FURTHER BOUNDS FOR THE ESTIMATION ERROR VARIANCE OF A CONTINUOUS STREAM WITH STATIONARY VARIOGRAM

Size: px
Start display at page:

Download "FURTHER BOUNDS FOR THE ESTIMATION ERROR VARIANCE OF A CONTINUOUS STREAM WITH STATIONARY VARIOGRAM"

Transcription

1 FURTHER BOUNDS FOR THE ESTIMATION ERROR VARIANCE OF A CONTINUOUS STREAM WITH STATIONARY VARIOGRAM N. S. BARNETT, S. S. DRAGOMIR, AND I. S. GOMM Abstract. In this paper we establish an upper boun for the estimation error variance of a continuous stream with a stationary variogram V which is assume to be of r-höler type (Lipschitzian) on,.. Introuction In, the authors consiere X (t) as efining the quality of a prouct at time t where X (t) is a continuous time stochastic process which may be non-stationary. Typically, X (t) represents a continuous stream inustrial process such as is common in many areas of the chemical inustry. The paper was concerne with issues relate to sampling the stream with a view to estimating the mean quality characteristic of the flow, X, over the interval,. Specifically, focus was on obtaining the sampling location, sai to be optimal, ( ) 2 which minimizes the estimation error variance, E X X (t), t. Given that t is as specifie, the problem is to fin the value of t (the sampling ( ) 2 location) that minimizes E X X (t). It is shown that for constant stream flows, the optimal sampling point is the mipoint of, for situations where the process variogram, V (u) = 2 E ( X X (t) ) 2, where V () =, V ( u) = V (u) is stationary (note that variogram stationarity is not equivalent to process stationarity). The paper continues to consier optimal sampling locations for situations where the stream flow rate varies. The optimal sampling location is seen to epen on both the flow rate function an the form of the process variogram - some examples are given. In 2, rather than focussing on the optimal sampling point, the authors have focusse on the actual value of the estimation error variance itself. They obtaine the following result by employing an inequality of the Ostrowski type for ouble integrals. Date: March 3, Mathematics Subject Classification. Primary 62 X xx; Seconary 26 D 5. Key wors an phrases. Error variance, Continuous stream with stationary variogram.

2 2 N. S. BARNETT, S. S. DRAGOMIR, AND I. S. GOMM Theorem. Let V : (, ) R be a twice ifferentiable variogram having the secon erivative V : (, ) R which is boune. If V := sup t (,) V (t) <, then (.) for all t,. ( ) 2 E X X (t) 4 + ( t 2 2 ) 2 2 V Note that the best inequality we can get from (.) is that one for which t = t = 2 giving the boun ( E X X (t ) ) V. It shoul be note that the above result requires ouble ifferentiability of V in (, ) an that this conition oes not hol for the case of a linear variogram. That is, V (u) = a u, u R. For other results on Ostrowski s inequality we refer to the recent papers 3-7 an the book 8. In this note we point out another boun for the estimation error variance which oes not require the ifferentiability of V. Some functional properties are also given. 2. The Results Firstly, let us recall the concept of r-höler type mappings. Definition. The mapping f : a, b R R is calle of r-höler type with r (, if (2.) f (x) f (y) H x y r for all x, y a, b with a certain H >. If r =, we get the classical concept of Lipschitzian mappings. Example. If r (,, then the mapping f (x) = x r satisfies the conition (2.2) f (x) f (y) = x r y r x y r for all x, y, ), which shows that f is of r-höler type with the constant H =, on every close interval a, b. Example 2. Any ifferentiable mapping f : a, b R having the erivative boune in (a, b) is Lipschitzian on (a, b). The following result hols. Theorem 2. Assume that the variogram V :, R is of r-höler type on, with the constant H >. Then we have the inequality ( ) 2 E X X (t) 2H t r+ + ( t) r+ (2.3) 2H r + r + for all t,.

3 FURTHER BOUNDS FOR THE ESTIMATION ERROR VARIANCE 3 Proof. From, using an ientity given in 9, it can be shown that ( ) 2 E X X (t) = 2 t V (u) u + t V (u) u } 2 b V (v u) uv. Also, observe that (see ) V (v t) v = t V (u) u + t V (u) u an V (t u) u = t V (u) u + t V (u) u an then we get the ientity (2.4) ( ) 2 E X X (t) = = 2 V (v t) v + b = 2 b V (v t) v + V (v u) vu V (t u) u V (t u) u V (v t) + V (t u) V (v u) vu. Using the fact that V is of r Höler type, we can write that (2.5) V (v t) V (v u) H v t v + u r = H u t r for all u, v, t, an (2.6) V (t u) = V (t u) V () H t u r

4 4 N. S. BARNETT, S. S. DRAGOMIR, AND I. S. GOMM for all t, x,. Now, using (2.4) (2.6), we get ( ) 2 E X X (t) = 2 = 2H = 2H = 2H V (v t) + V (t u) V (v u) vu V (v t) V (v u) + V (t u) vu V (v t) V (v u) + V (t u) vu H t u r + H t u r vu t u r u t (t u) r u + t r+ + ( t) r+ r + t (u t) r u an the first inequality in (2.3) is prove. The secon part is obvious. Corollary. If V is Lipschitzian with the constant L >, then we have the inequality: ( ) ( ) 2 t 2 E X X (t) (2.7) 2 L. Proof. Choose r = to get in the right han sie of the inequality t 2 + ( t) 2 ( ) t 2 = Then, by (2.3), we euce (2.7). Remark. It is easy to see that the mapping g :, R, g (t) := t r+ + ( t) r+ has the properties ( ) inf g (t) = g = r+ t, 2 2 r an sup g (t) = g () = g () = r+ t, which shows that the best inequality we can get from (2.3) is that one for which t = t = 2, getting ( E X X (t ) ) 2 2 r H r (2.8) r +. For the Lipschitzian case, we get (2.9) E ( X X (t ) ) 2 2 L.

