Titus Beu University Babes-Bolyai Department of Theoretical and Computational Physics Cluj-Napoca, Romania

Size: px
Start display at page:

Download "Titus Beu University Babes-Bolyai Department of Theoretical and Computational Physics Cluj-Napoca, Romania"

Transcription

1 8. Systems of Lier Algeric Equtios Titus Beu Uiversity Bes-Bolyi Deprtmet of Theoreticl d Computtiol Physics Cluj-Npoc, Romi Biliogrphy Itroductio Gussi elimitio method Guss-Jord elimitio method Systems of lier equtios with tridigol mtri

2 Gh. Dodescu, Metode umerice î lgeră, Editur tehică, Bucureşti, 979). B.P. Demidovich şi I.A. Mro, Computtiol Mthemtics(MIR Pulishers, Moskow, 98). R.L. Burde şij.d. Fires, Numericl Alysis, Third Editio(Pridle, Weer & Schmidt, Bosto, 985). W.H. Press, S.A. Teukolsky, W.T. VetterligşiB.P. Flery, Numericl Recipes i C: The Art of Scietific Computig, Secod Editio(Cmridge Uiversity Press, Cmridge, 992). Beu, T. A., Numericl Clculus i C, Third Editio (MicroIformtic Pulishig House, Cluj-Npoc, 2004). Solvig systems of lier equtios plys cetrl role i umericl lysis. Direct methods fiite lgorithms, roud-off errors Guss, Crout, Choleski Itertive methods ifiite processes, tructio errors Jcoi, Guss-Seidel. 2

3 Bsic ide equivlet systemwith upper trigulr mtriy elemetry row trsformtios trsformtio of the system Bckwrd sustitutio solvig i reversed order the equivlet system Emple: 3 lier equtios with 3 ukows A = [ ij ] 33, = [ i ] 3, = [ i ] 3 = = = or =

4 . Elimite from ll equtios ecept the first oe Divide st (pivot) equtio to pivot elemet, Sutrct st equtio multiplied y first coefficiet from ll other equtios: () () () () () () = () () () () () () or = 2 = 2 () () () () () () = with () j = j/, j=,2,3 () = / () () ij = ij ij, j=,2,3, i= 2,3 () () i = i i 2. Elimite 2 from the lst equtio Divide 2 d (pivot) equtio to pivot elemet, 22 () Sutrct 2d equtio multiplied y 32 () from 3 rd equtio: () () () 2 3 (2) (2) = 2 (2) (2) with (2) () () 2j = 2j / 22, j= 2,3 (2) () () 2 = 2 / 22 (2) () () (2) ij = ij i22j, j= 2, 3, i= 3 (2) () () (2) i = i i2 2 4

5 3. Divide 3 d (pivot) equtio to pivot elemet, 33 (2) : with () () () 2 3 (2) (2) = (3) 3 3 (3) (2) (2) 3 = 3 / 33 Bckwrd sustitutio Epress solutio compoets recurretly i reversed order: Determit (3) 3 = 3 (2) (2) 2 = () () () = ( 22 33) Due to successive divisios to the pivot elemets: A A (3) det det = = () (2) () (2) deta= 5

6 Geerliztio: lier equtios with ukows A = [ ij ], = [ i ], = [ i ] Before step k (k =,2,..., ): () () () () 2 k k () (2) (2) (2) 0 2 k 2 k 2 (2) 2 2 ( k ) ( k ) ( k ) 0 0 kk kk ( k ) k k = k ( k ) ( k ) ( k ) 0 0 k k k k ( ) k k k k ( k ) ( k ) ( k ) 0 0 k k ( k ) Step k elimite k from ll equtios elow equtio k: () () () () 2 k k () (2) (2) (2) 0 2 k 2 k 2 () kk k k = k k k k k k k New elemets of pivot lie k: kk = ( k ) ( k ) kj = kj / kk, j= k,, ( k ) ( k ) k = k / kk 6

7 Step k elimite k from ll equtios elow equtio k: () () () () 2 k k () (2) (2) (2) 0 2 k 2 k 2 () kk k k = k k k k k k k New elemets of o-pivot lies elow pivot lie k: ik = 0 ( k ) ( k ) ij = ij ik k j, j= k,,, i= k,, ( k ) ( k ) i = i ik k Step divide lst lie to lst pivot ( ) : or () () () () () 2 k k (2) (2) (2) (2) 0 2 k 2 k ( 0 0 kk k k = k) k ( k ) ( k ) k k k ( ) ( ) ( ) A = 7

8 Bckwrd sustitutio Epress solutio compoets recurretly i reversed order: Determit ( ) = k = k kii, k=,, i= k Due to successive divisios to the pivot elemets: A A ( ) det det = = () ( ) 22 () ( ) 22 deta= Geerliztio: Mtri equtio A= [ ij ], B = [ ij ] m, = [ ij ] m ( k ) ( k ) kj = kj / kk, j= k,, ( k ) ( k ) kj = kj / kk, j=,, m ( k ) ( k ) ij = ij ik kj, j= k,,, i= k,, ( k ) ( k ) ij = ij ik kj, j=,, m Bckwrd sustitutio ( ) j = j, j=,, m kj = kj kiij, j=,, m, k=,, i= k Mtri iversio B= E [ δ ] X= A ij 8

9 Pivotig Rerrgemet of lies d/or columsto hve mimum pivot elemett ech elimitio step Merits Avoids divisios y 0 Miimizes roud-off errors Vrits Prtil pivotig (o colums) t step koe seeks the mimum elemet lk (k-) o colum kd lies l kd iterchges lies kd l. Totl pivotig (method of pricipl elemet) oe seeks mimum pivot o ll lies d colums of A (k ) o which o pivotig ws doe yet //=========================================================================== it Guss(flot **, flot **, it, it m, flot &det) // Solves mtri equtio = y Gussi elimitio, replcig o // output y. Uses prtil pivotig o colums. // - mtri of system ( ) // - mtri of r.h.s. terms ( m); solutio o output // det determit of the system mtri (output) // Error flg: 0 orml eecutio // sigulr mtri { #defie Swp(,) { t = ; = ; = t; flot m, sum, t; it i, im, j, k; det =.0; for (k=; k<=; k) { // ELIMINATION m = 0.0; // determies pivot lie hvig for (i=k; i<=; i) // mimum elemet o colum k if (m < fs([i][k])) {m = fs([i][k]); im = i; if (m == 0.0) {pritf("guss: sigulr mtri!\"); retur ; // iterchges lies im d k if (im!= k) { // to put pivot o digol det = -det; for (j=k; j<=; j) Swp([im][j],[k][j]) for (j=; j<=m; j) Swp([im][j],[k][j]) 9

10 det *= [k][k]; // multiplies determit with pivot t =.0/[k][k]; for (j=k; j<=; j) [k][j] *= t; for (j= ; j<=m; j) [k][j] *= t; // divides pivot lie y pivot for (i=k; i<=; i) { // reduces o-pivot lies t = [i][k]; for (j=k; j<=; j) [i][j] -= [k][j]*t; for (j= ; j<=m; j) [i][j] -= [k][j]*t; for (k=-; k>=; k--) for (j=; j<=m; j) { sum = [k][j]; for (i=k; i<=; i) sum -= [k][i]*[i][j]; [k][j] = sum; retur 0; // BACK SUBSTITUTION Bsic ide equivlet systemwith digol mtriy elemetry row trsformtios trsformtio of the system more elorte Bckwrd sustitutio ieistet Vrit system mtri is trsformed ito the uit mtri Eles simulteous clcultio d storge of iverse 0

