Manifold Learning for Signal and Visual Processing Lecture 9: Probabilistic PCA (PPCA), Factor Analysis, Mixtures of PPCA

Size: px
Start display at page:

Download "Manifold Learning for Signal and Visual Processing Lecture 9: Probabilistic PCA (PPCA), Factor Analysis, Mixtures of PPCA"

Transcription

1 Manifold Learning for Signal and Visual Processing Lecture 9: Probabilistic PCA (PPCA), Factor Analysis, Mixtures of PPCA Radu Horaud INRIA Grenoble Rhone-Alpes, France

2 Outline of This Lecture A short reminder from Lecture 1 Probabilistic formulation of PCA (PPCA) Maximum-likelihood PPCA EM for PPCA Mixture of PPCA What is Bayesian PCA? Factor Analysis

3 Material for This Lecture C. M. Bishop. Pattern Recognition and Machine Learning (Chapter 12) More involved readings: S. Roweis. EM algorithms of PCA and SPCA. NIPS M. E. Tipping and C. M. Bishop. Pobabilistic Principal Component Analysis. J. R. Stat. Soc. B M. E. Tipping and C. M. Bishop. Mixtures of Probabilistic Principal Component Analysers. Neural Computation

4 PCA at a Glance The input (observation) space (the data are centered): X = [x 1... x n... x N ], x n R D The output (latent) space: Y = [y 1... y n... y N ], y j R d Projection: Y = W X with W a d D matrix. Reconstruction: X = WY with W a D d matrix. W W = I d, i.e., W is a row-orthonormal matrix when both data sets X and Y are represented in orthonormal bases: y j = Ũ (x j x). In this case W = Ũ. W W = Λ 1, i.e., this corresponds to the case of whitening: y j = Λ 1/2 d d Ũ (x j x), with W = Λ 1 2 d Ũ. Remember that W was estimated from the d largest eigenvalue-eigenvector pairs of the data covariance matrix.

5 From Lecture #1: Data Projection on a Linear Subspace From Y = W X we have YY = W XX W = W ŨΛ d Ũ W 1 The projected data has a diagonal covariance matrix: YY = Λ d, by identification we obtain W = Ũ 2 The projected data has an identity covariance matrix, this is called whitening the data: YY = I d W = Λ 1 2 d Ũ In what follow, we will consider W (reconstruction) istead of W (projection).

6 The Probabilistic Framework (I) Consider again the reconstruction of the observed variables from the latent variables. A point x is reconstructed from y with: x µ = Wy + ε ε R D is the reconstruction error and let s suppose that it has a Gaussian distribution with zero mean and spherical covariance: p(ε) = N (ε 0, σ 2 I)

7 The Probabilistic Framework (II) We can now define the conditional distribution of the observed variable x, conditioned on the value of the latent variable y: p(x y) = N (x Wy + µ, σ 2 I) The prior distribution of the latent variable is a Gaussian with zero-mean and unit-covariance: p(y) = N (y 0, I) The marginal (or predictive) distribution p(x) can be obtained from the sum and product rules, supposing continuous latent variables: p(x) = p(x, y)dy = p(x y)p(y)dy y y

8 The Probabilistic Framework (III) This is an instance of the linear-gaussian model, hence it is Gaussian as well: ( p(x) = N (x µ, C) exp 1 ) 2 (x µ) C 1 (x µ) The posterior distribution can be obtained using the Bayes theorem for Gaussian variables (see Bishop 06, chapter 2): p(y x) = N (y M 1 W (x µ), σ 2 M) This is the main difference with standard PCA: the latent variable is in this case a random variable with a Gaussian distribution.

9 The Probabilistic Framework (IV) The mean and covariance of this predictive distribution can be formally derived from the expression of x and from the Gaussian distributions just defined (using the fact that y and ε are independent random variables): E[x] = E[Wy + µ + ε] = WE[y] + E[µ] + E[ε] = µ C = E[(x µ)(x µ) ] = E[(Wy + ε)(wy + ε)] = WE[yy ]W + E[εε ] = WW + σ 2 I Gaussian distributions require the inverse of the covariance matrix; Using the Woodbury indentity (see equation (C.7) in Bishop 06) we have: C 1 = σ 2 I σ 2 WM 1 W M = W W + σ 2 I where M is a d d matrix. Useful when d D.

10 Maximum-likelihood PCA (I) The observed-data log-likelihood writes: ln p(x 1,..., x N µ, W, σ 2 ) = N ln p(x j µ, W, σ 2 ) j=1 This expression can be developed using the previous equations, to obtain: ln P (X µ, C) = N 2 ((D ln(2π) + ln C ) 1 2 N (x j µ) C 1 (x j µ) j=1

11 Maximum-likelihood PCA (II) The log-likelihood is quadratic in µ, by setting the derivative with respect to µ equal to zero, we obtain the expected result: µ ML = N x j = x j=1 Maximization with respect to W and σ 2, while is more complex, still has a closed-form solution: W ML = Ũ(Λ d σ 2 I d ) 1/2 R σml 2 1 D = λ i D d i=d+1 With Σ X = UΛU ŨΛ dũ, d < D, and RR = I (a d d matrix).

12 Maximum-likelihood PCA (Discussion) The covariance of the predictive density, C = WW + σ 2 I, is not affected by the arbitrary orthogonal transformation R of the latent space: C = ŨD[λ i σ 2 ]Ũ + σ 2 I The covariance projected onto a unit vector v is v Cv. We obtain the following cases: v is orthogonal to Ũ, then v Cv = σ 2 (noise variance) or the average variance associated with the discarded dimensions. v = u i is one of the column vectors of Ũ, then v Cv = λ i σ 2 + σ 2 = λ i : the model correctly captures the variance along the principal directions and approximates the variance in the remaining directions with σ 2. Matrix R introduces an arbitrary orthogonal transformation of the latent space.

