Survival Analysis: Counting Process and Martingale. Lu Tian and Richard Olshen Stanford University

Size: px
Start display at page:

Download "Survival Analysis: Counting Process and Martingale. Lu Tian and Richard Olshen Stanford University"

Transcription

1 Survival Analysis: Counting Process and Martingale Lu Tian and Richard Olshen Stanford University 1

2 Lebesgue-Stieltjes Integrals G( ) is a right-continuous step function having jumps at x 1, x 2,.. b f(x)dg(x) = f(x j ){G(x j ) G(x j )) = f(x j ) {G(x j )}. a a<x j b a<x j b 2

3 One-sample problem In one-sample problem: observation (U i, δ i ), i = 1, 2,, n. N(t) = n i=1 I(U i t, δ i = 1) # observed failures by time t 0 f(t)dn(t) = K f(τ j )d j j=1 f(t) = { n i=1 I(U i t)} 1 0 f(t)dn(t) = K j=1 d j Y (τ j ), The NA estimator for the cumulative hazard function! 3

4 Two-sample problem In two-sample problem: observation (U i, δ i, Z i ), i = 1, 2,, n. N l (t) = n i=1 I(U i t, δ i = 1, Z i = l) # observed failures by time t at group l, l = 0, 1. Y l (t) = n i=1 I(U i t, Z i = l) # at risk by time t at group l, l = 0, 1. Consider the stochastic integral W = 0 Y 0 (t) Y (t) dn 1(t) 0 Y 1 (t) Y (t) dn 0(t) 4

5 Two-sample problem W = K j=1 Y 0 (τ j ) Y (τ j ) N 1(τ j ) K j=1 Y 1 (τ j ) Y (τ j ) N 0(τ j ) = K j=1 [ Y0 (τ j ) Y (τ j ) d 1j Y ] 1(τ j ) Y (τ j ) d 0j = K j=1 = j Y 0 (τ j )d 1j Y 1 (τ j )(d j d 0j ) Y (τ j ) ( d 1j d j Y1(τ ) j ) Y (τ j ) = j (O j E j ); 5

6 Regression problem In Cox regression: observations (U i, δ i, Z i ), i = 1, 2,, n. N i (t) = I(U i t, δ i = 1) The score function related to PL function is S n (β) = = n i=1 n i=1 { } δ i Z i S(1) (β, U i ) S (0) (β, U i ) { } Z i S(1) (β, s) S (0) (β, s) 0 dn i (s) 6

7 σ-algebra F is a non-empty collection of subsets in Ω. F is called σalgebra if If E F then E c F if E i F, i = 1,, n then i=1 E i F. 7

8 Probability Space A probability space (Ω, F, P ) is an abstract space Ω equipped with a σ algebra and a set function P defined on F such that 1. If P {E} 0 when E F 2. P {Ω} = 1 3. P { i=1 E i} = i=1 P {E i} when E i F, i = 1,, n and E i E j = ϕ, i j. 8

9 Random Variables and Stochastic Process (Ω, F, P ) is a probability space. A random variable X : Ω R is a real-valued function satisfying {ω : X(ω) (, b]} F for any b. A stochastic process is a family of random variables X = {X(t) : t Γ} indexed by a set Γ all defined on the same probability space (Ω, F, P ). Often times Γ = [0, ) in survival analysis. 9

10 Filtration and Adaptability A family of σ-algebra {F t : t 0} is called a filtration of a probability space (Ω, F, P ) if F t F and F s F t for s t. A filtration {F t ; t 0} is right-continuous if for any t F t + = F t where F t + = ϵ>0 F t+ϵ. A stochastic process {X(t) : t 0} is said to be adapted to {F t, t 0} if X(t) is F t measurable for each t, i.e., {ω : X(t; ω) (, b]} F t. 10

11 History of a stochastic process Let X = {X(t) : t 0} be a stochastic process, and let F t = σ{x(s) : 0 s t}, the smallest σ-algebra making all of the random variables X(s), 0 s t measurable. The filtration {F t : t 0} is called the history of X. 11

12 Conditional Expectation Suppose that Y is random variable on a probability space (Ω, F, P ) and let G be a sub-σ-algebra of F. Let X be a random variable satisfying 1. X is G-measurable 2. B Y dp = B XdP for all sets B G. The random variable X is the called the conditional expectation of Y given G and denoted by E(Y G). 12

13 Conditional Expectation If F t = {ϕ, Ω}, then E(X F t ) = E(X) E{E(X F t )} = E(X) If F s F t, then E{E(X F s ) F t } = E(X F s ) If Y is F t -measurable, then E(XY F t ) = Y E(X F t ) If X and Y are independent, then E(Y σ(x)) = E(Y ) E(aX + by F t ) = ae(x F t ) + be(y F t ) If g( ) is a convex function, then E{g(X) F t } g{e(x F t )}. E(Y σ(x t, t Γ)) = E(Y X t, t Γ) 13

14 Example of conditional expectation The probability space (Ω, F, P ) 1. Ω = [0, 1) 2. F is the Borel algebra generated by all the open interval (a, b) [0, 1] 3. The probability measure: the lebesgue measure P ((a, b)) = b a. Define the sigma fields 1. F 1 = σ([0, 1/2), [1/2, 1)) 2. F 2 = σ([0, 1/4), [1/4, 2/4), [2/4, 3/4), [3/4, 1)) 3. F k = σ([i/2 k, (i + 1)/2 k ), i = 0, 1,, 2 k 1) 14

