High temperature superconductivity - insights from Angle Resolved Photoemission Spectroscopy

Size: px
Start display at page:

Download "High temperature superconductivity - insights from Angle Resolved Photoemission Spectroscopy"

Transcription

1 High temperature superconductivity - insights from Angle Resolved Photoemission Spectroscopy Adam Kaminski Ames Laboratory and Iowa State University Funding: Ames Laboratory - US Department of Energy

2 Ames Laboratory Spectroscopy Group: Takeshi Kondo - postdoctoral researcher Ari Palczewski - Ph. D. student James Koll - undergraduate assistant Collaborators: Jörg Schmalian - ISU Rustem Khassanov - University of Zürich, Switzerland Janusz Karpinski - ETH, Switzerland Joel Mesot - PSI, Switzerland Takafumi Sato - Tohoku University, Japan Takashi Takahashi - Tohoku University, Japan Helene Raffy - Universite Paris-Sud, France Kazuo Kadowaki - University of Tsukuba, Japan

3 Outline: - condensed matter physics - is there anything left to understand? - properties of conventional and high temperature superconductors - introduction to Angle Resolved Photoemission Spectroscopy - electronic properties of high temperature superconductors - new results

4 condensed matter physics - is there anything left to understand? all physics covered by electrodynamics + quantum mechanics... but complexity and new phenomena arise from large numbers of interacting particles US penny: 3.1 grams of copper, 2.9x10 22 electrons a DVD has 4x10 10 bits so to store information only about spin for each electron we need: 7.25 x DVD s, but this is clearly not enough to do any meaningful calculations fortunately electrons in copper are weakly interacting and can be described by Landau Fermi Liquid model (1:1 correspondence with free electron gas), but in many systems the interactions are strong and current state of the art calculations can deal with... 7x7 lattice

5 Superconductivity Discovered in 1911 by Kamerlinght Onnes first in mercury, then many other metals and alloys Complete theory (BCS) due to Bardeen, Cooper and Schrieffer in 1957 resistance [Ohm] temperature [K]

6 Superconductivity pairing + condensation pair of two electron is a boson bosons can condense creating superfluid

7 In the metals electrical resitance arises due to scattering of the conduction electrons from defects E

8 In BCS the attractive pairing interaction between electrons arises from interaction with the lattice vibrations (phonons)

9 In the superconducting state current is being carried by superfluid - condensate of very large number of electron pairs

10 High temperature superconductors Discovered in 1986 by Bednorz and Müller. c BiO BiO Observed so far only in materials that contain copper oxide. Superconducting transition temperature (Tc) up to 130K. a b SrO CuO Ca CuO Pairing mechanism - unknown unit cell SrO BiO T 3.17Å BiO SrO CuO Ca CuO SrO BiO Bi 2 Sr 2 CaCu 2 O 8+x T N AFM T* pseudogap SC ~ 0.15 T c metal carrier concentration

11 ARPES experiment z analyzer θ detector φ a or b sample

12 High resolution UV beamline at Synchrotron Radiation Center, Wisconsin e MeV ring at undulator Synchrotron Radiation Center sample grating hv electron analyzer

13 Electron analyzer photoelectrons sample lens 2D detector hemispherical analyzer

14 ... high precision lab-based ARPES system Energy resolution: ~1.2 mev Angular resolution: 0.1 deg. UV source: photons/sec.

15 From atoms to solids: two isolated atoms two atom molecule solid Kittel - Solid state physics

16 Dispersion relation - energy bands metal insulator Kittel - Solid state physics

17 ARPES experiment z analyzer We need: θ φ detector a or b binding energy - E b initial momentum - k i sample E b = E - hv + W k i =k f = 2mE/h 2 sinθ k i =0 for quasi 2D samples

18 typical photoemission spectrum from Bi2212 C 1s Bi 4f 5/2 & 4f 7/2 Normalized intensity Sr3p1/2,Sr3p3/2 Theta=5 deg, hv=500 ev T=300K T=40K Sr3d3/2,Sr3d5/2 Theta=5 deg, hv=500 ev Normalized intensity Normalized intensity Ca2p1/2, Ca2p3/2 hv=500 ev Emission angle: 0 deg 10 deg 20 deg 30 deg 40 deg 50 deg Energy [ev] Normalized intensity Energy [ev] T=300K T=40K Energy [ev] Bi 5f 1/2, 5f 3/2 conduction band valence band Energy [ev]

19 Valence and conduction bands - simplest example: Au 5d poly Au 150x10 3 Intensity [counts/5min] valence band conduction band Energy [ev] Normalized intensity T=100K T=350K Energy [ev]

20 Electronic structure E ARPES spectra "E f " E b (k 1 ) hν E vac hν W E f k 2 k 1 k f k

21 Typical modern ARPES data: E=const Momentum Distribution Curve (MDC) ARPES Intensity k (A -1 ) k=const Energy Distribution Curve (EDC) E k ARPES Intensity I= i A p f 2 A(k, ) f( ) symmetry of electronic structure and interactions Energy [ev] A. Kaminski et al., Phys. Rev. Lett. 86, 1070 (2001)

22 EDC MDC Intensity plot Energy [ev] momentum Energy [mev] ky [A -1 ]

23 Eli Rotenberg, Advanced Light Source

24 Superconducting gap E T<Tc T>Tc µ 2! k f k J. C. Campuzano et al., Phys. Rev. B 53, (1996) C. G. Olson, D. W. Lynch et al., Science 245, (1989)

25 1 Y X Fermi surface M 0 (0,0) (π,0) M node d-wave order parameter -1-1 X M 0 k x [ π /a] Y 1 anti-node H. Ding et al., Phys. Rev. B 54, 9678 (1996)

26 Laboratory system: Scienta analyzer and He Lamp 5.0 mev Normalized intensity Superconducting state LuNi2B2C (Tc=16K) T=9.5K Energy [mev] Energy [mev]