13 Projecting the Data onto the Latent Space Any data point x can be be summarized by its posterior mean and posterior covariance in latent space. These are provided by the posterior distribution p(y x): E[y x] = M 1 W (x µ) C(y x) = σ 2 M M = W W + σ 2 I

14 From Probabilistic to Standard PCA The maximum-likelihood solution allows to estimate the reconstruction matrix W and the variance σ. The projection of the data onto the latent space can be estimated from the posterior mean. We obtain the following projection matrix: (W W + σ 2 I) 1 W When σ 2 = 0 this corresponds to the standard PCA solution rotating, projecting and whitening the data: (W W) 1 W = Λ 1/2 Ũ

15 EM for PCA We can derive an EM algorithm for PCA, by following the EM framework: derive the complete-data log-likelihood conditioned by the observed data, and take its expectation. Complete-data log-likelihood for observed-latent pairs x j, y j : ln P (X, Y µ, W, σ 2 ) = n (ln P (x j y j ) + ln P (y j )) j=1 Then we take the expectation with respect to the posterior distribution over the latent variables, E[ln P (X, Y µ, W, σ 2 )], which depends on the current model parameters µ = x, W, and σ 2, as well as on (these are the posterior statistics): E[y j ] = M 1 W (x j x) E[y j y j ] = σ 2 M 1 + E[y j ]E[y j ]

16 The EM Algorithm (I) Initialize the parameter values W and σ 2. E-step: Estimate the posterior statistics E[y j ] and E[y j y j ] using the current parameter values. M-step: Maximize with respect to W and σ 2 while keeping the posterior statistics fixed. The equations are: W new = N N (x j x)e[y j ] E[y j y j ] j=1 j=1 1 σ 2 new = 1 ND N j=1 ( x j x 2 2E[y j ] W new(x j x) ) +tr(e[y j y j ]WnewW new )

17 The EM Algorithm (II) By substitution of E[y j ] and E[y j y j ] (the E-step) into the expressions of W new and σnew 2 (the M-step), we get: W new = Σ X W old (σ 2 old I + M 1 old W old Σ XW old ) 1 σ 2 new = 1 D tr(σ X Σ X W old M 1 old W new)

18 EM for PCA (Discussion) Computational efficiency for high-dimensional spaces. EM is iterative, but each iteration can be quite efficient. The covariance matrix is never estimated explicitly. The case of σ 2 = 0 corresponds to a valid EM algorithm: S. Roweis. EM algorithms of PCA and SPCA. NIPS More details can be found in M. E. Tipping and C. M. Bishop. Pobabilistic Principal Component Analysis. J. R. Stat. Soc. B. 1999

19 Mixture of PPCA The log-likelihood of a mixture of PPCA: N N M ln(p(x i )) = ln π j p(x i j) i=1 i=1 j=1 We seek µ j, W j, and σj 2 for each mixture component j. For a given data point x there is a posterior distribution associated with each latent space j, the mean of which is Wj (x µ j). M 1 j It is also possible to define the posterior, or responsibility, of mixture component j for generating a data point: r ij = p(x i j)π j p(x i )

20 EM for Mixtures of PPCA Initialization of the model parameters E-step: estimate the posteriors r ij M-step: Use the maximum-likelihood formulation of PPCA to estimate W j, and σj 2 from the local responsibility-weighted covariance matrix: Σ j = 1 π j N N r ij (x i µ j )(x i µ j ) i=1 with π j = 1/N N i=1 r N i=1 ij and µ j = r ijx i N i=1 r ij

21 Bayesian PCA (I) Select the dimension d of the latent space. The generative model just introduced (well defined likelihood function) allows to address the problem in a principled way. The idea is to consider each column in W as having an independent Gaussian prior: P (W α) = d i=1 ( αi ) ( D/2 exp 1 ) 2π 2 α iw i w where α i = 1/σ 2 i is called the precision parameter. The objective is to estimate these parameters, one for each principal direction, and select only a subset of these directions. We need to select directions of maximum variance, hence directions with infinite precision will be disregarded.

22 Bayesian PCA (II) The approach is based on evidence approximation or empirical Bayes. The marginal likelihood function (the latent space W is integrated out): P (X α, µ, σ 2 ) = P (X µ, W, σ 2 ) P (W α)dw }{{} ML PCA The formal derivation is quite involved. The maximization with respect to the precision parameters yields a simple form: α new i = D w i w This estimation is interleaved with the EM updates for estimating W and σ 2.

23 Factor Analysis Probabilistic PCA so far (the predictive covariance is isotropic): P (x y) = N (x Wy + µ, σ 2 I) In factor analysis, the covariance is diagonal rather than isotropic: P (x y) = N (x Wy + µ, Ψ) the columns of W are called factor loadings and the diagonal entries of Ψ are called uniquenesses. The factor analysis point of view: one form of latent-variable density model, the form of the latent space is of interest but not the particular choice of coordinates (up to an orthogonal transformation). The factor analysis parameters, W, and Ψ are estimated via the maximum likelihood and EM frameworks.