11 Before step k (k =,2,..., ): ( k ) ( k ) ( k ) k k ( k ) ( k ) ( k ) 2k 2k 2 ( k ) ( k ) ( k ) kk kk k ( k ) ( k ) ( k ) k k k k k ( k ) ( k ) ( k ) k k ( k ) ( k ) 2 2 ( k ) k = k ( k ) k k ( k ) Relevt iformtio of mtri A (k) eclusively i colums j = k,..., Colums j =,...,kcoti trivil dt c e used to produce the iverse A Step k elimite k from ll equtios: 0 0 k ( k 2 k) kk k k = k k k k k k k New elemets of pivot lie k: kk = ( k ) ( k ) kj = kj / kk, j= k,, ( k ) ( k ) k = k / kk

12 Step k elimite k from ll equtios: 0 0 k ( k 2 k) kk k k = k k k k k k k New elemets o-pivot lies: ik = 0 ( k ) ( k ) ij = ij ik kj, j= k,,, i=,,, i k ( k ) ( k ) i = i ik k Step divide lst lie to lst pivot ( ) : Solutio ( ) ( ) ( ) k = k ( ) k k ( ) Determit = ( ) () ( ) 22 deta= 2

13 //=========================================================================== it GussJord0(flot **, flot **, it, it m, flot &det) // Solves mtri equtio = y Guss-Jord elimitio, replcig o // output y. Uses prtil pivotig o colums. // - mtri of system ( ) // - mtri of r.h.s. terms ( m); solutio o output // det determit of the system mtri (output) // Error flg: 0 orml eecutio // sigulr mtri { #defie Swp(,) { t = ; = ; = t; flot m, t; it i, im, j, k; det =.0; for (k=; k<=; k) { // ELIMINATION m = 0.0; // determies pivot lie hvig for (i=k; i<=; i) // mimum elemet o colum k if (m < fs([i][k])) {m = fs([i][k]); im = i; if (m == 0.0) {pritf("gussjord0: sigulr mtri!\"); retur ; // iterchges lies im d k if (im!= k) { // to put pivot o digol det = -det; for (j=k; j<=; j) Swp([im][j],[k][j]) for (j=; j<=m; j) Swp([im][j],[k][j]) det *= [k][k]; // multiplies determit with pivot t =.0/[k][k]; for (j=k; j<=; j) [k][j] *= t; for (j= ; j<=m; j) [k][j] *= t; // divides pivot lie y pivot for (i=; i<=; i) // reduces o-pivot lies if (i!= k) { t = [i][k]; for (j=; j<=; j) [i][j] -= [k][j]*t; for (j=; j<=m; j) [i][j] -= [k][j]*t; retur 0; 3

14 //=========================================================================== it GussJord(flot **, flot **, it, it m, flot &det) // Solves mtri equtio = y Guss-Jord elimitio, replcig o // output y ^(-) d y. Uses prtil pivotig o colums. // - mtri of system ( ) // - mtri of r.h.s. terms ( m); solutio o output // det determit of the system mtri (output) // Error flg: 0 orml eecutio // sigulr mtri { #defie Swp(,) { t = ; = ; = t; flot m, t; it i, im, j, k; it *ipivot; ipivot = IVector(,); // stores pivot lie det =.0; for (k=; k<=; k) { // ELIMINATION m = 0.0; // determies pivot lie hvig for (i=k; i<=; i) // mimum elemet o colum k if (m < fs([i][k])) {m = fs([i][k]); im = i; if (m == 0.0) {pritf("gussjord: sigulr mtri!\"); retur ; ipivot[k] = im; // stores pivot lie // iterchges lies im d k if (im!= k) { // to put pivot o digol det = -det; for (j=; j<=; j) Swp([im][j],[k][j]) for (j=; j<=m; j) Swp([im][j],[k][j]) det *= [k][k]; t =.0/[k][k]; [k][k] =.0; for (j=; j<=; j) [k][j] *= t; for (j=; j<=m; j) [k][j] *= t; // multiplies determit with pivot // divides pivot lie y pivot // digol elemet of uit mtri for (i=; i<=; i) // reduces o-pivot lies if (i!= k) { t = [i][k]; [i][k] = 0.0; // o-digol elemet of uit mtri for (j=; j<=; j) [i][j] -= [k][j]*t; for (j=; j<=m; j) [i][j] -= [k][j]*t; for (k=; k>=; k--) // rerrge colums of iverse if (ipivot[k]!= k) for (i=; i<=; i) Swp([i][ipivot[k]],[i][k]) FreeIVector(ipivot,); retur 0; 4

15 //=========================================================================== it GussJord(flot **, flot **, it, it m, flot &det) // Solves mtri equtio = y Guss-Jord elimitio, replcig o // output y ^(-) d y. Uses totl pivotig. // - mtri of system ( ) // - mtri of r.h.s. terms ( m); solutio o output // det determit of the system mtri (output) // Error flg: 0 orml eecutio //,2 sigulr mtri { #defie Swp(,) { t = ; = ; = t; flot m, t; it i, im, j, jm, k; it *ipivot, *jpivot, *pivot; ipivot = IVector(,); jpivot = IVector(,); pivot = IVector(,); // stores pivot lie // stores pivot colum // mrks used pivot colum det =.0; for (i=; i<=; i) pivot[i] = 0; for (k=; k<=; k) { // ELIMINATION m = 0.0; // determies pivot for (i=; i<=; i) { // loop over lies if (pivot[i]!= ) for (j=; j<=; j) { // loop over colums if (pivot[j] == 0) // pivotig ot yet doe? if (m < fs([i][j])) {m = fs([i][j]); im = i; jm = j; else if (pivot[j] > ) {pritf("gussjord: sigulr mtri!\"); retur ; ipivot[k] = im; // stores pivot lie jpivot[k] = jm; // stores pivot colum (pivot[jm]); // mrk used pivot colum if (m == 0.0) {pritf("gussjord: sigulr mtri 2!\"); retur 2; // iterchges lies im d jm if (im!= jm) { // to put pivot o digol det = -det; for (j=; j<=; j) Swp([im][j],[jm][j]) for (j=; j<=m; j) Swp([im][j],[jm][j]) det *= [jm][jm]; // multiplies determit with pivot 5

16 t =.0/[jm][jm]; // divides pivot lie y pivot [jm][jm] =.0; // digol elemet of uit mtri for (j=; j<=; j) [jm][j] *= t; for (j=; j<=m; j) [jm][j] *= t; for (i=; i<=; i) // reduces o-pivot lies if (i!= jm) { t = [i][jm]; [i][jm] = 0.0; // o-digol elemet of uit mtri for (j=; j<=; j) [i][j] -= [jm][j]*t; for (j=; j<=m; j) [i][j] -= [jm][j]*t; for (k=; k>=; k--) // rerrge colums of iverse if (ipivot[k]!= jpivot[k]) for (i=; i<=; i) Swp([i][ipivot[k]],[i][jpivot[k]]) FreeIVector(ipivot,); FreeIVector(jpivot,); FreeIVector(pivot,); retur 0; Tridigol mtrices sprse mtrices most of the o-digol elemets 0. Geerl methods re ot efficiet. Typiclly discretiztio of differetil equtios y fiite differece schemes. Geerl form: A = d c d 2 2 c2 0 2 d 2 i i c i i d i = i i ci i di 0 c d d 6