27 Text S. Souma et al., Nature, 423, 65 (2003)

28 Collective modes e k-q,ω-ω k,ω e q,ω

29 Ashcroft and Mermin Solid State Physics Interaction of electrons with a phonon:

30 Renormalization effects along nodal direction T. Valla et al., Science 24, 2110 (1999) P.V. Bogdanov et al., Phys. Rev. Lett. 85, 2581 (2001) A. Kaminski et al., Phys. Rev. Lett. 86, 1070 (2001)

31 Interaction of the electrons with a collective mode dispersion in normal and superconducting state Mode energy Μ N A Γ Node Μ k T=40K T=140K Antinode 40 ased on the dispersion we can conclude that the interaction with the collective mode occurs strength of coupling Fermi velocity in the normal state nly in the superconducting state, its energy is constant throughout the Brillouin 2.0 zone and its 30 trength increases significantly towards in the the SC antinode. state These properties are consistent with the 1.5 esonant mode observed by Inelastic Neutron Scattering (INS) experiments. A. Kaminski et al., Phys. Rev. Lett. 86, 1070 (2001) V h /V l k x (π/a) v F [ev Ang] k x [π/a] k x [ π /a]

32 EDC s in the superconducting state k=(1,0) k=(.730,0) k=(.640,0) k=(.590,0) k=(.550,0) k=(.450,0) k=(1,.365) k=(.730,.365) Antinode k=(.640,.365) k=(.590,.365) Binding Energy (ev) k=(.550,.365) k=(.450,.365) Node A. Kaminski et al., Phys. Rev. Lett. 86, 1070 (2001)

33 Collective mode score card Properties of the bosonic mode magnetic compatibility phonons 1) isotropic energy +Ω yes yes 2) momentum anisotropy yes yes, recently 3) temperature dependence yes not obvious 4) doping dependence yes not obvious

34 Autocorrelated (AC) ARPES - new tool in studies of scattering processes Scattering in traditional STM Cu on Cu(111) Ag on Ag(111) SPECS website

35 FT STM -12 mev Fourier transform J. E. Hoffman et al, Science 295, 466 (2002) J. E. Hoffman et al, Science 297, 1148 (2002) K. McElroy et al, Nature 422, 592 (2004) L. Capriotti et al, PRB 68, (2003) R. S. Markiewicz et al, PRB 69, (2004)

36 AutoCorrelated (AC) ARPES - ARPES data and q-space 1.0 ARPES intensity map -12 mev 1.0 q-space map 0.5 q 2 q 1 q k x [π/a] 0.0 q 3 q 6 q x [π/a] 0.0 q 2 q 1 q 7 q q q 3 q 6 q q k x [π/a] q x [π/a] S(q,! =! 0 ) = " k x,k y I(k,!) I(k + q,!)

37 -12 mev ARPES intensity maps

38 -12 mev q-space

39 Comparison of FT STM and AC ARPES q 1 q 1 q 3 K. McElroy et al, Nature 422, 592 (2004) q 3 U. Chatterjee et al, Phys. Rev. Lett. (submitted)

40 Conclusions: - ARPES is an excellent probe to study electronic properties of strongly correlated systems such as heavy fermion systems and high temperature superconductors - the only relevant feature in electronic structure for high temperature superconductivity is a hole pocket Fermi surface centered at k =k =1 x y - bridging the results from ARPES and FT STM will lead to better understanding of low energy excitations and possibly high temperature superconductivity

Surfing q-space of a high temperature superconductor

Surfing q-space of a high temperature superconductor Surfing q-space of a high temperature superconductor Adam Kaminski Ames Laboratory and Iowa State University Funded by: US Department of Energy National Science Foundation The Royal Society of Great Britain

More information

Angle Resolved Photoemission Spectroscopy. Dan Dessau University of Colorado, Boulder

Angle Resolved Photoemission Spectroscopy. Dan Dessau University of Colorado, Boulder Angle Resolved Photoemission Spectroscopy Dan Dessau University of Colorado, Boulder Dessau@Colorado.edu Photoemission Spectroscopy sample hn Energy High K.E. Low B.E. e - analyzer E F e- hν Density of

More information

The High T c Superconductors: BCS or Not BCS?

The High T c Superconductors: BCS or Not BCS? The University of Illinois at Chicago The High T c Superconductors: BCS or Not BCS? Does BCS theory work for the high temperature superconductors? We take a look at the electronic excitations using angle

More information

Syro Université Paris-Sud and de Physique et Chimie Industrielles - Paris

Syro Université Paris-Sud and de Physique et Chimie Industrielles - Paris Introductory lectures on Angle-resolved photoemission spectroscopy (ARPES) and its application to the experimental study of the electronic structure of solids Andrés s Felipe Santander-Syro Syro Université

More information

Hole-concentration dependence of band structure in (Bi,Pb) 2 (Sr,La) 2 CuO 6+δ determined by the angle-resolved photoemission spectroscopy

Hole-concentration dependence of band structure in (Bi,Pb) 2 (Sr,La) 2 CuO 6+δ determined by the angle-resolved photoemission spectroscopy Journal of Electron Spectroscopy and Related Phenomena 137 140 (2004) 663 668 Hole-concentration dependence of band structure in (Bi,Pb) 2 (Sr,La) 2 CuO 6+δ determined by the angle-resolved photoemission

More information

High-T c superconductors

High-T c superconductors High-T c superconductors Parent insulators Carrier doping Band structure and Fermi surface Pseudogap, superconducting gap, superfluid Nodal states Bilayer, trilayer Stripes High-T c superconductors Parent

More information

Cuprate high-t c superconductors

Cuprate high-t c superconductors Cuprate high-t c superconductors In solid-state physics two different paradigms are typically applied. The first is a local picture, in which one visualizes the quantum states of electrons in atomic orbitals

More information

Key words: High Temperature Superconductors, ARPES, coherent quasiparticle, incoherent quasiparticle, isotope substitution.