Data Analysis and Manifold Learning Lecture 6: Probabilistic PCA and Factor Analysis

Data Analysis and Manifold Learning Lecture 6: Probabilistic PCA and Factor Analysis Data Analysis and Manifold Learning Lecture 6: Probabilistic PCA and Factor Analysis Radu Horaud INRIA Grenoble Rhone-Alpes, France Radu.Horaud@inrialpes.fr http://perception.inrialpes.fr/ Outline of Lecture

More information

Course 495: Advanced Statistical Machine Learning/Pattern Recognition

Course 495: Advanced Statistical Machine Learning/Pattern Recognition Course 495: Advanced Statistical Machine Learning/Pattern Recognition Goal (Lecture): To present Probabilistic Principal Component Analysis (PPCA) using both Maximum Likelihood (ML) and Expectation Maximization

More information

COMS 4721: Machine Learning for Data Science Lecture 19, 4/6/2017

COMS 4721: Machine Learning for Data Science Lecture 19, 4/6/2017 COMS 4721: Machine Learning for Data Science Lecture 19, 4/6/2017 Prof. John Paisley Department of Electrical Engineering & Data Science Institute Columbia University PRINCIPAL COMPONENT ANALYSIS DIMENSIONALITY

More information

STA 414/2104: Machine Learning

STA 414/2104: Machine Learning STA 414/2104: Machine Learning Russ Salakhutdinov Department of Computer Science! Department of Statistics! rsalakhu@cs.toronto.edu! http://www.cs.toronto.edu/~rsalakhu/ Lecture 8 Continuous Latent Variable

More information

Lecture 7: Con3nuous Latent Variable Models

Lecture 7: Con3nuous Latent Variable Models CSC2515 Fall 2015 Introduc3on to Machine Learning Lecture 7: Con3nuous Latent Variable Models All lecture slides will be available as.pdf on the course website: http://www.cs.toronto.edu/~urtasun/courses/csc2515/

More information

Probabilistic & Unsupervised Learning

Probabilistic & Unsupervised Learning Probabilistic & Unsupervised Learning Week 2: Latent Variable Models Maneesh Sahani maneesh@gatsby.ucl.ac.uk Gatsby Computational Neuroscience Unit, and MSc ML/CSML, Dept Computer Science University College

More information

MACHINE LEARNING. Methods for feature extraction and reduction of dimensionality: Probabilistic PCA and kernel PCA

MACHINE LEARNING. Methods for feature extraction and reduction of dimensionality: Probabilistic PCA and kernel PCA 1 MACHINE LEARNING Methods for feature extraction and reduction of dimensionality: Probabilistic PCA and kernel PCA 2 Practicals Next Week Next Week, Practical Session on Computer Takes Place in Room GR

More information

Learning with Noisy Labels. Kate Niehaus Reading group 11-Feb-2014

Learning with Noisy Labels. Kate Niehaus Reading group 11-Feb-2014 Learning with Noisy Labels Kate Niehaus Reading group 11-Feb-2014 Outline Motivations Generative model approach: Lawrence, N. & Scho lkopf, B. Estimating a Kernel Fisher Discriminant in the Presence of

More information

Variational Principal Components

Variational Principal Components Variational Principal Components Christopher M. Bishop Microsoft Research 7 J. J. Thomson Avenue, Cambridge, CB3 0FB, U.K. cmbishop@microsoft.com http://research.microsoft.com/ cmbishop In Proceedings

More information

Machine Learning Techniques for Computer Vision

Machine Learning Techniques for Computer Vision Machine Learning Techniques for Computer Vision Part 2: Unsupervised Learning Microsoft Research Cambridge x 3 1 0.5 0.2 0 0.5 0.3 0 0.5 1 ECCV 2004, Prague x 2 x 1 Overview of Part 2 Mixture models EM

More information

CS281 Section 4: Factor Analysis and PCA

CS281 Section 4: Factor Analysis and PCA CS81 Section 4: Factor Analysis and PCA Scott Linderman At this point we have seen a variety of machine learning models, with a particular emphasis on models for supervised learning. In particular, we

More information

PCA and admixture models

PCA and admixture models PCA and admixture models CM226: Machine Learning for Bioinformatics. Fall 2016 Sriram Sankararaman Acknowledgments: Fei Sha, Ameet Talwalkar, Alkes Price PCA and admixture models 1 / 57 Announcements HW1

More information

Mixtures of Robust Probabilistic Principal Component Analyzers

Mixtures of Robust Probabilistic Principal Component Analyzers Mixtures of Robust Probabilistic Principal Component Analyzers Cédric Archambeau, Nicolas Delannay 2 and Michel Verleysen 2 - University College London, Dept. of Computer Science Gower Street, London WCE

More information

Factor Analysis (10/2/13)

Factor Analysis (10/2/13) STA561: Probabilistic machine learning Factor Analysis (10/2/13) Lecturer: Barbara Engelhardt Scribes: Li Zhu, Fan Li, Ni Guan Factor Analysis Factor analysis is related to the mixture models we have studied.

More information

STA 4273H: Sta-s-cal Machine Learning

STA 4273H: Sta-s-cal Machine Learning STA 4273H: Sta-s-cal Machine Learning Russ Salakhutdinov Department of Computer Science! Department of Statistical Sciences! rsalakhu@cs.toronto.edu! h0p://www.cs.utoronto.ca/~rsalakhu/ Lecture 2 In our

More information

Dimension Reduction. David M. Blei. April 23, 2012

Dimension Reduction. David M. Blei. April 23, 2012 Dimension Reduction David M. Blei April 23, 2012 1 Basic idea Goal: Compute a reduced representation of data from p -dimensional to q-dimensional, where q < p. x 1,...,x p z 1,...,z q (1) We want to do

More information

PCA, Kernel PCA, ICA

PCA, Kernel PCA, ICA PCA, Kernel PCA, ICA Learning Representations. Dimensionality Reduction. Maria-Florina Balcan 04/08/2015 Big & High-Dimensional Data High-Dimensions = Lot of Features Document classification Features per