5 FURTHER BOUNDS FOR THE ESTIMATION ERROR VARIANCE 5 Define the mapping ξ :, R given by ( ) 2 ξ (t) = E X X (t). The following property of continuity for ξ hols. Theorem 3. If V is of r-höler type with the constant H > on the interval,, then ξ is of r-höler type with the constant 2H. Proof. Let t, t 2,. Then we have = = ξ (t 2 ) ξ (t ) 2 V (v t 2 ) + V (t 2 u) V (v u) uv 2 V (v t ) + V (t u) V (v u) uv (V (v t 2 ) V (v t )) + (V (t 2 u) V (t u)) uv = 2H t 2 t r 2 2 = 2H t 2 t r an the theorem thus prove. V (v t 2 ) V (v t ) + V (t 2 u) V (t u) uv H t 2 t r + H t 2 t r uv Corollary 2. If V is L-Lipschitzian on,, then ξ is 2L-Lipschitzian on,. The following result concerning the convexity property of the mapping ξ efine above on, hols. Theorem 4. If the variogram V :, is monotonic nonecreasing on the interval,, then ξ ( ) is convex on,. Proof. We know that for all t, Then ξ (t) = 2 t V (u) u + t V (u) u } 2 ξ (t) = 2 V (t) V ( t). V (v u) uv.

6 6 N. S. BARNETT, S. S. DRAGOMIR, AND I. S. GOMM Now, let t, t 2, with t 2 > t. Then ξ (t 2 ) ξ (t ) (t 2 t ) ξ (t ) = 2 t2 } { t2 V (u) u + V (u) u 2 t } t V (u) u + V (u) u 2 V (t ) V ( t ) (t 2 t ) = 2 t2 } t V (u) u V (u) u (t 2 t ) V (t ) + (t 2 t ) V ( t ). t 2 t As V is nonecreasing on,, then t2 an which implies that t t V (u) u (t 2 t ) V (t ) t 2 V (u) u (t 2 t ) V ( t ) ξ (t 2 ) ξ (t ) (t 2 t ) ξ (t ) for all t 2 > t,, which shows that the mapping ξ ( ) is convex on,. References N.S. Barnett, I.S. Gomm, an L. Armour: Location of the optimal sampling point for the quality assessment of continuous streams, Australian J. Statistics, 37(2), 995, N.S. Barnett an S.S. Dragomir, A note on bouns for the estimation error variance of a continuous stream with stationary variogram, J. KSIAM, Vol. 2 (2)(998), N.S. Barnett an S.S. Dragomir: An Ostrowski s type inequality for ouble integrals an applications to cubature formulae, submitte. 4 S.S. Dragomir an S. Wang, A new inequality of Ostrowski s type in L norm an applications to some special means an to some numerical quarature rules, Tamkang J. of Math., 28 (997), S.S. Dragomir an S. Wang, An inequality of Ostrowski-Grüss type an its applications to the estimation of error bouns for some special means an for some numerical quarature rules, Computers Math. Applic., 33(997), S.S. Dragomir an S. Wang, Applications of Ostrowski s inequality to the estimation of error bouns for some special means an some numerical quarature rules, Appl. Math. Lett., (998), S.S. Dragomir an S. Wang, A new inequality of Ostrowski s type in L p norm an applications to some special means an to some numerical quarature rules, submitte. 8 D.S. MITRINOVIĆ, J.E. PE CARIĆ an A.M. FINK: Inequalities for Functions an Their Integrals an Derivatives, Kluwer Acaemic Publishers, I.W. Sauners, G.K. Robinson, T. Lwin an R.J. Holmes, A simplifie variogram metho for the estimation error variance in sampling from continuous stream, Internat. J. Mineral Processing, 25(989), School of Communications an Informatics, Victoria University of Technology, PO Box 4428, MC melbourne City, 8 Victoria, Australia. aress: {neil, sever, isg}@matila.vu.eu.au URL: aress: sever@matila.vu.eu.au

2 S. S. DRAGOMIR, N. S. BARNETT, AND I. S. GOMM Theorem. Let V :(d d)! R be a twce derentable varogram havng the second dervatve V :(d d)! R whch s bo

2 S. S. DRAGOMIR, N. S. BARNETT, AND I. S. GOMM Theorem. Let V :(d d)! R be a twce derentable varogram havng the second dervatve V :(d d)! R whch s bo J. KSIAM Vol.4, No., -7, 2 FURTHER BOUNDS FOR THE ESTIMATION ERROR VARIANCE OF A CONTINUOUS STREAM WITH STATIONARY VARIOGRAM S. S. DRAGOMIR, N. S. BARNETT, AND I. S. GOMM Abstract. In ths paper we establsh

More information

GLOBAL SOLUTIONS FOR 2D COUPLED BURGERS-COMPLEX-GINZBURG-LANDAU EQUATIONS

GLOBAL SOLUTIONS FOR 2D COUPLED BURGERS-COMPLEX-GINZBURG-LANDAU EQUATIONS Electronic Journal of Differential Equations, Vol. 015 015), No. 99, pp. 1 14. ISSN: 107-6691. URL: http://eje.math.txstate.eu or http://eje.math.unt.eu ftp eje.math.txstate.eu GLOBAL SOLUTIONS FOR D COUPLED

More information

cosh x sinh x So writing t = tan(x/2) we have 6.4 Integration using tan(x/2) 2t 1 + t 2 cos x = 1 t2 sin x =

cosh x sinh x So writing t = tan(x/2) we have 6.4 Integration using tan(x/2) 2t 1 + t 2 cos x = 1 t2 sin x = 6.4 Integration using tan/ We will revisit the ouble angle ientities: sin = sin/ cos/ = tan/ sec / = tan/ + tan / cos = cos / sin / tan = = tan / sec / tan/ tan /. = tan / + tan / So writing t = tan/ we

More information

INVERSE PROBLEM OF A HYPERBOLIC EQUATION WITH AN INTEGRAL OVERDETERMINATION CONDITION

INVERSE PROBLEM OF A HYPERBOLIC EQUATION WITH AN INTEGRAL OVERDETERMINATION CONDITION Electronic Journal of Differential Equations, Vol. 216 (216), No. 138, pp. 1 7. ISSN: 172-6691. URL: http://eje.math.txstate.eu or http://eje.math.unt.eu INVERSE PROBLEM OF A HYPERBOLIC EQUATION WITH AN

More information

Chapter 2 Derivatives

Chapter 2 Derivatives Chapter Derivatives Section. An Intuitive Introuction to Derivatives Consier a function: Slope function: Derivative, f ' For each, the slope of f is the height of f ' Where f has a horizontal tangent line,

More information

SOME INEQUALITIES FOR THE EUCLIDEAN OPERATOR RADIUS OF TWO OPERATORS IN HILBERT SPACES

SOME INEQUALITIES FOR THE EUCLIDEAN OPERATOR RADIUS OF TWO OPERATORS IN HILBERT SPACES SOME INEQUALITIES FOR THE EUCLIDEAN OPERATOR RADIUS OF TWO OPERATORS IN HILBERT SPACES SEVER S DRAGOMIR Abstract Some sharp bounds for the Euclidean operator radius of two bounded linear operators in Hilbert