15 Example of conditional expectation Random Variable X : (0, 1) R 1 : X(ω) = f(ω) X k = E(X F k ) X k is F k measurable X k (ω) is a step function: X k (ω) = a i, ω [i/2 k, (i + 1)/2 k ] B X kdp = B XdP For i = 0, 1,, 2 k 1, (i+1)/2 k a i = 2 k i/2 k f(ω)dω 15

16 Martingale Let X( ) = {X(t), t 0} be a right-continuous a stochastic process with left-hand limit and F t be a filtration on a common probability space. X( ) is a martingale if 1. X is adapted to {F t : t 0}. 2. E X(t) < for any t 3. E[X(t + s) F t ] = X(t) for any t, s 0. X( ) is called a sub-martingale if = is replaced by and super-martingale if = is replaced by. 16

17 Martingale In the survival analysis: F t = σ{x(s) : 0 u t}. For t, s 0 E[X(t + s) F t ] = E[X(t + s) X(u), 0 u t], where (X(u), 0 u t) is the history of the process X( ) from 0 to t. 17

18 Example of martingale Y 1, Y 2,... are i.i.d. random variables satisfying Y i = +1 w.p. 1/2 1 w.p. 1/2 Define X(0) = 0, and X(n) = n Y j n = 1, 2, (X(u) : 0 u n) = (X(1),..., X(n)) (Y 1,..., Y n ) F n = σ(x(1),..., X(n)) = σ(y 1,..., Y n ) j=1 18

19 Example of martingale Clearly, E X(n) < for each n. n+k E[X(n + k) F n ] = E Y j X(1),..., X(n) j=1 n+k = E Y j Y 1,..., Y n j=1 = Y Y n + E [Y n Y n+k Y 1,..., Y n ] = Y Y n = X(n) 19

20 Two important properties of martingale Let X be a martingale with respect to a filtration {F t : t 0} then E{X(t) F t } = X(t ), where F t = s<t F s. Let X be a martingale with respect to a filtration {F t : t 0} then E{dX(t) F t } = 0 E{X(t) X(t ϵ) F t ϵ } = X(t ϵ) X(t ϵ) = 0. 20

21 Counting Process A stochastic process N( ) = (N(t) : t 0) is called a counting process if 1. N(0) = 0 2. N(t) <, all t 3. With probability 1, N(t) is a right-continuous step function with jumps of size +1. N i (t), N(t) and N l (t) are all counting process. 21

22 Compensator Process the stochastic process A( ), defined by A(t) def = t 0 Y (u) h(u)du. E(N(t)) = E(A(t)) M(t) = N(t) A(t) is a mean zero process 22

23 Example T EXP (λ) h(t) = λ A(t) = t 0 h(u)y (u)du = λ t Y (u)du = λ min(t, U) 0 M(t) = I(U t)δ λ min(t, U) In general M(t) = I(U t)δ t 0 Y (u)h(u)du Indeed, M(t) is a martingale under independent censoring assumption! 23

24 Martingale M(t) = N(t) t 0 Y (s)h(s)ds and F t = σ{n(u), N C (u), u [0, t]}. The key is to show that E(M(t + s) M(t) F t ) = 0 a.s. Need to show that E[N(t + s) N(t) F t ] = E [ t+s t h(u)y (u)du F t ] Consider the value of Y (t) E [N(t + s) N(t) F t ] 0 if Y (t) = 0 = E [N(t + s) N(t) Y (t) = 1] if Y (t) = 1. 24

25 Martingale Since N(t+s)-N(t) is zero or one, E[N(t + s) N(t) Y (t) = 1] = P [N(t + s) N(t) = 1 Y (t) = 1] = P [t < U t + s, δ = 1 U t] = P [t < T t + s, C > T ]. P [U t] 25

26 Martingale Consider the value of Y (t) E [ t+s = t h(u)y (u)du F t ] 0 if Y (t) = 0 [ ] t+s E h(u)y (u)du Y (t) = 1 if Y (t) = 1. t When Y (t) = 1 E [ ] t+s h(u)y (u)du Y (t) = 1 t = t+s h(u)p [U u U t]du = t t+s t h(u)p (U u)du P (U t) = = t+s t h(u)e [Y (u) Y (t) = 1] du P [t < T t + s, C > T ]. P [U t] 26

27 Martingale In the last step, we argue that t+s t h(u)p (U u)du P (U t) = P [t < T t + s, C > T ] P [U t] It holds if P (u T u + ϵ T u, C u) h(u) = lim, ϵ 0 ϵ which is the noninformative censoring assumption! 27

28 Predictable process A stochastic process X( ) is called predictable with respect to a filtration F t if for very t, X(t) is measurable with respect to F t Any left-continuous adapted process is predictable. N(t) is not predictable since it is right-continuous but Y (t) = I(U t) is a predictable process. 28

29 Doob-Meyer decomposition Suppose that X( ) is a non-negative submartinagle adapted to {F t, t 0}. Then there exists a right-continuous and non-decreasing predictable process A( ) such that E(A(t)) < for all t and M( ) = X( ) A( ) is a martinagle. If A(0) = 0 a.s., then A( ) is unique! The process A( ) is the called the compensator for X( ). t 0 h(u)y (u)du is the unique compensator for the counting process N(t) = I(U t, δ = 1). 29

30 Property of Martingale associated with counting process If M( ) is a martinagle, then M 2 ( ) is a submartingale (why?) By Doob-Meyer decomposition, there is a unique predicable process < M, M > such that M 2 ( ) < M, M > ( ) is a martingale. E(M 2 (t)) = E{< M, M > (t)} If M( ) = N( ) A( ), then < M, M > ( ) = A( ) We can calculate the variance of N( ) A( )! var{n(t) A(t)} = E{A(t)} = E t 0 Y (u)h(u)du = t 0 P (U > u)h(u)du. 30