17 Fctoriztio of mtri A: A= L U β γ α2 β2 0 γ2 0 αi β i γ i A= αi βi γi 0 α β 0 γ α β Elemets of mtrices Ld U y idetifictio(β i 0): β =, γ = c β αi = i, βi = i αγ i i, γi = ci βi, i= 2,3,, α =, β = αγ Iitil system ecomes: L y d L ( U ) d = = U = y First system: β y d 2 β2 0 y 2 d 2 i β i y i d i i β i y = i d i 0 β y d β y d Itermedite solutio y y idetifictio(β i 0): y = d/ β yi = ( di y i i )/ βi, i= 2,3,, 7

18 Iitil system ecomes: L y d L ( U ) d = = U = y Secod system: γ y γ2 0 2 y 2 γ i i y i γ i = i y i 0 γ y y Fil solutio y idetifictio: = y i = yi γ ii, i=,, Algorithm Fctoriztio solutio of system L y = d: β =, γ = c/ β, y = d/ β βi = i iγi, γi = ci/ βi, yi = ( di y i i )/ βi i= 2,3,, Bck sustitutio solutio of system U = y: = ( d y )/( γ ) i = yi γii, i=,, Four rrys (,, c d d) re sufficiet i the implemettio Elemets γ i c e stored i rry c, overwritig elemets c i For d i, y i d i the sme rry d my e used, which filly returs the solutio No eed for pivotig digol domice. 8

19 //=========================================================================== void TriDig(flot [], flot [], flot c[], flot d[], it ) // Solves y LU fctoriztio lier system with tridigol mtri // - lower co-digol (i=2..) // - mi digol // c - upper co-digol (i=..-) // d - r.h.s. terms; solutio o output // - order of system { flot et; it i; // fctoriztio c[] /= []; d[] /= []; for (i=2; i<=(-); i) { et = [i] - [i]*c[i-]; c[i] /= et; d[i] = (d[i] - [i]*d[i-])/et; d[] = (d[] - []*d[-])/([] - []*c[-]); for (i=(-); i>=; i--) d[i] -= c[i]*d[i]; // ck sustitutio 9

Autar Kaw Benjamin Rigsby. Transforming Numerical Methods Education for STEM Undergraduates

Autar Kaw Benjamin Rigsby.   Transforming Numerical Methods Education for STEM Undergraduates Autr Kw Bejmi Rigsby http://m.mthforcollege.com Trsformig Numericl Methods Eductio for STEM Udergrdutes http://m.mthforcollege.com . solve set of simulteous lier equtios usig Nïve Guss elimitio,. ler the

More information

Numerical Methods (CENG 2002) CHAPTER -III LINEAR ALGEBRAIC EQUATIONS. In this chapter, we will deal with the case of determining the values of x 1

Numerical Methods (CENG 2002) CHAPTER -III LINEAR ALGEBRAIC EQUATIONS. In this chapter, we will deal with the case of determining the values of x 1 Numericl Methods (CENG 00) CHAPTER -III LINEAR ALGEBRAIC EQUATIONS. Itroductio I this chpter, we will del with the cse of determiig the vlues of,,..., tht simulteously stisfy the set of equtios: f f...

More information

Advanced Algorithmic Problem Solving Le 6 Math and Search

Advanced Algorithmic Problem Solving Le 6 Math and Search Advced Algorithmic Prolem Solvig Le Mth d Serch Fredrik Heitz Dept of Computer d Iformtio Sciece Liköpig Uiversity Outlie Arithmetic (l. d.) Solvig lier equtio systems (l. d.) Chiese remider theorem (l.5

More information

ECE 102 Engineering Computation

ECE 102 Engineering Computation ECE Egieerig Computtio Phillip Wog Mth Review Vetor Bsis Mtri Bsis System of Lier Equtios Summtio Symol is the symol for summtio. Emple: N k N... 9 k k k k k the, If e e e f e f k Vetor Bsis A vetor is

More information

Addendum. Addendum. Vector Review. Department of Computer Science and Engineering 1-1

Addendum. Addendum. Vector Review. Department of Computer Science and Engineering 1-1 Addedum Addedum Vetor Review Deprtmet of Computer Siee d Egieerig - Coordite Systems Right hded oordite system Addedum y z Deprtmet of Computer Siee d Egieerig - -3 Deprtmet of Computer Siee d Egieerig

More information

Lesson 4 Linear Algebra

Lesson 4 Linear Algebra Lesso Lier Algebr A fmily of vectors is lierly idepedet if oe of them c be writte s lier combitio of fiitely my other vectors i the collectio. Cosider m lierly idepedet equtios i ukows:, +, +... +, +,

More information

Elementary Linear Algebra

Elementary Linear Algebra Elemetry Lier Alger Ato & Rorres, th Editio Lecture Set Chpter : Systems of Lier Equtios & Mtrices Chpter Cotets Itroductio to System of Lier Equtios Gussi Elimitio Mtrices d Mtri Opertios Iverses; Rules

More information

Section 7.3, Systems of Linear Algebraic Equations; Linear Independence, Eigenvalues, Eigenvectors (the variable vector of the system) and

Section 7.3, Systems of Linear Algebraic Equations; Linear Independence, Eigenvalues, Eigenvectors (the variable vector of the system) and Sec. 7., Boyce & DiPrim, p. Sectio 7., Systems of Lier Algeric Equtios; Lier Idepedece, Eigevlues, Eigevectors I. Systems of Lier Algeric Equtios.. We c represet the system...... usig mtrices d vectors

More information

SOLUTION OF SYSTEM OF LINEAR EQUATIONS. Lecture 4: (a) Jacobi's method. method (general). (b) Gauss Seidel method.

SOLUTION OF SYSTEM OF LINEAR EQUATIONS. Lecture 4: (a) Jacobi's method. method (general). (b) Gauss Seidel method. SOLUTION OF SYSTEM OF LINEAR EQUATIONS Lecture 4: () Jcobi's method. method (geerl). (b) Guss Seidel method. Jcobi s Method: Crl Gustv Jcob Jcobi (804-85) gve idirect method for fidig the solutio of system

More information

Statistics for Financial Engineering Session 1: Linear Algebra Review March 18 th, 2006

Statistics for Financial Engineering Session 1: Linear Algebra Review March 18 th, 2006 Sttistics for Ficil Egieerig Sessio : Lier Algebr Review rch 8 th, 6 Topics Itroductio to trices trix opertios Determits d Crmer s rule Eigevlues d Eigevectors Quiz The cotet of Sessio my be fmilir to

More information

Numerical Solutions of Fredholm Integral Equations Using Bernstein Polynomials

Numerical Solutions of Fredholm Integral Equations Using Bernstein Polynomials Numericl Solutios of Fredholm Itegrl Equtios Usig erstei Polyomils A. Shiri, M. S. Islm Istitute of Nturl Scieces, Uited Itertiol Uiversity, Dhk-, gldesh Deprtmet of Mthemtics, Uiversity of Dhk, Dhk-,

More information

Solving Systems of Equations

Solving Systems of Equations PGE : Formultio d Solutio i Geosystems Egieerig Dr. Blhoff Solvig Systems of Equtios Numericl Methods with MTLB, Recktewld, Chpter 8 d Numericl Methods for Egieers, Chpr d Cle, 5 th Ed., Prt Three, Chpters

More information

The total number of permutations of S is n!. We denote the set of all permutations of S by

The total number of permutations of S is n!. We denote the set of all permutations of S by DETERMINNTS. DEFINITIONS Def: Let S {,,, } e the set of itegers from to, rrged i scedig order. rerrgemet jjj j of the elemets of S is clled permuttio of S. S. The totl umer of permuttios of S is!. We deote

More information

Linear Algebra. Lecture 1 September 19, 2011

Linear Algebra. Lecture 1 September 19, 2011 Lier Algebr Lecture September 9, Outlie Course iformtio Motivtio Outlie of the course Wht is lier lgebr? Chpter. Systems of Lier Equtios. Solvig Lier Systems. Vectors d Mtrices Course iformtio Istructor:

