Section Differential Equations: Modeling, Slope Fields, and Euler s Method

Size: px
Start display at page:

Download "Section Differential Equations: Modeling, Slope Fields, and Euler s Method"

Transcription

1 Section.. Differential Equations: Modeling, Slope Fields, and Euler s Method Preliminar Eample. Phsical Situation Modeling Differential Equation An object is taken out of an oven and placed in a room where the temperature is 75 F. Let T(t) represent the temperature of the object, in F, after t minutes. dt = k(75 T), where k > is a constant. Description of the Phsical Law Modeled b the Differential Equation To the right, ou are given a slope field for the differential equation dt = k(75 T) for k =.5. For each initial condition shown below, draw the corresponding temperature function T(t) on the slope field. (i) T() = T (ii) T() = 5 (iii) T() = 5 (iv) T() = t Definition. A differential equation is an equation that involves an unknown function and one or more of its derivatives. Definition. A solution to a differential equation is a function that satisfies the differential equation. Definition. An initial value problem (IVP) is a differential equation together with one or more initial conditions. A solution to an IVP is a function that satisfies BOTH the differential equation AND the initial condition(s).

2 Eample. Let (t) represent the percentage of a particular task that has been learned after t months. Then can be modeled using the differential equation d = k( ), where k is a positive constant. (a) The slope field to the right represents the differential equation given above with k =.. Draw in the solutions to the following initial value problems: (i) d (ii) d =.( ), () = =.( ), () = 6 (b) Who learns faster at the beginning, a person who starts out knowing % of a task or a person who starts out knowing 6% of a task? Eplain (c) Eplain, in the contet of this situation, what the modeling differential equation d t = k( ) is saing. Eample. Let P(t) represent the population of a bacteria colon after t hours. Assume that this population is modeled b the differential equation dp =.P, whose slope field is given below (a) Draw in the solutions to the following initial value problems: (i) dp (ii) dp =.P, P() = =.P, P() = P 5 4 (b) Estimate the amount of time it takes for the population of a bacteria colon to double if it starts with bacteria. t 4 5 6

3 (c) For each of the following functions, use the slope field to guess whether the function could be a solution to the differential equation dp =.P. Then, use algebra and calculus to confirm our guesses. (i) P = e.t (iii) P = t + (v) P = (ii) P = e.t (iv) P = e.t+4 (vi) P = sint Eercises. Let k and C be an constants. Consider the differential equations given below: (I) d = (II) = For each of the functions given below, decide whether the function is a solution to (I), to (II), or to both (I) and (II). (a) = Ce t (b) = cost (c) = cost 4 sint (d) =

4 . (a) Show that all members of the famil = are solutions of the differential equation c =. (b) Use part (a) to find a formula for the solution to the initial value problem =, () =. Then, sketch our solution on the slope field shown to the right t Figure. Slope field for =. (a) Show that all members of the famil = + c are solutions of the differential equation = 5. (b) Find the solution to the initial value problem = 5, () = For what nonzero values of k does the function = e kt solve the differential equation 6 =? 5. (Taken from Stewart) A population is modeled b the differential equation dp ( =.P P ). 4 (a) For what values of P is the population increasing? (b) For what values of P is the population decreasing? 6. Below, ou are given 8 differential equations. Match each differential equation with the appropriate direction field (given on the net page). Then, complete parts (a) (c) below. (I) = (II) = (III) = (IV) = cos() (V) = (VI) = (VII) = (VIII) = (a) For each of the direction fields, draw in the solution that satisfies the initial condition () =. (b) Can ou guess a formula for an of the solutions ou drew in for part (a)? Check to see if ou re right! Definition. A constant solution to a differential equation is called an equilibrium solution. Graphicall, an equilibrium solution is a horizontal line, that is, a solution of the form = c for some constant c. 7. Use the above definition of equilibrium solution to answer the following: (a) Does the differential equation from the Preliminar Eample a few pages ago have an equilibrium solutions? If so, what are the? (b) Does the differential equation from Eample (preceding the eercises) have an equilibrium solutions? If so, what are the? (c) Does the differential equation from Eercise 5 above have an equilibrium solutions? If so, what are the? (d) Which of the differential equations from Eercise 6 above have an equilibrium solution? For those that do, what are the equilibrium solutions?

5 (A) (B) (C) (D) (E) (F) (G) (H)

6 Euler s Method Preliminar Eample. In the figure below, ou are given the slope field for an initial value problem of the form d = F(, ), () =. d Derive a method for approimating the solution curve () for this initial value problem Euler s Method Formulas: Eamples and Eercises. Consider the initial value problem d d =, () =. To the right, ou are given a slope field and a graph of the unknown solution to this problem, (). Use Euler s Method with step size.5 to estimate (.5). Sketch our solution curve on the slope field to the right and compare with the eact solution, ()

7 . The slope field for the differential equation = is shown to the right. Use Euler s method to approimate solution curves to the following initial value problems: (a) =, ( ) =.5.5 (b) =, ( ) =.5 Use a step size of.5 in both cases

8 Section.4 Separation of Variables Eample. (a) Solve d d =. Then, draw in several of our solution curves on the direction field given to the right. (b) Solve the initial value problem d d =, () =. Highlight this solution on our direction field above. (c) Solve the initial value problem d d =, () =. Highlight this solution on our direction field above.