More information

Introduction to Machine Learning

Introduction to Machine Learning 10-701 Introduction to Machine Learning PCA Slides based on 18-661 Fall 2018 PCA Raw data can be Complex, High-dimensional To understand a phenomenon we measure various related quantities If we knew what

More information

CS181 Midterm 2 Practice Solutions

CS181 Midterm 2 Practice Solutions CS181 Midterm 2 Practice Solutions 1. Convergence of -Means Consider Lloyd s algorithm for finding a -Means clustering of N data, i.e., minimizing the distortion measure objective function J({r n } N n=1,

More information

Data Analysis and Manifold Learning Lecture 2: Properties of Symmetric Matrices and Examples

Data Analysis and Manifold Learning Lecture 2: Properties of Symmetric Matrices and Examples Data Analysis and Manifold Learning Lecture 2: Properties of Symmetric Matrices and Examples Radu Horaud INRIA Grenoble Rhone-Alpes, France Radu.Horaud@inrialpes.fr http://perception.inrialpes.fr/ Outline

More information

Smart PCA. Yi Zhang Machine Learning Department Carnegie Mellon University

Smart PCA. Yi Zhang Machine Learning Department Carnegie Mellon University Smart PCA Yi Zhang Machine Learning Department Carnegie Mellon University yizhang1@cs.cmu.edu Abstract PCA can be smarter and makes more sensible projections. In this paper, we propose smart PCA, an extension

More information

ECE 521. Lecture 11 (not on midterm material) 13 February K-means clustering, Dimensionality reduction

ECE 521. Lecture 11 (not on midterm material) 13 February K-means clustering, Dimensionality reduction ECE 521 Lecture 11 (not on midterm material) 13 February 2017 K-means clustering, Dimensionality reduction With thanks to Ruslan Salakhutdinov for an earlier version of the slides Overview K-means clustering

More information

Factor Analysis and Kalman Filtering (11/2/04)

Factor Analysis and Kalman Filtering (11/2/04) CS281A/Stat241A: Statistical Learning Theory Factor Analysis and Kalman Filtering (11/2/04) Lecturer: Michael I. Jordan Scribes: Byung-Gon Chun and Sunghoon Kim 1 Factor Analysis Factor analysis is used

More information

Latent Variable Models and EM Algorithm

Latent Variable Models and EM Algorithm SC4/SM8 Advanced Topics in Statistical Machine Learning Latent Variable Models and EM Algorithm Dino Sejdinovic Department of Statistics Oxford Slides and other materials available at: http://www.stats.ox.ac.uk/~sejdinov/atsml/

More information

CSC411 Fall 2018 Homework 5

CSC411 Fall 2018 Homework 5 Homework 5 Deadline: Wednesday, Nov. 4, at :59pm. Submission: You need to submit two files:. Your solutions to Questions and 2 as a PDF file, hw5_writeup.pdf, through MarkUs. (If you submit answers to

More information

Variational Autoencoders

Variational Autoencoders Variational Autoencoders Recap: Story so far A classification MLP actually comprises two components A feature extraction network that converts the inputs into linearly separable features Or nearly linearly

More information

Data Analysis and Manifold Learning Lecture 7: Spectral Clustering

Data Analysis and Manifold Learning Lecture 7: Spectral Clustering Data Analysis and Manifold Learning Lecture 7: Spectral Clustering Radu Horaud INRIA Grenoble Rhone-Alpes, France Radu.Horaud@inrialpes.fr http://perception.inrialpes.fr/ Outline of Lecture 7 What is spectral

More information

Maximum variance formulation

Maximum variance formulation 12.1. Principal Component Analysis 561 Figure 12.2 Principal component analysis seeks a space of lower dimensionality, known as the principal subspace and denoted by the magenta line, such that the orthogonal

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning Brown University CSCI 1950-F, Spring 2012 Prof. Erik Sudderth Lecture 25: Markov Chain Monte Carlo (MCMC) Course Review and Advanced Topics Many figures courtesy Kevin

More information

IEOR E4570: Machine Learning for OR&FE Spring 2015 c 2015 by Martin Haugh. The EM Algorithm

IEOR E4570: Machine Learning for OR&FE Spring 2015 c 2015 by Martin Haugh. The EM Algorithm IEOR E4570: Machine Learning for OR&FE Spring 205 c 205 by Martin Haugh The EM Algorithm The EM algorithm is used for obtaining maximum likelihood estimates of parameters when some of the data is missing.

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Probabilistic Graphical Models Brown University CSCI 2950-P, Spring 2013 Prof. Erik Sudderth Lecture 13: Learning in Gaussian Graphical Models, Non-Gaussian Inference, Monte Carlo Methods Some figures

More information

Lecture 3: Latent Variables Models and Learning with the EM Algorithm. Sam Roweis. Tuesday July25, 2006 Machine Learning Summer School, Taiwan

Lecture 3: Latent Variables Models and Learning with the EM Algorithm. Sam Roweis. Tuesday July25, 2006 Machine Learning Summer School, Taiwan Lecture 3: Latent Variables Models and Learning with the EM Algorithm Sam Roweis Tuesday July25, 2006 Machine Learning Summer School, Taiwan Latent Variable Models What to do when a variable z is always

More information

Parametric Unsupervised Learning Expectation Maximization (EM) Lecture 20.a

Parametric Unsupervised Learning Expectation Maximization (EM) Lecture 20.a Parametric Unsupervised Learning Expectation Maximization (EM) Lecture 20.a Some slides are due to Christopher Bishop Limitations of K-means Hard assignments of data points to clusters small shift of a