More information

LINEAR DIFFERENTIAL EQUATIONS OF ORDER 1. where a(x) and b(x) are functions. Observe that this class of equations includes equations of the form

LINEAR DIFFERENTIAL EQUATIONS OF ORDER 1. where a(x) and b(x) are functions. Observe that this class of equations includes equations of the form LINEAR DIFFERENTIAL EQUATIONS OF ORDER 1 We consier ifferential equations of the form y + a()y = b(), (1) y( 0 ) = y 0, where a() an b() are functions. Observe that this class of equations inclues equations

More information

cosh x sinh x So writing t = tan(x/2) we have 6.4 Integration using tan(x/2) = 2 2t 1 + t 2 cos x = 1 t2 We will revisit the double angle identities:

cosh x sinh x So writing t = tan(x/2) we have 6.4 Integration using tan(x/2) = 2 2t 1 + t 2 cos x = 1 t2 We will revisit the double angle identities: 6.4 Integration using tanx/) We will revisit the ouble angle ientities: sin x = sinx/) cosx/) = tanx/) sec x/) = tanx/) + tan x/) cos x = cos x/) sin x/) tan x = = tan x/) sec x/) tanx/) tan x/). = tan

More information

ONE SILVESTRU SEVER DRAGOMIR 1;2

ONE SILVESTRU SEVER DRAGOMIR 1;2 SOME -DIVERGENCE MEASURES RELATED TO JENSEN S ONE SILVESTRU SEVER DRAGOMIR ; Abstract. In this paper we introuce some -ivergence measures that are relate to the Jensen s ivergence introuce by Burbea an

More information

. ISSN (print), (online) International Journal of Nonlinear Science Vol.6(2008) No.3,pp

. ISSN (print), (online) International Journal of Nonlinear Science Vol.6(2008) No.3,pp . ISSN 1749-3889 (print), 1749-3897 (online) International Journal of Nonlinear Science Vol.6(8) No.3,pp.195-1 A Bouneness Criterion for Fourth Orer Nonlinear Orinary Differential Equations with Delay

More information

CAUCHY INTEGRAL THEOREM

CAUCHY INTEGRAL THEOREM CAUCHY INTEGRAL THEOREM XI CHEN 1. Differential Forms, Integration an Stokes Theorem Let X be an open set in R n an C (X) be the set of complex value C functions on X. A ifferential 1-form is (1.1) ω =

More information

A COMBUSTION MODEL WITH UNBOUNDED THERMAL CONDUCTIVITY AND REACTANT DIFFUSIVITY IN NON-SMOOTH DOMAINS

A COMBUSTION MODEL WITH UNBOUNDED THERMAL CONDUCTIVITY AND REACTANT DIFFUSIVITY IN NON-SMOOTH DOMAINS Electronic Journal of Differential Equations, Vol. 2929, No. 6, pp. 1 14. ISSN: 172-6691. URL: http://eje.math.txstate.eu or http://eje.math.unt.eu ftp eje.math.txstate.eu A COMBUSTION MODEL WITH UNBOUNDED

More information

Section The Chain Rule and Implicit Differentiation with Application on Derivative of Logarithm Functions

Section The Chain Rule and Implicit Differentiation with Application on Derivative of Logarithm Functions Section 3.4-3.6 The Chain Rule an Implicit Differentiation with Application on Derivative of Logarithm Functions Ruipeng Shen September 3r, 5th Ruipeng Shen MATH 1ZA3 September 3r, 5th 1 / 3 The Chain

More information

Convergence of Random Walks

Convergence of Random Walks Chapter 16 Convergence of Ranom Walks This lecture examines the convergence of ranom walks to the Wiener process. This is very important both physically an statistically, an illustrates the utility of

More information

Step 1. Analytic Properties of the Riemann zeta function [2 lectures]

Step 1. Analytic Properties of the Riemann zeta function [2 lectures] Step. Analytic Properties of the Riemann zeta function [2 lectures] The Riemann zeta function is the infinite sum of terms /, n. For each n, the / is a continuous function of s, i.e. lim s s 0 n = s n,

More information

A global Implicit Function Theorem without initial point and its applications to control of non-affine systems of high dimensions

A global Implicit Function Theorem without initial point and its applications to control of non-affine systems of high dimensions J. Math. Anal. Appl. 313 (2006) 251 261 www.elsevier.com/locate/jmaa A global Implicit Function Theorem without initial point an its applications to control of non-affine systems of high imensions Weinian

More information

On Some Estimates of the Remainder in Taylor s Formula

On Some Estimates of the Remainder in Taylor s Formula Journal of Mathematical Analysis and Applications 263, 246 263 (2) doi:.6/jmaa.2.7622, available online at http://www.idealibrary.com on On Some Estimates of the Remainder in Taylor s Formula G. A. Anastassiou

More information

PDE Notes, Lecture #11

PDE Notes, Lecture #11 PDE Notes, Lecture # from Professor Jalal Shatah s Lectures Febuary 9th, 2009 Sobolev Spaces Recall that for u L loc we can efine the weak erivative Du by Du, φ := udφ φ C0 If v L loc such that Du, φ =

More information

SEMI-INNER PRODUCTS AND THE NUMERICAL RADIUS OF BOUNDED LINEAR OPERATORS IN HILBERT SPACES

SEMI-INNER PRODUCTS AND THE NUMERICAL RADIUS OF BOUNDED LINEAR OPERATORS IN HILBERT SPACES SEMI-INNER PRODUCTS AND THE NUMERICAL RADIUS OF BOUNDED LINEAR OPERATORS IN HILBERT SPACES S.S. DRAGOMIR Abstract. The main aim of this paper is to establish some connections that exist between the numerical

More information

Linear and quadratic approximation

Linear and quadratic approximation Linear an quaratic approximation November 11, 2013 Definition: Suppose f is a function that is ifferentiable on an interval I containing the point a. The linear approximation to f at a is the linear function

More information

ON TAUBERIAN CONDITIONS FOR (C, 1) SUMMABILITY OF INTEGRALS

ON TAUBERIAN CONDITIONS FOR (C, 1) SUMMABILITY OF INTEGRALS REVISTA DE LA UNIÓN MATEMÁTICA ARGENTINA Vol. 54, No. 2, 213, Pages 59 65 Publishe online: December 8, 213 ON TAUBERIAN CONDITIONS FOR C, 1 SUMMABILITY OF INTEGRALS Abstract. We investigate some Tauberian