9 Eample. For each of the following, ou are given a differential equation, a slope field, and an initial value problem. First, solve the differential equation and draw in several of our solution curves. Then, solve the initial value problem and highlight this particular solution curve. (i) d d = (ii) d d =, () = (i) d d = / (ii) d d = /, () =

10 (i) d d = e (ii) d d = e, () = Eamples and Eercises. Find the general solution to the differential equation + =.. Let v(t) represent the speed of a falling parachutist (before the chute opens), in feet per second, after t seconds. The motion of the parachutist is governed b the differential equation dv =.v. You ma assume that the parachutist has an initial speed of zero when jumping out of the plane; that is, v() =. (a) Find a formula for the speed of the parachutist as a function of time. (b) What happens to the speed of the parachutist as t? Use our answer from part (a) to justif our answer.. Solve e d = t +.

Name Class. 5. Find the particular solution to given the general solution y C cos x and the. x 2 y

Name Class. 5. Find the particular solution to given the general solution y C cos x and the. x 2 y 10 Differential Equations Test Form A 1. Find the general solution to the first order differential equation: y 1 yy 0. 1 (a) (b) ln y 1 y ln y 1 C y y C y 1 C y 1 y C. Find the general solution to the

More information

Exact Differential Equations. The general solution of the equation is f x, y C. If f has continuous second partials, then M y 2 f

Exact Differential Equations. The general solution of the equation is f x, y C. If f has continuous second partials, then M y 2 f APPENDIX C Additional Topics in Differential Equations APPENDIX C. Eact First-Order Equations Eact Differential Equations Integrating Factors Eact Differential Equations In Chapter 6, ou studied applications

More information

Additional Topics in Differential Equations

Additional Topics in Differential Equations 0537_cop6.qd 0/8/08 :6 PM Page 3 6 Additional Topics in Differential Equations In Chapter 6, ou studied differential equations. In this chapter, ou will learn additional techniques for solving differential

More information

3.6 Start Thinking. 3.6 Warm Up. 3.6 Cumulative Review Warm Up. = 2. ( q )

3.6 Start Thinking. 3.6 Warm Up. 3.6 Cumulative Review Warm Up. = 2. ( q ) .6 Start Thinking Graph the lines = and =. Note the change in slope of the line. Graph the line = 0. What is happening to the line? What would the line look like if the slope was changed to 00? 000? What

More information

MA 114 Worksheet #01: Integration by parts

MA 114 Worksheet #01: Integration by parts Fall 8 MA 4 Worksheet Thursday, 3 August 8 MA 4 Worksheet #: Integration by parts. For each of the following integrals, determine if it is best evaluated by integration by parts or by substitution. If

More information

5.3 Interpreting Rate of Change and Slope - NOTES

5.3 Interpreting Rate of Change and Slope - NOTES Name Class Date 5.3 Interpreting Rate of Change and Slope NOTES Essential question: How can ou relate rate of change and slope in linear relationships? Eplore A1.3.B calculate the rate of change of a linear

More information

5.6. Differential equations

5.6. Differential equations 5.6. Differential equations The relationship between cause and effect in phsical phenomena can often be formulated using differential equations which describe how a phsical measure () and its derivative

More information

Slope Fields and Differential Equations

Slope Fields and Differential Equations Student Stud Session Slope Fields and Differential Equations Students should be able to: Draw a slope field at a specified number of points b hand. Sketch a solution that passes through a given point on

More information

Maintaining Mathematical Proficiency

Maintaining Mathematical Proficiency Name Date Chapter 3 Maintaining Mathematical Proficienc Plot the point in a coordinate plane. Describe the location of the point. 1. A( 3, 1). B (, ) 3. C ( 1, 0). D ( 5, ) 5. Plot the point that is on

More information

APPLICATIONS OF DIFFERENTIATION

APPLICATIONS OF DIFFERENTIATION 4 APPLICATIONS OF DIFFERENTIATION APPLICATIONS OF DIFFERENTIATION 4.8 Newton s Method In this section, we will learn: How to solve high degree equations using Newton s method. INTRODUCTION Suppose that

More information

Daily Lessons and Assessments for AP* Calculus AB, A Complete Course Page 119 Mark Sparks 2012

Daily Lessons and Assessments for AP* Calculus AB, A Complete Course Page 119 Mark Sparks 2012 Unit # Understanding the Derivative Homework Packet f ( h) f ( Find lim for each of the functions below. Then, find the equation of the tangent line to h 0 h the graph of f( at the given value of. 1. f

More information

MAT 127: Calculus C, Spring 2017 Solutions to Problem Set 2

MAT 127: Calculus C, Spring 2017 Solutions to Problem Set 2 MAT 7: Calculus C, Spring 07 Solutions to Problem Set Section 7., Problems -6 (webassign, pts) Match the differential equation with its direction field (labeled I-IV on p06 in the book). Give reasons for

More information

A11.1 Areas under curves

A11.1 Areas under curves Applications 11.1 Areas under curves A11.1 Areas under curves Before ou start You should be able to: calculate the value of given the value of in algebraic equations of curves calculate the area of a trapezium.