More information

Handout #2. Introduction to Matrix: Matrix operations & Geometric meaning

Handout #2. Introduction to Matrix: Matrix operations & Geometric meaning Hdout # Title: FAE Course: Eco 8/ Sprig/5 Istructor: Dr I-Mig Chiu Itroductio to Mtrix: Mtrix opertios & Geometric meig Mtrix: rectgulr rry of umers eclosed i pretheses or squre rckets It is covetiolly

More information

Numerical Solution of Fuzzy Fredholm Integral Equations of the Second Kind using Bernstein Polynomials

Numerical Solution of Fuzzy Fredholm Integral Equations of the Second Kind using Bernstein Polynomials Jourl of Al-Nhri Uiversity Vol.5 (), Mrch,, pp.-9 Sciece Numericl Solutio of Fuzzy Fredholm Itegrl Equtios of the Secod Kid usig Berstei Polyomils Srmd A. Altie Deprtmet of Computer Egieerig d Iformtio

More information

Linear Programming. Preliminaries

Linear Programming. Preliminaries Lier Progrmmig Prelimiries Optimiztio ethods: 3L Objectives To itroduce lier progrmmig problems (LPP To discuss the stdrd d coicl form of LPP To discuss elemetry opertio for lier set of equtios Optimiztio

More information

Basic Maths. Fiorella Sgallari University of Bologna, Italy Faculty of Engineering Department of Mathematics - CIRAM

Basic Maths. Fiorella Sgallari University of Bologna, Italy Faculty of Engineering Department of Mathematics - CIRAM Bsic Mths Fiorell Sgllri Uiversity of Bolog, Itly Fculty of Egieerig Deprtmet of Mthemtics - CIRM Mtrices Specil mtrices Lier mps Trce Determits Rk Rge Null spce Sclr products Norms Mtri orms Positive

More information

Fast Fourier Transform 1) Legendre s Interpolation 2) Vandermonde Matrix 3) Roots of Unity 4) Polynomial Evaluation

Fast Fourier Transform 1) Legendre s Interpolation 2) Vandermonde Matrix 3) Roots of Unity 4) Polynomial Evaluation Algorithm Desig d Alsis Victor Admchi CS 5-45 Sprig 4 Lecture 3 J 7, 4 Cregie Mello Uiversit Outlie Fst Fourier Trsform ) Legedre s Iterpoltio ) Vdermode Mtri 3) Roots of Uit 4) Polomil Evlutio Guss (777

More information

Chapter System of Equations

Chapter System of Equations hpter 4.5 System of Equtios After redig th chpter, you should be ble to:. setup simulteous lier equtios i mtrix form d vice-vers,. uderstd the cocept of the iverse of mtrix, 3. kow the differece betwee

More information

Orthogonality, orthogonalization, least squares

Orthogonality, orthogonalization, least squares ier Alger for Wireless Commuictios ecture: 3 Orthogolit, orthogoliztio, lest squres Ier products d Cosies he gle etee o-zero vectors d is cosθθ he l of Cosies: + cosθ If the gle etee to vectors is π/ (90º),

More information

Inner Product Spaces (Chapter 5)

Inner Product Spaces (Chapter 5) Ier Product Spces Chpter 5 I this chpter e ler out :.Orthogol ectors orthogol suspces orthogol mtrices orthogol ses. Proectios o ectors d o suspces Orthogol Suspces We ko he ectors re orthogol ut ht out

More information

A GENERALIZATION OF GAUSS THEOREM ON QUADRATIC FORMS

A GENERALIZATION OF GAUSS THEOREM ON QUADRATIC FORMS A GENERALIZATION OF GAU THEOREM ON QUADRATIC FORM Nicole I Brtu d Adi N Cret Deprtmet of Mth - Criov Uiversity, Romi ABTRACT A origil result cocerig the extesio of Guss s theorem from the theory of biry

More information

Section 2.2. Matrix Multiplication

Section 2.2. Matrix Multiplication Mtri Alger Mtri Multiplitio Setio.. Mtri Multiplitio Mtri multiplitio is little more omplite th mtri itio or slr multiplitio. If A is the prout A of A is the ompute s follow: m mtri, the is k mtri, 9 m

More information

Digital Signal Processing, Fall 2006

Digital Signal Processing, Fall 2006 Digitl Sigl Processig, Fll 6 Lecture 6: Sstem structures for implemettio Zeg-u T Deprtmet of Electroic Sstems Alorg Uiversit, Demr t@om.u.d Digitl Sigl Processig, VI, Zeg-u T, 6 Course t glce Discrete-time

More information

APPLICATION OF DIFFERENCE EQUATIONS TO CERTAIN TRIDIAGONAL MATRICES

APPLICATION OF DIFFERENCE EQUATIONS TO CERTAIN TRIDIAGONAL MATRICES Scietific Reserch of the Istitute of Mthetics d Coputer Sciece 3() 0, 5-0 APPLICATION OF DIFFERENCE EQUATIONS TO CERTAIN TRIDIAGONAL MATRICES Jolt Borows, Le Łcińs, Jowit Rychlews Istitute of Mthetics,

More information

Tranformations. Some slides adapted from Octavia Camps

Tranformations. Some slides adapted from Octavia Camps Trformtio Some lide dpted from Octvi Cmp A m 3 3 m m 3m m Mtrice 5K C c m ij A ij m b ij B A d B mut hve the me dimeio m 3 Mtrice p m m p B A C H @K?J H @K?J m k kj ik ij b c A d B mut hve A d B mut hve

More information

A GENERAL METHOD FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS: THE FROBENIUS (OR SERIES) METHOD

A GENERAL METHOD FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS: THE FROBENIUS (OR SERIES) METHOD Diol Bgoo () A GENERAL METHOD FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS: THE FROBENIUS (OR SERIES) METHOD I. Itroductio The first seprtio of vribles (see pplictios to Newto s equtios) is ver useful method

More information

3.4. DIRECT METHODS

3.4. DIRECT METHODS 3.4. DIRECT METHODS 66 V =. -. -.75.5 -.5.65. -.5.5» flops %prit flop out s = 8» flops();h3_ivu(u)flops %iitilize flop out the ivert s =. -. -.75.5 -.5.65. -.5.5 s = 57 3.4.3 Gussi elimitio Gussi elimitio

More information

Westchester Community College Elementary Algebra Study Guide for the ACCUPLACER

Westchester Community College Elementary Algebra Study Guide for the ACCUPLACER Westchester Commuity College Elemetry Alger Study Guide for the ACCUPLACER Courtesy of Aims Commuity College The followig smple questios re similr to the formt d cotet of questios o the Accuplcer Elemetry

More information

Chapter 10: The Z-Transform Adapted from: Lecture notes from MIT, Binghamton University Dr. Hamid R. Rabiee Fall 2013

Chapter 10: The Z-Transform Adapted from: Lecture notes from MIT, Binghamton University Dr. Hamid R. Rabiee Fall 2013 Sigls & Systems Chpter 0: The Z-Trsform Adpted from: Lecture otes from MIT, Bighmto Uiversity Dr. Hmid R. Rbiee Fll 03 Lecture 5 Chpter 0 Lecture 6 Chpter 0 Outlie Itroductio to the -Trsform Properties

More information

=> PARALLEL INTERCONNECTION. Basic Properties LTI Systems. The Commutative Property. Convolution. The Commutative Property. The Distributive Property