More information

Section 7.1: Integration by Parts

Section 7.1: Integration by Parts Section 7.1: Integration by Parts 1. Introuction to Integration Techniques Unlike ifferentiation where there are a large number of rules which allow you (in principle) to ifferentiate any function, the

More information

Math 342 Partial Differential Equations «Viktor Grigoryan

Math 342 Partial Differential Equations «Viktor Grigoryan Math 342 Partial Differential Equations «Viktor Grigoryan 6 Wave equation: solution In this lecture we will solve the wave equation on the entire real line x R. This correspons to a string of infinite

More information

QF101: Quantitative Finance September 5, Week 3: Derivatives. Facilitator: Christopher Ting AY 2017/2018. f ( x + ) f(x) f(x) = lim

QF101: Quantitative Finance September 5, Week 3: Derivatives. Facilitator: Christopher Ting AY 2017/2018. f ( x + ) f(x) f(x) = lim QF101: Quantitative Finance September 5, 2017 Week 3: Derivatives Facilitator: Christopher Ting AY 2017/2018 I recoil with ismay an horror at this lamentable plague of functions which o not have erivatives.

More information

SINGULAR PERTURBATION AND STATIONARY SOLUTIONS OF PARABOLIC EQUATIONS IN GAUSS-SOBOLEV SPACES

SINGULAR PERTURBATION AND STATIONARY SOLUTIONS OF PARABOLIC EQUATIONS IN GAUSS-SOBOLEV SPACES Communications on Stochastic Analysis Vol. 2, No. 2 (28) 289-36 Serials Publications www.serialspublications.com SINGULAR PERTURBATION AND STATIONARY SOLUTIONS OF PARABOLIC EQUATIONS IN GAUSS-SOBOLEV SPACES

More information

WELL-POSEDNESS OF A POROUS MEDIUM FLOW WITH FRACTIONAL PRESSURE IN SOBOLEV SPACES

WELL-POSEDNESS OF A POROUS MEDIUM FLOW WITH FRACTIONAL PRESSURE IN SOBOLEV SPACES Electronic Journal of Differential Equations, Vol. 017 (017), No. 38, pp. 1 7. ISSN: 107-6691. URL: http://eje.math.txstate.eu or http://eje.math.unt.eu WELL-POSEDNESS OF A POROUS MEDIUM FLOW WITH FRACTIONAL

More information

THE HERMITE-HADAMARD TYPE INEQUALITIES FOR OPERATOR CONVEX FUNCTIONS

THE HERMITE-HADAMARD TYPE INEQUALITIES FOR OPERATOR CONVEX FUNCTIONS THE HERMITE-HADAMARD TYPE INEQUALITIES FOR OPERATOR CONVEX FUNCTIONS S.S. DRAGOMIR Abstract. Some Hermite-Hadamard s type inequalities or operator convex unctions o seladjoint operators in Hilbert spaces

More information

A note on asymptotic formulae for one-dimensional network flow problems Carlos F. Daganzo and Karen R. Smilowitz

A note on asymptotic formulae for one-dimensional network flow problems Carlos F. Daganzo and Karen R. Smilowitz A note on asymptotic formulae for one-imensional network flow problems Carlos F. Daganzo an Karen R. Smilowitz (to appear in Annals of Operations Research) Abstract This note evelops asymptotic formulae

More information

Calculus of Variations

Calculus of Variations 16.323 Lecture 5 Calculus of Variations Calculus of Variations Most books cover this material well, but Kirk Chapter 4 oes a particularly nice job. x(t) x* x*+ αδx (1) x*- αδx (1) αδx (1) αδx (1) t f t

More information

11.7. Implicit Differentiation. Introduction. Prerequisites. Learning Outcomes

11.7. Implicit Differentiation. Introduction. Prerequisites. Learning Outcomes Implicit Differentiation 11.7 Introuction This Section introuces implicit ifferentiation which is use to ifferentiate functions expresse in implicit form (where the variables are foun together). Examples

More information

Integration Review. May 11, 2013

Integration Review. May 11, 2013 Integration Review May 11, 2013 Goals: Review the funamental theorem of calculus. Review u-substitution. Review integration by parts. Do lots of integration eamples. 1 Funamental Theorem of Calculus In

More information

Some Inequalities for Commutators of Bounded Linear Operators in Hilbert Spaces

Some Inequalities for Commutators of Bounded Linear Operators in Hilbert Spaces Some Inequalities for Commutators of Bounded Linear Operators in Hilbert Spaces S.S. Dragomir Abstract. Some new inequalities for commutators that complement and in some instances improve recent results

More information

REAL ANALYSIS I HOMEWORK 5

REAL ANALYSIS I HOMEWORK 5 REAL ANALYSIS I HOMEWORK 5 CİHAN BAHRAN The questions are from Stein an Shakarchi s text, Chapter 3. 1. Suppose ϕ is an integrable function on R with R ϕ(x)x = 1. Let K δ(x) = δ ϕ(x/δ), δ > 0. (a) Prove

More information

A Note on Exact Solutions to Linear Differential Equations by the Matrix Exponential

A Note on Exact Solutions to Linear Differential Equations by the Matrix Exponential Avances in Applie Mathematics an Mechanics Av. Appl. Math. Mech. Vol. 1 No. 4 pp. 573-580 DOI: 10.4208/aamm.09-m0946 August 2009 A Note on Exact Solutions to Linear Differential Equations by the Matrix

More information

INEQUALITIES FOR THE NORM AND THE NUMERICAL RADIUS OF LINEAR OPERATORS IN HILBERT SPACES

INEQUALITIES FOR THE NORM AND THE NUMERICAL RADIUS OF LINEAR OPERATORS IN HILBERT SPACES INEQUALITIES FOR THE NORM AND THE NUMERICAL RADIUS OF LINEAR OPERATORS IN HILBERT SPACES S.S. DRAGOMIR Abstract. In this paper various inequalities between the operator norm its numerical radius are provided.

