Small ball probabilities and metric entropy

Size: px
Start display at page:

Download "Small ball probabilities and metric entropy"

Transcription

1 Small ball probabilities and metric entropy Frank Aurzada, TU Berlin Sydney, February 2012 MCQMC

2 Outline 1 Small ball probabilities vs. metric entropy 2 Connection to other questions 3 Recent results for concrete examples

3 Outline 1 Small ball probabilities vs. metric entropy 2 Connection to other questions 3 Recent results for concrete examples

4 Small ball probabilities Let (X t ) t 0 be a stochastic process with X 0 = 0 Goal: find asymptotic rate of P?, with ε 0 ε ε X 1 In many examples, P with γ > 0 und κ > 0. = e κε γ (1+o(1)), with ε 0

5 Small ball probabilities Let (X t ) t 0 be a stochastic process with X 0 = 0 Goal: find asymptotic rate of P?, with ε 0 ε ε X 1 In many examples, P with γ > 0 und κ > 0. = e κε γ (1+o(1)), with ε 0

6 Small ball probabilities Let (X t ) t 0 be a stochastic process with X 0 = 0 Goal: find asymptotic rate of P?, with ε 0 ε ε X 1 Therefore, we study φ X (ε) := log P the so-called small ball function of X. γ = κε γ (1 + o(1)), with ε 0

7 Entropy numbers Let X be a centred Gaussian random variable with values in a sep. Banach space (E,. ): i.e. X, g Gaussian g E.

8 Entropy numbers Let X be a centred Gaussian random variable with values in a sep. Banach space (E,. ): i.e. X, g Gaussian g E. There is a linear operator u : L 2 0, 1 E belonging to X such that ( Ee i X,g = exp 1 ) 2 u (g) 2 2, g E. Note: u(l 2 0, 1) is the RKHS of X

9 Entropy numbers Let X be a centred Gaussian random variable with values in a sep. Banach space (E,. ): i.e. X, g Gaussian g E. There is a linear operator u : L 2 0, 1 E belonging to X such that ( Ee i X,g = exp 1 ) 2 u (g) 2 2, g E. Note: u(l 2 0, 1) is the RKHS of X Example: X BM in E = C0, 1 (uf )(t) = t 0 f (s)ds; u : L 2 0, 1 C0, 1.

10 Entropy numbers / small ball function On the one hand, we consider the small ball function: ( φ X (ε) = log P X E ε = log P )

11 Entropy numbers / small ball function On the one hand, we consider the small ball function: ( φ X (ε) = log P X E ε = log P ) On the other hand, the entropy numbers of u: e n (u) := inf{ε > 0 ε-net of 2 n 1 points of u(b L2 0,1) in E}, where B L2 0,1 is the unit ball in L 2 0, 1 (inverse of covering numbers).

12 Asymptotics We use the following notation Weak asymptotics: a(ε) b(ε), ε 0 means lim sup ε 0 a(ε) b(ε) < a(ε) b(ε), ε 0 means a(ε) b(ε) and b(ε) a(ε)

13 Asymptotics We use the following notation Weak asymptotics: a(ε) b(ε), ε 0 means lim sup ε 0 a(ε) b(ε) < a(ε) b(ε), ε 0 Strong asymptotics: means a(ε) b(ε) and b(ε) a(ε) a(ε) b(ε), ε 0 means lim sup ε 0 a(ε) b(ε) = 1 a(ε) b(ε), ε 0 Similarly for n means a(ε) b(ε) and b(ε) a(ε)

14 The small ball entropy connection Theorem (Kuelbs/Li 93, Li/Linde 99, A./Ibragimov/Lifshits/van Zanten 08) For r > 0 and δ R: φ X (ε) ε r log ε δ e n (u) n 1/2 1/r (log n) δ/r φ X (ε) ε r log ε δ e n (u) n 1/2 1/r (log n) δ/r where the first requires φ X (ε) φ(2ε). Further, for δ > 0 and κ > 0, φ X (ε) κ log ε δ log e n (u) κ 1/δ n 1/δ φ X (ε) κ log ε δ log e n (u) κ 1/δ n 1/δ. small ball pr. entropy numbers (probabilistic) (functional analytic)

