THEORY OF HYPERBOLIC TWO-TEMPERATURE GENERALIZED THERMOELASTICITY

Size: px
Start display at page:

Download "THEORY OF HYPERBOLIC TWO-TEMPERATURE GENERALIZED THERMOELASTICITY"

Transcription

1 Materals Physcs Mechancs 40 (08) 58-7 Receed: February 3, 08 THEORY OF HYPERBOLIC TWO-TEMPERATURE GENERALIZED THERMOELASTICITY Hamdy M. Yussef,, Alaa A. El-Bary 3 Mathematcs Department, Faculty f Educatn, Alexra Unersty, Alexra, EGYPT Engneerng Mechancs Department, Faculty f Engnnerng, Umm Al-Quar Unersty, Makka, KSA 3 Basc Appled Scence Department, Arab Academy f Scence Technlgy, Alexra, EGYPT e-mal: yussefanne005@gmal.cm Abstract. Yussef mpred the generalzed thermelastcty base n tw dstnct temperatures; the cnducte temperature the thermdynamcs temperature whch cncde tgether when the heat supply anshes [, ]. Ths thery has ne paradx, where t ffers an nfnte speed f thermal wae prpagatn. S, ths wrk assumng a new cnsderatn f the tw types f temperature whch depends upn the acceleratn f the cnducte the thermal temperature. Ths wrk ntrduces the prf f the unqueness f the slutn, mreer, ne dmensnal numercal applcatn. Accrdng t the numercal result ths new mdel f thermelastcty ffers fnte speed f thermal wae mechancal wae prpagatn. Keywrds: elastcty, thermelastcty, hyperblc tw-temperature, fnte speed, wae prpagatn. Intrductn Duhamel was the frst t cnsder elastc prblems wth heat changes. Neumann re-dered the equatns btaned by Duhamel. Ths thery f uncupled thermelastcty cnssts f the heat equatn ndependent f mechancal effects, the equatn f mtn cntans the temperature, as a knwn functn. Danlskaya [3] was the frst wh sled a prblem n the cntext f the thery f uncupled thermelastcty wth unfrm heat, t was fr a halfspace subjected t a thermal shck. There are tw defects f ths thery. Ths thery states that the mechancal state f the elastc bdy des nt affect the temperature, whch s nt n accrd wth rght physcal experments. Secnd, the heat equatn beng parablc predcts an nfnte speed f prpagatn fr the temperature, whch agan cntradcts physcal bseratns. Bt [4] ntrduced the cupled thery f thermelastcty n whch the equatns f elastcty heat cnductn became cupled, that agree wth physcal experments, any change f the temperature ges a certan amunt f defrmatn n an elastc bdy ce ersa. The thery f cupled thermelastcty has pred useful fr many prblems. The gernng equatns f ths thery cntan the equatn f mtn, whch s a hyperblc partal dfferental equatn, f the equatn f energy cnseratn, whch s parablc. The nature f the heat equatn mples that f an elastc medum s extendng t nfnty subjected t a thermal r mechancal dsturbance, the effect wll fall nstantaneusly at nfnty, whch cntradcts physcal experments. Hence, a new equatn f energy wth hyperblc type s needed. Lrd Shulman [5] ntrduced the thery f generalzed thermelastcty wth ne 08, Peter the Great St. Petersburg Plytechnc Unersty 08, Insttute f Prblems f Mechancal Engneerng RAS

2 Thery f hyperblc tw-temperature generalzed thermelastcty 59 relaxatn tme fr the partcular case f an strpc bdy. Dhalwal Sheref [6] extended ths thery t nclude the anstrpc case. In ths thery, a mdfed law f heat cnductn ncludng bth the heat flux ts tme derate replaces the cnentnal Furer's law (Cattane's heat cnductn). The heat equatn asscated s hyperblc hence elmnates the paradx f nfnte speeds f prpagatn nherent n bth The secnd generalzatn f the cupled thery f elastcty s the thery f thermelastcty wth tw relaxatn tmes. Müller [7] n a reew f the thermdynamcs f thermelastc slds, suggested an entrpy prductn nequalty, wth the use f whch he cnsdered restrctns n a class f cnsttute equatns. Green Laws [8] prpsed a generalzatn f ths nequalty. Green Lndsay [9] gt an explct ersn f the cnsttute equatns. These equatns were btaned ndependently by Suhub [0]. Ths thery cntans tw parameters that act as relaxatn tmes. The classcal Furer's law f heat cnductn s nt satsfed f the medum under cnsderatn has a center f symmetry. Chen Gurtn [], Chen et al. [, 3] hae cnstructed a thery f heat cnductn n defrmable bdes, whch depends upn tw dfferent temperatures, the cnducte temperature, the thermdynamc temperature. Fr tme-ndependent stuatns, the dfference between these tw temperatures s prprtnal t the heat supply. In the absence f the heat supply, the tw temperatures are dentcal. Fr tme-dependent prblems, hweer, fr wae prpagatn prblems n partcular, the tw temperatures are n general dfferent regardless f the presence f heat supply. The thermdynamc temperature, cnducte temperature, the stran are fund t hae representatns n the frm f a traelng wae plus a respnse, whch happen nstantaneusly thrughut the bdy [4]. Warren Chen [5] nestgated the wae prpagatn n the tw-temperature thery f thermelastcty. Yussef [] ntrduced a new thery f tw-temperature generalzed thermelastcty wth the general unqueness therem fr the bundary mxed ntal alue prblems n ths thery. Yussef cnstructed a new thery f tw-temperature generalzed thermelastcty thery fr the hmgeneus strpc bdy wthut energy dsspatn; he presented the general unqueness thery fr the ntal mxed bundary alue prblems n ths thery [], he dered ts aratnal prncple [6].. Basc Equatns The gernng equatns f an strpc hmgeneus thermelastc medum, as prpsed by Lrd Shulman are [5]: The equatn f mtn σ j, j + F = ρ u, () where σ j s the stress tensr, F s the bdy frce cmpnents, ρ s the densty, u s the dsplacement cmpnents. The cnsttute relatn s: σ = µ e +λe δ γ T T δ, () j j kk j 0 j where γ= ( 3λ+ µ ) α T are the cuplng parameters, T s the dynamcal temperature T 0 beng the reference temperature, e j s the stran tensr λ µ are the elastc cnstants f the materal. The defrmatn ej = ( u, j + uj, ). (3) The nn-furer heat cnductn

3 60 Hamdy M. Yussef, Alaa A. El-Bary q q +t = Kφ, (4), t where φ s the cnducte temperature. Mreer, we hae ρ C T +γ Te = q, (5) E 0 kk, where K s the thermal cnductty, q s the heat flux cmpnents, heat wth cnstant stran. The ncrement f the entrpy η satsfes the fllwng equatns:, 0 CE s the specfc q = ρt η, (6) ρt η= ρc T + T γ e. (7) 0 E 0 j j Equatns (4), (6) (7) frmulate the heat cnductn equatns as prpsed by Yussef [] n the frm: Kφ =, +t ( ρ C T+γTe E 0 kk ), (8) t t φ T= aφ, (9), where a 0s called the tw-temperature parameter, whle,j,k =,,3 are the ndeces fr any general c-rdnates n 3-dmensns. 3. One-Dmensnal Generalzed Thermelastc Half-Space (Classcal Tw- Temperature) Wthut lsng the generalty, we wll cnsder ne-dmensnal strpc hmgeneus thermelastc medum ccupes the half-space x 0, ths medum s at rest n the undefrmed state at zer tme wth unfrm temperature T 0. When t > 0, the bundary x = 0f the half-space subjected t a unfrmly dstrbuted tme-dependent stran temperature, then, the gernng equatns take the fllwng frms: e T e ( λ+ µ ) γ = ρ, x x t (0) φ K = +t ( ρ C T+γTe E 0 ), x t t () φ φ T= a, () x σ= ( λ+ µ ) e γ( T T 0 ), (3) u e =. x (4) The bundary the ntal cndtns are T( x,0) =φ ( x,0) = e( x,0) = T ( x,0) =φ ( x,0) = e ( x,0) = 0, (5) e 0, t = e t, φ 0, t =φ t. (6)