More information

arxiv: v1 [math.dg] 30 May 2012

arxiv: v1 [math.dg] 30 May 2012 VARIATION OF THE ODUUS OF A FOIATION. CISKA arxiv:1205.6786v1 [math.dg] 30 ay 2012 Abstract. The p moulus mo p (F) of a foliation F on a Riemannian manifol is a generalization of extremal length of plane

More information

The effect of dissipation on solutions of the complex KdV equation

The effect of dissipation on solutions of the complex KdV equation Mathematics an Computers in Simulation 69 (25) 589 599 The effect of issipation on solutions of the complex KV equation Jiahong Wu a,, Juan-Ming Yuan a,b a Department of Mathematics, Oklahoma State University,

More information

A FURTHER REFINEMENT OF MORDELL S BOUND ON EXPONENTIAL SUMS

A FURTHER REFINEMENT OF MORDELL S BOUND ON EXPONENTIAL SUMS A FURTHER REFINEMENT OF MORDELL S BOUND ON EXPONENTIAL SUMS TODD COCHRANE, JEREMY COFFELT, AND CHRISTOPHER PINNER 1. Introuction For a prime p, integer Laurent polynomial (1.1) f(x) = a 1 x k 1 + + a r

More information

Chapter 3 Definitions and Theorems

Chapter 3 Definitions and Theorems Chapter 3 Definitions an Theorems (from 3.1) Definition of Tangent Line with slope of m If f is efine on an open interval containing c an the limit Δy lim Δx 0 Δx = lim f (c + Δx) f (c) = m Δx 0 Δx exists,

More information

Lectures - Week 10 Introduction to Ordinary Differential Equations (ODES) First Order Linear ODEs

Lectures - Week 10 Introduction to Ordinary Differential Equations (ODES) First Order Linear ODEs Lectures - Week 10 Introuction to Orinary Differential Equations (ODES) First Orer Linear ODEs When stuying ODEs we are consiering functions of one inepenent variable, e.g., f(x), where x is the inepenent

More information

Chaos, Solitons and Fractals Nonlinear Science, and Nonequilibrium and Complex Phenomena

Chaos, Solitons and Fractals Nonlinear Science, and Nonequilibrium and Complex Phenomena Chaos, Solitons an Fractals (7 64 73 Contents lists available at ScienceDirect Chaos, Solitons an Fractals onlinear Science, an onequilibrium an Complex Phenomena journal homepage: www.elsevier.com/locate/chaos

More information

HITTING TIMES FOR RANDOM WALKS WITH RESTARTS

HITTING TIMES FOR RANDOM WALKS WITH RESTARTS HITTING TIMES FOR RANDOM WALKS WITH RESTARTS SVANTE JANSON AND YUVAL PERES Abstract. The time it takes a ranom walker in a lattice to reach the origin from another vertex x, has infinite mean. If the walker

More information

Lecture 10: October 30, 2017

Lecture 10: October 30, 2017 Information an Coing Theory Autumn 2017 Lecturer: Mahur Tulsiani Lecture 10: October 30, 2017 1 I-Projections an applications In this lecture, we will talk more about fining the istribution in a set Π

More information

Physics 5153 Classical Mechanics. The Virial Theorem and The Poisson Bracket-1

Physics 5153 Classical Mechanics. The Virial Theorem and The Poisson Bracket-1 Physics 5153 Classical Mechanics The Virial Theorem an The Poisson Bracket 1 Introuction In this lecture we will consier two applications of the Hamiltonian. The first, the Virial Theorem, applies to systems

More information

Math 1B, lecture 8: Integration by parts

Math 1B, lecture 8: Integration by parts Math B, lecture 8: Integration by parts Nathan Pflueger 23 September 2 Introuction Integration by parts, similarly to integration by substitution, reverses a well-known technique of ifferentiation an explores

More information

Introduction to Differential Equations Math 286 X1 Fall 2009 Homework 2 Solutions

Introduction to Differential Equations Math 286 X1 Fall 2009 Homework 2 Solutions Introuction to Differential Equations Math 286 X1 Fall 2009 Homewk 2 Solutions 1. Solve each of the following ifferential equations: (a) y + 3xy = 0 (b) y + 3y = 3x (c) y t = cos(t)y () x 2 y x y = 3 Solution:

More information

arxiv: v1 [math.dg] 19 Aug 2009

arxiv: v1 [math.dg] 19 Aug 2009 arxiv:0908.68v1 [math.dg] 19 Aug 009 CURVATURE BOUND FOR CURVE SHORTENING FLOW VIA DISTANCE COMPARISON AND A DIRECT PROOF OF GRAYSON S THEOREM BEN ANDREWS AND PAUL BRYAN Abstract. A new isoperimetric estimate

More information

Implicit Differentiation

Implicit Differentiation Implicit Differentiation Thus far, the functions we have been concerne with have been efine explicitly. A function is efine explicitly if the output is given irectly in terms of the input. For instance,

More information

Function Spaces. 1 Hilbert Spaces

Function Spaces. 1 Hilbert Spaces Function Spaces A function space is a set of functions F that has some structure. Often a nonparametric regression function or classifier is chosen to lie in some function space, where the assume structure

More information

SOME RESULTS ASSOCIATED WITH FRACTIONAL CALCULUS OPERATORS INVOLVING APPELL HYPERGEOMETRIC FUNCTION

SOME RESULTS ASSOCIATED WITH FRACTIONAL CALCULUS OPERATORS INVOLVING APPELL HYPERGEOMETRIC FUNCTION Volume 29), Issue, Article 4, 7 pp. SOME RESULTS ASSOCIATED WITH FRACTIONAL CALCULUS OPERATORS INVOLVING APPELL HYPERGEOMETRIC FUNCTION R. K. RAINA / GANPATI VIHAR, OPPOSITE SECTOR 5 UDAIPUR 332, RAJASTHAN,

More information

The Generalized Incompressible Navier-Stokes Equations in Besov Spaces

The Generalized Incompressible Navier-Stokes Equations in Besov Spaces Dynamics of PDE, Vol1, No4, 381-400, 2004 The Generalize Incompressible Navier-Stokes Equations in Besov Spaces Jiahong Wu Communicate by Charles Li, receive July 21, 2004 Abstract This paper is concerne

More information

Monte Carlo Methods with Reduced Error

Monte Carlo Methods with Reduced Error Monte Carlo Methos with Reuce Error As has been shown, the probable error in Monte Carlo algorithms when no information about the smoothness of the function is use is Dξ r N = c N. It is important for

More information

An Optimal Algorithm for Bandit and Zero-Order Convex Optimization with Two-Point Feedback

An Optimal Algorithm for Bandit and Zero-Order Convex Optimization with Two-Point Feedback Journal of Machine Learning Research 8 07) - Submitte /6; Publishe 5/7 An Optimal Algorithm for Banit an Zero-Orer Convex Optimization with wo-point Feeback Oha Shamir Department of Computer Science an

More information

5.4 Fundamental Theorem of Calculus Calculus. Do you remember the Fundamental Theorem of Algebra? Just thought I'd ask

5.4 Fundamental Theorem of Calculus Calculus. Do you remember the Fundamental Theorem of Algebra? Just thought I'd ask 5.4 FUNDAMENTAL THEOREM OF CALCULUS Do you remember the Funamental Theorem of Algebra? Just thought I' ask The Funamental Theorem of Calculus has two parts. These two parts tie together the concept of