STAT331 Lebesgue-Stieltjes Integrals, Martingales, Counting Processes

STAT331 Lebesgue-Stieltjes Integrals, Martingales, Counting Processes STAT331 Lebesgue-Stieltjes Integrals, Martingales, Counting Processes This section introduces Lebesgue-Stieltjes integrals, and defines two important stochastic processes: a martingale process and a counting

More information

STAT331. Combining Martingales, Stochastic Integrals, and Applications to Logrank Test & Cox s Model

STAT331. Combining Martingales, Stochastic Integrals, and Applications to Logrank Test & Cox s Model STAT331 Combining Martingales, Stochastic Integrals, and Applications to Logrank Test & Cox s Model Because of Theorem 2.5.1 in Fleming and Harrington, see Unit 11: For counting process martingales with

More information

Lecture 2: Martingale theory for univariate survival analysis

Lecture 2: Martingale theory for univariate survival analysis Lecture 2: Martingale theory for univariate survival analysis In this lecture T is assumed to be a continuous failure time. A core question in this lecture is how to develop asymptotic properties when

More information

STAT 331. Martingale Central Limit Theorem and Related Results

STAT 331. Martingale Central Limit Theorem and Related Results STAT 331 Martingale Central Limit Theorem and Related Results In this unit we discuss a version of the martingale central limit theorem, which states that under certain conditions, a sum of orthogonal

More information

Lectures 22-23: Conditional Expectations

Lectures 22-23: Conditional Expectations Lectures 22-23: Conditional Expectations 1.) Definitions Let X be an integrable random variable defined on a probability space (Ω, F 0, P ) and let F be a sub-σ-algebra of F 0. Then the conditional expectation

More information

STAT Sample Problem: General Asymptotic Results

STAT Sample Problem: General Asymptotic Results STAT331 1-Sample Problem: General Asymptotic Results In this unit we will consider the 1-sample problem and prove the consistency and asymptotic normality of the Nelson-Aalen estimator of the cumulative

More information

1. Stochastic Processes and filtrations

1. Stochastic Processes and filtrations 1. Stochastic Processes and 1. Stoch. pr., A stochastic process (X t ) t T is a collection of random variables on (Ω, F) with values in a measurable space (S, S), i.e., for all t, In our case X t : Ω S

More information

Linear rank statistics

Linear rank statistics Linear rank statistics Comparison of two groups. Consider the failure time T ij of j-th subject in the i-th group for i = 1 or ; the first group is often called control, and the second treatment. Let n

More information

Math 735: Stochastic Analysis

Math 735: Stochastic Analysis First Prev Next Go To Go Back Full Screen Close Quit 1 Math 735: Stochastic Analysis 1. Introduction and review 2. Notions of convergence 3. Continuous time stochastic processes 4. Information and conditional

More information

Filtrations, Markov Processes and Martingales. Lectures on Lévy Processes and Stochastic Calculus, Braunschweig, Lecture 3: The Lévy-Itô Decomposition

Filtrations, Markov Processes and Martingales. Lectures on Lévy Processes and Stochastic Calculus, Braunschweig, Lecture 3: The Lévy-Itô Decomposition Filtrations, Markov Processes and Martingales Lectures on Lévy Processes and Stochastic Calculus, Braunschweig, Lecture 3: The Lévy-Itô Decomposition David pplebaum Probability and Statistics Department,

More information

Lecture 5: Expectation

Lecture 5: Expectation Lecture 5: Expectation 1. Expectations for random variables 1.1 Expectations for simple random variables 1.2 Expectations for bounded random variables 1.3 Expectations for general random variables 1.4

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 9 10/2/2013. Conditional expectations, filtration and martingales

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 9 10/2/2013. Conditional expectations, filtration and martingales MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 9 10/2/2013 Conditional expectations, filtration and martingales Content. 1. Conditional expectations 2. Martingales, sub-martingales

More information

Fundamental Inequalities, Convergence and the Optional Stopping Theorem for Continuous-Time Martingales

Fundamental Inequalities, Convergence and the Optional Stopping Theorem for Continuous-Time Martingales Fundamental Inequalities, Convergence and the Optional Stopping Theorem for Continuous-Time Martingales Prakash Balachandran Department of Mathematics Duke University April 2, 2008 1 Review of Discrete-Time

More information

Exercises. (a) Prove that m(t) =

Exercises. (a) Prove that m(t) = Exercises 1. Lack of memory. Verify that the exponential distribution has the lack of memory property, that is, if T is exponentially distributed with parameter λ > then so is T t given that T > t for

More information

Math 635: An Introduction to Brownian Motion and Stochastic Calculus

Math 635: An Introduction to Brownian Motion and Stochastic Calculus First Prev Next Go To Go Back Full Screen Close Quit 1 Math 635: An Introduction to Brownian Motion and Stochastic Calculus 1. Introduction and review 2. Notions of convergence and results from measure

More information

Survival Analysis. Lu Tian and Richard Olshen Stanford University

Survival Analysis. Lu Tian and Richard Olshen Stanford University 1 Survival Analysis Lu Tian and Richard Olshen Stanford University 2 Survival Time/ Failure Time/Event Time We will introduce various statistical methods for analyzing survival outcomes What is the survival

More information

Continuous Random Variables

Continuous Random Variables 1 / 24 Continuous Random Variables Saravanan Vijayakumaran sarva@ee.iitb.ac.in Department of Electrical Engineering Indian Institute of Technology Bombay February 27, 2013 2 / 24 Continuous Random Variables