4 Thery f hyperblc tw-temperature generalzed thermelastcty 6 Fr smplcty, use the fllwng nn-dmensnal arables; T T φ T 0 0 σ λ+ µ x,u = c η x,u, t, t = c η t, t, θ=, φ =, σ =, c =, T T λ+ µ ρ ρc E η=. K Hence, e θ e e =, x x t 0 0 (7) (8) φ = +t ( θ+e e ), x t t (9) φ φ θ=β, x (0) σ= e eθ, () γt0 γ where ε =, ε =, β= c λ+ µ η a, ε 0, ε 0, β 0. c η Takng the Laplace transfrm fr the bth sdes f the equatns (8)-() as fllws: ( s) = f ( t) 0 st f e dt. () Hence, de dθ e = s e, (3) dx dx ( s s )( e ) d φ = +τ θ+e, (4) dx d φ φ θ=β, (5) dx σ= e eθ, (6) du e =, dx (7) e 0,s = e s, φ 0,s =φ s. (8) de Elmnatng θ frm equatns (3)-(5), then =α φ+α 3e, (9) dx d φ =α φ+e α e, (30) dx where s+τs αε( βα) s αεε( βα) α =, α = α 3 =. +β ( s+τs ) [ βαεε] [ βαee]

5 6 Hamdy M. Yussef, Alaa A. El-Bary By slng the system n (9) (30), the general slutn wll be as fllws: kx kx e = a φ,e,k,k e + a φ,e,k,k e, (3) φ= b φ,e,k,k kx e + b φ,e,k,k kx e. (3) By usng equatns (5) (3), we btan kx kx k b,e,k,k e θ= b φ + bk b φ,e,k,k e, (33) ( ) ( ) ( ) ( ) where ± k ± k are the rts f the fllwng characterstc equatn k α+α k +αα εαα = 0. (34) By slng the abe algebrac equatn, then ( α +α 3) + ( α +α3) 4 αα3 εαα k =, k ( α +α3) ( α +α3) 4 αα3 εαα =. Fr small alues f tme t, ths crrespnds t a large alue f s Taylr expansn; the fllwng cases wll be dscussed. s by usng 4. One-Temperature Mdel (Lrd-Shulman) T get Lrd-Shulman mdel, β= 0 s, the rts f the characterstc equatn wll be n the fllwng frm s k, = + Q, ( ε, ε, τ ) + O V, s. (35) Mreer, the speeds f the waes are: V, =, (36) +τ +eet ± Ψ where Ψ =εετ + εετ + εετ +τ τ +. (37) Equatn (36) shws that the slutns hae tw waes prpagated wth speed V V ( V < V). V s the speed prpagatn f the mechancal wae V s the speed prpagatn f the thermal wae, the medum has n dsturbance fr whch x > tv wth the fllwng cases: Case (.): τ 0. When τ 0, then, V V as n equatn (36), n ths case, the mechancal the thermal waes prpagate wth fnte speeds whch depend n the materal prpertes, where Lrd Shulman gt that results n the generalzed thermelastcty thery [5]. Case (.): τ = 0. When τ = 0, then, V V, hence, nly the mechancal wae prpagates wth fnte speed, ths speed s cnstant ndependent n the materal prpertes, whle the thermal wae prpagates wth nfnte speed ths case s called cupled thermelastcty r Bt's mdel [4].

6 Thery f hyperblc tw-temperature generalzed thermelastcty 63 Case (.3): ε = 0 τ 0. When ε = 0, then, V V, n ths case, the mechancal wae τ prpagates wth fnte speed that s cnstant desn't depend n the materal prpertes, the thermal wae prpagates wth fnte speed depends n the relaxatn tme nly whch s called uncupled thermelastcty. 5. Classcal Tw-Temperature Mdel T get the classcal tw-temperature thermelastcty mdel f Yussef (5), β 0 hence, the rts f the characterstc equatn f the system n (9) (30) lead t the fllwng cases: Case (.): τ 0 r τ = 0. Fr any alue f τ, then, V +εε V, n ths case, nly the mechancal wae prpagates wth fnte speed depends n the materal prpertes whle the thermal wae prpagates wth nfnte speed. Als, the tw-temperature parameter β des nt affect the speed f the thermal r the mechancal wae prpagatn. Case (.): ε = 0. When ε = 0, then, V V, whch s equalent t the case (.). S, the classcal tw-temperature mdel f thermelastcty Yussef (5) presents nt a perfect mdel, where t generates the nfnte speed f thermal wae prpagatn as the uncupled thermelastcty. 6. Hyperblc Tw-Temperature Generalzed Thermelastcty Thery Accrdng t the results n case (), anther frm fr tw-temperature thermelastcty generates t thermal cnducte heat waes prpagatng wth fnte speed s needed. Nw, defne φ as the acceleratn f the cnducte heat, T as the acceleratn f the dynamcal heat. Assumng the dfference between φ T s the prprtn f the heat supples,.e. φ T = c φ, (38), where c (dstance/tme) s cnstant. Defntn "The cnstant c s equal t the dfference between the acceleratn f the cnducte temperature the acceleratn f the thermal temperature when the heat supply s a unt." T apply the last equatn n the abe ne-dmensnal prblem, we hae t use the dmensnless n (8). Hence we hae φ φ T =β x, (39) c where β = s the dmensnless f the hyperblc tw-temperature parameter. c Then, s k, = + Q, ( ε, ε, τ, β ) + O (40) V, s

7 64 Hamdy M. Yussef, Alaa A. El-Bary V, = +βτ +eeβτ +β τ +e e t +τ ± Ψ, (4) where Ψ = τ + e e t +τ +ε ε τ + ε ε τ β ε ε τ β τ + β τ +β τ. (4) Equatn (4) shws that the slutns hae tw waes prpagatng wth speed V ( V V) < gen by (4), where V V s the speed prpagatn f the mechancal wae, V s the speed prpagatn f the thermal wae, the medum has n dsturbance fr whch x > tv wth the fllwng cases: Case (3.): β 0 τ 0. When β 0 τ 0 then, V V as n equatn (4), n ths case, the mechancal the thermal waes prpagate wth fnte speeds whch depend n the materal prpertes, whch agree wth Lrd Shulman n case (.). Nw, the hyperblc tw-temperature parameter β effects n the speed f the thermal the mechancal wae prpagatn. Case (3.): β 0 τ = 0. When β 0 τ = 0, V V, n ths case, nly the mechancal wae prpagates wth fnte speed ths speed s cnstant ndependent n the materal prpertes, whle the thermal wae prpagates wth nfnte speed, ths case s equalent t cases (.) (.). Case (3.3): β 0, τ 0 ε = 0. When β 0, τ 0 ε = 0, then, V V β +. τ In ths case, the mechancal wae prpagates wth fnte speed that s cnstant desn't depend n the materal prpertes, the thermal wae prpagates wth fnte speed depends n the relaxatn tme the hyperblc tw-temperature parameter, t agrees wth the case (.3). Case (3.4): β = 0 τ 0. When β = 0 τ 0, then, V = V V = V, whch s equalent t the case (.) agree wth Lrd-Shulman results [3]. Case (3.5): β = 0, τ 0 ε = 0. When β = τ 0 0, 0 ε =, then, V V, n ths case, the τ mechancal wae prpagates wth fnte speed s cnstant desn't depend n the materal prpertes, whle the thermal wae prpagates wth fnte speed depends n the relaxatn tme nly. Ths case s equalent t the case (.3) f the uncupled thermelastcty. Case (3.6): β = 0 τ = 0. When β = 0 τ = 0, then, V V, n ths case, nly the mechancal wae prpagates wth fnte speed, ths speed s cnstant ndependent n the materal prpertes, whle the thermal wae prpagates wth nfnte speed ths case s equalent t the case (.) r Bt mdel.

8 Thery f hyperblc tw-temperature generalzed thermelastcty Unqueness Therem Let V be an pen regular regn f space wth bundary S ccuped by the reference cnfguratn f a hmgeneus strpc lnear thermelastc sld. S s assumed clsed bunded. Supplement the equatns f tw temperature-generalzed thermelastcty ()-(8) (38) by prescrbed bundary cndtns []: u = u n S [ 0, ), (43) p = p =σjn j n S S [ 0, ), (44) φ =φ θ =θ n S [ 0, ), (45) where S S superpsed " " dentes the prescrbed alues n arbtrary subsets f S ther cmplements. Als, the ntal cndtns as fllws: u = u, u = u, ϕ=ϕ =θ=θ, φ=θ= 0 n V[0, ) at t = 0 (46) Therem: Gen a regular regn f space V+S wth bundary S then there exsts at mst ne set f sngle-alued functns σ j ( x k, t) ej ( x k, t) wth f C (), u ( x k, t), φ ( x k, t) T ( x k, t) f class C () n V+S, t 0 whch satsfy the equatns ()-(8) (38) the cndtns (43)-(46) where K,C E, λµγ,,,t, ρ,c τ all are pste. Prf: Let there be tw sets f functns (I) (II) (I) (II) (I) (II) σ =σ σ, e = e e, φ=φ φ (I) σj σ, (II) j (I) ej (II) e j etc. let j j j j j j etc. By the lnearty f the prblem, t s clear that these dfferences als satsfy the equatns mentned abe mreer, bth knematc statc bundary cndtns are equal t zer (wth F = Q= 0 ), hmgeneus cunterparts f cndtns (43)-(46), : namely they satsfy the fllwng feld equatns n V ( 0, ) σ = j, j ρ u, (47) σ j = µ ej + ( λekk γθ) δ j, (48) q + τ q = - K φ,, (49) q, = - ρt0η (50) ρt 0η= ρc Eθ+ T 0γ j ej, (5) K φ, = ρce ( θ + τ 0 θ) + γ T0 ( e kk +τ ekk ) (5) φ θ= c φ (53) e = ½ u, ( u ) j, j j, +, (54) wth the bundary the ntal cndtns n (43)-(46). Fr smplcty, the wae par has been mtted. Nw, cnsder the ntegral σ e d = σ u d = σ u d. (59) j j j, j j, j Upn nsertng equatn (47), the latter equatn reduced t e d + ρu u d. (60) ( σj j ) = 0