15 The small ball - entropy connection Example: X Riemann-Liouville process in C0, 1 (uf )(t) = t 0 (t s) H 1/2 f (s)ds; u : L 2 0, 1 C0, 1. one has φ X (ε) ε 1/H In particular for X BM, H = 1/2 φ X (ε) ε 2 e n (u) n 1/2 H e n (u) n 1

16 Outline 1 Small ball probabilities vs. metric entropy 2 Connection to other questions 3 Recent results for concrete examples

17 Connections of small ball prob. to other questions In the setup of Gaussian processes, there are various connections to: entropy of function classes convergence rate of series representations coding quantities for the process approximation quantitites for the process Chung s law of the iterated logarithm statistical problems... Generally: the small ball rate increases the slower the better the process can be approximated the smoother the process is

18 Connections of small ball prob. to other questions approximation of stochastic processes n X (n) t = ξ i ψ i (t) X t i=1 error X (n) X 0 coding, quantisation, quadrature N Ef(X) f( ˆX i)q i i=1 law of the iterated logarithm lim inf t 0 φ X (ε) = log P = κε γ (1 + o(1)) sup s t X s = c b(t) path regularity Gaussian process n-times differentiable γ 1/n functional analysis entropy numbers of linear operators between Banach spaces PDE problems other approximation quantities such as Kolmogorov widths, etc.

19 Connections of small ball prob. to other questions approximation of stochastic processes n X (n) t = ξ i ψ i (t) X t i=1 error X (n) X 0 coding, quantisation, quadrature N Ef(X) f( ˆX i)q i i=1 law of the iterated logarithm lim inf t 0 φ X (ε) = log P = κε γ (1 + o(1)) sup s t X s = c b(t) path regularity Gaussian process n-times differentiable γ 1/n functional analysis entropy numbers of linear operators between Banach spaces PDE problems other approximation quantities such as Kolmogorov widths, etc.

20 Connections of small ball prob. to other questions approximation of stochastic processes n X (n) t = ξ i ψ i (t) X t i=1 error X (n) X 0 coding, quantisation, quadrature N Ef(X) f( ˆX i)q i i=1 law of the iterated logarithm lim inf t 0 φ X (ε) = log P = κε γ (1 + o(1)) sup s t X s = c b(t) path regularity Gaussian process n-times differentiable γ 1/n functional analysis entropy numbers of linear operators between Banach spaces PDE problems other approximation quantities such as Kolmogorov widths, etc.

21 Connection to smoothness of process Theorem (A. 11) Let (X t ) t 0,1 be a centred Gaussian process and n an integer. If (a modif. of) X is n-times differentiable with X (n) L 2 0, 1 then φ X (ε) = log P ε 1/n. ε ε X 1

22 Connection to smoothness of process Theorem (A. 11) Let (X t ) t 0,1 be a centred Gaussian process and n an integer. If (a modif. of) X is n-times differentiable with X (n) L 2 0, 1 then φ X (ε) = log P ε 1/n. ε ε X 1 Now, what happens when n (above) is non-integer?

23 Connection to smoothness of process Define fractional differentiation: Let γ > 0 (recall X 0 = 0) X (γ) t = x(t) if X t = t 0 (t s) γ 1 x(t)dt.

24 Connection to smoothness of process Define fractional differentiation: Let γ > 0 (recall X 0 = 0) Theorem (A. 11) X (γ) t = x(t) if X t = t 0 (t s) γ 1 x(t)dt. Let (X t ) t 0,1 be a centred Gaussian process and γ > 1/2. If X (γ) exists and X (γ) L 2 0, 1 then φ X (ε) = log P ε 1/γ.