More information

Derivatives 2: The Derivative at a Point

Derivatives 2: The Derivative at a Point Derivatives 2: The Derivative at a Point 69 Derivatives 2: The Derivative at a Point Model 1: Review of Velocit In the previous activit we eplored position functions (distance versus time) and learned

More information

Section 2.4 The Quotient Rule

Section 2.4 The Quotient Rule Section 2.4 The Quotient Rule In the previous section, we found that the derivative of the product of two functions is not the product of their derivatives. The quotient rule gives the derivative of a

More information

AP Exam Practice Questions for Chapter 5

AP Exam Practice Questions for Chapter 5 AP Eam Practice Questions for Chapter 5 AP Eam Practice Questions for Chapter 5 d. To find which graph is a slope field for, 5 evaluate the derivative at selected points. d At ( 0, ),. d At (, 0 ),. 5

More information

FIRST- AND SECOND-ORDER IVPS The problem given in (1) is also called an nth-order initial-value problem. For example, Solve: Solve:

FIRST- AND SECOND-ORDER IVPS The problem given in (1) is also called an nth-order initial-value problem. For example, Solve: Solve: .2 INITIAL-VALUE PROBLEMS 3.2 INITIAL-VALUE PROBLEMS REVIEW MATERIAL Normal form of a DE Solution of a DE Famil of solutions INTRODUCTION We are often interested in problems in which we seek a solution

More information

Section 3.3 Limits Involving Infinity - Asymptotes

Section 3.3 Limits Involving Infinity - Asymptotes 76 Section. Limits Involving Infinity - Asymptotes We begin our discussion with analyzing its as increases or decreases without bound. We will then eplore functions that have its at infinity. Let s consider

More information

AP Exam Practice Questions for Chapter 6

AP Exam Practice Questions for Chapter 6 AP Eam Practice Questions for Chapter 6 AP Eam Practice Questions for Chapter 6. To find which graph is a slope field for, 5 evaluate the derivative at selected points. At ( 0, ),.. 3., 0,. 5 At ( ) At

More information

2.2 SEPARABLE VARIABLES

2.2 SEPARABLE VARIABLES 44 CHAPTER FIRST-ORDER DIFFERENTIAL EQUATIONS 6 Consider the autonomous DE 6 Use our ideas from Problem 5 to find intervals on the -ais for which solution curves are concave up and intervals for which

More information

Additional Topics in Differential Equations

Additional Topics in Differential Equations 6 Additional Topics in Differential Equations 6. Eact First-Order Equations 6. Second-Order Homogeneous Linear Equations 6.3 Second-Order Nonhomogeneous Linear Equations 6.4 Series Solutions of Differential

More information

6.4 graphs OF logarithmic FUnCTIOnS

6.4 graphs OF logarithmic FUnCTIOnS SECTION 6. graphs of logarithmic functions 9 9 learning ObjeCTIveS In this section, ou will: Identif the domain of a logarithmic function. Graph logarithmic functions. 6. graphs OF logarithmic FUnCTIOnS

More information

SEPARABLE EQUATIONS 2.2

SEPARABLE EQUATIONS 2.2 46 CHAPTER FIRST-ORDER DIFFERENTIAL EQUATIONS 4. Chemical Reactions When certain kinds of chemicals are combined, the rate at which the new compound is formed is modeled b the autonomous differential equation

More information

Calculus I Practice Test Problems for Chapter 2 Page 1 of 7

Calculus I Practice Test Problems for Chapter 2 Page 1 of 7 Calculus I Practice Test Problems for Chapter Page of 7 This is a set of practice test problems for Chapter This is in no way an inclusive set of problems there can be other types of problems on the actual

More information

Chapter 11. Systems of Equations Solving Systems of Linear Equations by Graphing

Chapter 11. Systems of Equations Solving Systems of Linear Equations by Graphing Chapter 11 Sstems of Equations 11.1 Solving Sstems of Linear Equations b Graphing Learning Objectives: A. Decide whether an ordered pair is a solution of a sstem of linear equations. B. Solve a sstem of

More information

Differential Equations

Differential Equations Chapter 7 Differential Equations 7. An Introduction to Differential Equations Motivating Questions In this section, we strive to understand the ideas generated by the following important questions: What

More information

3.2 Understanding Relations and Functions-NOTES

3.2 Understanding Relations and Functions-NOTES Name Class Date. Understanding Relations and Functions-NOTES Essential Question: How do ou represent relations and functions? Eplore A1.1.A decide whether relations represented verball, tabularl, graphicall,

More information

All work must be shown in this course for full credit. Unsupported answers may receive NO credit.