9 66 Hamdy M. Yussef, Alaa A. El-Bary Usng the equatn (48), hence µ e + λd e γ θd e + ρu u d. (6) [( j j kk j ) j ] = 0 It culd be wrtten as fllws: d ρuu e kk e j e j d e kk d 0 dt λ +µ + γθ =. (6) Substtutng fr e kk frm equatn (5), then d ρuu ρce T0 ekk ej ej d K, d dt λ +µ + + θ T θφ 0 (63) + t ρc θθ d +γ T t θ e d = 0. E 0 kk Frm the well-knwn nequalty q q 0. (64), By usng equatn (49), then K q φ d +τ q q d 0, (65),,, whch ges K q φ d τ qq d 0. (66),,, Insertng equatns (50) (5) n the last equatn, hence K θφ d + τ ρc θθ d + γ T τ θ e d 0. (67), E 0 kk Fnally, frm equatns (63) (67), we btan d ρuu ρce e kk e j e j d 0 dt λ +µ + + θ. (68) T 0 The ntegral n the left-h sde f (68) s ntally zer snce the dfference functns satsfy hmgeneus ntal cndtns. By nequalty (68), hweer, ths ntegral ether decreases (r therefre becmes negate) r remans equal t zer. Snce the ntegral s the sum f squares, nly the latter alternate s pssble, that s ρu u ρc E λ e kk + µ ej ej + + θ d = 0, t 0. (69) T 0 It fllws that the dfferent functns are dentcally zer thrughut the bdy fr all tme ths cmpletes the prf f the therem. 8. Numercal Applcatn T get the numercal result whch ncludes the three mdels f thermelastcty; ne temperature f L-S; classcal tw-temperature mdel the hyperblc tw-temperature mdel, then the ceffcents f the gernng equatns (9) (30) wll be n the frm s+τs αε( Ωα) s αεε ( Ωα) α =, α = α 3 =. (7) +Ω ( s+τs ) [ Ωαεε] [ Ωαee] where 0 fr ne temperature Ω= b fr classcal tw temperature. (73) b / s fr hyperblc tw temperature

10 Thery f hyperblc tw-temperature generalzed thermelastcty 67 Assume the thermal shck prblem as fllws: e 0, t = e t = 0, φ 0, t =φ t =ϕ H t, (74) 0 where H( t) s the Heasde unt step functn ϕ0 s the thermal shck ntensty? By usng Laplace transfrm, then ϕ0 e ( 0,s) = e( s) = 0, φ ( 0,s) =φ ( s) =. (75) s Hence, the slutns n the Laplace transfrm dman n the frms: αϕ kx kx e ( x,s) = e e s k k, (76) ( ) ϕ φ ( x,s) = k α e k α e s k ( ) kx kx 3 3 k ϕ kx ( )( 3) ( )( 3) ( k) kx ( α e ( Ωk )( k α )) e 3 ( ) α e( Ω )( α3) θ x,s = Ωk k α e Ωk k α e s k, (77) k x, (78) ϕ s ( x,s) =, (79) s k k kx ( k k ) e αϕ kx kx u( x,s) = k e ke sk k k k. (80) T nert the Laplace transfrms, we adpt a numercal nersn methd based n a Furer seres expansn [7]. By ths methd, the nerse (t) f s s apprxmated by f f the Laplace transfrm t N e kp kpt f ( t) = f ( ) + Re f + exp, 0 < t < t, t k= t t (8) where N s a suffcently large nteger representng the number f terms n the truncated Furer seres, chsen such that Np Npt exp( t) Re f + exp e, (8) t t where e s a prescrbed small pste number that crrespnds t the degree f accuracy requred. The parameter s a pste free parameter that must be greater than the real part f all the sngulartes f f ( s). The ptmal chce f was btaned accrdng t the crtera descrbed n [7]. The cpper materal was chsen fr purpses f numercal ealuatns, the cnstants f the prblem were taken as fllwng []: 5 K = 386 N/K.sec, α T =.78( 0) K, CE = 383.m / K, η = m / sec 0 0 m =3.86( 0) N / m, =7.76( 0) N / m ε =.6086, ε = , λ, 3 ρ = 8954kg / m, τ = 0.0 sec, T = 93 K, β= 0. β =.0 (Assumed).

11 68 Hamdy M. Yussef, Alaa A. El-Bary Fg.. The cnducte temperature dstrbutn Fg.. The therm-dynamcal temperature dstrbutn

12 Thery f hyperblc tw-temperature generalzed thermelastcty 69 Fg. 3. The stress dstrbutn Fg. 4. The dsplacement dstrbutn

13 70 Hamdy M. Yussef, Alaa A. El-Bary Fg. 5. The stran dstrbutn The Fgures -5 shw the cnducte temperature, the therm-dynamcal temperature, the stress, the dsplacement the stran dstrbutns respectely fr the three mdels; ne temperature mdel, classcal tw-temperature mdel, hyperblc tw-temperature mdel. In Fgures -3, the hyperblc tw-temperature mdel agrees wth ne temperature mdel, they ntrduce fnte speed f the cnducte temperature, the therm-dynamcal temperature, the stress waes prpagatn, whle t s nt n the classcal tw-temperature mdel. In Fgures 4 5, the hyperblc tw-temperature mdel agrees wth ne temperature mdel where the dsplacement the stran waes ansh befre the classcal twtemperature mdel. In Fgure 5, the peak pnts f the stran are clsed n the tw cases f the netemperature mdel the hyperblc tw-temperature mdel, whle the peak pnt f the classcal tw-temperature mdel has a dfferent alue far frm the thers peak pnt. 9. Cnclusn - The classcal tw-temperature generalzed thermelastcty mdel Yussef [] des nt ntrduce fnte speed f the thermal wae prpagatn whch s physcally unacceptable. - Ths wrk ntrduces hyperblc tw-temperature generalzed thermelastcty mdel n whch the thermal wae prpagatn has a fnte speed. 3- The tw-temperature parameter has sgnfcant effects n all the studed felds fr the hyperblc tw-temperature generalzed thermelastcty mdel the classcal twtemperature generalzed thermelastcty mdel. 4- The numercal results f all the studed felds shw that, the therm-mechancal waes f the hyperblc tw-temperature generalzed thermelastcty mdel the netemperature generalzed thermelastcty hae the same atttude. 5- The hyperblc tw-temperature generalzed thermelastcty mdel s a successful mdel t study the behar f the thermelastc materals. Acknwledgements. N external fundng was receed fr ths study.