More information

EECS 275 Matrix Computation

EECS 275 Matrix Computation EECS 275 Matrix Computation Ming-Hsuan Yang Electrical Engineering and Computer Science University of California at Merced Merced, CA 95344 http://faculty.ucmerced.edu/mhyang Lecture 6 1 / 22 Overview

More information

Linear Dimensionality Reduction

Linear Dimensionality Reduction Outline Hong Chang Institute of Computing Technology, Chinese Academy of Sciences Machine Learning Methods (Fall 2012) Outline Outline I 1 Introduction 2 Principal Component Analysis 3 Factor Analysis

More information

Data Analysis and Manifold Learning Lecture 3: Graphs, Graph Matrices, and Graph Embeddings

Data Analysis and Manifold Learning Lecture 3: Graphs, Graph Matrices, and Graph Embeddings Data Analysis and Manifold Learning Lecture 3: Graphs, Graph Matrices, and Graph Embeddings Radu Horaud INRIA Grenoble Rhone-Alpes, France Radu.Horaud@inrialpes.fr http://perception.inrialpes.fr/ Outline

More information

Least Squares Regression

Least Squares Regression CIS 50: Machine Learning Spring 08: Lecture 4 Least Squares Regression Lecturer: Shivani Agarwal Disclaimer: These notes are designed to be a supplement to the lecture. They may or may not cover all the

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Probabilistic Graphical Models Brown University CSCI 295-P, Spring 213 Prof. Erik Sudderth Lecture 11: Inference & Learning Overview, Gaussian Graphical Models Some figures courtesy Michael Jordan s draft

More information

1 Principal Components Analysis

1 Principal Components Analysis Lecture 3 and 4 Sept. 18 and Sept.20-2006 Data Visualization STAT 442 / 890, CM 462 Lecture: Ali Ghodsi 1 Principal Components Analysis Principal components analysis (PCA) is a very popular technique for

More information

Expectation Maximization

Expectation Maximization Expectation Maximization Machine Learning CSE546 Carlos Guestrin University of Washington November 13, 2014 1 E.M.: The General Case E.M. widely used beyond mixtures of Gaussians The recipe is the same

More information

Robust Probabilistic Projections

Robust Probabilistic Projections Cédric Archambeau cedric.archambeau@uclouvain.be Nicolas Delannay nicolas.delannay@uclouvain.be Michel Verleysen verleysen@dice.ucl.ac.be Université catholique de Louvain, Machine Learning Group, 3 Pl.

More information

L11: Pattern recognition principles

L11: Pattern recognition principles L11: Pattern recognition principles Bayesian decision theory Statistical classifiers Dimensionality reduction Clustering This lecture is partly based on [Huang, Acero and Hon, 2001, ch. 4] Introduction

More information

ABSTRACT INTRODUCTION

ABSTRACT INTRODUCTION ABSTRACT Presented in this paper is an approach to fault diagnosis based on a unifying review of linear Gaussian models. The unifying review draws together different algorithms such as PCA, factor analysis,

More information

Machine Learning. B. Unsupervised Learning B.2 Dimensionality Reduction. Lars Schmidt-Thieme, Nicolas Schilling

Machine Learning. B. Unsupervised Learning B.2 Dimensionality Reduction. Lars Schmidt-Thieme, Nicolas Schilling Machine Learning B. Unsupervised Learning B.2 Dimensionality Reduction Lars Schmidt-Thieme, Nicolas Schilling Information Systems and Machine Learning Lab (ISMLL) Institute for Computer Science University

More information

Unsupervised Machine Learning and Data Mining. DS 5230 / DS Fall Lecture 7. Jan-Willem van de Meent

Unsupervised Machine Learning and Data Mining. DS 5230 / DS Fall Lecture 7. Jan-Willem van de Meent Unsupervised Machine Learning and Data Mining DS 5230 / DS 4420 - Fall 2018 Lecture 7 Jan-Willem van de Meent DIMENSIONALITY REDUCTION Borrowing from: Percy Liang (Stanford) Dimensionality Reduction Goal:

More information

Dimension Reduction (PCA, ICA, CCA, FLD,

Dimension Reduction (PCA, ICA, CCA, FLD, Dimension Reduction (PCA, ICA, CCA, FLD, Topic Models) Yi Zhang 10-701, Machine Learning, Spring 2011 April 6 th, 2011 Parts of the PCA slides are from previous 10-701 lectures 1 Outline Dimension reduction

More information

Gaussian Processes. Le Song. Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012

Gaussian Processes. Le Song. Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012 Gaussian Processes Le Song Machine Learning II: Advanced Topics CSE 8803ML, Spring 01 Pictorial view of embedding distribution Transform the entire distribution to expected features Feature space Feature

More information

Probabilistic Latent Semantic Analysis

Probabilistic Latent Semantic Analysis Probabilistic Latent Semantic Analysis Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea seungjin@postech.ac.kr

More information

Advanced Introduction to Machine Learning

Advanced Introduction to Machine Learning 10-715 Advanced Introduction to Machine Learning Homework 3 Due Nov 12, 10.30 am Rules 1. Homework is due on the due date at 10.30 am. Please hand over your homework at the beginning of class. Please see

More information

Lecture 4: Probabilistic Learning. Estimation Theory. Classification with Probability Distributions

Lecture 4: Probabilistic Learning. Estimation Theory. Classification with Probability Distributions DD2431 Autumn, 2014 1 2 3 Classification with Probability Distributions Estimation Theory Classification in the last lecture we assumed we new: P(y) Prior P(x y) Lielihood x2 x features y {ω 1,..., ω K

More information

Introduction PCA classic Generative models Beyond and summary. PCA, ICA and beyond