25 Connection to smoothness of process Define fractional differentiation: Let γ > 0 (recall X 0 = 0) Theorem (A. 11) X (γ) t = x(t) if X t = t 0 (t s) γ 1 x(t)dt. Let (X t ) t 0,1 be a centred Gaussian process and γ > 1/2. If X (γ) exists and X (γ) L 2 0, 1 then φ X (ε) = log P ε 1/γ. Example : Brownian motion X is γ-times differentiable (Hölder), γ < 1 2. log P ε 2 = ε 1 1/2.

26 Connection to smoothness of process Define fractional differentiation: Let γ > 0 (recall X 0 = 0) Theorem (A. 11) X (γ) t = x(t) if X t = t 0 (t s) γ 1 x(t)dt. Let (X t ) t 0,1 be a centred Gaussian process and γ > 1/2. If X (γ) exists and X (γ) L 2 0, 1 then φ X (ε) = log P ε 1/γ. Example : Brownian motion X is γ-times differentiable (Hölder), γ < 1 2. log P Similar results for different norms ε 2 = ε 1 1/2.

27 Connection to smoothness of process Corollary (A. 11) Let (X t ) t 0,1 be a centred Gaussian process. If X has a C -modif. then for any δ > 0 ( ) lim ε 0 εδ log P = 0.

28 Connection to smoothness of process Corollary (A. 11) Let (X t ) t 0,1 be a centred Gaussian process. If X has a C -modif. then for any δ > 0 ( ) lim ε 0 εδ log P = 0. Let X and Y be (not nec. indep.) centred Gaussian, s.t. φ X (ε) = log P ε γ, and one has Y (α) L 2 0, 1 with α > 1/γ and α > 1/2. Then φ X+Y (ε) = log P sup X t + Y t ε ε γ.

29 Outline 1 Small ball probabilities vs. metric entropy 2 Connection to other questions 3 Recent results for concrete examples

30 The entropy method: recent results several recent results using the entropy connection in the case of slowly varying φ X, i.e. exp. decreasing e n (u) Kühn 11: L 2 and L case EX t X s = e σ2 t s 2, t, s R d Result: φ X (ε) log ε d+1 (log log ε ) d. A./Gao/Kühn/Li/Shao 11+: L 2 and L case EX t X s = 22β+1 (ts) α, t, s > 0 (t + s) 2β+1 Result: φ X (ε) log ε 3.

31 The entropy method: recent results cont d The spectral measure F of stationary Gaussian process is given by: EX t X s = EX t s X 0 = k(t s) = e i(t s)u df(u).

32 The entropy method: recent results cont d The spectral measure F of stationary Gaussian process is given by: EX t X s = EX t s X 0 = k(t s) = e i(t s)u df(u). A./Ibragimov/Lifshits/van Zanten 08: spectral measure df(u) = e u ν du, F = e k ν δ 2πk Result for L norm: φ X (ε) k Z log ε 2, ν > 1, F; log log ε φ X (ε) log ε 1+1/ν, 0 < ν 1, F; or ν > 0, F.

33 The entropy method: recent results cont d The spectral measure F of stationary Gaussian process is given by: EX t X s = EX t s X 0 = k(t s) = e i(t s)u df(u). A./Ibragimov/Lifshits/van Zanten 08: spectral measure df(u) = e u ν du, F = e k ν δ 2πk Result for L norm: φ X (ε) k Z log ε 2, ν > 1, F; log log ε φ X (ε) log ε 1+1/ν, 0 < ν 1, F; or ν > 0, F. Karol /Nazarov 11+: rather general spectral measure, R d indexed, L 2 case df(u) = e G(u) du relate behaviour of G at with small ball probabilities

34 Thank you for your attention! Frank Aurzada Technische Universität Berlin page.math.tu-berlin.de/ aurzada/

Optimal series representations of continuous Gaussian random fields

Optimal series representations of continuous Gaussian random fields Optimal series representations of continuous Gaussian random fields Antoine AYACHE Université Lille 1 - Laboratoire Paul Painlevé A. Ayache (Lille 1) Optimality of continuous Gaussian series 04/25/2012