14 Thery f hyperblc tw-temperature generalzed thermelastcty 7 References [] Yussef HM. Thery f tw-temperature-generalzed thermelastcty. IMA jurnal f appled mathematcs. 006;7: [] Yussef HM. Thery f tw-temperature thermelastcty wthut energy dsspatn. Jurnal f Thermal Stresses. 0;34: [3] Danlskaya V. Thermal stresses n an elastc half-space due t a sudden heatng f ts bundary. Prkl Mat Mekh. 950;4: [4] Bt MA. Thermelastcty Irreersble Thermdynamcs. Jurnal f Appled Physcs. 956;7: [5] Lrd HW, Shulman Y. A generalzed dynamcal thery f thermelastcty. Jurnal f the Mechancs Physcs f Slds. 967;5: [6] Dhalwal RS, Sheref HH. Generalzed thermelastcty fr anstrpc meda. Quarterly f Appled Mathematcs. 980;38:-8. [7] Müller I. The cldness, a unersal functn n thermelastc bdes. Arche fr Ratnal Mechancs Analyss. 97;4: [8] Green AE, Laws N. On the entrpy prductn nequalty. Arche fr Ratnal Mechancs Analyss. 97;45: [9] Green AE, Lndsay KA. Thermelastcty. Jurnal f Elastcty. 97;:-7. [0] Erngen AC, Şuhub ES. Elastdynamcs: Lnear Thery. New Yrk:Academc Press; 975. [] Chen PJ, Gurtn ME. On a thery f heat cnductn nlng tw temperatures. Zetschrft für Angewte Mathematk und Physk (ZAMP). 968;9: [] Chen PJ, Gurtn ME, Wllams WO. On the thermdynamcs f nn-smple elastc materals wth tw temperatures. Zetschrft für angewte Mathematk und Physk (ZAMP). 969;0:07-. [3] Chen PJ, Wllams WO. A nte n nn-smple heat cnductn. Zetschrft für angewte Mathematk und Physk (ZAMP). 968;9: [4] Bley BA, Tlns IS. Transent cupled thermelastc bundary alue prblems n the half-space. Jurnal f Appled Mechancs. 96;9: [5] Warren WE, Chen PJ. Wae prpagatn n the tw temperature thery f thermelastcty. Acta Mechanca. 973;6:-33. [6] Yussef HM. Varatnal Prncple f Tw-Temperature Thermelastcty wthut Energy Dsspatn. Jurnal f Thermelastcty. 03;:3. [7] Hng G, Hrdes U. A methd fr the numercal nersn f Laplace transfrms. Jurnal f Cmputatnal Appled Mathematcs. 984;0:3-3.

Transient Conduction: Spatial Effects and the Role of Analytical Solutions

Transient Conduction: Spatial Effects and the Role of Analytical Solutions Transent Cnductn: Spatal Effects and the Rle f Analytcal Slutns Slutn t the Heat Equatn fr a Plane Wall wth Symmetrcal Cnvectn Cndtns If the lumped capactance apprxmatn can nt be made, cnsderatn must be

More information

A New Method for Solving Integer Linear. Programming Problems with Fuzzy Variables

A New Method for Solving Integer Linear. Programming Problems with Fuzzy Variables Appled Mathematcal Scences, Vl. 4, 00, n. 0, 997-004 A New Methd fr Slvng Integer Lnear Prgrammng Prblems wth Fuzzy Varables P. Pandan and M. Jayalakshm Department f Mathematcs, Schl f Advanced Scences,

More information

Conduction Heat Transfer

Conduction Heat Transfer Cnductn Heat Transfer Practce prblems A steel ppe f cnductvty 5 W/m-K has nsde and utsde surface temperature f C and 6 C respectvely Fnd the heat flw rate per unt ppe length and flux per unt nsde and per

More information

Chapter 7. Systems 7.1 INTRODUCTION 7.2 MATHEMATICAL MODELING OF LIQUID LEVEL SYSTEMS. Steady State Flow. A. Bazoune

Chapter 7. Systems 7.1 INTRODUCTION 7.2 MATHEMATICAL MODELING OF LIQUID LEVEL SYSTEMS. Steady State Flow. A. Bazoune Chapter 7 Flud Systems and Thermal Systems 7.1 INTODUCTION A. Bazune A flud system uses ne r mre fluds t acheve ts purpse. Dampers and shck absrbers are eamples f flud systems because they depend n the

More information

Mode-Frequency Analysis of Laminated Spherical Shell

Mode-Frequency Analysis of Laminated Spherical Shell Mde-Frequency Analyss f Lamnated Sphercal Shell Umut Tpal Department f Cvl Engneerng Karadenz Techncal Unversty 080, Trabzn, Turkey umut@ktu.edu.tr Sessn ENG P50-00 Abstract Ths paper deals wth mde-frequency

More information

CTN 2/23/16. EE 247B/ME 218: Introduction to MEMS Design Lecture 11m2: Mechanics of Materials. Copyright 2016 Regents of the University of California

CTN 2/23/16. EE 247B/ME 218: Introduction to MEMS Design Lecture 11m2: Mechanics of Materials. Copyright 2016 Regents of the University of California Vlume Change fr a Unaxal Stress Istrpc lastcty n 3D Istrpc = same n all drectns The cmplete stress-stran relatns fr an strpc elastc Stresses actng n a dfferental vlume element sld n 3D: (.e., a generalzed

More information

Spring 2002 Lecture #17

Spring 2002 Lecture #17 1443-51 Sprng 22 Lecture #17 r. Jaehn Yu 1. Cndtns fr Equlbrum 2. Center f Gravty 3. Elastc Prpertes f Slds Yung s dulus Shear dulus ulk dulus Tday s Hmewrk Assgnment s the Hmewrk #8!!! 2 nd term eam n

More information

Dimensional Analysis.

Dimensional Analysis. Dmensnal nalyss. Unts, r hw we chse t measure magntudes f quanttes such as sze, temperature, r mass are nt requred fr laws f nature t functn prperly. Snce equatns f mmentum, energy, and mass cnseratn are

More information

ME2142/ME2142E Feedback Control Systems. Modelling of Physical Systems The Transfer Function

ME2142/ME2142E Feedback Control Systems. Modelling of Physical Systems The Transfer Function Mdellng Physcal Systems The Transer Functn Derental Equatns U Plant Y In the plant shwn, the nput u aects the respnse the utput y. In general, the dynamcs ths respnse can be descrbed by a derental equatn

More information

2 Analysis of the non-linear aerodynamic loads of hypersonic flow. 1 General Introduction

2 Analysis of the non-linear aerodynamic loads of hypersonic flow. 1 General Introduction 4 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES PRELIMINARY STUDY OF NON-LINEAR AEROELASTIC PHENOMENA IN HYPERSONIC FLOW Zhang Wewe, Ye Zhengyn, Yang Yngnan Cllege f Aernautcs, Nrthwestern Plytechncal

More information

Chapter 3, Solution 1C.

Chapter 3, Solution 1C. COSMOS: Cmplete Onlne Slutns Manual Organzatn System Chapter 3, Slutn C. (a If the lateral surfaces f the rd are nsulated, the heat transfer surface area f the cylndrcal rd s the bttm r the tp surface

More information

V. Electrostatics Lecture 27a: Diffuse charge at electrodes

V. Electrostatics Lecture 27a: Diffuse charge at electrodes V. Electrstatcs Lecture 27a: Dffuse charge at electrdes Ntes by MIT tudent We have talked abut the electrc duble structures and crrespndng mdels descrbng the n and ptental dstrbutn n the duble layer. Nw

More information

Chapter 6 : Gibbs Free Energy

Chapter 6 : Gibbs Free Energy Wnter 01 Chem 54: ntrductry hermdynamcs Chapter 6 : Gbbs Free Energy... 64 Defntn f G, A... 64 Mawell Relatns... 65 Gbbs Free Energy G(,) (ure substances)... 67 Gbbs Free Energy fr Mtures... 68 ΔG f deal

More information

Lecture 12. Heat Exchangers. Heat Exchangers Chee 318 1

Lecture 12. Heat Exchangers. Heat Exchangers Chee 318 1 Lecture 2 Heat Exchangers Heat Exchangers Chee 38 Heat Exchangers A heat exchanger s used t exchange heat between tw fluds f dfferent temperatures whch are separated by a sld wall. Heat exchangers are

More information

Physic 231 Lecture 33

Physic 231 Lecture 33 Physc 231 Lecture 33 Man pnts f tday s lecture: eat and heat capacty: Q cm Phase transtns and latent heat: Q Lm ( ) eat flw Q k 2 1 t L Examples f heat cnductvty, R values fr nsulatrs Cnvectn R L / k Radatn

More information

_J _J J J J J J J J _. 7 particles in the blue state; 3 particles in the red state: 720 configurations _J J J _J J J J J J J J _

_J _J J J J J J J J _. 7 particles in the blue state; 3 particles in the red state: 720 configurations _J J J _J J J J J J J J _ Dsrder and Suppse I have 10 partcles that can be n ne f tw states ether the blue state r the red state. Hw many dfferent ways can we arrange thse partcles amng the states? All partcles n the blue state:

More information

Design of Analog Integrated Circuits

Design of Analog Integrated Circuits Desgn f Analg Integrated Crcuts I. Amplfers Desgn f Analg Integrated Crcuts Fall 2012, Dr. Guxng Wang 1 Oerew Basc MOS amplfer structures Cmmn-Surce Amplfer Surce Fllwer Cmmn-Gate Amplfer Desgn f Analg

More information

Water vapour balance in a building moisture exposure for timber structures

Water vapour balance in a building moisture exposure for timber structures Jnt Wrkshp f COST Actns TU1 and E55 September 21-22 9, Ljubljana, Slvena Water vapur balance n a buldng msture expsure fr tmber structures Gerhard Fnk ETH Zurch, Swtzerland Jchen Köhler ETH Zurch, Swtzerland

More information

Circuits Op-Amp. Interaction of Circuit Elements. Quick Check How does closing the switch affect V o and I o?