=> PARALLEL INTERCONNECTION. Basic Properties LTI Systems. The Commutative Property. Convolution. The Commutative Property. The Distributive Property Lier Time-Ivrit Bsic Properties LTI The Commuttive Property The Distributive Property The Associtive Property Ti -6.4 / Chpter Covolutio y ] x ] ] x ]* ] x ] ] y] y ( t ) + x( τ ) h( t τ ) dτ x( t) * h(

More information

Power Series Solutions to Generalized Abel Integral Equations

Power Series Solutions to Generalized Abel Integral Equations Itertiol Jourl of Mthemtics d Computtiol Sciece Vol., No. 5, 5, pp. 5-54 http://www.isciece.org/jourl/ijmcs Power Series Solutios to Geerlized Abel Itegrl Equtios Rufi Abdulli * Deprtmet of Physics d Mthemtics,

More information

Dynamics of Structures

Dynamics of Structures UNION Dymis of Strutures Prt Zbigiew Wójii Je Grosel Projet o-fied by Europe Uio withi Europe Soil Fud UNION Mtries Defiitio of mtri mtri is set of umbers or lgebri epressios rrged i retgulr form with

More information

Mathematical Notations and Symbols xi. Contents: 1. Symbols. 2. Functions. 3. Set Notations. 4. Vectors and Matrices. 5. Constants and Numbers

Mathematical Notations and Symbols xi. Contents: 1. Symbols. 2. Functions. 3. Set Notations. 4. Vectors and Matrices. 5. Constants and Numbers Mthemticl Nottios d Symbols i MATHEMATICAL NOTATIONS AND SYMBOLS Cotets:. Symbols. Fuctios 3. Set Nottios 4. Vectors d Mtrices 5. Costts d Numbers ii Mthemticl Nottios d Symbols SYMBOLS = {,,3,... } set

More information

Solution of the exam in TMA4212 Monday 23rd May 2013 Time: 9:00 13:00

Solution of the exam in TMA4212 Monday 23rd May 2013 Time: 9:00 13:00 Norwegi Uiversity of Sciece d Techology Deprtmet of Mthemticl Scieces Cotct durig the exm: Ele Celledoi, tlf. 735 93541 Pge 1 of 7 of the exm i TMA4212 Mody 23rd My 2013 Time: 9:00 13:00 Allowed ids: Approved

More information

Chapter 10: The Z-Transform Adapted from: Lecture notes from MIT, Binghamton University Hamid R. Rabiee Arman Sepehr Fall 2010

Chapter 10: The Z-Transform Adapted from: Lecture notes from MIT, Binghamton University Hamid R. Rabiee Arman Sepehr Fall 2010 Sigls & Systems Chpter 0: The Z-Trsform Adpted from: Lecture otes from MIT, Bighmto Uiversity Hmid R. Riee Arm Sepehr Fll 00 Lecture 5 Chpter 0 Outlie Itroductio to the -Trsform Properties of the ROC of

More information

The Islamic University of Gaza Faculty of Engineering Civil Engineering Department. Numerical Analysis ECIV Chapter 11

The Islamic University of Gaza Faculty of Engineering Civil Engineering Department. Numerical Analysis ECIV Chapter 11 The Islmic University of Gz Fculty of Engineering Civil Engineering Deprtment Numericl Anlysis ECIV 6 Chpter Specil Mtrices nd Guss-Siedel Associte Prof Mzen Abultyef Civil Engineering Deprtment, The Islmic

More information

National Quali cations AHEXEMPLAR PAPER ONLY

National Quali cations AHEXEMPLAR PAPER ONLY Ntiol Quli ctios AHEXEMPLAR PAPER ONLY EP/AH/0 Mthemtics Dte Not pplicble Durtio hours Totl mrks 00 Attempt ALL questios. You my use clcultor. Full credit will be give oly to solutios which coti pproprite

More information

Parallel Gaussian Elimination on Single-chip Cloud Computer

Parallel Gaussian Elimination on Single-chip Cloud Computer Prllel Gussi Elimitio o Sigle-chip Cloud Computer Ymi Wg, Chexi Di, Che Liu, Lei Wu Deprtmet of Electricl d Computer Egieerig Clrkso Uiversity Potsdm, Y, USA {ymwg, dic, cliu, lwu}@clrkso.edu Astrct Gussi

More information

Lecture 2: Matrix Algebra

Lecture 2: Matrix Algebra Lecture 2: Mtrix lgebr Geerl. mtrix, for our purpose, is rectgulr rry of objects or elemets. We will tke these elemets s beig rel umbers d idicte elemet by its row d colum positio. mtrix is the ordered

More information

Remarks: (a) The Dirac delta is the function zero on the domain R {0}.

Remarks: (a) The Dirac delta is the function zero on the domain R {0}. Sectio Objective(s): The Dirc s Delt. Mi Properties. Applictios. The Impulse Respose Fuctio. 4.4.. The Dirc Delt. 4.4. Geerlized Sources Defiitio 4.4.. The Dirc delt geerlized fuctio is the limit δ(t)

More information

Presentation for use with the textbook, Algorithm Design and Applications, by M. T. Goodrich and R. Tamassia, Wiley, Divide-and-Conquer

Presentation for use with the textbook, Algorithm Design and Applications, by M. T. Goodrich and R. Tamassia, Wiley, Divide-and-Conquer Presettio for use with the textook, Algorithm Desig d Applictios, y M. T. Goodrich d R. Tmssi, Wiley, 25 Divide-d-Coquer Divide-d-Coquer Divide-d coquer is geerl lgorithm desig prdigm: Divide: divide the

More information

DETERMINANT. = 0. The expression a 1. is called a determinant of the second order, and is denoted by : y + c 1

DETERMINANT. = 0. The expression a 1. is called a determinant of the second order, and is denoted by : y + c 1 NOD6 (\Dt\04\Kot\J-Advced\SMP\Mths\Uit#0\NG\Prt-\0.Determits\0.Theory.p65. INTRODUCTION : If the equtios x + b 0, x + b 0 re stisfied by the sme vlue of x, the b b 0. The expressio b b is clled determit

More information

Notes 17 Sturm-Liouville Theory

Notes 17 Sturm-Liouville Theory ECE 638 Fll 017 Dvid R. Jckso Notes 17 Sturm-Liouville Theory Notes re from D. R. Wilto, Dept. of ECE 1 Secod-Order Lier Differetil Equtios (SOLDE) A SOLDE hs the form d y dy 0 1 p ( x) + p ( x) + p (

More information

FREE Download Study Package from website: &

FREE Download Study Package from website:  & FREE Dolod Study Pkge from esite:.tekolsses.om &.MthsBySuhg.om Get Solutio of These Pkges & Ler y Video Tutorils o.mthsbysuhg.om SHORT REVISION. Defiitio : Retgulr rry of m umers. Ulike determits it hs

More information

SOLUTION OF DIFFERENTIAL EQUATION FOR THE EULER-BERNOULLI BEAM

SOLUTION OF DIFFERENTIAL EQUATION FOR THE EULER-BERNOULLI BEAM Jourl of Applied Mthemtics d Computtiol Mechics () 57-6 SOUION O DIERENIA EQUAION OR HE EUER-ERNOUI EAM Izbel Zmorsk Istitute of Mthemtics Czestochow Uiversit of echolog Częstochow Pold izbel.zmorsk@im.pcz.pl

More information

CITY UNIVERSITY LONDON

CITY UNIVERSITY LONDON CITY UNIVERSITY LONDON Eg (Hos) Degree i Civil Egieerig Eg (Hos) Degree i Civil Egieerig with Surveyig Eg (Hos) Degree i Civil Egieerig with Architecture PART EXAMINATION SOLUTIONS ENGINEERING MATHEMATICS

