Avd. Matematisk statistik

Size: px
Start display at page:

Download "Avd. Matematisk statistik"

Transcription

1 Avd. Matematisk statistik TENTAMEN I SF940 SANNOLIKHETSTEORI/EXAM IN SF940 PROBABILITY THE- ORY TUESDAY THE 9 th OF OCTOBER a.m p.m. Examinator : Timo Koski, tel , tjtkoski@kth.se Tillåtna hjälpmedel Means of assistance permitted : Appendix in A.Gut: An Intermediate Course in Probability. Formulas for probability theory SF940. L. Råde & B. Westergren: Mathematics Handbook for Science and Engineering. Pocket calculator. You should define and explain your notation. Your computations and your line of reasoning should be written down so that they are easy to follow. Numerical values should be given with the precision of two decimal points. You may apply results stated in a part of an exam question to another part of the exam question even if you have not solved the first part. The number of exam questions Uppgift is six 6. Solutions written in Swedish are, of course, welcome. Each question gives maximum ten 0 points. 30 points will guarantee a passing result. The grade Fx the exam can completed by extra examination for those with 7 9 points. Solutions to the exam questions will be available at starting from Tuesday 9 th of October 03 at.5 p.m.. The exam results will be announced at the latest on Tuesday the th of November, 03. Your exam paper will be retainable at elevexpeditionen during a period of seven weeks after the date of the exam. Lycka till!

2 forts tentamen i sf Uppgift a Let A, B, C be events in a probability space Ω, F, P. Assume that A B C. Show that P C c P A c + P B c 3 p b Let {X n } n be a sequence of r.v. s in a probability space and X and Y be two random variables in the same space. Take ɛ > 0 and let C { X Y ɛ}, A { X n X ɛ/} and B { X n Y ɛ/}. Check that A B C. 3 p c Assume next that X n P X, as n and that X n P Y, as n. What do you now know about X and Y in view of a and b? 4 p Uppgift The random variables X, X,... are independent and N0,. Set N def min{k X k 0} a Show that the probability density function of X N is { φx, x 0, f XN x 0, x < 0. Aid: It may be helpful to compute the probability P X N x N n. 5 p b Find E [X N ] and Var [X N ].. 5 p Uppgift 3 We say that a random variable X is Linnikα-distributed, α > 0, if its characteristic function is given by ϕ X t + t. α Let X, X,... be independent and identically Linnikα-distributed, Let N FSp, and let N be independent of X, X,.... Set S N def X + X X N. Find the distribution of p /α S N. 0 p

3 forts tentamen i sf Uppgift 4 Use a central limit theorem for suitably chosen Poisson random variables to prove that n n k lim n e n k!. k0 0 p Uppgift 5 X {Xt < t < } is a Gaussian stochastic process. Its mean function is µt for all t and its autocovariance function is Cov [Xt, Xs] C X h max 0, h, h t s. a Find the distribution of the bivariate random variable Xt Xt 0., Xt 0. T. 3 p b Why does it hold that Xt Xt 0., Xt 0. T d Xt + Xt + 0.8, Xt T? p c Find the probability P Xt > Xt 0. + Xt 0.. p d We sample the process X in time so that our samples are Show that X k Xk, k,,.... n n X P k a, k as n + and determine the limiting value a. Be so kind and justify Your steps of solution very carefully. 4 p Uppgift 6 W {W t t 0} is a Wiener process, hu is a function such that h udu <. Let 0 for any t > 0 Y t e t 0 hudw u. Find the autocorrelation function of the process Y {Y t t 0} as { e t s R Y t, s h udu+ s 0 h udu t > s e s t h udu+ t 0 h udu t s. Aid: The rule of double expectation may turn out to be useful to start with. 0 p

4 Avd. Matematisk statistik SOLUTIONS TO THE EXAM TUESDAY THE 9 th OF OCTOBER 03. Uppgift a If A B C, then it holds for the complement sets that C c A B c. By De Morgan s law Beta we get A B c A c B c. Thus by properties of any probability measure the first inequality in Collection of formulas P C c P A c B c and by Boole s inequality Beta and the Collection of Formulas which establishes the assertion as claimed. P A c B c P A c + P B c, b For given ɛ > 0 we have C { X Y ɛ}, A { X n X ɛ/} and B { X n Y ɛ/}. We need to check that We get by the triangle inequality that A B C, X Y X X n + X n Y X X n + X n Y But A B is the event that both A { X n X ɛ/} and B { X n Y ɛ/} hold. Hence if the event A B holds, i.e., if the event A B holds, then Thus it holds that A B C. X X n + X n Y ɛ/ + ɛ/ ɛ, X Y ɛ. c X n P X, as n and that X n P Y, as n mean that and P A c P { X n X > ɛ/} 0 P B c P { X n Y > ɛ/} 0 as n. Hence the inequality in a, which can be used in view of b, means that for any ɛ > 0. Hence we have shown that P C c P { X Y > ɛ} 0 P X Y 0 i.e., that the limiting random variable for convergence in probability is almost surely unique.

5 forts tentamen i sf Uppgift a We express as and by independence we get and as the r.v. s are I.I.D., P X N x N n P X n x X < 0,..., X n < 0, X n 0, P X n x X n 0, P X y X 0 and by definition of conditional probability Thus X N is independent of N and we get P 0 X y P X 0 Φx Φ0 Φx Φ0 x 0. f XN x d dx P X N x N n d dx P X N x φxi x 0. ANSWER a: f XN x φx, x 0, f XN x 0, x < 0. b E [X N ] + 0 Then by the symmetry property of x φx x e x / dx ] [ e x / π π 0 π π. E [ ] + XN x φxdx 0 + x φxdx + 0 x φxdx. Hence VarX N E [ X N] E [XN ] π. as was to be found. Uppgift 3 We use the composition formula to represent the characteristic function of the sum S N as ϕ SN t g N ϕ X t,