Circuits Op-Amp. Interaction of Circuit Elements. Quick Check How does closing the switch affect V o and I o? Crcuts Op-Amp ENGG1015 1 st Semester, 01 Interactn f Crcut Elements Crcut desgn s cmplcated by nteractns amng the elements. Addng an element changes vltages & currents thrughut crcut. Example: clsng a

More information

Analytical Modeling of Natural Convection in Horizontal Annuli

Analytical Modeling of Natural Convection in Horizontal Annuli Analytcal Mdelng f Natural Cnvectn n Hrzntal Annul Peter Teertstra, M. Mchael Yvanvch, J. Rchard Culham Mcrelectrncs Heat Transfer Labratry Department f Mechancal Engneerng Unversty f Waterl Waterl, Ontar,

More information

XXIX CILAMCE November 4 th to 7 th, 2008 Maceió - Brazil

XXIX CILAMCE November 4 th to 7 th, 2008 Maceió - Brazil XXIX CILAMCE Nvember 4 th t 7 th, 8 Maceó - Bral ELECTROMAGNETIC SCATTERING PROBLEM SOLVED BY BOTH NODAL AND GALERKIN FEM-BEM APPROACHES M. M. Afns M. O. Schreder T. A. S. Olvera marcmatas@des.cefetmg.br

More information

Exploiting vector space properties for the global optimization of process networks

Exploiting vector space properties for the global optimization of process networks Exptng vectr space prpertes fr the gbal ptmzatn f prcess netwrks Juan ab Ruz Ignac Grssmann Enterprse Wde Optmzatn Meetng March 00 Mtvatn - The ptmzatn f prcess netwrks s ne f the mst frequent prblems

More information

Chem 204A, Fall 2004, Mid-term (II)

Chem 204A, Fall 2004, Mid-term (II) Frst tw letters f yur last name Last ame Frst ame McGll ID Chem 204A, Fall 2004, Md-term (II) Read these nstructns carefully befre yu start tal me: 2 hurs 50 mnutes (6:05 PM 8:55 PM) 1. hs exam has ttal

More information

14 The Boole/Stone algebra of sets

14 The Boole/Stone algebra of sets 14 The Ble/Stne algebra f sets 14.1. Lattces and Blean algebras. Gven a set A, the subsets f A admt the fllwng smple and famlar peratns n them: (ntersectn), (unn) and - (cmplementatn). If X, Y A, then

More information

CONVEX COMBINATIONS OF ANALYTIC FUNCTIONS

CONVEX COMBINATIONS OF ANALYTIC FUNCTIONS rnat. J. Math. & Math. S. Vl. 6 N. (983) 33534 335 ON THE RADUS OF UNVALENCE OF CONVEX COMBNATONS OF ANALYTC FUNCTONS KHALDA. NOOR, FATMA M. ALOBOUD and NAEELA ALDHAN Mathematcs Department Scence Cllege

More information

Concircular π-vector Fields and Special Finsler Spaces *

Concircular π-vector Fields and Special Finsler Spaces * Adances n Pure Matematcs 03 3 8-9 ttp://dx.d.rg/0.436/apm.03.3040 Publsed Onlne Marc 03 (ttp://www.scrp.rg/urnal/apm) Cncrcular π-vectr Felds and Specal Fnsler Spaces * Nabl L. Yussef Amr Sleman 3 Department

More information

An Extended Regular Solution Model with Local Volume Fraction

An Extended Regular Solution Model with Local Volume Fraction () An Etended Regular Slutn Mdel wth cal Vlume Fractn Shgetsh KOBUCHI, Ken ISHIGE (Department f Enrnmental Scence and Engneerng, Graduate Schl f Scence and Engneerng, Yamaguch Unersty) Setsuk YONEZAWA

More information

Faculty of Engineering

Faculty of Engineering Faculty f Engneerng DEPARTMENT f ELECTRICAL AND ELECTRONIC ENGINEERING EEE 223 Crcut Thery I Instructrs: M. K. Uygurğlu E. Erdl Fnal EXAMINATION June 20, 2003 Duratn : 120 mnutes Number f Prblems: 6 Gd

More information

CHAPTER 3 ANALYSIS OF KY BOOST CONVERTER

CHAPTER 3 ANALYSIS OF KY BOOST CONVERTER 70 CHAPTER 3 ANALYSIS OF KY BOOST CONERTER 3.1 Intrductn The KY Bst Cnverter s a recent nventn made by K.I.Hwu et. al., (2007), (2009a), (2009b), (2009c), (2010) n the nn-slated DC DC cnverter segment,

More information

Lucas Imperfect Information Model

Lucas Imperfect Information Model Lucas Imerfect Infrmatn Mdel 93 Lucas Imerfect Infrmatn Mdel The Lucas mdel was the frst f the mdern, mcrfundatns mdels f aggregate suly and macrecnmcs It bult drectly n the Fredman-Phels analyss f the

More information

Analysis The characteristic length of the junction and the Biot number are

Analysis The characteristic length of the junction and the Biot number are -4 4 The temerature f a gas stream s t be measured by a thermule. The tme t taes t regster 99 erent f the ntal ΔT s t be determned. Assumtns The juntn s sheral n shae wth a dameter f D 0.00 m. The thermal

More information

55:041 Electronic Circuits

55:041 Electronic Circuits 55:04 Electrnc Crcuts Feedback & Stablty Sectns f Chapter 2. Kruger Feedback & Stablty Cnfguratn f Feedback mplfer S S S S fb Negate feedback S S S fb S S S S S β s the feedback transfer functn Implct

More information

PHY2053 Summer 2012 Exam 2 Solutions N F o f k

PHY2053 Summer 2012 Exam 2 Solutions N F o f k HY0 Suer 0 Ea Slutns. he ree-bdy dagra r the blck s N F 7 k F g Usng Newtn s secnd law r the -cnents F a F F cs7 k 0 k F F cs7 (0 N ( Ncs7 N he wrk dne by knetc rctn k r csθ ( N(6 cs80 0 N. Mechancal energy

More information

SIMULATION OF THREE PHASE THREE LEG TRANSFORMER BEHAVIOR UNDER DIFFERENT VOLTAGE SAG TYPES

SIMULATION OF THREE PHASE THREE LEG TRANSFORMER BEHAVIOR UNDER DIFFERENT VOLTAGE SAG TYPES SIMULATION OF THREE PHASE THREE LEG TRANSFORMER BEHAVIOR UNDER DIFFERENT VOLTAGE SAG TYPES Mhammadreza Dlatan Alreza Jallan Department f Electrcal Engneerng, Iran Unversty f scence & Technlgy (IUST) e-mal:

More information

Feedback Principle :-

Feedback Principle :- Feedback Prncple : Feedback amplfer s that n whch a part f the utput f the basc amplfer s returned back t the nput termnal and mxed up wth the nternal nput sgnal. The sub netwrks f feedback amplfer are:

More information

Problem Set 5 Solutions - McQuarrie Problems 3.20 MIT Dr. Anton Van Der Ven

Problem Set 5 Solutions - McQuarrie Problems 3.20 MIT Dr. Anton Van Der Ven Prblem Set 5 Slutns - McQuarre Prblems 3.0 MIT Dr. Antn Van Der Ven Fall Fall 003 001 Prblem 3-4 We have t derve the thermdynamc prpertes f an deal mnatmc gas frm the fllwng: = e q 3 m = e and q = V s

More information

element k Using FEM to Solve Truss Problems

element k Using FEM to Solve Truss Problems sng EM t Slve Truss Prblems A truss s an engneerng structure cmpsed straght members, a certan materal, that are tpcall pn-ned at ther ends. Such members are als called tw-rce members snce the can nl transmt

More information

Section 3: Detailed Solutions of Word Problems Unit 1: Solving Word Problems by Modeling with Formulas

Section 3: Detailed Solutions of Word Problems Unit 1: Solving Word Problems by Modeling with Formulas Sectn : Detaled Slutns f Wrd Prblems Unt : Slvng Wrd Prblems by Mdelng wth Frmulas Example : The factry nvce fr a mnvan shws that the dealer pad $,5 fr the vehcle. If the stcker prce f the van s $5,, hw