More information

Similar idea to multiplication in N, C. Divide and conquer approach provides unexpected improvements. Naïve matrix multiplication

Similar idea to multiplication in N, C. Divide and conquer approach provides unexpected improvements. Naïve matrix multiplication Next. Covered bsics of simple desig techique (Divided-coquer) Ch. of the text.. Next, Strsse s lgorithm. Lter: more desig d coquer lgorithms: MergeSort. Solvig recurreces d the Mster Theorem. Similr ide

More information

Assessment Center Elementary Algebra Study Guide for the ACCUPLACER (CPT)

Assessment Center Elementary Algebra Study Guide for the ACCUPLACER (CPT) Assessmet Ceter Elemetr Alger Stud Guide for the ACCUPLACER (CPT) The followig smple questios re similr to the formt d cotet of questios o the Accuplcer Elemetr Alger test. Reviewig these smples will give

More information

M.A. (ECONOMICS) PART-I PAPER - III BASIC QUANTITATIVE METHODS

M.A. (ECONOMICS) PART-I PAPER - III BASIC QUANTITATIVE METHODS M.A. (ECONOMICS) PART-I BASIC QUANTITATIVE METHODS LESSON NO. 9 AUTHOR : SH. C.S. AGGARWAL MATRICES Mtrix lger eles oe to solve or hdle lrge system of simulteous equtios. Mtrices provide compct wy of writig

More information

Important Facts You Need To Know/Review:

Important Facts You Need To Know/Review: Importt Fcts You Need To Kow/Review: Clculus: If fuctio is cotiuous o itervl I, the its grph is coected o I If f is cotiuous, d lim g Emple: lim eists, the lim lim f g f g d lim cos cos lim 3 si lim, t

More information

Lecture 2. Rational Exponents and Radicals. 36 y. b can be expressed using the. Rational Exponent, thus b. b can be expressed using the

Lecture 2. Rational Exponents and Radicals. 36 y. b can be expressed using the. Rational Exponent, thus b. b can be expressed using the Lecture. Rtiol Epoets d Rdicls Rtiol Epoets d Rdicls Lier Equtios d Iequlities i Oe Vrile Qudrtic Equtios Appedi A6 Nth Root - Defiitio Rtiol Epoets d Rdicls For turl umer, c e epressed usig the r is th

More information

Surds, Indices, and Logarithms Radical

Surds, Indices, and Logarithms Radical MAT 6 Surds, Idices, d Logrithms Rdicl Defiitio of the Rdicl For ll rel, y > 0, d ll itegers > 0, y if d oly if y where is the ide is the rdicl is the rdicd. Surds A umber which c be epressed s frctio

More information

Add Maths Formulae List: Form 4 (Update 18/9/08)

Add Maths Formulae List: Form 4 (Update 18/9/08) Add Mths Formule List: Form 4 (Updte 8/9/08) 0 Fuctios Asolute Vlue Fuctio f ( ) f( ), if f( ) 0 f( ), if f( ) < 0 Iverse Fuctio If y f( ), the Rememer: Oject the vlue of Imge the vlue of y or f() f()

More information

Variational Iteration Method for Solving Volterra and Fredholm Integral Equations of the Second Kind

Variational Iteration Method for Solving Volterra and Fredholm Integral Equations of the Second Kind Ge. Mth. Notes, Vol. 2, No. 1, Jury 211, pp. 143-148 ISSN 2219-7184; Copyright ICSRS Publictio, 211 www.i-csrs.org Avilble free olie t http://www.gem.i Vritiol Itertio Method for Solvig Volterr d Fredholm

More information

LU FACTORIZATION. ELM1222 Numerical Analysis. ELM1222 Numerical Analysis Dr Muharrem Mercimek

LU FACTORIZATION. ELM1222 Numerical Analysis. ELM1222 Numerical Analysis Dr Muharrem Mercimek EM Nmeric Asis Dr Mhrrem Mercimek FACTORIZATION EM Nmeric Asis Some of the cotets re dopted from ree V. Fsett, Appied Nmeric Asis sig MATAB. Pretice H Ic., 999 EM Nmeric Asis Dr Mhrrem Mercimek Cotets

More information

Schrödinger Equation Via Laplace-Beltrami Operator

Schrödinger Equation Via Laplace-Beltrami Operator IOSR Jourl of Mthemtics (IOSR-JM) e-issn: 78-578, p-issn: 39-765X. Volume 3, Issue 6 Ver. III (Nov. - Dec. 7), PP 9-95 www.iosrjourls.org Schrödiger Equtio Vi Lplce-Beltrmi Opertor Esi İ Eskitşçioğlu,

More information

Sharjah Institute of Technology

Sharjah Institute of Technology For commets, correctios, etc Plese cotct Ahf Abbs: hf@mthrds.com Shrh Istitute of Techolog echicl Egieerig Yer Thermofluids sheet ALGERA Lws of Idices:. m m + m m. ( ).. 4. m m 5. Defiitio of logrithm:

More information

Frequency-domain Characteristics of Discrete-time LTI Systems

Frequency-domain Characteristics of Discrete-time LTI Systems requecy-domi Chrcteristics of Discrete-time LTI Systems Prof. Siripog Potisuk LTI System descriptio Previous bsis fuctio: uit smple or DT impulse The iput sequece is represeted s lier combitio of shifted

More information

Eigenfunction Expansion. For a given function on the internal a x b the eigenfunction expansion of f(x):

Eigenfunction Expansion. For a given function on the internal a x b the eigenfunction expansion of f(x): Eigefuctio Epsio: For give fuctio o the iterl the eigefuctio epsio of f(): f ( ) cmm( ) m 1 Eigefuctio Epsio (Geerlized Fourier Series) To determie c s we multiply oth sides y Φ ()r() d itegrte: f ( )

More information

Vectors. Vectors in Plane ( 2

Vectors. Vectors in Plane ( 2 Vectors Vectors i Ple ( ) The ide bout vector is to represet directiol force Tht mes tht every vector should hve two compoets directio (directiol slope) d mgitude (the legth) I the ple we preset vector

More information

Numerical Integration by using Straight Line Interpolation Formula

Numerical Integration by using Straight Line Interpolation Formula Glol Jourl of Pure d Applied Mthemtics. ISSN 0973-1768 Volume 13, Numer 6 (2017), pp. 2123-2132 Reserch Idi Pulictios http://www.ripulictio.com Numericl Itegrtio y usig Stright Lie Iterpoltio Formul Mhesh

More information

Student Success Center Elementary Algebra Study Guide for the ACCUPLACER (CPT)

Student Success Center Elementary Algebra Study Guide for the ACCUPLACER (CPT) Studet Success Ceter Elemetry Algebr Study Guide for the ACCUPLACER (CPT) The followig smple questios re similr to the formt d cotet of questios o the Accuplcer Elemetry Algebr test. Reviewig these smples

More information

GRAPHING LINEAR EQUATIONS. Linear Equations. x l ( 3,1 ) _x-axis. Origin ( 0, 0 ) Slope = change in y change in x. Equation for l 1.

GRAPHING LINEAR EQUATIONS. Linear Equations. x l ( 3,1 ) _x-axis. Origin ( 0, 0 ) Slope = change in y change in x. Equation for l 1. GRAPHING LINEAR EQUATIONS Qudrt II Qudrt I ORDERED PAIR: The first umer i the ordered pir is the -coordite d the secod umer i the ordered pir is the y-coordite. (, ) Origi ( 0, 0 ) _-is Lier Equtios Qudrt

More information

( ) 2 3 ( ) I. Order of operations II. Scientific Notation. Simplify. Write answers in scientific notation. III.