Key words: High Temperature Superconductors, ARPES, coherent quasiparticle, incoherent quasiparticle, isotope substitution. Lattice Dynamics and Electron Pairing in High Temperature Superconductors A. Lanzara 1,2, G.-H. Gweon 3, S. Y. Zhou 1 1 Department of Physics, University of California, Berkeley, CA 94720, U.S.A. 2 Materials

More information

Probing the Electronic Structure of Complex Systems by State-of-the-Art ARPES Andrea Damascelli

Probing the Electronic Structure of Complex Systems by State-of-the-Art ARPES Andrea Damascelli Probing the Electronic Structure of Complex Systems by State-of-the-Art ARPES Andrea Damascelli Department of Physics & Astronomy University of British Columbia Vancouver, B.C. Outline: Part I State-of-the-Art

More information

High-T c superconductors. Parent insulators Carrier doping Band structure and Fermi surface Pseudogap and superconducting gap Transport properties

High-T c superconductors. Parent insulators Carrier doping Band structure and Fermi surface Pseudogap and superconducting gap Transport properties High-T c superconductors Parent insulators Carrier doping Band structure and Fermi surface Pseudogap and superconducting gap Transport properties High-T c superconductors Parent insulators Phase diagram

More information

ARPES studies of cuprates. Inna Vishik Physics 250 (Special topics: spectroscopies of quantum materials) UC Davis, Fall 2016

ARPES studies of cuprates. Inna Vishik Physics 250 (Special topics: spectroscopies of quantum materials) UC Davis, Fall 2016 ARPES studies of cuprates Inna Vishik Physics 250 (Special topics: spectroscopies of quantum materials) UC Davis, Fall 2016 Goals of lecture Understand why gaps are important and various ways that gap

More information

Strongly Correlated Systems:

Strongly Correlated Systems: M.N.Kiselev Strongly Correlated Systems: High Temperature Superconductors Heavy Fermion Compounds Organic materials 1 Strongly Correlated Systems: High Temperature Superconductors 2 Superconductivity:

More information

Angle-resolved photoemission spectroscopy (ARPES) Overview-Physics 250, UC Davis Inna Vishik

Angle-resolved photoemission spectroscopy (ARPES) Overview-Physics 250, UC Davis Inna Vishik Angle-resolved photoemission spectroscopy (ARPES) Overview-Physics 250, UC Davis Inna Vishik Outline Review: momentum space and why we want to go there Looking at data: simple metal Formalism: 3 step model

More information

Superconductivity and Superfluidity

Superconductivity and Superfluidity Superconductivity and Superfluidity Contemporary physics, Spring 2015 Partially from: Kazimierz Conder Laboratory for Developments and Methods, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland Resistivity

More information

High temperature superconductivity

High temperature superconductivity High temperature superconductivity Applications to the maglev industry Elsa Abreu April 30, 2009 Outline Historical overview of superconductivity Copper oxide high temperature superconductors Angle Resolved

More information

Time-Resolved and Momentum-Resolved Resonant Soft X-ray Scattering on Strongly Correlated Systems

Time-Resolved and Momentum-Resolved Resonant Soft X-ray Scattering on Strongly Correlated Systems Time-Resolved and Momentum-Resolved Resonant Soft X-ray Scattering on Strongly Correlated Systems Wei-Sheng Lee Stanford Institute of Material and Energy Science (SIMES) SLAC & Stanford University Collaborators

More information

Can superconductivity emerge out of a non Fermi liquid.

Can superconductivity emerge out of a non Fermi liquid. Can superconductivity emerge out of a non Fermi liquid. Andrey Chubukov University of Wisconsin Washington University, January 29, 2003 Superconductivity Kamerling Onnes, 1911 Ideal diamagnetism High Tc

More information

Photoemission Studies of Strongly Correlated Systems

Photoemission Studies of Strongly Correlated Systems Photoemission Studies of Strongly Correlated Systems Peter D. Johnson Physics Dept., Brookhaven National Laboratory JLab March 2005 MgB2 High T c Superconductor - Phase Diagram Fermi Liquid:-Excitations

More information

Fine Details of the Nodal Electronic Excitations in Bi 2 Sr 2 CaCu 2 O 8+δ

Fine Details of the Nodal Electronic Excitations in Bi 2 Sr 2 CaCu 2 O 8+δ Fine Details of the Nodal Electronic Excitations in Bi 2 Sr 2 CaCu 2 O 8+δ T. Valla, T. E. Kidd, J. D. Rameau, H.-J. Noh, G. D. Gu, and P. D. Johnson Condensed Matter and Materials Science Department,

More information

Quantum phase transitions in Mott insulators and d-wave superconductors

Quantum phase transitions in Mott insulators and d-wave superconductors Quantum phase transitions in Mott insulators and d-wave superconductors Subir Sachdev Matthias Vojta (Augsburg) Ying Zhang Science 286, 2479 (1999). Transparencies on-line at http://pantheon.yale.edu/~subir

More information

Out-of-equilibrium electron dynamics in photoexcited topological insulators studied by TR-ARPES

Out-of-equilibrium electron dynamics in photoexcited topological insulators studied by TR-ARPES Cliquez et modifiez le titre Out-of-equilibrium electron dynamics in photoexcited topological insulators studied by TR-ARPES Laboratoire de Physique des Solides Orsay, France June 15, 2016 Workshop Condensed

More information

BSCCO Superconductors: Hole-Like Fermi Surface and Doping Dependence of the Gap Function

BSCCO Superconductors: Hole-Like Fermi Surface and Doping Dependence of the Gap Function Journal of Low Temperature Physics, Vol. 117, Nos. 314, 1999 BSCCO Superconductors: Hole-Like Fermi Surface and Doping Dependence of the Gap Function J. Mesot,1,2 M. R. Norman,1 H. Ding,3 M. Randeria,4

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi: 10.1038/nature06219 SUPPLEMENTARY INFORMATION Abrupt Onset of Second Energy Gap at Superconducting Transition of Underdoped Bi2212 Wei-Sheng Lee 1, I. M. Vishik 1, K. Tanaka 1,2, D. H. Lu 1, T. Sasagawa