More information

The Multiple Classical Linear Regression Model (CLRM): Specification and Assumptions. 1. Introduction

The Multiple Classical Linear Regression Model (CLRM): Specification and Assumptions. 1. Introduction ECONOMICS 5* -- NOTE (Summary) ECON 5* -- NOTE The Multple Classcal Lnear Regresson Model (CLRM): Specfcaton and Assumptons. Introducton CLRM stands for the Classcal Lnear Regresson Model. The CLRM s also

More information

ON A DETERMINATION OF THE INITIAL FUNCTIONS FROM THE OBSERVED VALUES OF THE BOUNDARY FUNCTIONS FOR THE SECOND-ORDER HYPERBOLIC EQUATION

ON A DETERMINATION OF THE INITIAL FUNCTIONS FROM THE OBSERVED VALUES OF THE BOUNDARY FUNCTIONS FOR THE SECOND-ORDER HYPERBOLIC EQUATION Advanced Mathematcal Models & Applcatons Vol.3, No.3, 2018, pp.215-222 ON A DETERMINATION OF THE INITIAL FUNCTIONS FROM THE OBSERVED VALUES OF THE BOUNDARY FUNCTIONS FOR THE SECOND-ORDER HYPERBOLIC EUATION

More information

A Note on Equivalences in Measuring Returns to Scale

A Note on Equivalences in Measuring Returns to Scale Internatnal Jurnal f Busness and Ecnmcs, 2013, Vl. 12, N. 1, 85-89 A Nte n Equvalences n Measurng Returns t Scale Valentn Zelenuk Schl f Ecnmcs and Centre fr Effcenc and Prductvt Analss, The Unverst f

More information

A particle in a state of uniform motion remain in that state of motion unless acted upon by external force.

A particle in a state of uniform motion remain in that state of motion unless acted upon by external force. The fundamental prncples of classcal mechancs were lad down by Galleo and Newton n the 16th and 17th centures. In 1686, Newton wrote the Prncpa where he gave us three laws of moton, one law of gravty,

More information

Physics 5153 Classical Mechanics. Principle of Virtual Work-1

Physics 5153 Classical Mechanics. Principle of Virtual Work-1 P. Guterrez 1 Introducton Physcs 5153 Classcal Mechancs Prncple of Vrtual Work The frst varatonal prncple we encounter n mechancs s the prncple of vrtual work. It establshes the equlbrum condton of a mechancal

More information

6. ELUTRIATION OF PARTICLES FROM FLUIDIZED BEDS

6. ELUTRIATION OF PARTICLES FROM FLUIDIZED BEDS 6. ELUTRIATION OF PARTICLES FROM FLUIDIZED BEDS Elutratn s the prcess n whch fne partcles are carred ut f a fludzed bed due t the flud flw rate passng thrugh the bed. Typcally, fne partcles are elutrated

More information

CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE

CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE Analytcal soluton s usually not possble when exctaton vares arbtrarly wth tme or f the system s nonlnear. Such problems can be solved by numercal tmesteppng

More information

Boise State University Department of Electrical and Computer Engineering ECE 212L Circuit Analysis and Design Lab

Boise State University Department of Electrical and Computer Engineering ECE 212L Circuit Analysis and Design Lab Bose State Unersty Department of Electrcal and omputer Engneerng EE 1L rcut Analyss and Desgn Lab Experment #8: The Integratng and Dfferentatng Op-Amp rcuts 1 Objectes The objectes of ths laboratory experment

More information

In this section is given an overview of the common elasticity models.

In this section is given an overview of the common elasticity models. Secton 4.1 4.1 Elastc Solds In ths secton s gven an overvew of the common elastcty models. 4.1.1 The Lnear Elastc Sold The classcal Lnear Elastc model, or Hooean model, has the followng lnear relatonshp

More information

Monin Obukhov Similarity and Local-Free-Convection Scaling in the Atmospheric Boundary Layer Using Matched Asymptotic Expansions

Monin Obukhov Similarity and Local-Free-Convection Scaling in the Atmospheric Boundary Layer Using Matched Asymptotic Expansions OCTOBER 08 T O N G A N D D I N G 369 Mnn Obukhv Smlarty cal-free-cnvectn Scalng n the Atmspherc Bundary ayer Usng Matched Asympttc Expansns CHENNING TONG AND MENGJIE DING Department f Mechancal Engneerng

More information

Wp/Lmin. Wn/Lmin 2.5V

Wp/Lmin. Wn/Lmin 2.5V UNIVERITY OF CALIFORNIA Cllege f Engneerng Department f Electrcal Engneerng and Cmputer cences Andre Vladmrescu Hmewrk #7 EEC Due Frday, Aprl 8 th, pm @ 0 Cry Prblem #.5V Wp/Lmn 0.0V Wp/Lmn n ut Wn/Lmn.5V

More information

Introduction to Electronic circuits.

Introduction to Electronic circuits. Intrductn t Electrnc crcuts. Passve and Actve crcut elements. Capactrs, esstrs and Inductrs n AC crcuts. Vltage and current dvders. Vltage and current surces. Amplfers, and ther transfer characterstc.

More information

Linear Amplifiers and OpAmps

Linear Amplifiers and OpAmps Lnear Amplfers and OpAmps eferences: Barbw (pp 7-80), Hayes & Hrwtz (pp 63-40), zzn (Chapter ) Amplfers are tw-prt netwrks n whch the utput ltage r current s drectly prprtnal t ether nput ltage r current.

More information

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems Numercal Analyss by Dr. Anta Pal Assstant Professor Department of Mathematcs Natonal Insttute of Technology Durgapur Durgapur-713209 emal: anta.bue@gmal.com 1 . Chapter 5 Soluton of System of Lnear Equatons

More information

4DVAR, according to the name, is a four-dimensional variational method.

4DVAR, according to the name, is a four-dimensional variational method. 4D-Varatnal Data Assmlatn (4D-Var) 4DVAR, accrdng t the name, s a fur-dmensnal varatnal methd. 4D-Var s actually a smple generalzatn f 3D-Var fr bservatns that are dstrbuted n tme. he equatns are the same,

More information

Boise State University Department of Electrical and Computer Engineering ECE 212L Circuit Analysis and Design Lab

Boise State University Department of Electrical and Computer Engineering ECE 212L Circuit Analysis and Design Lab Bose State Unersty Department of Electrcal and omputer Engneerng EE 1L rcut Analyss and Desgn Lab Experment #8: The Integratng and Dfferentatng Op-Amp rcuts 1 Objectes The objectes of ths laboratory experment

More information

The Feynman path integral

The Feynman path integral The Feynman path ntegral Aprl 3, 205 Hesenberg and Schrödnger pctures The Schrödnger wave functon places the tme dependence of a physcal system n the state, ψ, t, where the state s a vector n Hlbert space

More information

CIRCLE YOUR DIVISION: Div. 1 (9:30 am) Div. 2 (11:30 am) Div. 3 (2:30 pm) Prof. Ruan Prof. Naik Mr. Singh

CIRCLE YOUR DIVISION: Div. 1 (9:30 am) Div. 2 (11:30 am) Div. 3 (2:30 pm) Prof. Ruan Prof. Naik Mr. Singh Frst CIRCLE YOUR DIVISION: Dv. 1 (9:30 am) Dv. (11:30 am) Dv. 3 (:30 m) Prf. Ruan Prf. Na Mr. Sngh Schl f Mechancal Engneerng Purdue Unversty ME315 Heat and Mass ransfer Eam #3 Wednesday Nvember 17 010

More information

BME 5742 Biosystems Modeling and Control

BME 5742 Biosystems Modeling and Control BME 5742 Bsystems Mdeln and Cntrl Cell Electrcal Actvty: In Mvement acrss Cell Membrane and Membrane Ptental Dr. Zv Rth (FAU) 1 References Hppensteadt-Peskn, Ch. 3 Dr. Rbert Farley s lecture ntes Inc Equlbra

More information

Linear Plus Linear Fractional Capacitated Transportation Problem with Restricted Flow

Linear Plus Linear Fractional Capacitated Transportation Problem with Restricted Flow Amercan urnal f Operatns Research,,, 58-588 Publshed Onlne Nvember (http://www.scrp.rg/urnal/ar) http://dx.d.rg/.46/ar..655 Lnear Plus Lnear Fractnal Capactated Transprtatn Prblem wth Restrcted Flw Kavta

More information

Nanoscale Heat Transfer using Phonon Boltzmann Transport Equation

Nanoscale Heat Transfer using Phonon Boltzmann Transport Equation Excerpt frm the Prceedngs f the COMSOL Cnference 9 Bstn Nanscale Heat Transfer usng Phnn Bltzmann Transprt Equatn Sangwk Shn *, and Ajt K. Ry Ar Frce Research Labratry, Unversty f Daytn Research nsttute