More information

Random Variables. Random variables. A numerically valued map X of an outcome ω from a sample space Ω to the real line R

Random Variables. Random variables. A numerically valued map X of an outcome ω from a sample space Ω to the real line R In probabilistic models, a random variable is a variable whose possible values are numerical outcomes of a random phenomenon. As a function or a map, it maps from an element (or an outcome) of a sample

More information

ELEMENTS OF PROBABILITY THEORY

ELEMENTS OF PROBABILITY THEORY ELEMENTS OF PROBABILITY THEORY Elements of Probability Theory A collection of subsets of a set Ω is called a σ algebra if it contains Ω and is closed under the operations of taking complements and countable

More information

Problem Sheet 1. You may assume that both F and F are σ-fields. (a) Show that F F is not a σ-field. (b) Let X : Ω R be defined by 1 if n = 1

Problem Sheet 1. You may assume that both F and F are σ-fields. (a) Show that F F is not a σ-field. (b) Let X : Ω R be defined by 1 if n = 1 Problem Sheet 1 1. Let Ω = {1, 2, 3}. Let F = {, {1}, {2, 3}, {1, 2, 3}}, F = {, {2}, {1, 3}, {1, 2, 3}}. You may assume that both F and F are σ-fields. (a) Show that F F is not a σ-field. (b) Let X :

More information

Martingale Theory for Finance

Martingale Theory for Finance Martingale Theory for Finance Tusheng Zhang October 27, 2015 1 Introduction 2 Probability spaces and σ-fields 3 Integration with respect to a probability measure. 4 Conditional expectation. 5 Martingales.

More information

PROBABILITY: LIMIT THEOREMS II, SPRING HOMEWORK PROBLEMS

PROBABILITY: LIMIT THEOREMS II, SPRING HOMEWORK PROBLEMS PROBABILITY: LIMIT THEOREMS II, SPRING 218. HOMEWORK PROBLEMS PROF. YURI BAKHTIN Instructions. You are allowed to work on solutions in groups, but you are required to write up solutions on your own. Please

More information

A D VA N C E D P R O B A B I L - I T Y

A D VA N C E D P R O B A B I L - I T Y A N D R E W T U L L O C H A D VA N C E D P R O B A B I L - I T Y T R I N I T Y C O L L E G E T H E U N I V E R S I T Y O F C A M B R I D G E Contents 1 Conditional Expectation 5 1.1 Discrete Case 6 1.2

More information

1 Stat 605. Homework I. Due Feb. 1, 2011

1 Stat 605. Homework I. Due Feb. 1, 2011 The first part is homework which you need to turn in. The second part is exercises that will not be graded, but you need to turn it in together with the take-home final exam. 1 Stat 605. Homework I. Due

More information

Stochastic Processes. Winter Term Paolo Di Tella Technische Universität Dresden Institut für Stochastik

Stochastic Processes. Winter Term Paolo Di Tella Technische Universität Dresden Institut für Stochastik Stochastic Processes Winter Term 2016-2017 Paolo Di Tella Technische Universität Dresden Institut für Stochastik Contents 1 Preliminaries 5 1.1 Uniform integrability.............................. 5 1.2

More information

We will briefly look at the definition of a probability space, probability measures, conditional probability and independence of probability events.

We will briefly look at the definition of a probability space, probability measures, conditional probability and independence of probability events. 1 Probability 1.1 Probability spaces We will briefly look at the definition of a probability space, probability measures, conditional probability and independence of probability events. Definition 1.1.

More information

Exercises Measure Theoretic Probability

Exercises Measure Theoretic Probability Exercises Measure Theoretic Probability 2002-2003 Week 1 1. Prove the folloing statements. (a) The intersection of an arbitrary family of d-systems is again a d- system. (b) The intersection of an arbitrary

More information

Fundamental Tools - Probability Theory II

Fundamental Tools - Probability Theory II Fundamental Tools - Probability Theory II MSc Financial Mathematics The University of Warwick September 29, 2015 MSc Financial Mathematics Fundamental Tools - Probability Theory II 1 / 22 Measurable random

More information

Verona Course April Lecture 1. Review of probability

Verona Course April Lecture 1. Review of probability Verona Course April 215. Lecture 1. Review of probability Viorel Barbu Al.I. Cuza University of Iaşi and the Romanian Academy A probability space is a triple (Ω, F, P) where Ω is an abstract set, F is

More information

Brownian Motion and Stochastic Calculus

Brownian Motion and Stochastic Calculus ETHZ, Spring 17 D-MATH Prof Dr Martin Larsson Coordinator A Sepúlveda Brownian Motion and Stochastic Calculus Exercise sheet 6 Please hand in your solutions during exercise class or in your assistant s

More information

(A n + B n + 1) A n + B n

(A n + B n + 1) A n + B n 344 Problem Hints and Solutions Solution for Problem 2.10. To calculate E(M n+1 F n ), first note that M n+1 is equal to (A n +1)/(A n +B n +1) with probability M n = A n /(A n +B n ) and M n+1 equals

More information

Lecture 19 L 2 -Stochastic integration

Lecture 19 L 2 -Stochastic integration Lecture 19: L 2 -Stochastic integration 1 of 12 Course: Theory of Probability II Term: Spring 215 Instructor: Gordan Zitkovic Lecture 19 L 2 -Stochastic integration The stochastic integral for processes