More information

Role of the Octahedra Rotation on the Electronic Structures of 4d Transition Metal Oxides

Role of the Octahedra Rotation on the Electronic Structures of 4d Transition Metal Oxides Role of the Octahedra Rotation on the Electronic Structures of 4d Transition Metal Oxides Changyoung Kim Dept. Physics, Yonsei University B. J. Kim 1, J. Yu 1, S. J. Oh 1, H. Koh 2, I. Nagai 3, S. I. Ikeda

More information

2nd Annual International Conference on Advanced Material Engineering (AME 2016)

2nd Annual International Conference on Advanced Material Engineering (AME 2016) 2nd Annual International Conference on Advanced Material Engineering (AME 2016) Nodal gap energy in high-tc cuprate superconductors: A new paradigm Hiroaki ANZAI1,a,*, Masashi ARITA2, Hirofumi NAMATAME2,

More information

Quantum dynamics in many body systems

Quantum dynamics in many body systems Quantum dynamics in many body systems Eugene Demler Harvard University Collaborators: David Benjamin (Harvard), Israel Klich (U. Virginia), D. Abanin (Perimeter), K. Agarwal (Harvard), E. Dalla Torre (Harvard)

More information

Low energy excitations in cuprates: an ARPES perspective. Inna Vishik Beyond (Landau) Quasiparticles: New Paradigms for Quantum Fluids Jan.

Low energy excitations in cuprates: an ARPES perspective. Inna Vishik Beyond (Landau) Quasiparticles: New Paradigms for Quantum Fluids Jan. Low energy excitations in cuprates: an ARPES perspectie Inna Vishik Beyond (Landau) Quasiparticles: New Paradigms for Quantum Fluids Jan. 15, 2014 Acknowledgements Shen Group Professor Zhi-Xun Shen Dr.

More information

requires going beyond BCS theory to include inelastic scattering In conventional superconductors we use Eliashberg theory to include the electron-

requires going beyond BCS theory to include inelastic scattering In conventional superconductors we use Eliashberg theory to include the electron- MECHANISM requires going beyond BCS theory to include inelastic scattering In conventional superconductors we use Eliashberg theory to include the electron- A serious limitation of BCS theory is that it

More information

C. C. Tsuei IBM T.J. Watson Research Center Yorktown Heights, NY 10598

C. C. Tsuei IBM T.J. Watson Research Center Yorktown Heights, NY 10598 Origin of High-Temperature Superconductivity Nature s great puzzle C. C. Tsuei IBM T.J. Watson Research Center Yorktown Heights, NY 10598 Basic characteristics of superconductors: Perfect electrical conduction

More information

Tuning order in cuprate superconductors

Tuning order in cuprate superconductors Tuning order in cuprate superconductors arxiv:cond-mat/0201401 v1 23 Jan 2002 Subir Sachdev 1 and Shou-Cheng Zhang 2 1 Department of Physics, Yale University, P.O. Box 208120, New Haven, CT 06520-8120,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION A Stable Three-dimensional Topological Dirac Semimetal Cd 3 As 2 Z. K. Liu, J. Jiang, B. Zhou, Z. J. Wang, Y. Zhang, H. M. Weng, D. Prabhakaran, S. -K. Mo, H. Peng, P. Dudin, T. Kim, M. Hoesch, Z. Fang,

More information

doi: /PhysRevLett

doi: /PhysRevLett doi: 10.1103/PhysRevLett.79.3506 Unusual Dispersion and Line Shape of the Superconducting State Spectra of Bi 2 Sr 2 CaCu 2 O 81d M. R. Norman, 1 H. Ding, 1,2 J. C. Campuzano, 1,2 T. Takeuchi, 1,3 M. Randeria,

More information

Pairing symmetry in iron based superconductors

Pairing symmetry in iron based superconductors Pairing symmetry in iron based superconductors Caizhi Xu Department of Physics University of Illinois Urbana Champaign Abstract: Iron-based superconductor is a new type of unconventional superconductors.

More information

Fermi surface nesting induced strong pairing in iron-based superconductors

Fermi surface nesting induced strong pairing in iron-based superconductors Fermi surface nesting induced strong pairing in iron-based superconductors K. Terashima 1, Y. Sekiba 2, J. H. Bowen 3, K. Nakayama 2, T. Kawahara 2, T. Sato 2,4, P. Richard 5, Y.-M. Xu 6, L. J. Li 7, G.

More information

Neutron scattering from quantum materials

Neutron scattering from quantum materials Neutron scattering from quantum materials Bernhard Keimer Max Planck Institute for Solid State Research Max Planck UBC UTokyo Center for Quantum Materials Detection of bosonic elementary excitations in

More information

A momentum-dependent perspective on quasiparticle interference in Bi 2 Sr 2 CaCu 2 O 8+δ

A momentum-dependent perspective on quasiparticle interference in Bi 2 Sr 2 CaCu 2 O 8+δ SLAC-PUB-14004 A momentum-dependent perspective on quasiparticle interference in Bi 2 Sr 2 CaCu 2 O 8+δ I. M. Vishik, 1,2 B. Moritz, 2 E. A. Nowadnick, 1,2 W. S. Lee, 1,2 K. Tanaka, 3 T. Sasagawa, 4 T.