More information

SYSTEMS OF DIFFERENTIAL EQUATIONS, EULER S FORMULA. where L is some constant, usually called the Lipschitz constant. An example is

SYSTEMS OF DIFFERENTIAL EQUATIONS, EULER S FORMULA. where L is some constant, usually called the Lipschitz constant. An example is SYSTEMS OF DIFFERENTIAL EQUATIONS, EULER S FORMULA. Uniqueness for solutions of ifferential equations. We consier the system of ifferential equations given by x = v( x), () t with a given initial conition

More information

A. Incorrect! The letter t does not appear in the expression of the given integral

A. Incorrect! The letter t does not appear in the expression of the given integral AP Physics C - Problem Drill 1: The Funamental Theorem of Calculus Question No. 1 of 1 Instruction: (1) Rea the problem statement an answer choices carefully () Work the problems on paper as neee (3) Question

More information

Euler equations for multiple integrals

Euler equations for multiple integrals Euler equations for multiple integrals January 22, 2013 Contents 1 Reminer of multivariable calculus 2 1.1 Vector ifferentiation......................... 2 1.2 Matrix ifferentiation........................

More information

12.5. Differentiation of vectors. Introduction. Prerequisites. Learning Outcomes

12.5. Differentiation of vectors. Introduction. Prerequisites. Learning Outcomes Differentiation of vectors 12.5 Introuction The area known as vector calculus is use to moel mathematically a vast range of engineering phenomena incluing electrostatics, electromagnetic fiels, air flow

More information

AN INEQUALITY OF OSTROWSKI TYPE AND ITS APPLICATIONS FOR SIMPSON S RULE AND SPECIAL MEANS. I. Fedotov and S. S. Dragomir

AN INEQUALITY OF OSTROWSKI TYPE AND ITS APPLICATIONS FOR SIMPSON S RULE AND SPECIAL MEANS. I. Fedotov and S. S. Dragomir RGMIA Reserch Report Collection, Vol., No., 999 http://sci.vu.edu.u/ rgmi AN INEQUALITY OF OSTROWSKI TYPE AND ITS APPLICATIONS FOR SIMPSON S RULE AND SPECIAL MEANS I. Fedotov nd S. S. Drgomir Astrct. An

More information

HYPOCOERCIVITY WITHOUT CONFINEMENT. 1. Introduction

HYPOCOERCIVITY WITHOUT CONFINEMENT. 1. Introduction HYPOCOERCIVITY WITHOUT CONFINEMENT EMERIC BOUIN, JEAN DOLBEAULT, STÉPHANE MISCHLER, CLÉMENT MOUHOT, AND CHRISTIAN SCHMEISER Abstract. Hypocoercivity methos are extene to linear kinetic equations with mass

More information

Problem set 2: Solutions Math 207B, Winter 2016

Problem set 2: Solutions Math 207B, Winter 2016 Problem set : Solutions Math 07B, Winter 016 1. A particle of mass m with position x(t) at time t has potential energy V ( x) an kinetic energy T = 1 m x t. The action of the particle over times t t 1

More information

Outline. MS121: IT Mathematics. Differentiation Rules for Differentiation: Part 1. Outline. Dublin City University 4 The Quotient Rule

Outline. MS121: IT Mathematics. Differentiation Rules for Differentiation: Part 1. Outline. Dublin City University 4 The Quotient Rule MS2: IT Mathematics Differentiation Rules for Differentiation: Part John Carroll School of Mathematical Sciences Dublin City University Pattern Observe You may have notice the following pattern when we

More information

Math 180, Exam 2, Fall 2012 Problem 1 Solution. (a) The derivative is computed using the Chain Rule twice. 1 2 x x

Math 180, Exam 2, Fall 2012 Problem 1 Solution. (a) The derivative is computed using the Chain Rule twice. 1 2 x x . Fin erivatives of the following functions: (a) f() = tan ( 2 + ) ( ) 2 (b) f() = ln 2 + (c) f() = sin() Solution: Math 80, Eam 2, Fall 202 Problem Solution (a) The erivative is compute using the Chain

More information

Differentiation ( , 9.5)

Differentiation ( , 9.5) Chapter 2 Differentiation (8.1 8.3, 9.5) 2.1 Rate of Change (8.2.1 5) Recall that the equation of a straight line can be written as y = mx + c, where m is the slope or graient of the line, an c is the

More information

ORDINARY DIFFERENTIAL EQUATIONS AND SINGULAR INTEGRALS. Gianluca Crippa

ORDINARY DIFFERENTIAL EQUATIONS AND SINGULAR INTEGRALS. Gianluca Crippa Manuscript submitte to AIMS Journals Volume X, Number 0X, XX 200X Website: http://aimsciences.org pp. X XX ORDINARY DIFFERENTIAL EQUATIONS AND SINGULAR INTEGRALS Gianluca Crippa Departement Mathematik

More information

A GRÜSS TYPE INEQUALITY FOR SEQUENCES OF VECTORS IN NORMED LINEAR SPACES AND APPLICATIONS

A GRÜSS TYPE INEQUALITY FOR SEQUENCES OF VECTORS IN NORMED LINEAR SPACES AND APPLICATIONS A GRÜSS TYPE INEQUALITY FOR SEQUENCES OF VECTORS IN NORMED LINEAR SPACES AND APPLICATIONS S. S. DRAGOMIR Abstract. A discrete iequality of Grüss type i ormed liear spaces ad applicatios for the discrete

More information

Journal of Inequalities in Pure and Applied Mathematics

Journal of Inequalities in Pure and Applied Mathematics Journal of Inequalities in Pure and Applied Mathematics NOTES ON AN INTEGRAL INEQUALITY QUÔ C ANH NGÔ, DU DUC THANG, TRAN TAT DAT, AND DANG ANH TUAN Department of Mathematics, Mechanics and Informatics,

More information

Math 300 Winter 2011 Advanced Boundary Value Problems I. Bessel s Equation and Bessel Functions

Math 300 Winter 2011 Advanced Boundary Value Problems I. Bessel s Equation and Bessel Functions Math 3 Winter 2 Avance Bounary Value Problems I Bessel s Equation an Bessel Functions Department of Mathematical an Statistical Sciences University of Alberta Bessel s Equation an Bessel Functions We use