More information

STAT331. Cox s Proportional Hazards Model

STAT331. Cox s Proportional Hazards Model STAT331 Cox s Proportional Hazards Model In this unit we introduce Cox s proportional hazards (Cox s PH) model, give a heuristic development of the partial likelihood function, and discuss adaptations

More information

Survival Analysis: Weeks 2-3. Lu Tian and Richard Olshen Stanford University

Survival Analysis: Weeks 2-3. Lu Tian and Richard Olshen Stanford University Survival Analysis: Weeks 2-3 Lu Tian and Richard Olshen Stanford University 2 Kaplan-Meier(KM) Estimator Nonparametric estimation of the survival function S(t) = pr(t > t) The nonparametric estimation

More information

Formulas for probability theory and linear models SF2941

Formulas for probability theory and linear models SF2941 Formulas for probability theory and linear models SF2941 These pages + Appendix 2 of Gut) are permitted as assistance at the exam. 11 maj 2008 Selected formulae of probability Bivariate probability Transforms

More information

At t = T the investors learn the true state.

At t = T the investors learn the true state. 1. Martingales A discrete time introduction Model of the market with the following submodels (i) T + 1 trading dates, t =0, 1,...,T. Mathematics of Financial Derivatives II Seppo Pynnönen Professor of

More information

Lecture 3: Expected Value. These integrals are taken over all of Ω. If we wish to integrate over a measurable subset A Ω, we will write

Lecture 3: Expected Value. These integrals are taken over all of Ω. If we wish to integrate over a measurable subset A Ω, we will write Lecture 3: Expected Value 1.) Definitions. If X 0 is a random variable on (Ω, F, P), then we define its expected value to be EX = XdP. Notice that this quantity may be. For general X, we say that EX exists

More information

Exercises. T 2T. e ita φ(t)dt.

Exercises. T 2T. e ita φ(t)dt. Exercises. Set #. Construct an example of a sequence of probability measures P n on R which converge weakly to a probability measure P but so that the first moments m,n = xdp n do not converge to m = xdp.

More information

Lecture 4: Conditional expectation and independence

Lecture 4: Conditional expectation and independence Lecture 4: Conditional expectation and independence In elementry probability, conditional probability P(B A) is defined as P(B A) P(A B)/P(A) for events A and B with P(A) > 0. For two random variables,

More information

STOCHASTIC MODELS FOR WEB 2.0

STOCHASTIC MODELS FOR WEB 2.0 STOCHASTIC MODELS FOR WEB 2.0 VIJAY G. SUBRAMANIAN c 2011 by Vijay G. Subramanian. All rights reserved. Permission is hereby given to freely print and circulate copies of these notes so long as the notes

More information

Solutions to the Exercises in Stochastic Analysis

Solutions to the Exercises in Stochastic Analysis Solutions to the Exercises in Stochastic Analysis Lecturer: Xue-Mei Li 1 Problem Sheet 1 In these solution I avoid using conditional expectations. But do try to give alternative proofs once we learnt conditional

More information

Probability and Measure

Probability and Measure Chapter 4 Probability and Measure 4.1 Introduction In this chapter we will examine probability theory from the measure theoretic perspective. The realisation that measure theory is the foundation of probability

More information

Math 180C, Spring Supplement on the Renewal Equation

Math 180C, Spring Supplement on the Renewal Equation Math 18C Spring 218 Supplement on the Renewal Equation. These remarks supplement our text and set down some of the material discussed in my lectures. Unexplained notation is as in the text or in lecture.

More information

An Introduction to Stochastic Calculus

An Introduction to Stochastic Calculus An Introduction to Stochastic Calculus Haijun Li lih@math.wsu.edu Department of Mathematics Washington State University Weeks 3-4 Haijun Li An Introduction to Stochastic Calculus Weeks 3-4 1 / 22 Outline

More information

Stochastic Integration and Continuous Time Models

Stochastic Integration and Continuous Time Models Chapter 3 Stochastic Integration and Continuous Time Models 3.1 Brownian Motion The single most important continuous time process in the construction of financial models is the Brownian motion process.

More information

Convergence Concepts of Random Variables and Functions

Convergence Concepts of Random Variables and Functions Convergence Concepts of Random Variables and Functions c 2002 2007, Professor Seppo Pynnonen, Department of Mathematics and Statistics, University of Vaasa Version: January 5, 2007 Convergence Modes Convergence

More information

MATH 6605: SUMMARY LECTURE NOTES

MATH 6605: SUMMARY LECTURE NOTES MATH 6605: SUMMARY LECTURE NOTES These notes summarize the lectures on weak convergence of stochastic processes. If you see any typos, please let me know. 1. Construction of Stochastic rocesses A stochastic

More information

Week 2. Review of Probability, Random Variables and Univariate Distributions

Week 2. Review of Probability, Random Variables and Univariate Distributions Week 2 Review of Probability, Random Variables and Univariate Distributions Probability Probability Probability Motivation What use is Probability Theory? Probability models Basis for statistical inference

More information

The instantaneous and forward default intensity of structural models

The instantaneous and forward default intensity of structural models The instantaneous and forward default intensity of structural models Cho-Jieh Chen Department of Mathematical and Statistical Sciences University of Alberta Edmonton, AB E-mail: cjchen@math.ualberta.ca

More information

Lectures on Statistics. William G. Faris

Lectures on Statistics. William G. Faris Lectures on Statistics William G. Faris December 1, 2003 ii Contents 1 Expectation 1 1.1 Random variables and expectation................. 1 1.2 The sample mean........................... 3 1.3 The sample