6 forts tentamen i sf where g N t is the probability generating function of N. Since N FSp we have by definition and by Appendix B, p p p p g N t t k p N k k0 where we require that pt <. t k p p k k t k p k p t k p k p k k0 pt p pt p pt pt pt, This p.g.f. is given directly in Råde- Westergren: Beta, chapter 7., if one observes that FSp is called geometric Gp in loc.cit, Then the composition formula gives ϕ SN t g N ϕ X t p + t α p + t α. Then we get the characteristic function of p /α S N as ϕ p /α S N t ϕ SN p /α t p +p t α p + p t α +p t α pϕ X t pϕ X t p +p t α p +p t α p p + p t α + t. α By uniqueness of the characteristic function we get that p /α S N is Linnikα-distributed. ANSWER : p /α S N Linnik α. Uppgift 4 Let U i Po be independent, for i,,...,. Set X n U +... U n. Then it follows by identical Po -distributions that E [U i ], Var [U i ],

7 forts tentamen i sf and in addition we know see Beta that and thus P X n k e e n n nk k! n k0 X n Pon.. We get thereby that n k k! P X n n P X n n 0 P Xn n 0. n We write X n n n n i0 U i n Then we get by the central limit theorem, that n i0 U i n d N0,, as n. By definition, the convergence in distribution means that Xn n n i0 P 0 P U i 0 F n U n n i0 i 0 Φ0 n. This is as asserted. 0 p Uppgift 5 a We set and write this as with a vector notation where and Y Xt Xt 0., Y Xt 0. Y def X def B Y Y BX Xt Xt 0. Xt Since X is a vector with a multivariate normal distribution as the process X is Gaussian, the distribution of Y is the multivariate normal distribution Collection of Formulas N Bµ, BCB T.

8 forts tentamen i sf where µ is the mean vector of X and C is the covariance matrix of X. From the information about the process X we get that µ and C Then matrix computations give 0 Bµ 9/0 8/0 9/0 9/0 8/0 9/ , BCB T 0. ANSWER : Xt Xt 0. Xt 0. N , 0. b Since the process X is Gaussian and weakly stationary constant mean function, and the a.c.f. depends only on the difference between time instants, it is also strictly stationary. Therefore Xt Xt 0. Xt 0. d Xt + Xt + 0. Xt + 0. Xt + Xt Xt Since the desired conclusion follows. Xt + Xt Xt B Xt + Xt Xt c When we use the notations from part a, the probability P Xt > Xt 0. + Xt 0. can be written as P Y > Y However, the covariance matrix in a shows that Y and Y are independent as they are non-correlated Gaussians. We see also that Y N0, 0.. Hence we get Y P Y > Y P Y > P > Φ, as Y 0. N0,. ANSWER : P Xt > Xt 0. + Xt 0. Φ 0..

9 forts tentamen i sf d If the samples of the process X in time are X k Xk, k,,...,. then for every k and E [X k ] Thus Cov X k, X l Cov [Xk, Xl] C X k l max 0, k l. Cov X k, X l { if k l 0 if k l. Thus X k s are Gaussian and non correlated, therefore independent r.v. s and the standard weak law of large numbers shows that n as n +, since E [X k ] for all k. n X P k, k By definition we have Uppgift 6 R Y t, s E [Y t Y s] E [e t 0 hudw u e s 0 hudw u ] We assume t > s > 0 and set Fs W equal to the sigma field generated by W up to time s. Then double expectation gives [ E E [e t 0 hudw u e ]] s 0 hudw u Fs W Then we use the linearity properties by definition of the Wiener integral [ E E [e t s hudw u+ s 0 hudw u e ]] s 0 hudw u Fs W E [e s 0 hudw u E [e t s hudw u Fs W where we took out what is known w.r.t. Fs W. But the random variable e t s hudw u is a function of the increments of W after s and hence independent of Fs W. Therefore E [e s 0 hudw u E [e ]] t s hudw u Now we know by Collection of Formulas that Z t hudw u N0, t s s h udu. Hence we see first that E [ e Z] ψ Z ]]

10 forts tentamen i sf is the momentgenerating function ψ Z t of Z evaluated at t. But both the Collection of Formulas and Beta give unanimously that ts h udu v ψ Z v e we change from t to v as the argument in order to avoid confusion with the time variable and thus E [e ] ts t s hudw u h udu e. But in the same manner, for Y N0, s 0 h udu. E Therefore we have found for t > s that [e ] ts s 0 hudw u h udu ψ Y e e s 0 h udu R Y t, s e t s hudu+ s 0 h udu The result for t s is found analogously. We can write compactly this as R Y t, s e maxs,t mins,t hudu+ mint,s 0 h udu

Lycka till!

Lycka till! Avd. Matematisk statistik TENTAMEN I SF294 SANNOLIKHETSTEORI/EXAM IN SF294 PROBABILITY THE- ORY MONDAY THE 14 T H OF JANUARY 28 14. p.m. 19. p.m. Examinator : Timo Koski, tel. 79 71 34, e-post: timo@math.kth.se

More information

Good luck! Problem 1. (b) The random variables X 1 and X 2 are independent and N(0, 1)-distributed. Show that the random variables X 1

Good luck! Problem 1. (b) The random variables X 1 and X 2 are independent and N(0, 1)-distributed. Show that the random variables X 1 Avd. Matematisk statistik TETAME I SF2940 SAOLIKHETSTEORI/EXAM I SF2940 PROBABILITY THE- ORY, WEDESDAY OCTOBER 26, 2016, 08.00-13.00. Examinator : Boualem Djehiche, tel. 08-7907875, email: boualem@kth.se

More information

Formulas for probability theory and linear models SF2941

Formulas for probability theory and linear models SF2941 Formulas for probability theory and linear models SF2941 These pages + Appendix 2 of Gut) are permitted as assistance at the exam. 11 maj 2008 Selected formulae of probability Bivariate probability Transforms

More information

Avd. Matematisk statistik

Avd. Matematisk statistik Avd Maemaisk saisik TENTAMEN I SF294 SANNOLIKHETSTEORI/EXAM IN SF294 PROBABILITY THE- ORY WEDNESDAY THE 9 h OF JANUARY 23 2 pm 7 pm Examinaor : Timo Koski, el 79 7 34, email: jkoski@khse Tillåna hjälpmedel

More information

Stationary independent increments. 1. Random changes of the form X t+h X t fixed h > 0 are called increments of the process.