Introduction PCA classic Generative models Beyond and summary. PCA, ICA and beyond PCA, ICA and beyond Summer School on Manifold Learning in Image and Signal Analysis, August 17-21, 2009, Hven Technical University of Denmark (DTU) & University of Copenhagen (KU) August 18, 2009 Motivation

More information

GWAS V: Gaussian processes

GWAS V: Gaussian processes GWAS V: Gaussian processes Dr. Oliver Stegle Christoh Lippert Prof. Dr. Karsten Borgwardt Max-Planck-Institutes Tübingen, Germany Tübingen Summer 2011 Oliver Stegle GWAS V: Gaussian processes Summer 2011

More information

Bayesian Decision Theory

Bayesian Decision Theory Bayesian Decision Theory Selim Aksoy Department of Computer Engineering Bilkent University saksoy@cs.bilkent.edu.tr CS 551, Fall 2017 CS 551, Fall 2017 c 2017, Selim Aksoy (Bilkent University) 1 / 46 Bayesian

More information

Unsupervised Learning

Unsupervised Learning 2018 EE448, Big Data Mining, Lecture 7 Unsupervised Learning Weinan Zhang Shanghai Jiao Tong University http://wnzhang.net http://wnzhang.net/teaching/ee448/index.html ML Problem Setting First build and

More information

Covariance and Correlation Matrix

Covariance and Correlation Matrix Covariance and Correlation Matrix Given sample {x n } N 1, where x Rd, x n = x 1n x 2n. x dn sample mean x = 1 N N n=1 x n, and entries of sample mean are x i = 1 N N n=1 x in sample covariance matrix

More information

Dimensionality Reduction with Principal Component Analysis

Dimensionality Reduction with Principal Component Analysis 10 Dimensionality Reduction with Principal Component Analysis Working directly with high-dimensional data, such as images, comes with some difficulties: it is hard to analyze, interpretation is difficult,

More information

LATENT VARIABLE MODELS. Microsoft Research 7 J. J. Thomson Avenue, Cambridge CB3 0FB, U.K.

LATENT VARIABLE MODELS. Microsoft Research 7 J. J. Thomson Avenue, Cambridge CB3 0FB, U.K. LATENT VARIABLE MODELS CHRISTOPHER M. BISHOP Microsoft Research 7 J. J. Thomson Avenue, Cambridge CB3 0FB, U.K. Published in Learning in Graphical Models, M. I. Jordan (Ed.), MIT Press (1999), 371 403.

More information

STA414/2104. Lecture 11: Gaussian Processes. Department of Statistics

STA414/2104. Lecture 11: Gaussian Processes. Department of Statistics STA414/2104 Lecture 11: Gaussian Processes Department of Statistics www.utstat.utoronto.ca Delivered by Mark Ebden with thanks to Russ Salakhutdinov Outline Gaussian Processes Exam review Course evaluations

More information

Lecture: Face Recognition and Feature Reduction

Lecture: Face Recognition and Feature Reduction Lecture: Face Recognition and Feature Reduction Juan Carlos Niebles and Ranjay Krishna Stanford Vision and Learning Lab Lecture 11-1 Recap - Curse of dimensionality Assume 5000 points uniformly distributed

More information

CPSC 340: Machine Learning and Data Mining. More PCA Fall 2017

CPSC 340: Machine Learning and Data Mining. More PCA Fall 2017 CPSC 340: Machine Learning and Data Mining More PCA Fall 2017 Admin Assignment 4: Due Friday of next week. No class Monday due to holiday. There will be tutorials next week on MAP/PCA (except Monday).

More information

Machine Learning for Data Science (CS4786) Lecture 12

Machine Learning for Data Science (CS4786) Lecture 12 Machine Learning for Data Science (CS4786) Lecture 12 Gaussian Mixture Models Course Webpage : http://www.cs.cornell.edu/courses/cs4786/2016fa/ Back to K-means Single link is sensitive to outliners We

More information

Probabilistic & Unsupervised Learning. Latent Variable Models

Probabilistic & Unsupervised Learning. Latent Variable Models Probabilistic & Unsupervised Learning Latent Variable Models Maneesh Sahani maneesh@gatsby.ucl.ac.uk Gatsby Computational Neuroscience Unit, and MSc ML/CSML, Dept Computer Science University College London

More information

Tutorial on Gaussian Processes and the Gaussian Process Latent Variable Model

Tutorial on Gaussian Processes and the Gaussian Process Latent Variable Model Tutorial on Gaussian Processes and the Gaussian Process Latent Variable Model (& discussion on the GPLVM tech. report by Prof. N. Lawrence, 06) Andreas Damianou Department of Neuro- and Computer Science,

More information

Principal Component Analysis

Principal Component Analysis Principal Component Analysis Laurenz Wiskott Institute for Theoretical Biology Humboldt-University Berlin Invalidenstraße 43 D-10115 Berlin, Germany 11 March 2004 1 Intuition Problem Statement Experimental

More information

Linear Dependent Dimensionality Reduction

Linear Dependent Dimensionality Reduction Linear Dependent Dimensionality Reduction Nathan Srebro Tommi Jaakkola Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology Cambridge, MA 239 nati@mit.edu,tommi@ai.mit.edu

More information

Least Squares Regression

Least Squares Regression E0 70 Machine Learning Lecture 4 Jan 7, 03) Least Squares Regression Lecturer: Shivani Agarwal Disclaimer: These notes are a brief summary of the topics covered in the lecture. They are not a substitute