( ) 2 3 ( ) I. Order of operations II. Scientific Notation. Simplify. Write answers in scientific notation. III. Assessmet Ceter Elemetry Alger Study Guide for the ACCUPLACER (CPT) The followig smple questios re similr to the formt d otet of questios o the Aupler Elemetry Alger test. Reviewig these smples will give

More information

Crushed Notes on MATH132: Calculus

Crushed Notes on MATH132: Calculus Mth 13, Fll 011 Siyg Yg s Outlie Crushed Notes o MATH13: Clculus The otes elow re crushed d my ot e ect This is oly my ow cocise overview of the clss mterils The otes I put elow should ot e used to justify

More information

Lecture 4 Recursive Algorithm Analysis. Merge Sort Solving Recurrences The Master Theorem

Lecture 4 Recursive Algorithm Analysis. Merge Sort Solving Recurrences The Master Theorem Lecture 4 Recursive Algorithm Alysis Merge Sort Solvig Recurreces The Mster Theorem Merge Sort MergeSortA, left, right) { if left < right) { mid = floorleft + right) / 2); MergeSortA, left, mid); MergeSortA,

More information

Fig. 1. I a. V ag I c. I n. V cg. Z n Z Y. I b. V bg

Fig. 1. I a. V ag I c. I n. V cg. Z n Z Y. I b. V bg ymmetricl Compoets equece impedces Although the followig focuses o lods, the results pply eqully well to lies, or lies d lods. Red these otes together with sectios.6 d.9 of text. Cosider the -coected lced

More information

Supplemental Handout #1. Orthogonal Functions & Expansions

Supplemental Handout #1. Orthogonal Functions & Expansions UIUC Physics 435 EM Fields & Sources I Fll Semester, 27 Supp HO # 1 Prof. Steve Errede Supplemetl Hdout #1 Orthogol Fuctios & Epsios Cosider fuctio f ( ) which is defied o the itervl. The fuctio f ( )

More information

7 The Rudiments of Input-Output Mathematics

7 The Rudiments of Input-Output Mathematics 7 The Rudimets of Iput-Output Mthemtics The first si chpters of this volume, which costitute self-cotied uit, descrie the iput-output system without the use of mthemtics. The costructio of iput-output

More information

For all Engineering Entrance Examinations held across India. Mathematics

For all Engineering Entrance Examinations held across India. Mathematics For ll Egieerig Etrce Exmitios held cross Idi. JEE Mi Mthemtics Sliet Fetures Exhustive coverge of MCQs subtopic wise. 95 MCQs icludig questios from vrious competitive exms. Precise theory for every topic.

More information

Applied Databases. Sebastian Maneth. Lecture 16 Suffix Array, Burrows-Wheeler Transform. University of Edinburgh - March 16th, 2017

Applied Databases. Sebastian Maneth. Lecture 16 Suffix Array, Burrows-Wheeler Transform. University of Edinburgh - March 16th, 2017 Applied Dtbses Lecture 16 Suffix Arry, Burrows-Wheeler Trsform Sebsti Meth Uiversity of Ediburgh - Mrch 16th, 2017 Outlie 2 1. Suffix Arry 2. Burrows-Wheeler Trsform Outlie 3 1. Suffix Arry 2. Burrows-Wheeler

More information

Accuplacer Elementary Algebra Study Guide

Accuplacer Elementary Algebra Study Guide Testig Ceter Studet Suess Ceter Aupler Elemetry Alger Study Guide The followig smple questios re similr to the formt d otet of questios o the Aupler Elemetry Alger test. Reviewig these smples will give

More information

Section IV.6: The Master Method and Applications

Section IV.6: The Master Method and Applications Sectio IV.6: The Mster Method d Applictios Defiitio IV.6.1: A fuctio f is symptoticlly positive if d oly if there exists rel umer such tht f(x) > for ll x >. A cosequece of this defiitio is tht fuctio

More information

Limit of a function:

Limit of a function: - Limit of fuctio: We sy tht f ( ) eists d is equl with (rel) umer L if f( ) gets s close s we wt to L if is close eough to (This defiitio c e geerlized for L y syig tht f( ) ecomes s lrge (or s lrge egtive

More information

CS 331 Design and Analysis of Algorithms. -- Divide and Conquer. Dr. Daisy Tang

CS 331 Design and Analysis of Algorithms. -- Divide and Conquer. Dr. Daisy Tang CS 33 Desig d Alysis of Algorithms -- Divide d Coquer Dr. Disy Tg Divide-Ad-Coquer Geerl ide: Divide problem ito subproblems of the sme id; solve subproblems usig the sme pproh, d ombie prtil solutios,

More information

CHAPTER 3 NETWORK ADMITTANCE AND IMPEDANCE MATRICES

CHAPTER 3 NETWORK ADMITTANCE AND IMPEDANCE MATRICES CHAPTER NETWORK ADTTANCE AND PEDANCE ATRCES As we hve see i Chter tht ower system etwor c e coverted ito equivlet imedce digrm. This digrm forms the sis of ower flow (or lod flow) studies d short circuit

More information

Recurrece reltio & Recursio 9 Chpter 3 Recurrece reltio & Recursio Recurrece reltio : A recurrece is equtio or iequlity tht describes fuctio i term of itself with its smller iputs. T T The problem of size

More information

sin m a d F m d F m h F dy a dy a D h m h m, D a D a c1cosh c3cos 0

sin m a d F m d F m h F dy a dy a D h m h m, D a D a c1cosh c3cos 0 Q1. The free vibrtio of the plte is give by By ssumig h w w D t, si cos w W x y t B t Substitutig the deflectio ito the goverig equtio yields For the plte give, the mode shpe W hs the form h D W W W si

More information

Unit 1. Extending the Number System. 2 Jordan School District

Unit 1. Extending the Number System. 2 Jordan School District Uit Etedig the Number System Jord School District Uit Cluster (N.RN. & N.RN.): Etedig Properties of Epoets Cluster : Etedig properties of epoets.. Defie rtiol epoets d eted the properties of iteger epoets

More information

The Elementary Arithmetic Operators of Continued Fraction

The Elementary Arithmetic Operators of Continued Fraction Americ-Eursi Jourl of Scietific Reserch 0 (5: 5-63, 05 ISSN 88-6785 IDOSI Pulictios, 05 DOI: 0.589/idosi.ejsr.05.0.5.697 The Elemetry Arithmetic Opertors of Cotiued Frctio S. Mugssi d F. Mistiri Deprtmet

More information

DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS. Assoc. Prof. Dr. Burak Kelleci. Spring 2018

DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS. Assoc. Prof. Dr. Burak Kelleci. Spring 2018 DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS Assoc. Prof. Dr. Bur Kelleci Sprig 8 OUTLINE The Z-Trsform The Regio of covergece for the Z-trsform The Iverse Z-Trsform Geometric

More information

Gauss Elimination, Gauss-Jordan Elimination and Gauss Seidel Iteration Method: Performance Comparison using MAT LAB

Gauss Elimination, Gauss-Jordan Elimination and Gauss Seidel Iteration Method: Performance Comparison using MAT LAB Itertiol Jourl of Egieerig Tehology Siee d Reserh www.ietsr.om ISSN 394 3386 Volume 4, Issue 0 Otober 07 Guss Elimitio, Guss-Jord Elimitio d Guss Seidel Itertio Method: Performe Compriso usig MAT LAB *Dr.

More information

The Method of Least Squares. To understand least squares fitting of data.