More information

SDS 321: Introduction to Probability and Statistics

SDS 321: Introduction to Probability and Statistics SDS 321: Introduction to Probability and Statistics Lecture 13: Expectation and Variance and joint distributions Purnamrita Sarkar Department of Statistics and Data Science The University of Texas at Austin

More information

Stochastic Processes II/ Wahrscheinlichkeitstheorie III. Lecture Notes

Stochastic Processes II/ Wahrscheinlichkeitstheorie III. Lecture Notes BMS Basic Course Stochastic Processes II/ Wahrscheinlichkeitstheorie III Michael Scheutzow Lecture Notes Technische Universität Berlin Sommersemester 218 preliminary version October 12th 218 Contents

More information

Probability Theory II. Spring 2016 Peter Orbanz

Probability Theory II. Spring 2016 Peter Orbanz Probability Theory II Spring 2016 Peter Orbanz Contents Chapter 1. Martingales 1 1.1. Martingales indexed by partially ordered sets 1 1.2. Martingales from adapted processes 4 1.3. Stopping times and

More information

Notes 1 : Measure-theoretic foundations I

Notes 1 : Measure-theoretic foundations I Notes 1 : Measure-theoretic foundations I Math 733-734: Theory of Probability Lecturer: Sebastien Roch References: [Wil91, Section 1.0-1.8, 2.1-2.3, 3.1-3.11], [Fel68, Sections 7.2, 8.1, 9.6], [Dur10,

More information

Asymptotic Distributions for the Nelson-Aalen and Kaplan-Meier estimators and for test statistics.

Asymptotic Distributions for the Nelson-Aalen and Kaplan-Meier estimators and for test statistics. Asymptotic Distributions for the Nelson-Aalen and Kaplan-Meier estimators and for test statistics. Dragi Anevski Mathematical Sciences und University November 25, 21 1 Asymptotic distributions for statistical

More information

CONVERGENCE OF RANDOM SERIES AND MARTINGALES

CONVERGENCE OF RANDOM SERIES AND MARTINGALES CONVERGENCE OF RANDOM SERIES AND MARTINGALES WESLEY LEE Abstract. This paper is an introduction to probability from a measuretheoretic standpoint. After covering probability spaces, it delves into the

More information

n E(X t T n = lim X s Tn = X s

n E(X t T n = lim X s Tn = X s Stochastic Calculus Example sheet - Lent 15 Michael Tehranchi Problem 1. Let X be a local martingale. Prove that X is a uniformly integrable martingale if and only X is of class D. Solution 1. If If direction:

More information

Useful Probability Theorems

Useful Probability Theorems Useful Probability Theorems Shiu-Tang Li Finished: March 23, 2013 Last updated: November 2, 2013 1 Convergence in distribution Theorem 1.1. TFAE: (i) µ n µ, µ n, µ are probability measures. (ii) F n (x)

More information

STAT 331. Accelerated Failure Time Models. Previously, we have focused on multiplicative intensity models, where

STAT 331. Accelerated Failure Time Models. Previously, we have focused on multiplicative intensity models, where STAT 331 Accelerated Failure Time Models Previously, we have focused on multiplicative intensity models, where h t z) = h 0 t) g z). These can also be expressed as H t z) = H 0 t) g z) or S t z) = e Ht

More information

Stochastic Calculus and Black-Scholes Theory MTH772P Exercises Sheet 1

Stochastic Calculus and Black-Scholes Theory MTH772P Exercises Sheet 1 Stochastic Calculus and Black-Scholes Theory MTH772P Exercises Sheet. For ξ, ξ 2, i.i.d. with P(ξ i = ± = /2 define the discrete-time random walk W =, W n = ξ +... + ξ n. (i Formulate and prove the property

More information

BASICS OF PROBABILITY

BASICS OF PROBABILITY October 10, 2018 BASICS OF PROBABILITY Randomness, sample space and probability Probability is concerned with random experiments. That is, an experiment, the outcome of which cannot be predicted with certainty,

More information

Lecture 6 Basic Probability

Lecture 6 Basic Probability Lecture 6: Basic Probability 1 of 17 Course: Theory of Probability I Term: Fall 2013 Instructor: Gordan Zitkovic Lecture 6 Basic Probability Probability spaces A mathematical setup behind a probabilistic

More information

Chapter 6: Random Processes 1

Chapter 6: Random Processes 1 Chapter 6: Random Processes 1 Yunghsiang S. Han Graduate Institute of Communication Engineering, National Taipei University Taiwan E-mail: yshan@mail.ntpu.edu.tw 1 Modified from the lecture notes by Prof.

More information

Selected Exercises on Expectations and Some Probability Inequalities

Selected Exercises on Expectations and Some Probability Inequalities Selected Exercises on Expectations and Some Probability Inequalities # If E(X 2 ) = and E X a > 0, then P( X λa) ( λ) 2 a 2 for 0 < λ

More information

ECE534, Spring 2018: Solutions for Problem Set #4 Due Friday April 6, 2018

ECE534, Spring 2018: Solutions for Problem Set #4 Due Friday April 6, 2018 ECE534, Spring 2018: s for Problem Set #4 Due Friday April 6, 2018 1. MMSE Estimation, Data Processing and Innovations The random variables X, Y, Z on a common probability space (Ω, F, P ) are said to

More information

FE 5204 Stochastic Differential Equations

FE 5204 Stochastic Differential Equations Instructor: Jim Zhu e-mail:zhu@wmich.edu http://homepages.wmich.edu/ zhu/ January 20, 2009 Preliminaries for dealing with continuous random processes. Brownian motions. Our main reference for this lecture

More information

If Y and Y 0 satisfy (1-2), then Y = Y 0 a.s.