More information

Approach: (Equilibrium) TD analysis, i.e., conservation eqns., state equations Issues: how to deal with

Approach: (Equilibrium) TD analysis, i.e., conservation eqns., state equations Issues: how to deal with Schl f Aerspace Chemcal D: Mtvatn Prevus D Analyss cnsdered systems where cmpstn f flud was frzen fxed chemcal cmpstn Chemcally eactng Flw but there are numerus stuatns n prpulsn systems where chemcal

More information

Conservation of Energy

Conservation of Energy Cnservatn f Energy Equpment DataStud, ruler 2 meters lng, 6 n ruler, heavy duty bench clamp at crner f lab bench, 90 cm rd clamped vertcally t bench clamp, 2 duble clamps, 40 cm rd clamped hrzntally t

More information

The Operational Amplifier and Application

The Operational Amplifier and Application Intrductn t Electrnc Crcuts: A Desgn Apprach Jse Sla-Martnez and Marn Onabaj The Operatnal Amplfer and Applcatn The peratnal ltage amplfer (mre cmmnly referred t as peratnal amplfer) s ne f the mst useful

More information

Advances in Engineering Research (AER), volume 102 Second International Conference on Mechanics, Materials and Structural Engineering (ICMMSE 2017)

Advances in Engineering Research (AER), volume 102 Second International Conference on Mechanics, Materials and Structural Engineering (ICMMSE 2017) Secnd Internatnal Cnference n Mechancs, Materals and Structural Engneerng (ICMMSE 2017) Materal Selectn and Analyss f Ol Flm Pressure fr the Flatng Rng Bearng f Turbcharger Lqang PENG1, 2, a*, Hupng ZHENG2,

More information

Lecture Note 3. Eshelby s Inclusion II

Lecture Note 3. Eshelby s Inclusion II ME340B Elastcty of Mcroscopc Structures Stanford Unversty Wnter 004 Lecture Note 3. Eshelby s Incluson II Chrs Wenberger and We Ca c All rghts reserved January 6, 004 Contents 1 Incluson energy n an nfnte

More information

CHAPTER 6. LAGRANGE S EQUATIONS (Analytical Mechanics)

CHAPTER 6. LAGRANGE S EQUATIONS (Analytical Mechanics) CHAPTER 6 LAGRANGE S EQUATIONS (Analytcal Mechancs) 1 Ex. 1: Consder a partcle movng on a fxed horzontal surface. r P Let, be the poston and F be the total force on the partcle. The FBD s: -mgk F 1 x O

More information

Control of Program Motion of Dynamic Systems Using Relative Motions

Control of Program Motion of Dynamic Systems Using Relative Motions TECHNISCHE MECHANIK, Band 8, Heft 3-4, (8), - 8 Manuskrptengang: 5. Oktber 7 Cntrl f Prgram Mtn f Dynamc Systems Usng Relatve Mtns D Sanh, Dnh Van Phng, D Dang Kha, Tran Duc In ths paper, the prblem f

More information

Van der Waals-coupled electronic states in incommensurate double-walled carbon nanotubes

Van der Waals-coupled electronic states in incommensurate double-walled carbon nanotubes Kahu Lu* 1, Chenha Jn* 1, Xapng Hng 1, Jhn Km 1, Alex Zettl 1,2, Enge Wang 3, Feng Wang 1,2 Van der Waals-cupled electrnc states n ncmmensurate duble-walled carbn nantubes S1. Smulated absrptn spectra

More information

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix Lectures - Week 4 Matrx norms, Condtonng, Vector Spaces, Lnear Independence, Spannng sets and Bass, Null space and Range of a Matrx Matrx Norms Now we turn to assocatng a number to each matrx. We could

More information

WYSE Academic Challenge 2004 Sectional Physics Solution Set

WYSE Academic Challenge 2004 Sectional Physics Solution Set WYSE Acadec Challenge 004 Sectnal Physcs Slutn Set. Answer: e. The axu pssble statc rctn r ths stuatn wuld be: ax µ sn µ sg (0.600)(40.0N) 4.0N. Snce yur pushng rce s less than the axu pssble rctnal rce,

More information

A Pursuit Problem Described by Infinite System of Differential Equations with Coordinate-Wise Integral Constraints on Control Functions

A Pursuit Problem Described by Infinite System of Differential Equations with Coordinate-Wise Integral Constraints on Control Functions Malaysan Journal of Mathematcal Scences 9(1): 67-76 (15) MALAYSIAN JOURNAL OF MAHEMAICAL SCIENCES Journal homepage: http://enspem.upm.edu.my/journal A Pursut Problem Descrbed by Infnte System of Dfferental

More information

Difference Equations

Difference Equations Dfference Equatons c Jan Vrbk 1 Bascs Suppose a sequence of numbers, say a 0,a 1,a,a 3,... s defned by a certan general relatonshp between, say, three consecutve values of the sequence, e.g. a + +3a +1

More information

between standard Gibbs free energies of formation for products and reactants, ΔG! R = ν i ΔG f,i, we

between standard Gibbs free energies of formation for products and reactants, ΔG! R = ν i ΔG f,i, we hermodynamcs, Statstcal hermodynamcs, and Knetcs 4 th Edton,. Engel & P. ed Ch. 6 Part Answers to Selected Problems Q6.. Q6.4. If ξ =0. mole at equlbrum, the reacton s not ery far along. hus, there would

More information

Thermal-Fluids I. Chapter 18 Transient heat conduction. Dr. Primal Fernando Ph: (850)

Thermal-Fluids I. Chapter 18 Transient heat conduction. Dr. Primal Fernando Ph: (850) hermal-fluds I Chapter 18 ransent heat conducton Dr. Prmal Fernando prmal@eng.fsu.edu Ph: (850) 410-6323 1 ransent heat conducton In general, he temperature of a body vares wth tme as well as poston. In

More information

The lattice Boltzmann method as a basis for ocean circulation modeling

The lattice Boltzmann method as a basis for ocean circulation modeling Jurnal f Marne Research, 57, 503 535, 999 The lattce Bltzmann methd as a bass fr cean crculatn mdelng by Rck Salmn ABSTRACT We cnstruct a lattce Bltzmann mdel f a sngle-layer, reduced gravty cean n a square

More information

Econ107 Applied Econometrics Topic 3: Classical Model (Studenmund, Chapter 4)

Econ107 Applied Econometrics Topic 3: Classical Model (Studenmund, Chapter 4) I. Classcal Assumptons Econ7 Appled Econometrcs Topc 3: Classcal Model (Studenmund, Chapter 4) We have defned OLS and studed some algebrac propertes of OLS. In ths topc we wll study statstcal propertes

More information

The Two-scale Finite Element Errors Analysis for One Class of Thermoelastic Problem in Periodic Composites

The Two-scale Finite Element Errors Analysis for One Class of Thermoelastic Problem in Periodic Composites 7 Asa-Pacfc Engneerng Technology Conference (APETC 7) ISBN: 978--6595-443- The Two-scale Fnte Element Errors Analyss for One Class of Thermoelastc Problem n Perodc Compostes Xaoun Deng Mngxang Deng ABSTRACT

More information

FACTORIZATION IN KRULL MONOIDS WITH INFINITE CLASS GROUP

FACTORIZATION IN KRULL MONOIDS WITH INFINITE CLASS GROUP C O L L O Q U I U M M A T H E M A T I C U M VOL. 80 1999 NO. 1 FACTORIZATION IN KRULL MONOIDS WITH INFINITE CLASS GROUP BY FLORIAN K A I N R A T H (GRAZ) Abstract. Let H be a Krull monod wth nfnte class

More information

Thermodynamics of Materials

Thermodynamics of Materials Thermdynamcs f Materals 14th Lecture 007. 4. 8 (Mnday) FUGACITY dg = Vd SdT dg = Vd at cnstant T Fr an deal gas dg = (RT/)d = RT dln Ths s true fr deal gases nly, but t wuld be nce t have a smlar frm fr

More information

A HYDRAULIC OPEN LOOP SYSTEM FOR CONTROLLED EXCAVATION ALONG PRESCRIBED PATH. E. Bundy, W. Gutkowski

A HYDRAULIC OPEN LOOP SYSTEM FOR CONTROLLED EXCAVATION ALONG PRESCRIBED PATH. E. Bundy, W. Gutkowski A HYDRAULIC OPEN LOOP SYSTEM FOR CONTROLLED EXCAVATION ALONG PRESCRIBED PATH E. Bundy, W. Gutkwsk Insttute f Buldng Mechanzatn and Rck Mnng Ul.Racjnalzacj 6/8, 0-67 Warszawa Pland e-mal: eb@mbgs.rg.pl;wtld.gutkwsk@ppt.gv.pl