The Method of Least Squares. To understand least squares fitting of data. The Method of Least Squares KEY WORDS Curve fittig, least square GOAL To uderstad least squares fittig of data To uderstad the least squares solutio of icosistet systems of liear equatios 1 Motivatio Curve

More information

lecture 16: Introduction to Least Squares Approximation

lecture 16: Introduction to Least Squares Approximation 97 lecture 16: Itroductio to Lest Squres Approximtio.4 Lest squres pproximtio The miimx criterio is ituitive objective for pproximtig fuctio. However, i my cses it is more ppelig (for both computtio d

More information

Algebra II, Chapter 7. Homework 12/5/2016. Harding Charter Prep Dr. Michael T. Lewchuk. Section 7.1 nth roots and Rational Exponents

Algebra II, Chapter 7. Homework 12/5/2016. Harding Charter Prep Dr. Michael T. Lewchuk. Section 7.1 nth roots and Rational Exponents Algebr II, Chpter 7 Hrdig Chrter Prep 06-07 Dr. Michel T. Lewchuk Test scores re vilble olie. I will ot discuss the test. st retke opportuit Sturd Dec. If ou hve ot tke the test, it is our resposibilit

More information

Taylor Polynomials. The Tangent Line. (a, f (a)) and has the same slope as the curve y = f (x) at that point. It is the best

Taylor Polynomials. The Tangent Line. (a, f (a)) and has the same slope as the curve y = f (x) at that point. It is the best Tylor Polyomils Let f () = e d let p() = 1 + + 1 + 1 6 3 Without usig clcultor, evlute f (1) d p(1) Ok, I m still witig With little effort it is possible to evlute p(1) = 1 + 1 + 1 (144) + 6 1 (178) =

More information

Applied Databases. Sebastian Maneth. Lecture 16 Suffix Array, Burrows-Wheeler Transform. University of Edinburgh - March 10th, 2016

Applied Databases. Sebastian Maneth. Lecture 16 Suffix Array, Burrows-Wheeler Transform. University of Edinburgh - March 10th, 2016 Applied Dtbses Lecture 16 Suffix Arry, Burrows-Wheeler Trsform Sebsti Meth Uiversity of Ediburgh - Mrch 10th, 2016 2 Outlie 1. Suffix Arry 2. Burrows-Wheeler Trsform 3 Olie Strig-Mtchig how c we do Horspool

More information

 n. A Very Interesting Example + + = d. + x3. + 5x4. math 131 power series, part ii 7. One of the first power series we examined was. 2!

 n. A Very Interesting Example + + = d. + x3. + 5x4. math 131 power series, part ii 7. One of the first power series we examined was. 2! mth power series, prt ii 7 A Very Iterestig Emple Oe of the first power series we emied ws! + +! + + +!! + I Emple 58 we used the rtio test to show tht the itervl of covergece ws (, ) Sice the series coverges

More information

Module Summary Sheets. FP1, Further Concepts for Advanced Mathematics

Module Summary Sheets. FP1, Further Concepts for Advanced Mathematics MEI Mthemtics i Eductio d Idustry MEI Structured Mthemtics Module Summry Sheets FP, Further Cocepts for Advced Mthemtics Topic : Mtrices Topic : Comple Numbers Topic : Curve Sketchig Topic 4: Algebr Purchsers

More information

THE NATIONAL UNIVERSITY OF IRELAND, CORK COLÁISTE NA hollscoile, CORCAIGH UNIVERSITY COLLEGE, CORK SUMMER EXAMINATION 2005 FIRST ENGINEERING

THE NATIONAL UNIVERSITY OF IRELAND, CORK COLÁISTE NA hollscoile, CORCAIGH UNIVERSITY COLLEGE, CORK SUMMER EXAMINATION 2005 FIRST ENGINEERING OLLSCOIL NA héireann, CORCAIGH THE NATIONAL UNIVERSITY OF IRELAND, CORK COLÁISTE NA hollscoile, CORCAIGH UNIVERSITY COLLEGE, CORK SUMMER EXAMINATION 2005 FIRST ENGINEERING MATHEMATICS MA008 Clculus d Lier

More information

Modified chain least squares method and some numerical results

Modified chain least squares method and some numerical results IJST (2015) 39A1: 91-99 Iri Jourl of Sciece & Tecology ttp://ijsts.sirzu.c.ir Modified ci lest squres metod d some umericl results F. Goree 1, E. Boli 1 * d A. Adolli 2 1 Deprtmet of Mtemtics, College

More information

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com PhysicsAdMthsTutor.com PhysicsAdMthsTutor.com Jue 009 4. Give tht y rsih ( ), > 0, () fid d y d, givig your swer s simplified frctio. () Leve lk () Hece, or otherwise, fid 4 d, 4 [ ( )] givig your swer

More information

Discrete-Time Signals & Systems

Discrete-Time Signals & Systems Chpter 2 Discrete-Time Sigls & Systems 清大電機系林嘉文 cwli@ee.thu.edu.tw 03-57352 Discrete-Time Sigls Sigls re represeted s sequeces of umbers, clled smples Smple vlue of typicl sigl or sequece deoted s x =

More information

Name of the Student:

Name of the Student: Egieerig Mthemtics 5 NAME OF THE SUBJECT : Mthemtics I SUBJECT CODE : MA65 MATERIAL NAME : Additiol Prolems MATERIAL CODE : HGAUM REGULATION : R UPDATED ON : M-Jue 5 (Sc the ove QR code for the direct

More information

Merge Sort. Outline and Reading. Divide-and-Conquer. Divide-and-conquer paradigm ( 4.1.1) Merge-sort ( 4.1.1)

Merge Sort. Outline and Reading. Divide-and-Conquer. Divide-and-conquer paradigm ( 4.1.1) Merge-sort ( 4.1.1) Merge Sort 7 2 9 4 2 4 7 9 7 2 2 7 9 4 4 9 7 7 2 2 9 9 4 4 Merge Sort versio 1.3 1 Outlie d Redig Divide-d-coquer prdigm ( 4.1.1 Merge-sort ( 4.1.1 Algorithm Mergig two sorted sequeces Merge-sort tree

More information

SOME IDENTITIES BETWEEN BASIC HYPERGEOMETRIC SERIES DERIVING FROM A NEW BAILEY-TYPE TRANSFORMATION

SOME IDENTITIES BETWEEN BASIC HYPERGEOMETRIC SERIES DERIVING FROM A NEW BAILEY-TYPE TRANSFORMATION SOME IDENTITIES BETWEEN BASIC HYPERGEOMETRIC SERIES DERIVING FROM A NEW BAILEY-TYPE TRANSFORMATION JAMES MC LAUGHLIN AND PETER ZIMMER Abstrct We prove ew Biley-type trsformtio reltig WP- Biley pirs We

More information

Canonical Form and Separability of PPT States on Multiple Quantum Spaces

Canonical Form and Separability of PPT States on Multiple Quantum Spaces Coicl Form d Seprbility of PPT Sttes o Multiple Qutum Spces Xio-Hog Wg d Sho-Mig Fei, 2 rxiv:qut-ph/050445v 20 Apr 2005 Deprtmet of Mthemtics, Cpitl Norml Uiversity, Beijig, Chi 2 Istitute of Applied Mthemtics,

More information

Fundamentals of Mathematics. Pascal s Triangle An Investigation March 20, 2008 Mario Soster

Fundamentals of Mathematics. Pascal s Triangle An Investigation March 20, 2008 Mario Soster Fudmetls of Mthemtics Pscl s Trigle A Ivestigtio Mrch 0, 008 Mrio Soster Historicl Timelie A trigle showig the iomil coefficiets pper i Idi ook i the 0 th cetury I the th cetury Chiese mthemtici Yg Hui

More information