More information

Angle-Resolved Two-Photon Photoemission of Mott Insulator

Angle-Resolved Two-Photon Photoemission of Mott Insulator Angle-Resolved Two-Photon Photoemission of Mott Insulator Takami Tohyama Institute for Materials Research (IMR) Tohoku University, Sendai Collaborators IMR: H. Onodera, K. Tsutsui, S. Maekawa H. Onodera

More information

The photoelectric effect

The photoelectric effect The photoelectric effect E K hν-e B E F hν E B A photoemission experiment Lifetime broadening ΔE.Δτ~ħ ΔE~ħ/Δτ + Experimental resolution Hüfner, Photoelectron Spectroscopy (Springer) A photoemission experiment

More information

Contrasting Pentacene on Cu(110) and Ag(110): interactions revealed by valence band tomography

Contrasting Pentacene on Cu(110) and Ag(110): interactions revealed by valence band tomography Contrasting Pentacene on Cu(110) and Ag(110): interactions revealed by valence band tomography Ules Thomas Surface Science Group, KFUni Graz Outline Angle Resolved UPS; Orbital Tomography Influence of

More information

Quantum Condensed Matter Physics Lecture 12

Quantum Condensed Matter Physics Lecture 12 Quantum Condensed Matter Physics Lecture 12 David Ritchie QCMP Lent/Easter 2016 http://www.sp.phy.cam.ac.uk/drp2/home 12.1 QCMP Course Contents 1. Classical models for electrons in solids 2. Sommerfeld

More information

Dirac-Fermion-Induced Parity Mixing in Superconducting Topological Insulators. Nagoya University Masatoshi Sato

Dirac-Fermion-Induced Parity Mixing in Superconducting Topological Insulators. Nagoya University Masatoshi Sato Dirac-Fermion-Induced Parity Mixing in Superconducting Topological Insulators Nagoya University Masatoshi Sato In collaboration with Yukio Tanaka (Nagoya University) Keiji Yada (Nagoya University) Ai Yamakage

More information

The Hubbard model in cold atoms and in the high-tc cuprates

The Hubbard model in cold atoms and in the high-tc cuprates The Hubbard model in cold atoms and in the high-tc cuprates Daniel E. Sheehy Aspen, June 2009 Sheehy@LSU.EDU What are the key outstanding problems from condensed matter physics which ultracold atoms and

More information

Spin-orbital separation in the quasi-one-dimensional Mott insulator Sr 2 CuO 3 Splitting the electron

Spin-orbital separation in the quasi-one-dimensional Mott insulator Sr 2 CuO 3 Splitting the electron Spin-orbital separation in the quasi-one-dimensional Mott insulator Sr 2 CuO 3 Splitting the electron James Gloudemans, Suraj Hegde, Ian Gilbert, and Gregory Hart December 7, 2012 The paper We describe

More information

Supplementary Figure S1: Number of Fermi surfaces. Electronic dispersion around Γ a = 0 and Γ b = π/a. In (a) the number of Fermi surfaces is even,

Supplementary Figure S1: Number of Fermi surfaces. Electronic dispersion around Γ a = 0 and Γ b = π/a. In (a) the number of Fermi surfaces is even, Supplementary Figure S1: Number of Fermi surfaces. Electronic dispersion around Γ a = 0 and Γ b = π/a. In (a) the number of Fermi surfaces is even, whereas in (b) it is odd. An odd number of non-degenerate

More information

R measurements (resistivity, magnetoresistance, Hall). Makariy A. Tanatar

R measurements (resistivity, magnetoresistance, Hall). Makariy A. Tanatar R measurements (resistivity, magnetoresistance, Hall). 590B Makariy A. Tanatar April 18, 2014 Resistivity Typical resistivity temperature dependence: metals, semiconductors Magnetic scattering Resistivities

More information

Exciton in the Topological Kondo Insulator SmB 6

Exciton in the Topological Kondo Insulator SmB 6 Exciton in the Topological Kondo Insulator SmB 6 Collin Broholm* Institute for Quantum Matter, Johns Hopkins University Quantum Condensed Matter Division, Oak Ridge National Laboratory *Supported by U.S.

More information

Metal-insulator transitions

Metal-insulator transitions Metal-insulator transitions Bandwidth control versus fillig control Strongly correlated Fermi liquids Spectral weight transfer and mass renormalization Bandwidth control Filling control Chemical potential

More information

High Tc superconductivity in cuprates: Determination of pairing interaction. Han-Yong Choi / SKKU SNU Colloquium May 30, 2018

High Tc superconductivity in cuprates: Determination of pairing interaction. Han-Yong Choi / SKKU SNU Colloquium May 30, 2018 High Tc superconductivity in cuprates: Determination of pairing interaction Han-Yong Choi / SKKU SNU Colloquium May 30 018 It all began with Discovered in 1911 by K Onnes. Liquid He in 1908. Nobel prize

More information

Time-resolved photoelectron spectroscopy: An ultrafast clock to study electron dynamics at surfaces, interfaces and condensed matter

Time-resolved photoelectron spectroscopy: An ultrafast clock to study electron dynamics at surfaces, interfaces and condensed matter Time-resolved photoelectron spectroscopy: An ultrafast clock to study electron dynamics at surfaces, interfaces and condensed matter Benjamin Stadtmüller Department of Physics and Research Center OPTIMAS,

More information

Quantum-Criticality in the dissipative XY and Ashkin-Teller Model: Application to the Cuprates and SIT..

Quantum-Criticality in the dissipative XY and Ashkin-Teller Model: Application to the Cuprates and SIT.. Quantum-Criticality in the dissipative XY and Ashkin-Teller Model: Application to the Cuprates and SIT.. Jaeger, Orr, Goldman, Kuper (1986) Dissipation driven QCP s Haviland, Liu, and Goldman Phys. Rev.

More information

Unusual magnetic excitations in a cuprate high-t c superconductor

Unusual magnetic excitations in a cuprate high-t c superconductor Unusual magnetic excitations in a cuprate high-t c superconductor Yuan Li Max Planck Institute for Solid State Research Stuttgart, Germany Collaborators University of Minnesota / Stanford University, USA

More information

Temperature-Dependent Angle-Resolved Photoemission Study of High-T c Superconductors

Temperature-Dependent Angle-Resolved Photoemission Study of High-T c Superconductors Temperature-Dependent Angle-Resolved Photoemission Study of High-T c Superconductors Master Thesis Satoru Kudo Department of Complexity Science and Engineering, University of Tokyo February, 28 Contents

More information

Studying Metal to Insulator Transitions in Solids using Synchrotron Radiation-based Spectroscopies.