More information

Announcements (repeat) Principal Components Analysis

Announcements (repeat) Principal Components Analysis 4/7/7 Announcements repeat Principal Components Analysis CS 5 Lecture #9 April 4 th, 7 PA4 is due Monday, April 7 th Test # will be Wednesday, April 9 th Test #3 is Monday, May 8 th at 8AM Just hour long

More information

Recent Advances in Bayesian Inference Techniques

Recent Advances in Bayesian Inference Techniques Recent Advances in Bayesian Inference Techniques Christopher M. Bishop Microsoft Research, Cambridge, U.K. research.microsoft.com/~cmbishop SIAM Conference on Data Mining, April 2004 Abstract Bayesian

More information

All you want to know about GPs: Linear Dimensionality Reduction

All you want to know about GPs: Linear Dimensionality Reduction All you want to know about GPs: Linear Dimensionality Reduction Raquel Urtasun and Neil Lawrence TTI Chicago, University of Sheffield June 16, 2012 Urtasun & Lawrence () GP tutorial June 16, 2012 1 / 40

More information

Density Estimation. Seungjin Choi

Density Estimation. Seungjin Choi Density Estimation Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea seungjin@postech.ac.kr http://mlg.postech.ac.kr/

More information

Linear Factor Models. Sargur N. Srihari

Linear Factor Models. Sargur N. Srihari Linear Factor Models Sargur N. srihari@cedar.buffalo.edu 1 Topics in Linear Factor Models Linear factor model definition 1. Probabilistic PCA and Factor Analysis 2. Independent Component Analysis (ICA)

More information

Statistical Machine Learning

Statistical Machine Learning Statistical Machine Learning Christoph Lampert Spring Semester 2015/2016 // Lecture 12 1 / 36 Unsupervised Learning Dimensionality Reduction 2 / 36 Dimensionality Reduction Given: data X = {x 1,..., x

More information

Lecture 4: Probabilistic Learning

Lecture 4: Probabilistic Learning DD2431 Autumn, 2015 1 Maximum Likelihood Methods Maximum A Posteriori Methods Bayesian methods 2 Classification vs Clustering Heuristic Example: K-means Expectation Maximization 3 Maximum Likelihood Methods

More information

COM336: Neural Computing

COM336: Neural Computing COM336: Neural Computing http://www.dcs.shef.ac.uk/ sjr/com336/ Lecture 2: Density Estimation Steve Renals Department of Computer Science University of Sheffield Sheffield S1 4DP UK email: s.renals@dcs.shef.ac.uk

More information

Principal Component Analysis

Principal Component Analysis CSci 5525: Machine Learning Dec 3, 2008 The Main Idea Given a dataset X = {x 1,..., x N } The Main Idea Given a dataset X = {x 1,..., x N } Find a low-dimensional linear projection The Main Idea Given

More information

PCA & ICA. CE-717: Machine Learning Sharif University of Technology Spring Soleymani

PCA & ICA. CE-717: Machine Learning Sharif University of Technology Spring Soleymani PCA & ICA CE-717: Machine Learning Sharif University of Technology Spring 2015 Soleymani Dimensionality Reduction: Feature Selection vs. Feature Extraction Feature selection Select a subset of a given

More information

Latent Variable Models and EM algorithm

Latent Variable Models and EM algorithm Latent Variable Models and EM algorithm SC4/SM4 Data Mining and Machine Learning, Hilary Term 2017 Dino Sejdinovic 3.1 Clustering and Mixture Modelling K-means and hierarchical clustering are non-probabilistic

More information

Neural Network Training

Neural Network Training Neural Network Training Sargur Srihari Topics in Network Training 0. Neural network parameters Probabilistic problem formulation Specifying the activation and error functions for Regression Binary classification

More information

CPSC 340 Assignment 4 (due November 17 ATE)

CPSC 340 Assignment 4 (due November 17 ATE) CPSC 340 Assignment 4 due November 7 ATE) Multi-Class Logistic The function example multiclass loads a multi-class classification datasetwith y i {,, 3, 4, 5} and fits a one-vs-all classification model

More information

CS229 Lecture notes. Andrew Ng

CS229 Lecture notes. Andrew Ng CS229 Lecture notes Andrew Ng Part X Factor analysis When we have data x (i) R n that comes from a mixture of several Gaussians, the EM algorithm can be applied to fit a mixture model. In this setting,

More information

STA414/2104 Statistical Methods for Machine Learning II

STA414/2104 Statistical Methods for Machine Learning II STA414/2104 Statistical Methods for Machine Learning II Murat A. Erdogdu & David Duvenaud Department of Computer Science Department of Statistical Sciences Lecture 3 Slide credits: Russ Salakhutdinov Announcements

More information

Regularized PCA to denoise and visualise data

Regularized PCA to denoise and visualise data Regularized PCA to denoise and visualise data Marie Verbanck Julie Josse François Husson Laboratoire de statistique, Agrocampus Ouest, Rennes, France CNAM, Paris, 16 janvier 2013 1 / 30 Outline 1 PCA 2

More information

Data Analysis and Manifold Learning Lecture 9: Diffusion on Manifolds and on Graphs

Data Analysis and Manifold Learning Lecture 9: Diffusion on Manifolds and on Graphs Data Analysis and Manifold Learning Lecture 9: Diffusion on Manifolds and on Graphs Radu Horaud INRIA Grenoble Rhone-Alpes, France Radu.Horaud@inrialpes.fr http://perception.inrialpes.fr/ Outline of Lecture

More information

Dimensionality reduction

Dimensionality reduction Dimensionality Reduction PCA continued Machine Learning CSE446 Carlos Guestrin University of Washington May 22, 2013 Carlos Guestrin 2005-2013 1 Dimensionality reduction n Input data may have thousands