Stationary independent increments. 1. Random changes of the form X t+h X t fixed h > 0 are called increments of the process. Stationary independent increments 1. Random changes of the form X t+h X t fixed h > 0 are called increments of the process. 2. If each set of increments, corresponding to non-overlapping collection of

More information

Good luck! (W (t(j + 1)) W (tj)), n 1.

Good luck! (W (t(j + 1)) W (tj)), n 1. Av Matematisk statistik TENTAMEN I SF940 SANNOLIKHETSTEORI/EXAM IN SF940 PROBABILITY THE- ORY, WEDNESDAY OCTOBER 5, 07, 0800-300 Examinator : Boualem Djehiche, tel 08-7907875, email: boualem@kthse Tillåtna

More information

Convergence in Mean Square Tidsserieanalys SF2945 Timo Koski

Convergence in Mean Square Tidsserieanalys SF2945 Timo Koski Avd. Matematisk statistik Convergence in Mean Square Tidsserieanalys SF2945 Timo Koski MEAN SQUARE CONVERGENCE. MEAN SQUARE CONVERGENCE OF SUMS. CAUSAL LINEAR PROCESSES 1 Definition of convergence in mean

More information

P (A G) dp G P (A G)

P (A G) dp G P (A G) First homework assignment. Due at 12:15 on 22 September 2016. Homework 1. We roll two dices. X is the result of one of them and Z the sum of the results. Find E [X Z. Homework 2. Let X be a r.v.. Assume

More information

Gaussian, Markov and stationary processes

Gaussian, Markov and stationary processes Gaussian, Markov and stationary processes Gonzalo Mateos Dept. of ECE and Goergen Institute for Data Science University of Rochester gmateosb@ece.rochester.edu http://www.ece.rochester.edu/~gmateosb/ November

More information

ELEMENTS OF PROBABILITY THEORY

ELEMENTS OF PROBABILITY THEORY ELEMENTS OF PROBABILITY THEORY Elements of Probability Theory A collection of subsets of a set Ω is called a σ algebra if it contains Ω and is closed under the operations of taking complements and countable

More information

ECE302 Spring 2006 Practice Final Exam Solution May 4, Name: Score: /100

ECE302 Spring 2006 Practice Final Exam Solution May 4, Name: Score: /100 ECE302 Spring 2006 Practice Final Exam Solution May 4, 2006 1 Name: Score: /100 You must show ALL of your work for full credit. This exam is open-book. Calculators may NOT be used. 1. As a function of

More information

Econ 424 Time Series Concepts

Econ 424 Time Series Concepts Econ 424 Time Series Concepts Eric Zivot January 20 2015 Time Series Processes Stochastic (Random) Process { 1 2 +1 } = { } = sequence of random variables indexed by time Observed time series of length

More information

Preliminary Exam: Probability 9:00am 2:00pm, Friday, January 6, 2012

Preliminary Exam: Probability 9:00am 2:00pm, Friday, January 6, 2012 Preliminary Exam: Probability 9:00am 2:00pm, Friday, January 6, 202 The exam lasts from 9:00am until 2:00pm, with a walking break every hour. Your goal on this exam should be to demonstrate mastery of

More information

Part IA Probability. Theorems. Based on lectures by R. Weber Notes taken by Dexter Chua. Lent 2015

Part IA Probability. Theorems. Based on lectures by R. Weber Notes taken by Dexter Chua. Lent 2015 Part IA Probability Theorems Based on lectures by R. Weber Notes taken by Dexter Chua Lent 2015 These notes are not endorsed by the lecturers, and I have modified them (often significantly) after lectures.

More information

7 Poisson random measures

7 Poisson random measures Advanced Probability M03) 48 7 Poisson random measures 71 Construction and basic properties For λ 0, ) we say that a random variable X in Z + is Poisson of parameter λ and write X Poiλ) if PX n) e λ λ

More information

PROBABILITY: LIMIT THEOREMS II, SPRING HOMEWORK PROBLEMS

PROBABILITY: LIMIT THEOREMS II, SPRING HOMEWORK PROBLEMS PROBABILITY: LIMIT THEOREMS II, SPRING 218. HOMEWORK PROBLEMS PROF. YURI BAKHTIN Instructions. You are allowed to work on solutions in groups, but you are required to write up solutions on your own. Please

More information

PROBABILITY: LIMIT THEOREMS II, SPRING HOMEWORK PROBLEMS

PROBABILITY: LIMIT THEOREMS II, SPRING HOMEWORK PROBLEMS PROBABILITY: LIMIT THEOREMS II, SPRING 15. HOMEWORK PROBLEMS PROF. YURI BAKHTIN Instructions. You are allowed to work on solutions in groups, but you are required to write up solutions on your own. Please

More information

STA 6857 Autocorrelation and Cross-Correlation & Stationary Time Series ( 1.4, 1.5)

STA 6857 Autocorrelation and Cross-Correlation & Stationary Time Series ( 1.4, 1.5) STA 6857 Autocorrelation and Cross-Correlation & Stationary Time Series ( 1.4, 1.5) Outline 1 Announcements 2 Autocorrelation and Cross-Correlation 3 Stationary Time Series 4 Homework 1c Arthur Berg STA

More information

Probability and Statistics

Probability and Statistics Probability and Statistics 1 Contents some stochastic processes Stationary Stochastic Processes 2 4. Some Stochastic Processes 4.1 Bernoulli process 4.2 Binomial process 4.3 Sine wave process 4.4 Random-telegraph

More information

LECTURES 2-3 : Stochastic Processes, Autocorrelation function. Stationarity.