Studying Metal to Insulator Transitions in Solids using Synchrotron Radiation-based Spectroscopies. PY482 Lecture. February 28 th, 2013 Studying Metal to Insulator Transitions in Solids using Synchrotron Radiation-based Spectroscopies. Kevin E. Smith Department of Physics Department of Chemistry Division

More information

Investigating the mechanism of High Temperature Superconductivity by Oxygen Isotope Substitution. Eran Amit. Amit Keren

Investigating the mechanism of High Temperature Superconductivity by Oxygen Isotope Substitution. Eran Amit. Amit Keren Investigating the mechanism of High Temperature Superconductivity by Oxygen Isotope Substitution Eran Amit Amit Keren Technion- Israel Institute of Technology Doping Meisner CuO 2 Spin Glass Magnetic Field

More information

What's so unusual about high temperature superconductors? UBC 2005

What's so unusual about high temperature superconductors? UBC 2005 What's so unusual about high temperature superconductors? UBC 2005 Everything... 1. Normal State - doped Mott insulator 2. Pairing Symmetry - d-wave 2. Short Coherence Length - superconducting fluctuations

More information

V, I, R measurements: how to generate and measure quantities and then how to get data (resistivity, magnetoresistance, Hall). Makariy A.

V, I, R measurements: how to generate and measure quantities and then how to get data (resistivity, magnetoresistance, Hall). Makariy A. V, I, R measurements: how to generate and measure quantities and then how to get data (resistivity, magnetoresistance, Hall). 590B Makariy A. Tanatar November 12, 2008 Resistivity Typical resistivity temperature

More information

Quantum theory of vortices in d-wave superconductors

Quantum theory of vortices in d-wave superconductors Quantum theory of vortices in d-wave superconductors Physical Review B 71, 144508 and 144509 (2005), Annals of Physics 321, 1528 (2006), Physical Review B 73, 134511 (2006), cond-mat/0606001. Leon Balents

More information

An unusual isotope effect in a high-transition-temperature superconductor

An unusual isotope effect in a high-transition-temperature superconductor An unusual isotope effect in a high-transition-temperature superconductor G.-H. Gweon 1, T. Sasagawa 2,3, S. Y. Zhou 4, J. Graf 1, H. Takagi 2,3,5, D.-H. Lee 1,4 & A. Lanzara 1,4 1 Materials Sciences Division,

More information

CDWs in ARPES. A momentum space picture of Fermi surface instabilities in crystalline solids. Physics 250, UC Davis Inna Vishik

CDWs in ARPES. A momentum space picture of Fermi surface instabilities in crystalline solids. Physics 250, UC Davis Inna Vishik CDWs in ARPES A momentum space picture of Fermi surface instabilities in crystalline solids Physics 250, UC Davis Inna Vishik Goals of this lecture Review CDW concepts from previous lecture Practice interpreting

More information

Electron State and Lattice Effects in Cuprate High Temperature Superconductors

Electron State and Lattice Effects in Cuprate High Temperature Superconductors Electron State and Lattice Effects in Cuprate High Temperature Superconductors - The True Story Revealed by Fermi Surface and Unconventional Lattice Effects- October 27-28, 2005 Headquarters and Information

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION A Dirac point insulator with topologically non-trivial surface states D. Hsieh, D. Qian, L. Wray, Y. Xia, Y.S. Hor, R.J. Cava, and M.Z. Hasan Topics: 1. Confirming the bulk nature of electronic bands by

More information

Electron spectroscopy on high temperature superconductors and other novel materials. Gey Hong Gweon

Electron spectroscopy on high temperature superconductors and other novel materials. Gey Hong Gweon Electron spectroscopy on high temperature superconductors and other novel materials Gey Hong Gweon Jan 28, 2013 Kazue Mastuyama Jianqiao Meng Ahram Kim Greg Kaminsky Matthew Brunner Brandon McGuire James

More information

Strength of the spin fluctuation mediated pairing interaction in YBCO 6.6

Strength of the spin fluctuation mediated pairing interaction in YBCO 6.6 Universität Tübingen Lehrstuhl für Theoretische Festkörperphysik Strength of the spin fluctuation mediated pairing interaction in YBCO 6.6 Thomas Dahm Institut für Theoretische Physik Universität Tübingen

More information

Nanoelectronics 14. [( ) k B T ] 1. Atsufumi Hirohata Department of Electronics. Quick Review over the Last Lecture.

Nanoelectronics 14. [( ) k B T ] 1. Atsufumi Hirohata Department of Electronics. Quick Review over the Last Lecture. Nanoelectronics 14 Atsufumi Hirohata Department of Electronics 09:00 Tuesday, 27/February/2018 (P/T 005) Quick Review over the Last Lecture Function Fermi-Dirac distribution f ( E) = 1 exp E µ [( ) k B

More information

Dynamics of fluctuations in high temperature superconductors far from equilibrium. L. Perfetti, Laboratoire des Solides Irradiés, Ecole Polytechnique

Dynamics of fluctuations in high temperature superconductors far from equilibrium. L. Perfetti, Laboratoire des Solides Irradiés, Ecole Polytechnique Dynamics of fluctuations in high temperature superconductors far from equilibrium L. Perfetti, Laboratoire des Solides Irradiés, Ecole Polytechnique Superconductors display amazing properties: Dissipation-less

More information

Spin- and angle-resolved photoemission spectroscopy study of the Au(1 1 1) Shockley surface state

Spin- and angle-resolved photoemission spectroscopy study of the Au(1 1 1) Shockley surface state Journal of Electron Spectroscopy and Related Phenomena 137 140 (2004) 119 123 Spin- and angle-resolved photoemission spectroscopy study of the Au(1 1 1) Shockley surface state Matthias Muntwiler a,, Moritz

More information

Dual vortex theory of doped antiferromagnets

Dual vortex theory of doped antiferromagnets Dual vortex theory of doped antiferromagnets Physical Review B 71, 144508 and 144509 (2005), cond-mat/0502002, cond-mat/0511298 Leon Balents (UCSB) Lorenz Bartosch (Harvard) Anton Burkov (Harvard) Predrag

