances in data collection and storage

More information

Manning & Schuetze, FSNLP, (c)

Manning & Schuetze, FSNLP, (c) page 554 554 15 Topics in Information Retrieval co-occurrence Latent Semantic Indexing Term 1 Term 2 Term 3 Term 4 Query user interface Document 1 user interface HCI interaction Document 2 HCI interaction

More information

Data Analysis and Manifold Learning Lecture 6: Probabilistic PCA and Factor Analysis

Data Analysis and Manifold Learning Lecture 6: Probabilistic PCA and Factor Analysis Data Analysis and Manifold Learning Lecture 6: Probabilistic PCA and Factor Analysis Radu Horaud INRIA Grenoble Rhone-Alpes, France Radu.Horaud@inrialpes.fr http://perception.inrialpes.fr/ Outline of Lecture

More information

Singular Value Decomposition. 1 Singular Value Decomposition and the Four Fundamental Subspaces

Singular Value Decomposition. 1 Singular Value Decomposition and the Four Fundamental Subspaces Singular Value Decomposition This handout is a review of some basic concepts in linear algebra For a detailed introduction, consult a linear algebra text Linear lgebra and its pplications by Gilbert Strang

More information

Numerical Methods I Singular Value Decomposition

Numerical Methods I Singular Value Decomposition Numerical Methods I Singular Value Decomposition Aleksandar Donev Courant Institute, NYU 1 donev@courant.nyu.edu 1 MATH-GA 2011.003 / CSCI-GA 2945.003, Fall 2014 October 9th, 2014 A. Donev (Courant Institute)

More information

Lecture 2: Linear Algebra Review

Lecture 2: Linear Algebra Review EE 227A: Convex Optimization and Applications January 19 Lecture 2: Linear Algebra Review Lecturer: Mert Pilanci Reading assignment: Appendix C of BV. Sections 2-6 of the web textbook 1 2.1 Vectors 2.1.1

More information

Linear Algebra and Eigenproblems

Linear Algebra and Eigenproblems Appendix A A Linear Algebra and Eigenproblems A working knowledge of linear algebra is key to understanding many of the issues raised in this work. In particular, many of the discussions of the details

More information

Kernel methods for comparing distributions, measuring dependence

Kernel methods for comparing distributions, measuring dependence Kernel methods for comparing distributions, measuring dependence Le Song Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012 Principal component analysis Given a set of M centered observations

More information

STATS 306B: Unsupervised Learning Spring Lecture 13 May 12

STATS 306B: Unsupervised Learning Spring Lecture 13 May 12 STATS 306B: Unsupervised Learning Spring 2014 Lecture 13 May 12 Lecturer: Lester Mackey Scribe: Jessy Hwang, Minzhe Wang 13.1 Canonical correlation analysis 13.1.1 Recap CCA is a linear dimensionality

More information

Lecture 13. Principal Component Analysis. Brett Bernstein. April 25, CDS at NYU. Brett Bernstein (CDS at NYU) Lecture 13 April 25, / 26

Lecture 13. Principal Component Analysis. Brett Bernstein. April 25, CDS at NYU. Brett Bernstein (CDS at NYU) Lecture 13 April 25, / 26 Principal Component Analysis Brett Bernstein CDS at NYU April 25, 2017 Brett Bernstein (CDS at NYU) Lecture 13 April 25, 2017 1 / 26 Initial Question Intro Question Question Let S R n n be symmetric. 1

More information

Data Mining Techniques

Data Mining Techniques Data Mining Techniques CS 6220 - Section 3 - Fall 2016 Lecture 21: Review Jan-Willem van de Meent Schedule Topics for Exam Pre-Midterm Probability Information Theory Linear Regression Classification Clustering

More information

Clustering VS Classification

Clustering VS Classification MCQ Clustering VS Classification 1. What is the relation between the distance between clusters and the corresponding class discriminability? a. proportional b. inversely-proportional c. no-relation Ans:

More information

Chapter XII: Data Pre and Post Processing

Chapter XII: Data Pre and Post Processing Chapter XII: Data Pre and Post Processing Information Retrieval & Data Mining Universität des Saarlandes, Saarbrücken Winter Semester 2013/14 XII.1 4-1 Chapter XII: Data Pre and Post Processing 1. Data

More information

Probabilistic Latent Semantic Analysis

Probabilistic Latent Semantic Analysis Probabilistic Latent Semantic Analysis Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea seungjin@postech.ac.kr

More information

CS181 Midterm 2 Practice Solutions

CS181 Midterm 2 Practice Solutions CS181 Midterm 2 Practice Solutions 1. Convergence of -Means Consider Lloyd s algorithm for finding a -Means clustering of N data, i.e., minimizing the distortion measure objective function J({r n } N n=1,

More information

Linear Algebra & Geometry why is linear algebra useful in computer vision?

Linear Algebra & Geometry why is linear algebra useful in computer vision? Linear Algebra & Geometry why is linear algebra useful in computer vision? References: -Any book on linear algebra! -[HZ] chapters 2, 4 Some of the slides in this lecture are courtesy to Prof. Octavia

More information