LECTURES 2-3 : Stochastic Processes, Autocorrelation function. Stationarity. LECTURES 2-3 : Stochastic Processes, Autocorrelation function. Stationarity. Important points of Lecture 1: A time series {X t } is a series of observations taken sequentially over time: x t is an observation

More information

Chapter 5. Chapter 5 sections

Chapter 5. Chapter 5 sections 1 / 43 sections Discrete univariate distributions: 5.2 Bernoulli and Binomial distributions Just skim 5.3 Hypergeometric distributions 5.4 Poisson distributions Just skim 5.5 Negative Binomial distributions

More information

1. Stochastic Processes and filtrations

1. Stochastic Processes and filtrations 1. Stochastic Processes and 1. Stoch. pr., A stochastic process (X t ) t T is a collection of random variables on (Ω, F) with values in a measurable space (S, S), i.e., for all t, In our case X t : Ω S

More information

STAT 520: Forecasting and Time Series. David B. Hitchcock University of South Carolina Department of Statistics

STAT 520: Forecasting and Time Series. David B. Hitchcock University of South Carolina Department of Statistics David B. University of South Carolina Department of Statistics What are Time Series Data? Time series data are collected sequentially over time. Some common examples include: 1. Meteorological data (temperatures,

More information

Math 117: Infinite Sequences

Math 117: Infinite Sequences Math 7: Infinite Sequences John Douglas Moore November, 008 The three main theorems in the theory of infinite sequences are the Monotone Convergence Theorem, the Cauchy Sequence Theorem and the Subsequence

More information

Multivariate Random Variable

Multivariate Random Variable Multivariate Random Variable Author: Author: Andrés Hincapié and Linyi Cao This Version: August 7, 2016 Multivariate Random Variable 3 Now we consider models with more than one r.v. These are called multivariate

More information

Chapter 5 continued. Chapter 5 sections

Chapter 5 continued. Chapter 5 sections Chapter 5 sections Discrete univariate distributions: 5.2 Bernoulli and Binomial distributions Just skim 5.3 Hypergeometric distributions 5.4 Poisson distributions Just skim 5.5 Negative Binomial distributions

More information

Brownian Motion and Conditional Probability

Brownian Motion and Conditional Probability Math 561: Theory of Probability (Spring 2018) Week 10 Brownian Motion and Conditional Probability 10.1 Standard Brownian Motion (SBM) Brownian motion is a stochastic process with both practical and theoretical

More information

MA 113 Calculus I Fall 2015 Exam 3 Tuesday, 17 November Multiple Choice Answers. Question

MA 113 Calculus I Fall 2015 Exam 3 Tuesday, 17 November Multiple Choice Answers. Question MA 11 Calculus I Fall 2015 Exam Tuesday, 17 November 2015 Name: Section: Last 4 digits of student ID #: This exam has ten multiple choice questions (five points each) and five free response questions (ten

More information

Part IA Probability. Definitions. Based on lectures by R. Weber Notes taken by Dexter Chua. Lent 2015

Part IA Probability. Definitions. Based on lectures by R. Weber Notes taken by Dexter Chua. Lent 2015 Part IA Probability Definitions Based on lectures by R. Weber Notes taken by Dexter Chua Lent 2015 These notes are not endorsed by the lecturers, and I have modified them (often significantly) after lectures.

More information

ENSC327 Communications Systems 19: Random Processes. Jie Liang School of Engineering Science Simon Fraser University

ENSC327 Communications Systems 19: Random Processes. Jie Liang School of Engineering Science Simon Fraser University ENSC327 Communications Systems 19: Random Processes Jie Liang School of Engineering Science Simon Fraser University 1 Outline Random processes Stationary random processes Autocorrelation of random processes

More information

Econometría 2: Análisis de series de Tiempo

Econometría 2: Análisis de series de Tiempo Econometría 2: Análisis de series de Tiempo Karoll GOMEZ kgomezp@unal.edu.co http://karollgomez.wordpress.com Segundo semestre 2016 II. Basic definitions A time series is a set of observations X t, each

More information

Chapter 6: Random Processes 1

Chapter 6: Random Processes 1 Chapter 6: Random Processes 1 Yunghsiang S. Han Graduate Institute of Communication Engineering, National Taipei University Taiwan E-mail: yshan@mail.ntpu.edu.tw 1 Modified from the lecture notes by Prof.

More information

ECE580 Fall 2015 Solution to Midterm Exam 1 October 23, Please leave fractions as fractions, but simplify them, etc.

ECE580 Fall 2015 Solution to Midterm Exam 1 October 23, Please leave fractions as fractions, but simplify them, etc. ECE580 Fall 2015 Solution to Midterm Exam 1 October 23, 2015 1 Name: Solution Score: /100 This exam is closed-book. You must show ALL of your work for full credit. Please read the questions carefully.

More information

Errata for the ASM Study Manual for Exam P, Fourth Edition By Dr. Krzysztof M. Ostaszewski, FSA, CFA, MAAA

Errata for the ASM Study Manual for Exam P, Fourth Edition By Dr. Krzysztof M. Ostaszewski, FSA, CFA, MAAA Errata for the ASM Study Manual for Exam P, Fourth Edition By Dr. Krzysztof M. Ostaszewski, FSA, CFA, MAAA (krzysio@krzysio.net) Effective July 5, 3, only the latest edition of this manual will have its

More information

Exam for the course Statistics for scientists. Thursday, January 19,

Exam for the course Statistics for scientists. Thursday, January 19, STOCKHOLM UNIVERSITY EXAMINATION DEPARTMENT OF MATHEMATICS Statistics for scientists Div. of Mathematical Statistics Thursday, January 19, 2006 Exam for the course Statistics for scientists Thursday, January