More information

On the Inclined Curves in Galilean 4-Space

On the Inclined Curves in Galilean 4-Space Applie Mathematical Sciences Vol. 7 2013 no. 44 2193-2199 HIKARI Lt www.m-hikari.com On the Incline Curves in Galilean 4-Space Dae Won Yoon Department of Mathematics Eucation an RINS Gyeongsang National

More information

Discrete Mathematics

Discrete Mathematics Discrete Mathematics 309 (009) 86 869 Contents lists available at ScienceDirect Discrete Mathematics journal homepage: wwwelseviercom/locate/isc Profile vectors in the lattice of subspaces Dániel Gerbner

More information

On the Cauchy Problem for Von Neumann-Landau Wave Equation

On the Cauchy Problem for Von Neumann-Landau Wave Equation Journal of Applie Mathematics an Physics 4 4-3 Publishe Online December 4 in SciRes http://wwwscirporg/journal/jamp http://xoiorg/436/jamp4343 On the Cauchy Problem for Von Neumann-anau Wave Equation Chuangye

More information

INEQUALITIES OF LIPSCHITZ TYPE FOR POWER SERIES OF OPERATORS IN HILBERT SPACES

INEQUALITIES OF LIPSCHITZ TYPE FOR POWER SERIES OF OPERATORS IN HILBERT SPACES INEQUALITIES OF LIPSCHITZ TYPE FOR POWER SERIES OF OPERATORS IN HILBERT SPACES S.S. DRAGOMIR ; Abstract. Let (z) := P anzn be a power series with complex coe - cients convergent on the open disk D (; R)

More information

1 Lecture 20: Implicit differentiation

1 Lecture 20: Implicit differentiation Lecture 20: Implicit ifferentiation. Outline The technique of implicit ifferentiation Tangent lines to a circle Derivatives of inverse functions by implicit ifferentiation Examples.2 Implicit ifferentiation

More information

SOME INEQUALITIES FOR (α, β)-normal OPERATORS IN HILBERT SPACES. S.S. Dragomir and M.S. Moslehian. 1. Introduction

SOME INEQUALITIES FOR (α, β)-normal OPERATORS IN HILBERT SPACES. S.S. Dragomir and M.S. Moslehian. 1. Introduction FACTA UNIVERSITATIS (NIŠ) Ser. Math. Inform. Vol. 23 (2008), pp. 39 47 SOME INEQUALITIES FOR (α, β)-normal OPERATORS IN HILBERT SPACES S.S. Dragomir and M.S. Moslehian Abstract. An operator T acting on

More information

Final Exam Study Guide and Practice Problems Solutions

Final Exam Study Guide and Practice Problems Solutions Final Exam Stuy Guie an Practice Problems Solutions Note: These problems are just some of the types of problems that might appear on the exam. However, to fully prepare for the exam, in aition to making

More information

REPRESENTATIONS FOR THE GENERALIZED DRAZIN INVERSE IN A BANACH ALGEBRA (COMMUNICATED BY FUAD KITTANEH)

REPRESENTATIONS FOR THE GENERALIZED DRAZIN INVERSE IN A BANACH ALGEBRA (COMMUNICATED BY FUAD KITTANEH) Bulletin of Mathematical Analysis an Applications ISSN: 1821-1291, UL: http://www.bmathaa.org Volume 5 Issue 1 (2013), ages 53-64 EESENTATIONS FO THE GENEALIZED DAZIN INVESE IN A BANACH ALGEBA (COMMUNICATED

More information

A Sketch of Menshikov s Theorem

A Sketch of Menshikov s Theorem A Sketch of Menshikov s Theorem Thomas Bao March 14, 2010 Abstract Let Λ be an infinite, locally finite oriente multi-graph with C Λ finite an strongly connecte, an let p

More information

PAijpam.eu RELATIVE HEAT LOSS REDUCTION FORMULA FOR WINDOWS WITH MULTIPLE PANES Cassandra Reed 1, Jean Michelet Jean-Michel 2

PAijpam.eu RELATIVE HEAT LOSS REDUCTION FORMULA FOR WINDOWS WITH MULTIPLE PANES Cassandra Reed 1, Jean Michelet Jean-Michel 2 International Journal of Pure an Applie Mathematics Volume 97 No. 4 2014 543-549 ISSN: 1311-8080 (printe version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu oi: http://x.oi.org/10.12732/ijpam.v97i4.13

More information

NONLINEAR QUARTER-PLANE PROBLEM FOR THE KORTEWEG-DE VRIES EQUATION

NONLINEAR QUARTER-PLANE PROBLEM FOR THE KORTEWEG-DE VRIES EQUATION Electronic Journal of Differential Equations, Vol. 11 11), No. 113, pp. 1. ISSN: 17-6691. URL: http://eje.math.txstate.eu or http://eje.math.unt.eu ftp eje.math.txstate.eu NONLINEAR QUARTER-PLANE PROBLEM

More information

On some parabolic systems arising from a nuclear reactor model

On some parabolic systems arising from a nuclear reactor model On some parabolic systems arising from a nuclear reactor moel Kosuke Kita Grauate School of Avance Science an Engineering, Wasea University Introuction NR We stuy the following initial-bounary value problem

More information

Generalized Tractability for Multivariate Problems

Generalized Tractability for Multivariate Problems Generalize Tractability for Multivariate Problems Part II: Linear Tensor Prouct Problems, Linear Information, an Unrestricte Tractability Michael Gnewuch Department of Computer Science, University of Kiel,

More information

DECOMPOSITION OF POLYNOMIALS AND APPROXIMATE ROOTS

DECOMPOSITION OF POLYNOMIALS AND APPROXIMATE ROOTS DECOMPOSITION OF POLYNOMIALS AND APPROXIMATE ROOTS ARNAUD BODIN Abstract. We state a kin of Eucliian ivision theorem: given a polynomial P (x) an a ivisor of the egree of P, there exist polynomials h(x),

More information

18 EVEN MORE CALCULUS

18 EVEN MORE CALCULUS 8 EVEN MORE CALCULUS Chapter 8 Even More Calculus Objectives After stuing this chapter you shoul be able to ifferentiate an integrate basic trigonometric functions; unerstan how to calculate rates of change;

More information

Inequalities of Jensen Type for h-convex Functions on Linear Spaces

Inequalities of Jensen Type for h-convex Functions on Linear Spaces Mathematica Moravica Vol. 9-205, 07 2 Inequalities of Jensen Type for h-convex Functions on Linear Spaces Silvestru Sever Dragomir Abstract. Some inequalities of Jensen type for h-convex functions defined