More information

Principal Component Analysis

Principal Component Analysis Principal Component Analysis Yingyu Liang yliang@cs.wisc.edu Computer Sciences Department University of Wisconsin, Madison [based on slides from Nina Balcan] slide 1 Goals for the lecture you should understand

More information

STA 414/2104: Lecture 8

STA 414/2104: Lecture 8 STA 414/2104: Lecture 8 6-7 March 2017: Continuous Latent Variable Models, Neural networks With thanks to Russ Salakhutdinov, Jimmy Ba and others Outline Continuous latent variable models Background PCA

More information

University of Cambridge Engineering Part IIB Module 3F3: Signal and Pattern Processing Handout 2:. The Multivariate Gaussian & Decision Boundaries

University of Cambridge Engineering Part IIB Module 3F3: Signal and Pattern Processing Handout 2:. The Multivariate Gaussian & Decision Boundaries University of Cambridge Engineering Part IIB Module 3F3: Signal and Pattern Processing Handout :. The Multivariate Gaussian & Decision Boundaries..15.1.5 1 8 6 6 8 1 Mark Gales mjfg@eng.cam.ac.uk Lent

More information

Ch 4. Linear Models for Classification

Ch 4. Linear Models for Classification Ch 4. Linear Models for Classification Pattern Recognition and Machine Learning, C. M. Bishop, 2006. Department of Computer Science and Engineering Pohang University of Science and echnology 77 Cheongam-ro,

More information

CSC 411 Lecture 12: Principal Component Analysis

CSC 411 Lecture 12: Principal Component Analysis CSC 411 Lecture 12: Principal Component Analysis Roger Grosse, Amir-massoud Farahmand, and Juan Carrasquilla University of Toronto UofT CSC 411: 12-PCA 1 / 23 Overview Today we ll cover the first unsupervised

More information

Lecture 6: April 19, 2002

Lecture 6: April 19, 2002 EE596 Pat. Recog. II: Introduction to Graphical Models Spring 2002 Lecturer: Jeff Bilmes Lecture 6: April 19, 2002 University of Washington Dept. of Electrical Engineering Scribe: Huaning Niu,Özgür Çetin

More information

A Small Footprint i-vector Extractor

A Small Footprint i-vector Extractor A Small Footprint i-vector Extractor Patrick Kenny Odyssey Speaker and Language Recognition Workshop June 25, 2012 1 / 25 Patrick Kenny A Small Footprint i-vector Extractor Outline Introduction Review

More information

Machine Learning. Dimensionality reduction. Hamid Beigy. Sharif University of Technology. Fall 1395

Machine Learning. Dimensionality reduction. Hamid Beigy. Sharif University of Technology. Fall 1395 Machine Learning Dimensionality reduction Hamid Beigy Sharif University of Technology Fall 1395 Hamid Beigy (Sharif University of Technology) Machine Learning Fall 1395 1 / 47 Table of contents 1 Introduction

More information

Relevance Vector Machines

Relevance Vector Machines LUT February 21, 2011 Support Vector Machines Model / Regression Marginal Likelihood Regression Relevance vector machines Exercise Support Vector Machines The relevance vector machine (RVM) is a bayesian

More information

Matching the dimensionality of maps with that of the data

Matching the dimensionality of maps with that of the data Matching the dimensionality of maps with that of the data COLIN FYFE Applied Computational Intelligence Research Unit, The University of Paisley, Paisley, PA 2BE SCOTLAND. Abstract Topographic maps are

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning Kernel Density Estimation, Factor Analysis Mark Schmidt University of British Columbia Winter 2017 Admin Assignment 2: 2 late days to hand it in tonight. Assignment 3: Due Feburary

More information

PATTERN RECOGNITION AND MACHINE LEARNING

PATTERN RECOGNITION AND MACHINE LEARNING PATTERN RECOGNITION AND MACHINE LEARNING Chapter 1. Introduction Shuai Huang April 21, 2014 Outline 1 What is Machine Learning? 2 Curve Fitting 3 Probability Theory 4 Model Selection 5 The curse of dimensionality

More information

p(d θ ) l(θ ) 1.2 x x x

p(d θ ) l(θ ) 1.2 x x x p(d θ ).2 x 0-7 0.8 x 0-7 0.4 x 0-7 l(θ ) -20-40 -60-80 -00 2 3 4 5 6 7 θ ˆ 2 3 4 5 6 7 θ ˆ 2 3 4 5 6 7 θ θ x FIGURE 3.. The top graph shows several training points in one dimension, known or assumed to

More information

Computer Vision Group Prof. Daniel Cremers. 2. Regression (cont.)

Computer Vision Group Prof. Daniel Cremers. 2. Regression (cont.) Prof. Daniel Cremers 2. Regression (cont.) Regression with MLE (Rep.) Assume that y is affected by Gaussian noise : t = f(x, w)+ where Thus, we have p(t x, w, )=N (t; f(x, w), 2 ) 2 Maximum A-Posteriori

More information

CSC411: Final Review. James Lucas & David Madras. December 3, 2018

CSC411: Final Review. James Lucas & David Madras. December 3, 2018 CSC411: Final Review James Lucas & David Madras December 3, 2018 Agenda 1. A brief overview 2. Some sample questions Basic ML Terminology The final exam will be on the entire course; however, it will be

More information

High Dimensional Discriminant Analysis

High Dimensional Discriminant Analysis High Dimensional Discriminant Analysis Charles Bouveyron 1,2, Stéphane Girard 1, and Cordelia Schmid 2 1 LMC IMAG, BP 53, Université Grenoble 1, 38041 Grenoble cedex 9 France (e-mail: charles.bouveyron@imag.fr,

More information