All work must be shown in this course for full credit. Unsupported answers may receive NO credit. AP Calculus 6. Worksheet Da All work must be shown in this course for full credit. Unsupported answers ma receive NO credit. Indefinite Integrals: Remember the first step to evaluating an integral is to

More information

4.2 Start Thinking. 4.2 Warm Up. 4.2 Cumulative Review Warm Up

4.2 Start Thinking. 4.2 Warm Up. 4.2 Cumulative Review Warm Up . Start Thinking How can ou find a linear equation from a graph for which ou do not know the -intercept? Describe a situation in which ou might know the slope but not the -intercept. Provide a graph of

More information

Math 122 Fall Handout 11: Summary of Euler s Method, Slope Fields and Symbolic Solutions of Differential Equations

Math 122 Fall Handout 11: Summary of Euler s Method, Slope Fields and Symbolic Solutions of Differential Equations 1 Math 122 Fall 2008 Handout 11: Summary of Euler s Method, Slope Fields and Symbolic Solutions of Differential Equations The purpose of this handout is to review the techniques that you will learn for

More information

3.4. Slope Intercept Form The Leaky Bottle. My Notes ACTIVITY

3.4. Slope Intercept Form The Leaky Bottle. My Notes ACTIVITY Slope Intercept Form SUGGESTED LEARNING STRATEGIES: Use Manipulatives, Create Representations, Discussion Group, Think/Pair/Share, Activating Prior Knowledge Owen s water bottle leaked in his bookbag.

More information

Practice Problem List II

Practice Problem List II Math 46 Practice Problem List II -------------------------------------------------------------------------------------------------------------------- Section 4.: 3, 3, 5, 9, 3, 9, 34, 39, 43, 53, 6-7 odd

More information

Chapter 27 AB Calculus Practice Test

Chapter 27 AB Calculus Practice Test Chapter 7 AB Calculus Practice Test The Eam AP Calculus AB Eam SECTION I: Multiple-Choice Questions DO NOT OPEN THIS BOOKLET UNTIL YOU ARE TOLD TO DO SO. At a Glance Total Time 1 hour and 45 minutes Number

More information

means Name a function whose derivative is 2x. x 4, and so forth.

means Name a function whose derivative is 2x. x 4, and so forth. AP Slope Fields Worksheet Slope fields give us a great wa to visualize a famil of antiderivatives, solutions of differential equations. d Solving means Name a function whose derivative is. d Answers might

More information

6.1 Antiderivatives and Slope Fields Calculus

6.1 Antiderivatives and Slope Fields Calculus 6. Antiderivatives and Slope Fields Calculus 6. ANTIDERIVATIVES AND SLOPE FIELDS Indefinite Integrals In the previous chapter we dealt with definite integrals. Definite integrals had limits of integration.

More information

Mathematics Numbers: Absolute Value of Functions I

Mathematics Numbers: Absolute Value of Functions I a place of mind F A C U L T Y O F E D U C A T I O N Department of Curriculum and Pedagogy Mathematics Numbers: Absolute Value of Functions I Science and Mathematics Education Research Group Supported by

More information

LESSON #12 - FORMS OF A LINE COMMON CORE ALGEBRA II

LESSON #12 - FORMS OF A LINE COMMON CORE ALGEBRA II LESSON # - FORMS OF A LINE COMMON CORE ALGEBRA II Linear functions come in a variet of forms. The two shown below have been introduced in Common Core Algebra I and Common Core Geometr. TWO COMMON FORMS

More information

dt 2 The Order of a differential equation is the order of the highest derivative that occurs in the equation. Example The differential equation

dt 2 The Order of a differential equation is the order of the highest derivative that occurs in the equation. Example The differential equation Lecture 18 : Direction Fields and Euler s Method A Differential Equation is an equation relating an unknown function and one or more of its derivatives. Examples Population growth : dp dp = kp, or = kp

More information

P.4 Lines in the Plane

P.4 Lines in the Plane 28 CHAPTER P Prerequisites P.4 Lines in the Plane What ou ll learn about Slope of a Line Point-Slope Form Equation of a Line Slope-Intercept Form Equation of a Line Graphing Linear Equations in Two Variables

More information

( + ) 3. AP Calculus BC Chapter 6 AP Exam Problems. Antiderivatives. + + x + C. 2. If the second derivative of f is given by f ( x) = 2x cosx

( + ) 3. AP Calculus BC Chapter 6 AP Exam Problems. Antiderivatives. + + x + C. 2. If the second derivative of f is given by f ( x) = 2x cosx Chapter 6 AP Eam Problems Antiderivatives. ( ) + d = ( + ) + 5 + + 5 ( + ) 6 ( + ). If the second derivative of f is given by f ( ) = cos, which of the following could be f( )? + cos + cos + + cos + sin

More information

Study Guide and Intervention. The Quadratic Formula and the Discriminant. Quadratic Formula. Replace a with 1, b with -5, and c with -14.