More information

ELEG 3143 Probability & Stochastic Process Ch. 6 Stochastic Process

ELEG 3143 Probability & Stochastic Process Ch. 6 Stochastic Process Department of Electrical Engineering University of Arkansas ELEG 3143 Probability & Stochastic Process Ch. 6 Stochastic Process Dr. Jingxian Wu wuj@uark.edu OUTLINE 2 Definition of stochastic process (random

More information

Fundamentals of Digital Commun. Ch. 4: Random Variables and Random Processes

Fundamentals of Digital Commun. Ch. 4: Random Variables and Random Processes Fundamentals of Digital Commun. Ch. 4: Random Variables and Random Processes Klaus Witrisal witrisal@tugraz.at Signal Processing and Speech Communication Laboratory www.spsc.tugraz.at Graz University of

More information

1 Presessional Probability

1 Presessional Probability 1 Presessional Probability Probability theory is essential for the development of mathematical models in finance, because of the randomness nature of price fluctuations in the markets. This presessional

More information

Communication Theory II

Communication Theory II Communication Theory II Lecture 8: Stochastic Processes Ahmed Elnakib, PhD Assistant Professor, Mansoura University, Egypt March 5 th, 2015 1 o Stochastic processes What is a stochastic process? Types:

More information

Deterministic. Deterministic data are those can be described by an explicit mathematical relationship

Deterministic. Deterministic data are those can be described by an explicit mathematical relationship Random data Deterministic Deterministic data are those can be described by an explicit mathematical relationship Deterministic x(t) =X cos r! k m t Non deterministic There is no way to predict an exact

More information

Lecture 2: Repetition of probability theory and statistics

Lecture 2: Repetition of probability theory and statistics Algorithms for Uncertainty Quantification SS8, IN2345 Tobias Neckel Scientific Computing in Computer Science TUM Lecture 2: Repetition of probability theory and statistics Concept of Building Block: Prerequisites:

More information

Examination paper for Solution: TMA4285 Time series models

Examination paper for Solution: TMA4285 Time series models Department of Mathematical Sciences Examination paper for Solution: TMA4285 Time series models Academic contact during examination: Håkon Tjelmeland Phone: 4822 1896 Examination date: December 7th 2013

More information

MATH3283W LECTURE NOTES: WEEK 6 = 5 13, = 2 5, 1 13

MATH3283W LECTURE NOTES: WEEK 6 = 5 13, = 2 5, 1 13 MATH383W LECTURE NOTES: WEEK 6 //00 Recursive sequences (cont.) Examples: () a =, a n+ = 3 a n. The first few terms are,,, 5 = 5, 3 5 = 5 3, Since 5

More information

Multiple Random Variables

Multiple Random Variables Multiple Random Variables This Version: July 30, 2015 Multiple Random Variables 2 Now we consider models with more than one r.v. These are called multivariate models For instance: height and weight An

More information

Brownian Motion. Chapter Definition of Brownian motion

Brownian Motion. Chapter Definition of Brownian motion Chapter 5 Brownian Motion Brownian motion originated as a model proposed by Robert Brown in 1828 for the phenomenon of continual swarming motion of pollen grains suspended in water. In 1900, Bachelier

More information

Survival Analysis: Counting Process and Martingale. Lu Tian and Richard Olshen Stanford University

Survival Analysis: Counting Process and Martingale. Lu Tian and Richard Olshen Stanford University Survival Analysis: Counting Process and Martingale Lu Tian and Richard Olshen Stanford University 1 Lebesgue-Stieltjes Integrals G( ) is a right-continuous step function having jumps at x 1, x 2,.. b f(x)dg(x)

More information

UNIVERSITY OF MANITOBA

UNIVERSITY OF MANITOBA Question Points Score INSTRUCTIONS TO STUDENTS: This is a 6 hour examination. No extra time will be given. No texts, notes, or other aids are permitted. There are no calculators, cellphones or electronic

More information

Tentamentsskrivning: Stochastic processes 1

Tentamentsskrivning: Stochastic processes 1 Tentamentsskrivning: Stochastic processes 1 Tentamentsskrivning i MSF2/MVE33, 7.5 hp. Tid: fredagen den 31 maj 213 kl 8.3-12.3 Examinator och jour: Serik Sagitov, tel. 772-5351, mob. 736 97 613, rum H326

More information

Random Process Lecture 1. Fundamentals of Probability

Random Process Lecture 1. Fundamentals of Probability Random Process Lecture 1. Fundamentals of Probability Husheng Li Min Kao Department of Electrical Engineering and Computer Science University of Tennessee, Knoxville Spring, 2016 1/43 Outline 2/43 1 Syllabus

More information

Lecture 9. d N(0, 1). Now we fix n and think of a SRW on [0,1]. We take the k th step at time k n. and our increments are ± 1

Lecture 9. d N(0, 1). Now we fix n and think of a SRW on [0,1]. We take the k th step at time k n. and our increments are ± 1 Random Walks and Brownian Motion Tel Aviv University Spring 011 Lecture date: May 0, 011 Lecture 9 Instructor: Ron Peled Scribe: Jonathan Hermon In today s lecture we present the Brownian motion (BM).

More information

For a stochastic process {Y t : t = 0, ±1, ±2, ±3, }, the mean function is defined by (2.2.1) ± 2..., γ t,

For a stochastic process {Y t : t = 0, ±1, ±2, ±3, }, the mean function is defined by (2.2.1) ± 2..., γ t, CHAPTER 2 FUNDAMENTAL CONCEPTS This chapter describes the fundamental concepts in the theory of time series models. In particular, we introduce the concepts of stochastic processes, mean and covariance

More information

Stochastic Processes: I. consider bowl of worms model for oscilloscope experiment:

Stochastic Processes: I. consider bowl of worms model for oscilloscope experiment: Stochastic Processes: I consider bowl of worms model for oscilloscope experiment: SAPAscope 2.0 / 0 1 RESET SAPA2e 22, 23 II 1 stochastic process is: Stochastic Processes: II informally: bowl + drawing

More information

Random Processes. DS GA 1002 Probability and Statistics for Data Science.