More information

Foundations of Condensed Matter Physics

Foundations of Condensed Matter Physics Foundations of Condensed Matter Physics PHY1850F 2005 www.physics.utoronto.ca/~wei/phy1850f.html Physics 1850F Foundations of Condensed Matter Physics Webpage: www.physics.utoronto.ca/~wei/phy1850f.html

More information

Origin of the shadow Fermi surface in Bi-based cuprates

Origin of the shadow Fermi surface in Bi-based cuprates Origin of the shadow Fermi surface in Bi-based cuprates A. Koitzsch, S. V. Borisenko, A. A. Kordyuk, T. K. Kim, M. Knupfer, and J. Fink Leibniz-Institute for Solid State and Materials Research, IFW-Dresden,

More information

arxiv:cond-mat/ v1 [cond-mat.supr-con] 28 May 2003

arxiv:cond-mat/ v1 [cond-mat.supr-con] 28 May 2003 arxiv:cond-mat/0305637v1 [cond-mat.supr-con] 28 May 2003 The superconducting state in a single CuO 2 layer: Experimental findings and scenario Rushan Han, Wei Guo School of Physics, Peking University,

More information

Photoemission and the electronic structure of magnetic oxides. Dan Dessau University of Colorado, Boulder Duane F625

Photoemission and the electronic structure of magnetic oxides. Dan Dessau University of Colorado, Boulder Duane F625 Photoemission and the electronic structure of magnetic oxides Dan Dessau University of Colorado, Boulder Duane F625 Dessau@Colorado.edu Einstein s Photoelectric effect XPS, UPS, ARPES BE e- hn D.O.S. occupied

More information

Effect of the magnetic resonance on the electronic spectra of high-t c superconductors

Effect of the magnetic resonance on the electronic spectra of high-t c superconductors Effect of the magnetic resonance on the electronic spectra of high- c superconductors M. Eschrig 1, and M.. Norman 1 1 Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439 Institut

More information

Universal Features of the Mott-Metal Crossover in the Hole Doped J = 1/2 Insulator Sr 2 IrO 4

Universal Features of the Mott-Metal Crossover in the Hole Doped J = 1/2 Insulator Sr 2 IrO 4 Universal Features of the Mott-Metal Crossover in the Hole Doped J = 1/2 Insulator Sr 2 IrO 4 Umesh Kumar Yadav Centre for Condensed Matter Theory Department of Physics Indian Institute of Science August

More information

Superconducting fluctuations, interactions and disorder : a subtle alchemy

Superconducting fluctuations, interactions and disorder : a subtle alchemy Les défis actuels de la supraconductivité Dautreppe 2011 Superconducting fluctuations, interactions and disorder : a subtle alchemy Claude Chapelier, Benjamin Sacépé, Thomas Dubouchet INAC-SPSMS-LaTEQS,

More information

Metals: the Drude and Sommerfeld models p. 1 Introduction p. 1 What do we know about metals? p. 1 The Drude model p. 2 Assumptions p.

Metals: the Drude and Sommerfeld models p. 1 Introduction p. 1 What do we know about metals? p. 1 The Drude model p. 2 Assumptions p. Metals: the Drude and Sommerfeld models p. 1 Introduction p. 1 What do we know about metals? p. 1 The Drude model p. 2 Assumptions p. 2 The relaxation-time approximation p. 3 The failure of the Drude model

More information

Magnetism in correlated-electron materials

Magnetism in correlated-electron materials Magnetism in correlated-electron materials B. Keimer Max-Planck-Institute for Solid State Research focus on delocalized electrons in metals and superconductors localized electrons: Hinkov talk outline

More information

Advanced Spectroscopies of Modern Quantum Materials

Advanced Spectroscopies of Modern Quantum Materials Advanced Spectroscopies of Modern Quantum Materials The part about Advanced spectroscopies Some course goals: Better understand the link between experiment and the microscopic world of quantum materials.

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION DOI: 1.138/NMAT3449 Topological crystalline insulator states in Pb 1 x Sn x Se Content S1 Crystal growth, structural and chemical characterization. S2 Angle-resolved photoemission measurements at various

More information

Superconductivity and spin excitations in orbitally ordered FeSe

Superconductivity and spin excitations in orbitally ordered FeSe Superconductivity and spin excitations in orbitally ordered FeSe Andreas Kreisel, Brian M. Andersen Niels Bohr Institute, University of Copenhagen, 2100 København, Denmark Peter J. Hirschfeld Department

More information

Heavy Fermion systems

Heavy Fermion systems Heavy Fermion systems Satellite structures in core-level and valence-band spectra Kondo peak Kondo insulator Band structure and Fermi surface d-electron heavy Fermion and Kondo insulators Heavy Fermion

More information

arxiv:cond-mat/ v1 [cond-mat.supr-con] 14 May 1999

arxiv:cond-mat/ v1 [cond-mat.supr-con] 14 May 1999 arxiv:cond-mat/9905219v1 [cond-mat.supr-con] 14 May 1999 The pseudogap in high temperature superconductors: an experimental survey Tom Timusk and Bryan Statt Department of Physics and Astronomy, McMaster

More information

A BCS Bose-Einstein crossover theory and its application to the cuprates

A BCS Bose-Einstein crossover theory and its application to the cuprates A BCS Bose-Einstein crossover theory and its application to the cuprates Qijin Chen, Ioan Kosztin, Boldizsár Jankó, and K. Levin Citation: AIP Conf. Proc. 483, 22 (1999); doi: 10.1063/1.59579 View online:

More information

Lecture 22 Metals - Superconductivity

Lecture 22 Metals - Superconductivity Lecture 22: Metals (Review and Kittel Ch. 9) and Superconductivity I (Kittel Ch. 1) Resistence Ω Leiden, Netherlands - 1911.1 4.6 K g sample < 1-5 Ω Outline metals Recall properties (From lectures 12,

More information

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C3: CONDENSED MATTER PHYSICS

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C3: CONDENSED MATTER PHYSICS 2753 SECOND PUBLIC EXAMINATION Honour School of Physics Part C: 4 Year Course Honour School of Physics and Philosophy Part C C3: CONDENSED MATTER PHYSICS TRINITY TERM 2011 Wednesday, 22 June, 9.30 am 12.30

More information

Superconductivity. The Discovery of Superconductivity. Basic Properties

Superconductivity. The Discovery of Superconductivity. Basic Properties Superconductivity Basic Properties The Discovery of Superconductivity Using liquid helium, (b.p. 4.2 K), H. Kamerlingh Onnes found that the resistivity of mercury suddenly dropped to zero at 4.2 K. H.