More information

Tractability results for weighted Banach spaces of smooth functions

Tractability results for weighted Banach spaces of smooth functions Tractability results for weighte Banach spaces of smooth functions Markus Weimar Mathematisches Institut, Universität Jena Ernst-Abbe-Platz 2, 07740 Jena, Germany email: markus.weimar@uni-jena.e March

More information

A bi-lipschitz continuous, volume preserving map from the unit ball onto a cube

A bi-lipschitz continuous, volume preserving map from the unit ball onto a cube Note i Matematica Note Mat. 8, 77-93 ISSN 3-536, e-issn 59-93 DOI.85/i5993v8np77 Note http://siba.unile.it/notemat i Matematica 8, n., 8, 77 93. A bi-lipschitz continuous, volume preserving map from the

More information

Linear First-Order Equations

Linear First-Order Equations 5 Linear First-Orer Equations Linear first-orer ifferential equations make up another important class of ifferential equations that commonly arise in applications an are relatively easy to solve (in theory)

More information

Section 3.1/3.2: Rules of Differentiation

Section 3.1/3.2: Rules of Differentiation : Rules of Differentiation Math 115 4 February 2018 Overview 1 2 Four Theorem for Derivatives Suppose c is a constant an f, g are ifferentiable functions. Then 1 2 3 4 x (c) = 0 x (x n ) = nx n 1 x [cf

More information

MARKO NEDELJKOV, DANIJELA RAJTER-ĆIRIĆ

MARKO NEDELJKOV, DANIJELA RAJTER-ĆIRIĆ GENERALIZED UNIFORMLY CONTINUOUS SEMIGROUPS AND SEMILINEAR HYPERBOLIC SYSTEMS WITH REGULARIZED DERIVATIVES MARKO NEDELJKOV, DANIJELA RAJTER-ĆIRIĆ Abstract. We aopt the theory of uniformly continuous operator

More information

The group of isometries of the French rail ways metric

The group of isometries of the French rail ways metric Stu. Univ. Babeş-Bolyai Math. 58(2013), No. 4, 445 450 The group of isometries of the French rail ways metric Vasile Bulgărean To the memory of Professor Mircea-Eugen Craioveanu (1942-2012) Abstract. In

More information

Discrete Operators in Canonical Domains

Discrete Operators in Canonical Domains Discrete Operators in Canonical Domains VLADIMIR VASILYEV Belgoro National Research University Chair of Differential Equations Stuencheskaya 14/1, 308007 Belgoro RUSSIA vlaimir.b.vasilyev@gmail.com Abstract:

More information

ON PERTURBED TRAPEZOIDAL AND MIDPOINT RULES. f (t) dt

ON PERTURBED TRAPEZOIDAL AND MIDPOINT RULES. f (t) dt ON PERTURBED TRAPEZOIDAL AND MIDPOINT RULES P. CERONE Abstrct. Explicit bounds re obtined for the perturbed or corrected trpezoidl nd midpoint rules in terms of the Lebesque norms of the second derivtive

More information

Lower bounds on Locality Sensitive Hashing

Lower bounds on Locality Sensitive Hashing Lower bouns on Locality Sensitive Hashing Rajeev Motwani Assaf Naor Rina Panigrahy Abstract Given a metric space (X, X ), c 1, r > 0, an p, q [0, 1], a istribution over mappings H : X N is calle a (r,

More information

LOCAL SOLVABILITY AND BLOW-UP FOR BENJAMIN-BONA-MAHONY-BURGERS, ROSENAU-BURGERS AND KORTEWEG-DE VRIES-BENJAMIN-BONA-MAHONY EQUATIONS

LOCAL SOLVABILITY AND BLOW-UP FOR BENJAMIN-BONA-MAHONY-BURGERS, ROSENAU-BURGERS AND KORTEWEG-DE VRIES-BENJAMIN-BONA-MAHONY EQUATIONS Electronic Journal of Differential Equations, Vol. 14 (14), No. 69, pp. 1 16. ISSN: 17-6691. URL: http://eje.math.txstate.eu or http://eje.math.unt.eu ftp eje.math.txstate.eu LOCAL SOLVABILITY AND BLOW-UP

More information

Math 115 Section 018 Course Note

Math 115 Section 018 Course Note Course Note 1 General Functions Definition 1.1. A function is a rule that takes certain numbers as inputs an assigns to each a efinite output number. The set of all input numbers is calle the omain of

More information

BOUNDEDNESS IN A THREE-DIMENSIONAL ATTRACTION-REPULSION CHEMOTAXIS SYSTEM WITH NONLINEAR DIFFUSION AND LOGISTIC SOURCE

BOUNDEDNESS IN A THREE-DIMENSIONAL ATTRACTION-REPULSION CHEMOTAXIS SYSTEM WITH NONLINEAR DIFFUSION AND LOGISTIC SOURCE Electronic Journal of Differential Equations, Vol. 016 (016, No. 176, pp. 1 1. ISSN: 107-6691. URL: http://eje.math.txstate.eu or http://eje.math.unt.eu BOUNDEDNESS IN A THREE-DIMENSIONAL ATTRACTION-REPULSION

More information

1 Math 285 Homework Problem List for S2016

1 Math 285 Homework Problem List for S2016 1 Math 85 Homework Problem List for S016 Note: solutions to Lawler Problems will appear after all of the Lecture Note Solutions. 1.1 Homework 1. Due Friay, April 8, 016 Look at from lecture note exercises:

More information

Markov Chains in Continuous Time

Markov Chains in Continuous Time Chapter 23 Markov Chains in Continuous Time Previously we looke at Markov chains, where the transitions betweenstatesoccurreatspecifietime- steps. That it, we mae time (a continuous variable) avance in

More information

A LIMIT THEOREM FOR RANDOM FIELDS WITH A SINGULARITY IN THE SPECTRUM

A LIMIT THEOREM FOR RANDOM FIELDS WITH A SINGULARITY IN THE SPECTRUM Teor Imov r. ta Matem. Statist. Theor. Probability an Math. Statist. Vip. 81, 1 No. 81, 1, Pages 147 158 S 94-911)816- Article electronically publishe on January, 11 UDC 519.1 A LIMIT THEOREM FOR RANDOM

More information

Spectral properties of a near-periodic row-stochastic Leslie matrix

Spectral properties of a near-periodic row-stochastic Leslie matrix Linear Algebra an its Applications 409 2005) 66 86 wwwelseviercom/locate/laa Spectral properties of a near-perioic row-stochastic Leslie matrix Mei-Qin Chen a Xiezhang Li b a Department of Mathematics

More information