More information

Brownian motion. Samy Tindel. Purdue University. Probability Theory 2 - MA 539

Brownian motion. Samy Tindel. Purdue University. Probability Theory 2 - MA 539 Brownian motion Samy Tindel Purdue University Probability Theory 2 - MA 539 Mostly taken from Brownian Motion and Stochastic Calculus by I. Karatzas and S. Shreve Samy T. Brownian motion Probability Theory

More information

Brownian Motion. 1 Definition Brownian Motion Wiener measure... 3

Brownian Motion. 1 Definition Brownian Motion Wiener measure... 3 Brownian Motion Contents 1 Definition 2 1.1 Brownian Motion................................. 2 1.2 Wiener measure.................................. 3 2 Construction 4 2.1 Gaussian process.................................

More information

Letting p shows that {B t } t 0. Definition 0.5. For λ R let δ λ : A (V ) A (V ) be defined by. 1 = g (symmetric), and. 3. g

Letting p shows that {B t } t 0. Definition 0.5. For λ R let δ λ : A (V ) A (V ) be defined by. 1 = g (symmetric), and. 3. g 4 Contents.1 Lie group p variation results Suppose G, d) is a group equipped with a left invariant metric, i.e. Let a := d e, a), then d ca, cb) = d a, b) for all a, b, c G. d a, b) = d e, a 1 b ) = a

More information

Integral representations in models with long memory

Integral representations in models with long memory Integral representations in models with long memory Georgiy Shevchenko, Yuliya Mishura, Esko Valkeila, Lauri Viitasaari, Taras Shalaiko Taras Shevchenko National University of Kyiv 29 September 215, Ulm

More information

Statistical inference on Lévy processes

Statistical inference on Lévy processes Alberto Coca Cabrero University of Cambridge - CCA Supervisors: Dr. Richard Nickl and Professor L.C.G.Rogers Funded by Fundación Mutua Madrileña and EPSRC MASDOC/CCA student workshop 2013 26th March Outline

More information

Asymptotic results for empirical measures of weighted sums of independent random variables

Asymptotic results for empirical measures of weighted sums of independent random variables Asymptotic results for empirical measures of weighted sums of independent random variables B. Bercu and W. Bryc University Bordeaux 1, France Workshop on Limit Theorems, University Paris 1 Paris, January

More information

ELEMENTS OF PROBABILITY THEORY

ELEMENTS OF PROBABILITY THEORY ELEMENTS OF PROBABILITY THEORY Elements of Probability Theory A collection of subsets of a set Ω is called a σ algebra if it contains Ω and is closed under the operations of taking complements and countable

More information

Section 21. The Metric Topology (Continued)

Section 21. The Metric Topology (Continued) 21. The Metric Topology (cont.) 1 Section 21. The Metric Topology (Continued) Note. In this section we give a number of results for metric spaces which are familar from calculus and real analysis. We also

More information

Bayesian Regularization

Bayesian Regularization Bayesian Regularization Aad van der Vaart Vrije Universiteit Amsterdam International Congress of Mathematicians Hyderabad, August 2010 Contents Introduction Abstract result Gaussian process priors Co-authors

More information

Laplace transforms of L 2 ball, Comparison Theorems and Integrated Brownian motions. Jan Hannig

Laplace transforms of L 2 ball, Comparison Theorems and Integrated Brownian motions. Jan Hannig Laplace transforms of L 2 ball, Comparison Theorems and Integrated Brownian motions. Jan Hannig Department of Statistics, Colorado State University Email: hannig@stat.colostate.edu Joint work with F. Gao,

More information

-variation of the divergence integral w.r.t. fbm with Hurst parameter H < 1 2

-variation of the divergence integral w.r.t. fbm with Hurst parameter H < 1 2 /4 On the -variation of the divergence integral w.r.t. fbm with urst parameter < 2 EL ASSAN ESSAKY joint work with : David Nualart Cadi Ayyad University Poly-disciplinary Faculty, Safi Colloque Franco-Maghrébin