More information

Physics 5153 Classical Mechanics. D Alembert s Principle and The Lagrangian-1

Physics 5153 Classical Mechanics. D Alembert s Principle and The Lagrangian-1 P. Guterrez Physcs 5153 Classcal Mechancs D Alembert s Prncple and The Lagrangan 1 Introducton The prncple of vrtual work provdes a method of solvng problems of statc equlbrum wthout havng to consder the

More information

Module B3. VLoad = = V S V LN

Module B3. VLoad = = V S V LN Mdule B Prblem The -hase lads are cnnected n arallel. One s a urely resste lad cnnected n wye. t cnsumes 00kW. The secnd s a urely nducte 00kR lad cnnected n wye. The thrd s a urely caacte 00kR lad cnnected

More information

Linearity. If kx is applied to the element, the output must be ky. kx ky. 2. additivity property. x 1 y 1, x 2 y 2

Linearity. If kx is applied to the element, the output must be ky. kx ky. 2. additivity property. x 1 y 1, x 2 y 2 Lnearty An element s sad to be lnear f t satsfes homogenety (scalng) property and addte (superposton) property. 1. homogenety property Let x be the nput and y be the output of an element. x y If kx s appled

More information

Transfer Functions. Convenient representation of a linear, dynamic model. A transfer function (TF) relates one input and one output: ( ) system

Transfer Functions. Convenient representation of a linear, dynamic model. A transfer function (TF) relates one input and one output: ( ) system Transfer Functons Convenent representaton of a lnear, dynamc model. A transfer functon (TF) relates one nput and one output: x t X s y t system Y s The followng termnology s used: x y nput output forcng

More information

Dirichlet s Theorem In Arithmetic Progressions

Dirichlet s Theorem In Arithmetic Progressions Drchlet s Theorem In Arthmetc Progressons Parsa Kavkan Hang Wang The Unversty of Adelade February 26, 205 Abstract The am of ths paper s to ntroduce and prove Drchlet s theorem n arthmetc progressons,

More information

State-Space Model Based Generalized Predictive Control for Networked Control Systems

State-Space Model Based Generalized Predictive Control for Networked Control Systems Prceedngs f the 7th Wrld Cngress he Internatnal Federatn f Autmatc Cntrl State-Space Mdel Based Generalzed Predctve Cntrl fr Netwred Cntrl Systems Bn ang* Gu-Png Lu** We-Hua Gu*** and Ya-Ln Wang**** *Schl

More information

APPENDIX A Some Linear Algebra

APPENDIX A Some Linear Algebra APPENDIX A Some Lnear Algebra The collecton of m, n matrces A.1 Matrces a 1,1,..., a 1,n A = a m,1,..., a m,n wth real elements a,j s denoted by R m,n. If n = 1 then A s called a column vector. Smlarly,

More information

A/2 l,k. Problem 1 STRATEGY. KNOWN Resistance of a complete spherical shell: r rk. Inner and outer radii

A/2 l,k. Problem 1 STRATEGY. KNOWN Resistance of a complete spherical shell: r rk. Inner and outer radii Prblem 1 STRATEGY KNOWN Resstance f a cmplete sphercal shell: R ( r r / (4 π r rk sphere Inner an uter ra r an r, SOLUTION Part 1: Resstance f a hemsphercal shell: T calculate the resstance f the hemsphere,

More information

Optimal Pursuit Time in Differential Game for an Infinite System of Differential Equations

Optimal Pursuit Time in Differential Game for an Infinite System of Differential Equations Malaysan Journal of Mathematcal Scences 1(S) August: 267 277 (216) Specal Issue: The 7 th Internatonal Conference on Research and Educaton n Mathematcs (ICREM7) MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES

More information

CHAPTER If two balls swing in initial momentum is 2 mv and balls 4 and 5 will swing out.

CHAPTER If two balls swing in initial momentum is 2 mv and balls 4 and 5 will swing out. HPTER 4 4. Slutn: Mentu s cnsered. Therefre 5 th ball es ut wth sae elcty as st ball n pact. 4. If tw balls swng n ntal entu s and balls 4 and 5 wll swng ut. 4.3 Slutn: L n L L n 4.4 Slutn: M b M. kg kg

More information

ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM

ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM An elastc wave s a deformaton of the body that travels throughout the body n all drectons. We can examne the deformaton over a perod of tme by fxng our look

More information

Formal solvers of the RT equation

Formal solvers of the RT equation Formal solvers of the RT equaton Formal RT solvers Runge- Kutta (reference solver) Pskunov N.: 979, Master Thess Long characterstcs (Feautrer scheme) Cannon C.J.: 970, ApJ 6, 55 Short characterstcs (Hermtan

More information

Physics 107 HOMEWORK ASSIGNMENT #20

Physics 107 HOMEWORK ASSIGNMENT #20 Physcs 107 HOMEWORK ASSIGNMENT #0 Cutnell & Jhnsn, 7 th etn Chapter 6: Prblems 5, 7, 74, 104, 114 *5 Cncept Smulatn 6.4 prves the ptn f explrng the ray agram that apples t ths prblem. The stance between

More information

NUMERICAL DIFFERENTIATION

NUMERICAL DIFFERENTIATION NUMERICAL DIFFERENTIATION 1 Introducton Dfferentaton s a method to compute the rate at whch a dependent output y changes wth respect to the change n the ndependent nput x. Ths rate of change s called the

More information

χ x B E (c) Figure 2.1.1: (a) a material particle in a body, (b) a place in space, (c) a configuration of the body

χ x B E (c) Figure 2.1.1: (a) a material particle in a body, (b) a place in space, (c) a configuration of the body Secton.. Moton.. The Materal Body and Moton hyscal materals n the real world are modeled usng an abstract mathematcal entty called a body. Ths body conssts of an nfnte number of materal partcles. Shown

More information

Out-of-plane orbital maneuvers using swing-bys with the Moon

Out-of-plane orbital maneuvers using swing-bys with the Moon Jurnal f Physcs: Cnference Seres PAPER OPEN ACCESS Out-f-plane rbtal maneuvers usng swng-bys wth the Mn Related cntent - Pwered Swng-By Maneuvers arund the Mn A F Slva, A F B A Prad and O C Wnter cte ths

More information

PT326 PROCESS TRAINER

PT326 PROCESS TRAINER PT326 PROCESS TRAINER 1. Descrptn f the Apparatus PT 326 Prcess Traner The PT 326 Prcess Traner mdels cmmn ndustral stuatns n whch temperature cntrl s requred n the presence f transprt delays and transfer

More information

Final Exam Spring 2014 SOLUTION

Final Exam Spring 2014 SOLUTION Appled Opts H-464/564 C 594 rtland State nverst A. La Rsa Fnal am Sprng 14 SOLTION Name There are tw questns 1%) plus an ptnal bnus questn 1%) 1. Quarter wave plates and half wave plates The fgures belw

More information

3.1 Expectation of Functions of Several Random Variables. )' be a k-dimensional discrete or continuous random vector, with joint PMF p (, E X E X1 E X

3.1 Expectation of Functions of Several Random Variables. )' be a k-dimensional discrete or continuous random vector, with joint PMF p (, E X E X1 E X Statstcs 1: Probablty Theory II 37 3 EPECTATION OF SEVERAL RANDOM VARIABLES As n Probablty Theory I, the nterest n most stuatons les not on the actual dstrbuton of a random vector, but rather on a number

More information

EVALUATION OF THE VISCO-ELASTIC PROPERTIES IN ASPHALT RUBBER AND CONVENTIONAL MIXES

EVALUATION OF THE VISCO-ELASTIC PROPERTIES IN ASPHALT RUBBER AND CONVENTIONAL MIXES EVALUATION OF THE VISCO-ELASTIC PROPERTIES IN ASPHALT RUBBER AND CONVENTIONAL MIXES Manuel J. C. Mnhoto Polytechnc Insttute of Bragança, Bragança, Portugal E-mal: mnhoto@pb.pt Paulo A. A. Perera and Jorge

More information

EE 221 Practice Problems for the Final Exam

EE 221 Practice Problems for the Final Exam EE 1 Practce Prblems fr the Fnal Exam 1. The netwrk functn f a crcut s 1.5 H. ω 1+ j 500 Ths table recrds frequency respnse data fr ths crcut. Fll n the blanks n the table:. The netwrk functn f a crcut

More information