Study Guide and Intervention. The Quadratic Formula and the Discriminant. Quadratic Formula. Replace a with 1, b with -5, and c with -14. Study Guide and Intervention Quadratic Formula The Quadratic Formula can be used to solve any quadratic equation once it is written in the form a 2 + b + c = 0. Quadratic Formula The solutions of a 2 +

More information

Second-Order Linear Differential Equations C 2

Second-Order Linear Differential Equations C 2 C8 APPENDIX C Additional Topics in Differential Equations APPENDIX C. Second-Order Homogeneous Linear Equations Second-Order Linear Differential Equations Higher-Order Linear Differential Equations Application

More information

Section 3.3 Graphs of Polynomial Functions

Section 3.3 Graphs of Polynomial Functions 3.3 Graphs of Polynomial Functions 179 Section 3.3 Graphs of Polynomial Functions In the previous section we eplored the short run behavior of quadratics, a special case of polynomials. In this section

More information

First-Order Differential Equations

First-Order Differential Equations First-Order Differential Equations. Solution Curves Without a Solution.. Direction Fields.. Autonomous First-Order DEs. Separable Equations.3 Linear Equations. Eact Equations.5 Solutions b Substitutions.6

More information

Exponential, Logistic, and Logarithmic Functions

Exponential, Logistic, and Logarithmic Functions CHAPTER 3 Eponential, Logistic, and Logarithmic Functions 3.1 Eponential and Logistic Functions 3.2 Eponential and Logistic Modeling 3.3 Logarithmic Functions and Their Graphs 3.4 Properties of Logarithmic

More information

Essential Question How can you use a scatter plot and a line of fit to make conclusions about data?

Essential Question How can you use a scatter plot and a line of fit to make conclusions about data? . Scatter Plots and Lines of Fit Essential Question How can ou use a scatter plot and a line of fit to make conclusions about data? A scatter plot is a graph that shows the relationship between two data

More information

Set 3: Limits of functions:

Set 3: Limits of functions: Set 3: Limits of functions: A. The intuitive approach (.): 1. Watch the video at: https://www.khanacademy.org/math/differential-calculus/it-basics-dc/formal-definition-of-its-dc/v/itintuition-review. 3.

More information

Name Class Date. Solving by Graphing and Algebraically

Name Class Date. Solving by Graphing and Algebraically Name Class Date 16-4 Nonlinear Sstems Going Deeper Essential question: How can ou solve a sstem of equations when one equation is linear and the other is quadratic? To estimate the solution to a sstem

More information

4.2 Mean Value Theorem Calculus

4.2 Mean Value Theorem Calculus 4. MEAN VALUE THEOREM The Mean Value Theorem is considered b some to be the most important theorem in all of calculus. It is used to prove man of the theorems in calculus that we use in this course as

More information

y sin n x dx cos x sin n 1 x n 1 y sin n 2 x cos 2 x dx y sin n xdx cos x sin n 1 x n 1 y sin n 2 x dx n 1 y sin n x dx

y sin n x dx cos x sin n 1 x n 1 y sin n 2 x cos 2 x dx y sin n xdx cos x sin n 1 x n 1 y sin n 2 x dx n 1 y sin n x dx SECTION 7. INTEGRATION BY PARTS 57 EXAPLE 6 Prove the reduction formula N Equation 7 is called a reduction formula because the eponent n has been reduced to n and n. 7 sin n n cos sinn n n sin n where

More information

4 The Cartesian Coordinate System- Pictures of Equations

4 The Cartesian Coordinate System- Pictures of Equations The Cartesian Coordinate Sstem- Pictures of Equations Concepts: The Cartesian Coordinate Sstem Graphs of Equations in Two Variables -intercepts and -intercepts Distance in Two Dimensions and the Pthagorean

More information

Calculus I Homework: The Tangent and Velocity Problems Page 1

Calculus I Homework: The Tangent and Velocity Problems Page 1 Calculus I Homework: The Tangent and Velocity Problems Page 1 Questions Example The point P (1, 1/2) lies on the curve y = x/(1 + x). a) If Q is the point (x, x/(1 + x)), use Mathematica to find the slope

More information

How can you write an equation of a line when you are given the slope and a point on the line? ACTIVITY: Writing Equations of Lines

How can you write an equation of a line when you are given the slope and a point on the line? ACTIVITY: Writing Equations of Lines .7 Writing Equations in Point-Slope Form How can ou write an equation of a line when ou are given the slope and a point on the line? ACTIVITY: Writing Equations of Lines Work with a partner. Sketch the

More information

Chapter 11 Packet & 11.2 What is a Differential Equation and What are Slope Fields

Chapter 11 Packet & 11.2 What is a Differential Equation and What are Slope Fields Chapter 11 Packet 11.1 & 11. What is a Differential Equation and What are Slope Fields What is a differential equation? An equation that gives information about the rate of change of an unknown function

More information

1.3 LIMITS AT INFINITY; END BEHAVIOR OF A FUNCTION

1.3 LIMITS AT INFINITY; END BEHAVIOR OF A FUNCTION . Limits at Infinit; End Behavior of a Function 89. LIMITS AT INFINITY; END BEHAVIOR OF A FUNCTION Up to now we have been concerned with its that describe the behavior of a function f) as approaches some

More information

NAME DATE PERIOD. Study Guide and Intervention. Ax + By = C, where A 0, A and B are not both zero, and A, B, and C are integers with GCF of 1.