Random Processes. DS GA 1002 Probability and Statistics for Data Science. Random Processes DS GA 1002 Probability and Statistics for Data Science http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall17 Carlos Fernandez-Granda Aim Modeling quantities that evolve in time (or space)

More information

Gaussian processes for inference in stochastic differential equations

Gaussian processes for inference in stochastic differential equations Gaussian processes for inference in stochastic differential equations Manfred Opper, AI group, TU Berlin November 6, 2017 Manfred Opper, AI group, TU Berlin (TU Berlin) inference in SDE November 6, 2017

More information

Kernel Density Estimation

Kernel Density Estimation EECS 598: Statistical Learning Theory, Winter 2014 Topic 19 Kernel Density Estimation Lecturer: Clayton Scott Scribe: Yun Wei, Yanzhen Deng Disclaimer: These notes have not been subjected to the usual

More information

Stochastic Processes. M. Sami Fadali Professor of Electrical Engineering University of Nevada, Reno

Stochastic Processes. M. Sami Fadali Professor of Electrical Engineering University of Nevada, Reno Stochastic Processes M. Sami Fadali Professor of Electrical Engineering University of Nevada, Reno 1 Outline Stochastic (random) processes. Autocorrelation. Crosscorrelation. Spectral density function.

More information

ECE534, Spring 2018: Solutions for Problem Set #4 Due Friday April 6, 2018

ECE534, Spring 2018: Solutions for Problem Set #4 Due Friday April 6, 2018 ECE534, Spring 2018: s for Problem Set #4 Due Friday April 6, 2018 1. MMSE Estimation, Data Processing and Innovations The random variables X, Y, Z on a common probability space (Ω, F, P ) are said to

More information

University of Illinois ECE 313: Final Exam Fall 2014

University of Illinois ECE 313: Final Exam Fall 2014 University of Illinois ECE 313: Final Exam Fall 2014 Monday, December 15, 2014, 7:00 p.m. 10:00 p.m. Sect. B, names A-O, 1013 ECE, names P-Z, 1015 ECE; Section C, names A-L, 1015 ECE; all others 112 Gregory

More information

Problem 1: Compactness (12 points, 2 points each)

Problem 1: Compactness (12 points, 2 points each) Final exam Selected Solutions APPM 5440 Fall 2014 Applied Analysis Date: Tuesday, Dec. 15 2014, 10:30 AM to 1 PM You may assume all vector spaces are over the real field unless otherwise specified. Your

More information

6. Brownian Motion. Q(A) = P [ ω : x(, ω) A )

6. Brownian Motion. Q(A) = P [ ω : x(, ω) A ) 6. Brownian Motion. stochastic process can be thought of in one of many equivalent ways. We can begin with an underlying probability space (Ω, Σ, P) and a real valued stochastic process can be defined

More information

A Short Introduction to Diffusion Processes and Ito Calculus

A Short Introduction to Diffusion Processes and Ito Calculus A Short Introduction to Diffusion Processes and Ito Calculus Cédric Archambeau University College, London Center for Computational Statistics and Machine Learning c.archambeau@cs.ucl.ac.uk January 24,

More information

NUMERICAL ANALYSIS 2 - FINAL EXAM Summer Term 2006 Matrikelnummer:

NUMERICAL ANALYSIS 2 - FINAL EXAM Summer Term 2006 Matrikelnummer: Prof. Dr. O. Junge, T. März Scientific Computing - M3 Center for Mathematical Sciences Munich University of Technology Name: NUMERICAL ANALYSIS 2 - FINAL EXAM Summer Term 2006 Matrikelnummer: I agree to

More information

1 Introduction. 2 White noise. The content of these notes is also covered by chapter 4 section A of [1].

1 Introduction. 2 White noise. The content of these notes is also covered by chapter 4 section A of [1]. 1 Introduction The content of these notes is also covered by chapter 4 section A of [1]. 2 White noise In applications infinitesimal Wiener increments are represented as dw t = η t The stochastic process

More information

Multivariate Gaussian Distribution. Auxiliary notes for Time Series Analysis SF2943. Spring 2013

Multivariate Gaussian Distribution. Auxiliary notes for Time Series Analysis SF2943. Spring 2013 Multivariate Gaussian Distribution Auxiliary notes for Time Series Analysis SF2943 Spring 203 Timo Koski Department of Mathematics KTH Royal Institute of Technology, Stockholm 2 Chapter Gaussian Vectors.

More information

Maximum Likelihood Drift Estimation for Gaussian Process with Stationary Increments

Maximum Likelihood Drift Estimation for Gaussian Process with Stationary Increments Austrian Journal of Statistics April 27, Volume 46, 67 78. AJS http://www.ajs.or.at/ doi:.773/ajs.v46i3-4.672 Maximum Likelihood Drift Estimation for Gaussian Process with Stationary Increments Yuliya

More information

Bernardo D Auria Stochastic Processes /10. Notes. Abril 13 th, 2010

Bernardo D Auria Stochastic Processes /10. Notes. Abril 13 th, 2010 1 Stochastic Calculus Notes Abril 13 th, 1 As we have seen in previous lessons, the stochastic integral with respect to the Brownian motion shows a behavior different from the classical Riemann-Stieltjes

More information

Functional Analysis Exercise Class

Functional Analysis Exercise Class Functional Analysis Exercise Class Week 9 November 13 November Deadline to hand in the homeworks: your exercise class on week 16 November 20 November Exercises (1) Show that if T B(X, Y ) and S B(Y, Z)

More information

Math 41: Calculus First Exam October 13, 2009

Math 41: Calculus First Exam October 13, 2009 Math 41: Calculus First Exam October 13, 2009 Name: SUID#: Select your section: Atoshi Chowdhury Yuncheng Lin Ian Petrow Ha Pham Yu-jong Tzeng 02 (11-11:50am) 08 (10-10:50am) 04 (1:15-2:05pm) 03 (11-11:50am)

More information

1 Why Recursions for Estimation?

1 Why Recursions for Estimation? Avd. Matematisk statistik TIDSSERIEANALYS SF2945 ON KALMAN RECURSIONS FOR PREDICTION Timo Koski 1 Why Recursions for Estimation? In the preceding lectures of sf2945 we have been dealing with the various

More information

On 1.9, you will need to use the facts that, for any x and y, sin(x+y) = sin(x) cos(y) + cos(x) sin(y). cos(x+y) = cos(x) cos(y) - sin(x) sin(y).