More information

Sample path large deviations of a Gaussian process with stationary increments and regularily varying variance

Sample path large deviations of a Gaussian process with stationary increments and regularily varying variance Sample path large deviations of a Gaussian process with stationary increments and regularily varying variance Tommi Sottinen Department of Mathematics P. O. Box 4 FIN-0004 University of Helsinki Finland

More information

Tools from Lebesgue integration

Tools from Lebesgue integration Tools from Lebesgue integration E.P. van den Ban Fall 2005 Introduction In these notes we describe some of the basic tools from the theory of Lebesgue integration. Definitions and results will be given

More information

ON THE BOUNDEDNESS BEHAVIOR OF THE SPECTRAL FACTORIZATION IN THE WIENER ALGEBRA FOR FIR DATA

ON THE BOUNDEDNESS BEHAVIOR OF THE SPECTRAL FACTORIZATION IN THE WIENER ALGEBRA FOR FIR DATA ON THE BOUNDEDNESS BEHAVIOR OF THE SPECTRAL FACTORIZATION IN THE WIENER ALGEBRA FOR FIR DATA Holger Boche and Volker Pohl Technische Universität Berlin, Heinrich Hertz Chair for Mobile Communications Werner-von-Siemens

More information

Asymptotic results for empirical measures of weighted sums of independent random variables

Asymptotic results for empirical measures of weighted sums of independent random variables Asymptotic results for empirical measures of weighted sums of independent random variables B. Bercu and W. Bryc University Bordeaux 1, France Seminario di Probabilità e Statistica Matematica Sapienza Università

More information

Inverse function theorems

Inverse function theorems Inverse function theorems Ivar Ekeland CEREMADE, Université Paris-Dauphine Ravello, May 2011 Ivar Ekeland (CEREMADE, Université Paris-Dauphine) Inverse function theorems Ravello, May 2011 1 / 18 Ekeland

More information

Probabilities of Randomly Centered Small Balls and Quantization in Banach Spaces

Probabilities of Randomly Centered Small Balls and Quantization in Banach Spaces arxiv:math/0402220v1 [math.pr] 13 Feb 2004 Probabilities of Randomly Centered Small Balls and Quantization in Banach Spaces by S. Dereich and M. A. Lifshits 1 Technische Universität Berlin & St.Petersburg

More information

Gaussian Random Fields: Geometric Properties and Extremes

Gaussian Random Fields: Geometric Properties and Extremes Gaussian Random Fields: Geometric Properties and Extremes Yimin Xiao Michigan State University Outline Lecture 1: Gaussian random fields and their regularity Lecture 2: Hausdorff dimension results and

More information

Lower Tail Probabilities and Normal Comparison Inequalities. In Memory of Wenbo V. Li s Contributions

Lower Tail Probabilities and Normal Comparison Inequalities. In Memory of Wenbo V. Li s Contributions Lower Tail Probabilities and Normal Comparison Inequalities In Memory of Wenbo V. Li s Contributions Qi-Man Shao The Chinese University of Hong Kong Lower Tail Probabilities and Normal Comparison Inequalities

More information

Topics in fractional Brownian motion

Topics in fractional Brownian motion Topics in fractional Brownian motion Esko Valkeila Spring School, Jena 25.3. 2011 We plan to discuss the following items during these lectures: Fractional Brownian motion and its properties. Topics in

More information

Scaling Limits of Waves in Convex Scalar Conservation Laws under Random Initial Perturbations

Scaling Limits of Waves in Convex Scalar Conservation Laws under Random Initial Perturbations Scaling Limits of Waves in Convex Scalar Conservation Laws under Random Initial Perturbations Jan Wehr and Jack Xin Abstract We study waves in convex scalar conservation laws under noisy initial perturbations.