If Y and Y 0 satisfy (1-2), then Y = Y 0 a.s. 20 6. CONDITIONAL EXPECTATION Having discussed at length the limit theory for sums of independent random variables we will now move on to deal with dependent random variables. An important tool in this

More information

Markov Branching Process

Markov Branching Process MODULE 8: BRANCHING PROCESSES 11 Lecture 3 Markov Branching Process Let Z(t) be number of particles at time t. Let δ 1k + a k h + o(h), k = 0, 1,... represent the probability that a single particle will

More information

1 Brownian Local Time

1 Brownian Local Time 1 Brownian Local Time We first begin by defining the space and variables for Brownian local time. Let W t be a standard 1-D Wiener process. We know that for the set, {t : W t = } P (µ{t : W t = } = ) =

More information

ABSTRACT EXPECTATION

ABSTRACT EXPECTATION ABSTRACT EXPECTATION Abstract. In undergraduate courses, expectation is sometimes defined twice, once for discrete random variables and again for continuous random variables. Here, we will give a definition

More information

A Short Introduction to Diffusion Processes and Ito Calculus

A Short Introduction to Diffusion Processes and Ito Calculus A Short Introduction to Diffusion Processes and Ito Calculus Cédric Archambeau University College, London Center for Computational Statistics and Machine Learning c.archambeau@cs.ucl.ac.uk January 24,

More information

Jump Processes. Richard F. Bass

Jump Processes. Richard F. Bass Jump Processes Richard F. Bass ii c Copyright 214 Richard F. Bass Contents 1 Poisson processes 1 1.1 Definitions............................. 1 1.2 Stopping times.......................... 3 1.3 Markov

More information

1 Probability and Random Variables

1 Probability and Random Variables 1 Probability and Random Variables The models that you have seen thus far are deterministic models. For any time t, there is a unique solution X(t). On the other hand, stochastic models will result in

More information

Probability- the good parts version. I. Random variables and their distributions; continuous random variables.

Probability- the good parts version. I. Random variables and their distributions; continuous random variables. Probability- the good arts version I. Random variables and their distributions; continuous random variables. A random variable (r.v) X is continuous if its distribution is given by a robability density

More information

Random Variables. Saravanan Vijayakumaran Department of Electrical Engineering Indian Institute of Technology Bombay

Random Variables. Saravanan Vijayakumaran Department of Electrical Engineering Indian Institute of Technology Bombay 1 / 13 Random Variables Saravanan Vijayakumaran sarva@ee.iitb.ac.in Department of Electrical Engineering Indian Institute of Technology Bombay August 8, 2013 2 / 13 Random Variable Definition A real-valued

More information

Notes on Stochastic Calculus

Notes on Stochastic Calculus Notes on Stochastic Calculus David Nualart Kansas University nualart@math.ku.edu 1 Stochastic Processes 1.1 Probability Spaces and Random Variables In this section we recall the basic vocabulary and results

More information

PROBABILITY THEORY II

PROBABILITY THEORY II Ruprecht-Karls-Universität Heidelberg Institut für Angewandte Mathematik Prof. Dr. Jan JOHANNES Outline of the lecture course PROBABILITY THEORY II Summer semester 2016 Preliminary version: April 21, 2016

More information

1 Martingales. Martingales. (Ω, B, P ) is a probability space.

1 Martingales. Martingales. (Ω, B, P ) is a probability space. Martingales January 8, 206 Debdee Pati Martingales (Ω, B, P ) is a robability sace. Definition. (Filtration) filtration F = {F n } n 0 is a collection of increasing sub-σfields such that for m n, we have

More information

MA/ST 810 Mathematical-Statistical Modeling and Analysis of Complex Systems

MA/ST 810 Mathematical-Statistical Modeling and Analysis of Complex Systems MA/ST 810 Mathematical-Statistical Modeling and Analysis of Complex Systems Review of Basic Probability The fundamentals, random variables, probability distributions Probability mass/density functions

More information

Probability and Random Processes

Probability and Random Processes Probability and Random Processes Lecture 7 Conditional probability and expectation Decomposition of measures Mikael Skoglund, Probability and random processes 1/13 Conditional Probability A probability

More information

Northwestern University Department of Electrical Engineering and Computer Science

Northwestern University Department of Electrical Engineering and Computer Science Northwestern University Department of Electrical Engineering and Computer Science EECS 454: Modeling and Analysis of Communication Networks Spring 2008 Probability Review As discussed in Lecture 1, probability

More information

SUMMARY OF RESULTS ON PATH SPACES AND CONVERGENCE IN DISTRIBUTION FOR STOCHASTIC PROCESSES

SUMMARY OF RESULTS ON PATH SPACES AND CONVERGENCE IN DISTRIBUTION FOR STOCHASTIC PROCESSES SUMMARY OF RESULTS ON PATH SPACES AND CONVERGENCE IN DISTRIBUTION FOR STOCHASTIC PROCESSES RUTH J. WILLIAMS October 2, 2017 Department of Mathematics, University of California, San Diego, 9500 Gilman Drive,

More information

Stochastic integration. P.J.C. Spreij

Stochastic integration. P.J.C. Spreij Stochastic integration P.J.C. Spreij this version: April 22, 29 Contents 1 Stochastic processes 1 1.1 General theory............................... 1 1.2 Stopping times...............................