NAME DATE PERIOD. Study Guide and Intervention. Ax + By = C, where A 0, A and B are not both zero, and A, B, and C are integers with GCF of 1. NAME DATE PERID 3-1 Stud Guide and Intervention Graphing Linear Equations Identif Linear Equations and Intercepts A linear equation is an equation that can be written in the form A + B = C. This is called

More information

How can you determine the number of solutions of a quadratic equation of the form ax 2 + c = 0? ACTIVITY: The Number of Solutions of ax 2 + c = 0

How can you determine the number of solutions of a quadratic equation of the form ax 2 + c = 0? ACTIVITY: The Number of Solutions of ax 2 + c = 0 9. Solving Quadratic Equations Using Square Roots How can ou determine the number of solutions of a quadratic equation of the form a + c = 0? ACTIVITY: The Number of Solutions of a + c = 0 Work with a

More information

Differential Equations

Differential Equations 6 Differential Equations In this chapter, ou will stu one of the most important applications of calculus differential equations. You will learn several methods for solving different tpes of differential

More information

UBC-SFU-UVic-UNBC Calculus Exam Solutions 7 June 2007

UBC-SFU-UVic-UNBC Calculus Exam Solutions 7 June 2007 This eamination has 15 pages including this cover. UBC-SFU-UVic-UNBC Calculus Eam Solutions 7 June 007 Name: School: Signature: Candidate Number: Rules and Instructions 1. Show all your work! Full marks

More information

Extra Practice Recovering C

Extra Practice Recovering C Etra Practice Recovering C 1 Given the second derivative of a function, integrate to get the first derivative, then again to find the equation of the original function. Use the given initial conditions

More information

Answers to Some Sample Problems

Answers to Some Sample Problems Answers to Some Sample Problems. Use rules of differentiation to evaluate the derivatives of the following functions of : cos( 3 ) ln(5 7 sin(3)) 3 5 +9 8 3 e 3 h 3 e i sin( 3 )3 +[ ln ] cos( 3 ) [ln(5)

More information

Math 2300 Calculus II University of Colorado Final exam review problems

Math 2300 Calculus II University of Colorado Final exam review problems Math 300 Calculus II University of Colorado Final exam review problems. A slope field for the differential equation y = y e x is shown. Sketch the graphs of the solutions that satisfy the given initial

More information

Differential Equations

Differential Equations Differential Equations Big Ideas Slope fields draw a slope field, sketch a particular solution Separation of variables separable differential equations General solution Particular solution Growth decay

More information

Exponential and Logarithmic Functions

Exponential and Logarithmic Functions Eponential and Logarithmic Functions 6 Figure Electron micrograph of E. Coli bacteria (credit: Mattosaurus, Wikimedia Commons) CHAPTER OUTLINE 6. Eponential Functions 6. Logarithmic Properties 6. Graphs

More information

APPLICATIONS OF INTEGRATION

APPLICATIONS OF INTEGRATION 6 APPLICATIONS OF INTEGRATION APPLICATIONS OF INTEGRATION 6.5 Average Value of a Function In this section, we will learn about: Applying integration to find out the average value of a function. AVERAGE

More information

(i) find the points where f(x) is discontinuous, and classify each point of discontinuity.

(i) find the points where f(x) is discontinuous, and classify each point of discontinuity. Math Final Eam - Practice Problems. A function f is graphed below. f() 5 4 8 7 5 4 4 5 7 8 4 5 (a) Find f(0), f( ), f(), and f(4) Find the domain and range of f (c) Find the intervals where f () is positive

More information

Exponential Growth. b.) What will the population be in 3 years?