More information

ME 680- Spring Representation and Stability Concepts

ME 680- Spring Representation and Stability Concepts ME 680- Spring 014 Representation and Stability Concepts 1 3. Representation and stability concepts 3.1 Continuous time systems: Consider systems of the form x F(x), x n (1) where F : U Vis a mapping U,V

More information

Brownian Motion and Conditional Probability

Brownian Motion and Conditional Probability Math 561: Theory of Probability (Spring 2018) Week 10 Brownian Motion and Conditional Probability 10.1 Standard Brownian Motion (SBM) Brownian motion is a stochastic process with both practical and theoretical

More information

Mean-field SDE driven by a fractional BM. A related stochastic control problem

Mean-field SDE driven by a fractional BM. A related stochastic control problem Mean-field SDE driven by a fractional BM. A related stochastic control problem Rainer Buckdahn, Université de Bretagne Occidentale, Brest Durham Symposium on Stochastic Analysis, July 1th to July 2th,

More information

In terms of measures: Exercise 1. Existence of a Gaussian process: Theorem 2. Remark 3.

In terms of measures: Exercise 1. Existence of a Gaussian process: Theorem 2. Remark 3. 1. GAUSSIAN PROCESSES A Gaussian process on a set T is a collection of random variables X =(X t ) t T on a common probability space such that for any n 1 and any t 1,...,t n T, the vector (X(t 1 ),...,X(t

More information

Stochastic Processes

Stochastic Processes Introduction and Techniques Lecture 4 in Financial Mathematics UiO-STK4510 Autumn 2015 Teacher: S. Ortiz-Latorre Stochastic Processes 1 Stochastic Processes De nition 1 Let (E; E) be a measurable space

More information

Numerical Methods with Lévy Processes

Numerical Methods with Lévy Processes Numerical Methods with Lévy Processes 1 Objective: i) Find models of asset returns, etc ii) Get numbers out of them. Why? VaR and risk management Valuing and hedging derivatives Why not? Usual assumption:

More information

Applied Math Qualifying Exam 11 October Instructions: Work 2 out of 3 problems in each of the 3 parts for a total of 6 problems.

Applied Math Qualifying Exam 11 October Instructions: Work 2 out of 3 problems in each of the 3 parts for a total of 6 problems. Printed Name: Signature: Applied Math Qualifying Exam 11 October 2014 Instructions: Work 2 out of 3 problems in each of the 3 parts for a total of 6 problems. 2 Part 1 (1) Let Ω be an open subset of R

More information

Multilevel Monte Carlo for Lévy Driven SDEs

Multilevel Monte Carlo for Lévy Driven SDEs Multilevel Monte Carlo for Lévy Driven SDEs Felix Heidenreich TU Kaiserslautern AG Computational Stochastics August 2011 joint work with Steffen Dereich Philipps-Universität Marburg supported within DFG-SPP

More information

Some SDEs with distributional drift Part I : General calculus. Flandoli, Franco; Russo, Francesco; Wolf, Jochen

Some SDEs with distributional drift Part I : General calculus. Flandoli, Franco; Russo, Francesco; Wolf, Jochen Title Author(s) Some SDEs with distributional drift Part I : General calculus Flandoli, Franco; Russo, Francesco; Wolf, Jochen Citation Osaka Journal of Mathematics. 4() P.493-P.54 Issue Date 3-6 Text

More information

A Note on the Approximation of Perpetuities

A Note on the Approximation of Perpetuities Discrete Mathematics and Theoretical Computer Science (subm.), by the authors, rev A Note on the Approximation of Perpetuities Margarete Knape and Ralph Neininger Department for Mathematics and Computer

More information

In Memory of Wenbo V Li s Contributions

In Memory of Wenbo V Li s Contributions In Memory of Wenbo V Li s Contributions Qi-Man Shao The Chinese University of Hong Kong qmshao@cuhk.edu.hk The research is partially supported by Hong Kong RGC GRF 403513 Outline Lower tail probabilities

More information

Phase Transitions for Dilute Particle Systems with Lennard-Jones Potential

Phase Transitions for Dilute Particle Systems with Lennard-Jones Potential Weierstrass Institute for Applied Analysis and Stochastics Phase Transitions for Dilute Particle Systems with Lennard-Jones Potential Wolfgang König TU Berlin and WIAS joint with Andrea Collevecchio (Venice),