More information

ECON 2530b: International Finance

ECON 2530b: International Finance ECON 2530b: International Finance Compiled by Vu T. Chau 1 Non-neutrality of Nominal Exchange Rate 1.1 Mussa s Puzzle(1986) RER can be defined as the relative price of a country s consumption basket in

More information

Exercise Exercise Homework #6 Solutions Thursday 6 April 2006

Exercise Exercise Homework #6 Solutions Thursday 6 April 2006 Unless otherwise stated, for the remainder of the solutions, define F m = σy 0,..., Y m We will show EY m = EY 0 using induction. m = 0 is obviously true. For base case m = : EY = EEY Y 0 = EY 0. Now assume

More information

STOR 635 Notes (S13)

STOR 635 Notes (S13) STOR 635 Notes (S13) Jimmy Jin UNC-Chapel Hill Last updated: 1/14/14 Contents 1 Measure theory and probability basics 2 1.1 Algebras and measure.......................... 2 1.2 Integration................................

More information

Inference for Stochastic Processes

Inference for Stochastic Processes Inference for Stochastic Processes Robert L. Wolpert Revised: June 19, 005 Introduction A stochastic process is a family {X t } of real-valued random variables, all defined on the same probability space

More information

5 Operations on Multiple Random Variables

5 Operations on Multiple Random Variables EE360 Random Signal analysis Chapter 5: Operations on Multiple Random Variables 5 Operations on Multiple Random Variables Expected value of a function of r.v. s Two r.v. s: ḡ = E[g(X, Y )] = g(x, y)f X,Y

More information

MATH4210 Financial Mathematics ( ) Tutorial 7

MATH4210 Financial Mathematics ( ) Tutorial 7 MATH40 Financial Mathematics (05-06) Tutorial 7 Review of some basic Probability: The triple (Ω, F, P) is called a probability space, where Ω denotes the sample space and F is the set of event (σ algebra

More information

Bernardo D Auria Stochastic Processes /10. Notes. Abril 13 th, 2010

Bernardo D Auria Stochastic Processes /10. Notes. Abril 13 th, 2010 1 Stochastic Calculus Notes Abril 13 th, 1 As we have seen in previous lessons, the stochastic integral with respect to the Brownian motion shows a behavior different from the classical Riemann-Stieltjes

More information

Stochastic Processes

Stochastic Processes Stochastic Processes A very simple introduction Péter Medvegyev 2009, January Medvegyev (CEU) Stochastic Processes 2009, January 1 / 54 Summary from measure theory De nition (X, A) is a measurable space

More information

Stochastic Analysis I S.Kotani April 2006

Stochastic Analysis I S.Kotani April 2006 Stochastic Analysis I S.Kotani April 6 To describe time evolution of randomly developing phenomena such as motion of particles in random media, variation of stock prices and so on, we have to treat stochastic

More information

Solution for Problem 7.1. We argue by contradiction. If the limit were not infinite, then since τ M (ω) is nondecreasing we would have

Solution for Problem 7.1. We argue by contradiction. If the limit were not infinite, then since τ M (ω) is nondecreasing we would have 362 Problem Hints and Solutions sup g n (ω, t) g(ω, t) sup g(ω, s) g(ω, t) µ n (ω). t T s,t: s t 1/n By the uniform continuity of t g(ω, t) on [, T], one has for each ω that µ n (ω) as n. Two applications

More information

EE514A Information Theory I Fall 2013

EE514A Information Theory I Fall 2013 EE514A Information Theory I Fall 2013 K. Mohan, Prof. J. Bilmes University of Washington, Seattle Department of Electrical Engineering Fall Quarter, 2013 http://j.ee.washington.edu/~bilmes/classes/ee514a_fall_2013/

More information

Brownian Motion and Conditional Probability

Brownian Motion and Conditional Probability Math 561: Theory of Probability (Spring 2018) Week 10 Brownian Motion and Conditional Probability 10.1 Standard Brownian Motion (SBM) Brownian motion is a stochastic process with both practical and theoretical

More information

Math-Stat-491-Fall2014-Notes-I

Math-Stat-491-Fall2014-Notes-I Math-Stat-491-Fall2014-Notes-I Hariharan Narayanan October 2, 2014 1 Introduction This writeup is intended to supplement material in the prescribed texts: Introduction to Probability Models, 10th Edition,

More information

P (A G) dp G P (A G)

P (A G) dp G P (A G) First homework assignment. Due at 12:15 on 22 September 2016. Homework 1. We roll two dices. X is the result of one of them and Z the sum of the results. Find E [X Z. Homework 2. Let X be a r.v.. Assume

More information

CIMPA SCHOOL, 2007 Jump Processes and Applications to Finance Monique Jeanblanc

CIMPA SCHOOL, 2007 Jump Processes and Applications to Finance Monique Jeanblanc CIMPA SCHOOL, 27 Jump Processes and Applications to Finance Monique Jeanblanc 1 Jump Processes I. Poisson Processes II. Lévy Processes III. Jump-Diffusion Processes IV. Point Processes 2 I. Poisson Processes

More information

PROBABILITY: LIMIT THEOREMS II, SPRING HOMEWORK PROBLEMS

PROBABILITY: LIMIT THEOREMS II, SPRING HOMEWORK PROBLEMS PROBABILITY: LIMIT THEOREMS II, SPRING 15. HOMEWORK PROBLEMS PROF. YURI BAKHTIN Instructions. You are allowed to work on solutions in groups, but you are required to write up solutions on your own. Please

More information

Exercises Measure Theoretic Probability

Exercises Measure Theoretic Probability Exercises Measure Theoretic Probability Chapter 1 1. Prove the folloing statements. (a) The intersection of an arbitrary family of d-systems is again a d- system. (b) The intersection of an arbitrary family

More information