Exponential Growth. b.) What will the population be in 3 years? 0 Eponential Growth y = a b a b Suppose your school has 4512 students this year. The student population is growing 2.5% each year. a.) Write an equation to model the student population. b.) What will the

More information

Functions & Function Notation

Functions & Function Notation Functions & Function Notation What is a Function? The natural world is full of relationships between quantities that change. When we see these relationships, it is natural for us to ask If I know one quantity,

More information

DIFFERENTIATION RULES

DIFFERENTIATION RULES 3 DIFFERENTIATION RULES DIFFERENTIATION RULES 3.2 The Product and Quotient Rules In this section, we will learn about: Formulas that enable us to differentiate new functions formed from old functions by

More information

In everyday speech, a continuous. Limits and Continuity. Critical Thinking Exercises

In everyday speech, a continuous. Limits and Continuity. Critical Thinking Exercises 062 Chapter Introduction to Calculus Critical Thinking Eercises Make Sense? In Eercises 74 77, determine whether each statement makes sense or does not make sense, and eplain our reasoning. 74. I evaluated

More information

and Rational Functions

and Rational Functions chapter This detail from The School of Athens (painted by Raphael around 1510) depicts Euclid eplaining geometry. Linear, Quadratic, Polynomial, and Rational Functions In this chapter we focus on four

More information

1993 AP Calculus AB: Section I

1993 AP Calculus AB: Section I 99 AP Calculus AB: Section I 90 Minutes Scientific Calculator Notes: () The eact numerical value of the correct answer does not always appear among the choices given. When this happens, select from among

More information

The Fundamental Theorem of Calculus Part 3

The Fundamental Theorem of Calculus Part 3 The Fundamental Theorem of Calculus Part FTC Part Worksheet 5: Basic Rules, Initial Value Problems, Rewriting Integrands A. It s time to find anti-derivatives algebraically. Instead of saying the anti-derivative

More information

LESSON #11 - FORMS OF A LINE COMMON CORE ALGEBRA II

LESSON #11 - FORMS OF A LINE COMMON CORE ALGEBRA II LESSON # - FORMS OF A LINE COMMON CORE ALGEBRA II Linear functions come in a variet of forms. The two shown below have been introduced in Common Core Algebra I and Common Core Geometr. TWO COMMON FORMS

More information

Calculus II Workbook

Calculus II Workbook Calculus II Workbook Note to Students: This workbook contains examples and exercises that will be referred to regularly during class. Please purchase or print out the rest of the workbook before our next

More information

decreases as x increases.

decreases as x increases. Chapter Review FREQUENTLY ASKED Questions Q: How can ou identif an eponential function from its equation? its graph? a table of values? A: The eponential function has the form f () 5 b, where the variable

More information

CHAPTER 3 Applications of Differentiation

CHAPTER 3 Applications of Differentiation CHAPTER Applications of Differentiation Section. Etrema on an Interval.............. 0 Section. Rolle s Theorem and the Mean Value Theorem. 07 Section. Increasing and Decreasing Functions and the First

More information

Finding Limits Graphically and Numerically. An Introduction to Limits

Finding Limits Graphically and Numerically. An Introduction to Limits 8 CHAPTER Limits and Their Properties Section Finding Limits Graphicall and Numericall Estimate a it using a numerical or graphical approach Learn different was that a it can fail to eist Stud and use

More information

2008 CALCULUS AB SECTION I, Part A Time 55 minutes Number of Questions 28 A CALCULATOR MAY NOT BE USED ON THIS PART OF THE EXAMINATION

2008 CALCULUS AB SECTION I, Part A Time 55 minutes Number of Questions 28 A CALCULATOR MAY NOT BE USED ON THIS PART OF THE EXAMINATION 8 CALCULUS AB SECTION I, Part A Time 55 minutes Number of Questions 8 A CALCULATOR MAY NOT BE USED ON THIS PART OF THE EXAMINATION Directions: Solve each of the following problems. After eamining the form

More information

Separable Differential Equations

Separable Differential Equations -1- F D2f0B1I3F sknuwtqa RSAo9fjt3wdaircei TLgL4CK.w j EAMlilW mroidghttso nr3efsgefrpv0eado.q T 9MdaFdQe5 UwDibtuh8 UI0nMf6i3nZ itez scjaaljcduclguesb.k Worksheet b Kuta Software LLC Kuta Software - Infinite

More information

Fair Game Review. Chapter 5. Input, x Output, y. 1. Input, x Output, y. Describe the pattern of inputs x and outputs y.

Fair Game Review. Chapter 5. Input, x Output, y. 1. Input, x Output, y. Describe the pattern of inputs x and outputs y. Name Date Chapter Fair Game Review Describe the pattern of inputs and outputs.. Input, utput,. 8 Input, utput,. Input, 9. utput, 8 Input, utput, 9. The table shows the number of customers in hours. Describe

More information

AP Calculus AB Free-Response Scoring Guidelines

AP Calculus AB Free-Response Scoring Guidelines Question pt The rate at which raw sewage enters a treatment tank is given by Et 85 75cos 9 gallons per hour for t 4 hours. Treated sewage is removed from the tank at the constant rate of 645 gallons per

More information

Derivatives of Multivariable Functions

Derivatives of Multivariable Functions Chapter 0 Derivatives of Multivariable Functions 0. Limits Motivating Questions In this section, we strive to understand the ideas generated b the following important questions: What do we mean b the limit

More information

4.3 Worksheet - Derivatives of Inverse Functions

4.3 Worksheet - Derivatives of Inverse Functions AP Calculus 3.8 Worksheet 4.3 Worksheet - Derivatives of Inverse Functions All work must be shown in this course for full credit. Unsupported answers ma receive NO credit.. What are the following derivatives