On 1.9, you will need to use the facts that, for any x and y, sin(x+y) = sin(x) cos(y) + cos(x) sin(y). cos(x+y) = cos(x) cos(y) - sin(x) sin(y). On 1.9, you will need to use the facts that, for any x and y, sin(x+y) = sin(x) cos(y) + cos(x) sin(y). cos(x+y) = cos(x) cos(y) - sin(x) sin(y). (sin(x)) 2 + (cos(x)) 2 = 1. 28 1 Characteristics of Time

More information

USING CENTRAL LIMIT THEOREMS FOR DEPENDENT DATA Timothy Falcon Crack Λ and Olivier Ledoit y March 20, 2000 Λ Department of Finance, Kelley School of B

USING CENTRAL LIMIT THEOREMS FOR DEPENDENT DATA Timothy Falcon Crack Λ and Olivier Ledoit y March 20, 2000 Λ Department of Finance, Kelley School of B USING CENTRAL LIMIT THEOREMS FOR DEPENDENT DATA Timothy Falcon Crack Λ and Olivier Ledoit y March 20, 2000 Λ Department of Finance, Kelley School of Business, Indiana University, 1309 East Tenth Street,

More information

Part III Example Sheet 1 - Solutions YC/Lent 2015 Comments and corrections should be ed to

Part III Example Sheet 1 - Solutions YC/Lent 2015 Comments and corrections should be  ed to TIME SERIES Part III Example Sheet 1 - Solutions YC/Lent 2015 Comments and corrections should be emailed to Y.Chen@statslab.cam.ac.uk. 1. Let {X t } be a weakly stationary process with mean zero and let

More information

Homework # , Spring Due 14 May Convergence of the empirical CDF, uniform samples

Homework # , Spring Due 14 May Convergence of the empirical CDF, uniform samples Homework #3 36-754, Spring 27 Due 14 May 27 1 Convergence of the empirical CDF, uniform samples In this problem and the next, X i are IID samples on the real line, with cumulative distribution function

More information

SYSM 6303: Quantitative Introduction to Risk and Uncertainty in Business Lecture 4: Fitting Data to Distributions

SYSM 6303: Quantitative Introduction to Risk and Uncertainty in Business Lecture 4: Fitting Data to Distributions SYSM 6303: Quantitative Introduction to Risk and Uncertainty in Business Lecture 4: Fitting Data to Distributions M. Vidyasagar Cecil & Ida Green Chair The University of Texas at Dallas Email: M.Vidyasagar@utdallas.edu

More information

Introduction to Empirical Processes and Semiparametric Inference Lecture 09: Stochastic Convergence, Continued

Introduction to Empirical Processes and Semiparametric Inference Lecture 09: Stochastic Convergence, Continued Introduction to Empirical Processes and Semiparametric Inference Lecture 09: Stochastic Convergence, Continued Michael R. Kosorok, Ph.D. Professor and Chair of Biostatistics Professor of Statistics and

More information

M408 C Fall 2011 Dr. Jeffrey Danciger Exam 2 November 3, Section time (circle one): 11:00am 1:00pm 2:00pm

M408 C Fall 2011 Dr. Jeffrey Danciger Exam 2 November 3, Section time (circle one): 11:00am 1:00pm 2:00pm M408 C Fall 2011 Dr. Jeffrey Danciger Exam 2 November 3, 2011 NAME EID Section time (circle one): 11:00am 1:00pm 2:00pm No books, notes, or calculators. Show all your work. Do NOT open this exam booklet

More information

3. ARMA Modeling. Now: Important class of stationary processes

3. ARMA Modeling. Now: Important class of stationary processes 3. ARMA Modeling Now: Important class of stationary processes Definition 3.1: (ARMA(p, q) process) Let {ɛ t } t Z WN(0, σ 2 ) be a white noise process. The process {X t } t Z is called AutoRegressive-Moving-Average

More information

Empirical Processes: General Weak Convergence Theory

Empirical Processes: General Weak Convergence Theory Empirical Processes: General Weak Convergence Theory Moulinath Banerjee May 18, 2010 1 Extended Weak Convergence The lack of measurability of the empirical process with respect to the sigma-field generated

More information

FINAL EXAM Math 25 Temple-F06

FINAL EXAM Math 25 Temple-F06 FINAL EXAM Math 25 Temple-F06 Write solutions on the paper provided. Put your name on this exam sheet, and staple it to the front of your finished exam. Do Not Write On This Exam Sheet. Problem 1. (Short

More information

µ X (A) = P ( X 1 (A) )

µ X (A) = P ( X 1 (A) ) 1 STOCHASTIC PROCESSES This appendix provides a very basic introduction to the language of probability theory and stochastic processes. We assume the reader is familiar with the general measure and integration

More information

n E(X t T n = lim X s Tn = X s

n E(X t T n = lim X s Tn = X s Stochastic Calculus Example sheet - Lent 15 Michael Tehranchi Problem 1. Let X be a local martingale. Prove that X is a uniformly integrable martingale if and only X is of class D. Solution 1. If If direction:

More information

MATH 202B - Problem Set 5

MATH 202B - Problem Set 5 MATH 202B - Problem Set 5 Walid Krichene (23265217) March 6, 2013 (5.1) Show that there exists a continuous function F : [0, 1] R which is monotonic on no interval of positive length. proof We know there