More information

Residual Meissner effect and other pre-pairing phenomena in the cuprate superconductors. T. Domański

Residual Meissner effect and other pre-pairing phenomena in the cuprate superconductors. T. Domański Wrocław, 2 Oct. 2014 Residual Meissner effect and other pre-pairing phenomena in the cuprate superconductors T. Domański M. Curie-Skłodowska University, Lublin, Poland http://kft.umcs.lublin.pl/doman/lectures

More information

Transport through Andreev Bound States in a Superconductor-Quantum Dot-Graphene System

Transport through Andreev Bound States in a Superconductor-Quantum Dot-Graphene System Transport through Andreev Bound States in a Superconductor-Quantum Dot-Graphene System Nadya Mason Travis Dirk, Yung-Fu Chen, Cesar Chialvo Taylor Hughes, Siddhartha Lal, Bruno Uchoa Paul Goldbart University

More information

Photoelectron Spectroscopy

Photoelectron Spectroscopy Stefan Hüfner Photoelectron Spectroscopy Principles and Applications Third Revised and Enlarged Edition With 461 Figures and 28 Tables JSJ Springer ... 1. Introduction and Basic Principles 1 1.1 Historical

More information

Quantum Theory of Matter

Quantum Theory of Matter Quantum Theory of Matter Overview Lecture Derek Lee Imperial College London January 2007 Outline 1 Course content Introduction Superfluids Superconductors 2 Course Plan Resources Outline 1 Course content

More information

Scanning Tunnelling Microscopy Observations of Superconductivity

Scanning Tunnelling Microscopy Observations of Superconductivity Department of physics Seminar I a Scanning Tunnelling Microscopy Observations of Superconductivity Author: Tim Verbovšek Mentor: dr. Rok Žitko Co-Mentor: dr. Erik Zupanič Ljubljana, February 013 Abstract

More information

A brief Introduction of Fe-based SC

A brief Introduction of Fe-based SC Part I: Introduction A brief Introduction of Fe-based SC Yunkyu Bang (Chonnam National Univ., Kwangju, Korea) Lecture 1: Introduction 1. Overview 2. What is sign-changing s-wave gap : +/-s-wave gap Lecture

More information

Angle-resolved photoemission study of the iron-based superconductors PrFeAsO 1 y and BaFe 2 (As 1 x P x ) 2

Angle-resolved photoemission study of the iron-based superconductors PrFeAsO 1 y and BaFe 2 (As 1 x P x ) 2 Angle-resolved photoemission study of the iron-based superconductors PrFeAsO 1 y and BaFe (As 1 x P x ) Master Thesis Ichiro Nishi Department of Physics, Graduate School of Science, The University of Tokyo

More information

The Role of Charge Order in the Mechanism of High Temperature Superconductivity

The Role of Charge Order in the Mechanism of High Temperature Superconductivity The Role of Charge Order in the Mechanism of High Temperature Superconductivity Eduardo Fradkin Department of Physics University of Illinois at Urbana-Champaign Steven Kivelson, UCLA/Stanford Enrico Arrigoni,

More information

Signatures of the precursor superconductivity above T c

Signatures of the precursor superconductivity above T c Dresden, 18 April 2007 Signatures of the precursor superconductivity above T c T. DOMANSKI M. Curie-Skłodowska University, 20-031 Lublin, Poland http://kft.umcs.lublin.pl/doman Outline Outline Introduction

More information

Lecture: Introduction to ARPES. Xingjiang Zhou

Lecture: Introduction to ARPES. Xingjiang Zhou 2013/01/21-23 Hongkong Lecture: Introduction to ARPES The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer,

More information

Spin correlations in conducting and superconducting materials Collin Broholm Johns Hopkins University

Spin correlations in conducting and superconducting materials Collin Broholm Johns Hopkins University Spin correlations in conducting and superconducting materials Collin Broholm Johns Hopkins University Supported by U.S. DoE Basic Energy Sciences, Materials Sciences & Engineering DE-FG02-08ER46544 Overview

More information

5. Superconductivity. R(T) = 0 for T < T c, R(T) = R 0 +at 2 +bt 5, B = H+4πM = 0,

5. Superconductivity. R(T) = 0 for T < T c, R(T) = R 0 +at 2 +bt 5, B = H+4πM = 0, 5. Superconductivity In this chapter we shall introduce the fundamental experimental facts about superconductors and present a summary of the derivation of the BSC theory (Bardeen Cooper and Schrieffer).

More information

Visualization of atomic-scale phenomena in superconductors

Visualization of atomic-scale phenomena in superconductors Visualization of atomic-scale phenomena in superconductors Andreas Kreisel, Brian Andersen Niels Bohr Institute, University of Copenhagen, 2100 København, Denmark Peayush Choubey, Peter Hirschfeld Department

More information

Talk online at

Talk online at Talk online at http://sachdev.physics.harvard.edu Outline 1. CFT3s in condensed matter physics Superfluid-insulator and Neel-valence bond solid transitions 2. Quantum-critical transport Collisionless-t0-hydrodynamic

More information

Fermi Surface Reconstruction and the Origin of High Temperature Superconductivity

Fermi Surface Reconstruction and the Origin of High Temperature Superconductivity Fermi Surface Reconstruction and the Origin of High Temperature Superconductivity Mike Norman Materials Science Division Argonne National Laboratory & Center for Emergent Superconductivity Physics 3, 86

More information