More information

Chapter 11. Correlation and Regression

Chapter 11. Correlation and Regression Chapter 11 Correlation and Regression Correlation A relationship between two variables. The data can be represented b ordered pairs (, ) is the independent (or eplanator) variable is the dependent (or

More information

Differential Equations

Differential Equations Universit of Differential Equations DEO PAT- ET RIE Definition: A differential equation is an equation containing a possibl unknown) function and one or more of its derivatives. Eamples: sin + + ) + e

More information

3.7 Start Thinking. 3.7 Warm Up. 3.7 Cumulative Review Warm Up

3.7 Start Thinking. 3.7 Warm Up. 3.7 Cumulative Review Warm Up .7 Start Thinking Use a graphing calculator to graph the function f ( ) =. Sketch the graph on a coordinate plane. Describe the graph of the function. Now graph the functions g ( ) 5, and h ( ) 5 the same

More information

Section 1.2: A Catalog of Functions

Section 1.2: A Catalog of Functions Section 1.: A Catalog of Functions As we discussed in the last section, in the sciences, we often tr to find an equation which models some given phenomenon in the real world - for eample, temperature as

More information

Solving Polynomial Equations Exponential Growth in Factored Form

Solving Polynomial Equations Exponential Growth in Factored Form 7.5 Solving Polnomial Equations Eponential Growth in Factored Form is written in factored form? How can ou solve a polnomial equation that Two polnomial equations are equivalent when the have the same

More information

Introducing Instantaneous Rate of Change

Introducing Instantaneous Rate of Change Introducing Instantaneous Rate of Change The diagram shows a door with an automatic closer. At time t = 0 seconds someone pushes the door. It swings open, slows down, stops, starts closing, then closes

More information

AP Calculus BC 2015 Free-Response Questions

AP Calculus BC 2015 Free-Response Questions AP Calculus BC 05 Free-Response Questions 05 The College Board. College Board, Advanced Placement Program, AP, AP Central, and the acorn logo are registered trademarks of the College Board. AP Central

More information

1.7 Inverse Functions

1.7 Inverse Functions 71_0107.qd 1/7/0 10: AM Page 17 Section 1.7 Inverse Functions 17 1.7 Inverse Functions Inverse Functions Recall from Section 1. that a function can be represented b a set of ordered pairs. For instance,

More information

Discrete and Continuous Domains

Discrete and Continuous Domains . Discrete and Continuous Domains How can ou decide whether the domain of a function is discrete or continuous? EXAMPLE: Discrete and Continuous Domains In Activities and in Section., ou studied two real-life

More information

Finding Limits Graphically and Numerically. An Introduction to Limits

Finding Limits Graphically and Numerically. An Introduction to Limits 60_00.qd //0 :05 PM Page 8 8 CHAPTER Limits and Their Properties Section. Finding Limits Graphicall and Numericall Estimate a it using a numerical or graphical approach. Learn different was that a it can

More information

Chapter 1: Functions. Section 1.1 Functions and Function Notation. Section 1.1 Functions and Function Notation 1

Chapter 1: Functions. Section 1.1 Functions and Function Notation. Section 1.1 Functions and Function Notation 1 Section. Functions and Function Notation Chapter : Functions Section. Functions and Function Notation... Section. Domain and Range... Section. Rates of Change and Behavior of Graphs... 4 Section.4 Composition

More information

CHAPTER 3 Exponential and Logarithmic Functions

CHAPTER 3 Exponential and Logarithmic Functions CHAPTER Eponential and Logarithmic Functions Section. Eponential Functions and Their Graphs......... Section. Logarithmic Functions and Their Graphs......... Section. Properties of Logarithms..................

More information

MATH 1325 Business Calculus Guided Notes

MATH 1325 Business Calculus Guided Notes MATH 135 Business Calculus Guided Notes LSC North Harris By Isabella Fisher Section.1 Functions and Theirs Graphs A is a rule that assigns to each element in one and only one element in. Set A Set B Set

More information

Chapter 6 Overview: Applications of Derivatives

Chapter 6 Overview: Applications of Derivatives Chapter 6 Overview: Applications of Derivatives There are two main contets for derivatives: graphing and motion. In this chapter, we will consider the graphical applications of the derivative. Much of

More information

Engineering Mathematics I

Engineering Mathematics I Engineering Mathematics I_ 017 Engineering Mathematics I 1. Introduction to Differential Equations Dr. Rami Zakaria Terminolog Differential Equation Ordinar Differential Equations Partial Differential

More information

Name Date. Work with a partner. Each graph shown is a transformation of the parent function

Name Date. Work with a partner. Each graph shown is a transformation of the parent function 3. Transformations of Eponential and Logarithmic Functions For use with Eploration 3. Essential Question How can ou transform the graphs of eponential and logarithmic functions? 1 EXPLORATION: Identifing

More information