More information

SDE Coefficients. March 4, 2008

SDE Coefficients. March 4, 2008 SDE Coefficients March 4, 2008 The following is a summary of GARD sections 3.3 and 6., mainly as an overview of the two main approaches to creating a SDE model. Stochastic Differential Equations (SDE)

More information

Review: mostly probability and some statistics

Review: mostly probability and some statistics Review: mostly probability and some statistics C2 1 Content robability (should know already) Axioms and properties Conditional probability and independence Law of Total probability and Bayes theorem Random

More information

Integral Representation Formula, Boundary Integral Operators and Calderón projection

Integral Representation Formula, Boundary Integral Operators and Calderón projection Integral Representation Formula, Boundary Integral Operators and Calderón projection Seminar BEM on Wave Scattering Franziska Weber ETH Zürich October 22, 2010 Outline Integral Representation Formula Newton

More information

Generalized Gaussian Bridges of Prediction-Invertible Processes

Generalized Gaussian Bridges of Prediction-Invertible Processes Generalized Gaussian Bridges of Prediction-Invertible Processes Tommi Sottinen 1 and Adil Yazigi University of Vaasa, Finland Modern Stochastics: Theory and Applications III September 1, 212, Kyiv, Ukraine

More information

Final exam (practice) UCLA: Math 31B, Spring 2017

Final exam (practice) UCLA: Math 31B, Spring 2017 Instructor: Noah White Date: Final exam (practice) UCLA: Math 3B, Spring 207 This exam has 8 questions, for a total of 80 points. Please print your working and answers neatly. Write your solutions in the

More information

STAT 153, FALL 2015 HOMEWORK 1 SOLUTIONS

STAT 153, FALL 2015 HOMEWORK 1 SOLUTIONS STAT 153, FALL 015 HOMEWORK 1 SOLUTIONS Problem 1 (a) A solution in R is provided in Figure 1. We conclude that if δ = 0 the process is a random walk without drift. When δ 0 there is a linear drift with

More information

Delta Method. Example : Method of Moments for Exponential Distribution. f(x; λ) = λe λx I(x > 0)

Delta Method. Example : Method of Moments for Exponential Distribution. f(x; λ) = λe λx I(x > 0) Delta Method Often estimators are functions of other random variables, for example in the method of moments. These functions of random variables can sometimes inherit a normal approximation from the underlying

More information

6. The econometrics of Financial Markets: Empirical Analysis of Financial Time Series. MA6622, Ernesto Mordecki, CityU, HK, 2006.

6. The econometrics of Financial Markets: Empirical Analysis of Financial Time Series. MA6622, Ernesto Mordecki, CityU, HK, 2006. 6. The econometrics of Financial Markets: Empirical Analysis of Financial Time Series MA6622, Ernesto Mordecki, CityU, HK, 2006. References for Lecture 5: Quantitative Risk Management. A. McNeil, R. Frey,

More information

MA 301 Test 4, Spring 2007

MA 301 Test 4, Spring 2007 MA 0 Test 4, Spring 007 hours, calculator allowed, no notes. Provide paper for the students to do work on. Students should not write answers on test sheet. TA Grades, 5, 6, 7 All answers must be justified.

More information

Statistical signal processing

Statistical signal processing Statistical signal processing Short overview of the fundamentals Outline Random variables Random processes Stationarity Ergodicity Spectral analysis Random variable and processes Intuition: A random variable

More information

where r n = dn+1 x(t)

where r n = dn+1 x(t) Random Variables Overview Probability Random variables Transforms of pdfs Moments and cumulants Useful distributions Random vectors Linear transformations of random vectors The multivariate normal distribution

More information

Lecture 4: September Reminder: convergence of sequences

Lecture 4: September Reminder: convergence of sequences 36-705: Intermediate Statistics Fall 2017 Lecturer: Siva Balakrishnan Lecture 4: September 6 In this lecture we discuss the convergence of random variables. At a high-level, our first few lectures focused

More information

Stochastic Processes: Syllabus and Exercise

Stochastic Processes: Syllabus and Exercise Stochastic Processes: Syllabus and Exercise Narn-Rueih Shieh **Copyright Reserved** This course is suitable for those who have taken Basic Probability; some knowledge of Measure Theory is better( for Chapters

More information

1 Simulating normal (Gaussian) rvs with applications to simulating Brownian motion and geometric Brownian motion in one and two dimensions

1 Simulating normal (Gaussian) rvs with applications to simulating Brownian motion and geometric Brownian motion in one and two dimensions Copyright c 2007 by Karl Sigman 1 Simulating normal Gaussian rvs with applications to simulating Brownian motion and geometric Brownian motion in one and two dimensions Fundamental to many applications

More information

Review Session: Econometrics - CLEFIN (20192)

Review Session: Econometrics - CLEFIN (20192) Review Session: Econometrics - CLEFIN (20192) Part II: Univariate time series analysis Daniele Bianchi March 20, 2013 Fundamentals Stationarity A time series is a sequence of random variables x t, t =

More information

Math 41 First Exam October 12, 2010

Math 41 First Exam October 12, 2010 Math 41 First Exam October 12, 2010 Name: SUID#: Circle your section: Olena Bormashenko Ulrik Buchholtz John Jiang Michael Lipnowski Jonathan Lee 03 (11-11:50am) 07 (10-10:50am) 02 (1:15-2:05pm) 04 (1:15-2:05pm)

More information

Lecture 1: August 28

Lecture 1: August 28 36-705: Intermediate Statistics Fall 2017 Lecturer: Siva Balakrishnan Lecture 1: August 28 Our broad goal for the first few lectures is to try to understand the behaviour of sums of independent random

More information

Spectral representations and ergodic theorems for stationary stochastic processes

Spectral representations and ergodic theorems for stationary stochastic processes AMS 263 Stochastic Processes (Fall 2005) Instructor: Athanasios Kottas Spectral representations and ergodic theorems for stationary stochastic processes Stationary stochastic processes Theory and methods

More information