More information

Consistency of the maximum likelihood estimator for general hidden Markov models

Consistency of the maximum likelihood estimator for general hidden Markov models Consistency of the maximum likelihood estimator for general hidden Markov models Jimmy Olsson Centre for Mathematical Sciences Lund University Nordstat 2012 Umeå, Sweden Collaborators Hidden Markov models

More information

RANDOM FIELDS AND GEOMETRY. Robert Adler and Jonathan Taylor

RANDOM FIELDS AND GEOMETRY. Robert Adler and Jonathan Taylor RANDOM FIELDS AND GEOMETRY from the book of the same name by Robert Adler and Jonathan Taylor IE&M, Technion, Israel, Statistics, Stanford, US. ie.technion.ac.il/adler.phtml www-stat.stanford.edu/ jtaylor

More information

On a class of stochastic differential equations in a financial network model

On a class of stochastic differential equations in a financial network model 1 On a class of stochastic differential equations in a financial network model Tomoyuki Ichiba Department of Statistics & Applied Probability, Center for Financial Mathematics and Actuarial Research, University

More information

Lyapunov optimizing measures for C 1 expanding maps of the circle

Lyapunov optimizing measures for C 1 expanding maps of the circle Lyapunov optimizing measures for C 1 expanding maps of the circle Oliver Jenkinson and Ian D. Morris Abstract. For a generic C 1 expanding map of the circle, the Lyapunov maximizing measure is unique,

More information

Random Conformal Welding

Random Conformal Welding Random Conformal Welding Antti Kupiainen joint work with K. Astala, P. Jones, E. Saksman Ascona 26.5.2010 Random Planar Curves 2d Statistical Mechanics: phase boundaries Closed curves or curves joining

More information

An adaptive numerical scheme for fractional differential equations with explosions

An adaptive numerical scheme for fractional differential equations with explosions An adaptive numerical scheme for fractional differential equations with explosions Johanna Garzón Departamento de Matemáticas, Universidad Nacional de Colombia Seminario de procesos estocásticos Jointly

More information

Approximation numbers of Sobolev embeddings - Sharp constants and tractability

Approximation numbers of Sobolev embeddings - Sharp constants and tractability Approximation numbers of Sobolev embeddings - Sharp constants and tractability Thomas Kühn Universität Leipzig, Germany Workshop Uniform Distribution Theory and Applications Oberwolfach, 29 September -

More information

A Concise Course on Stochastic Partial Differential Equations

A Concise Course on Stochastic Partial Differential Equations A Concise Course on Stochastic Partial Differential Equations Michael Röckner Reference: C. Prevot, M. Röckner: Springer LN in Math. 1905, Berlin (2007) And see the references therein for the original

More information

Large Deviations Principles for McKean-Vlasov SDEs, Skeletons, Supports and the law of iterated logarithm

Large Deviations Principles for McKean-Vlasov SDEs, Skeletons, Supports and the law of iterated logarithm Large Deviations Principles for McKean-Vlasov SDEs, Skeletons, Supports and the law of iterated logarithm Gonçalo dos Reis University of Edinburgh (UK) & CMA/FCT/UNL (PT) jointly with: W. Salkeld, U. of

More information

Some functional (Hölderian) limit theorems and their applications (II)

Some functional (Hölderian) limit theorems and their applications (II) Some functional (Hölderian) limit theorems and their applications (II) Alfredas Račkauskas Vilnius University Outils Statistiques et Probabilistes pour la Finance Université de Rouen June 1 5, Rouen (Rouen

More information

Mathematics for Engineers. Numerical mathematics

Mathematics for Engineers. Numerical mathematics Mathematics for Engineers Numerical mathematics Integers Determine the largest representable integer with the intmax command. intmax ans = int32 2147483647 2147483647+1 ans = 2.1475e+09 Remark The set

More information

Large deviations and averaging for systems of slow fast stochastic reaction diffusion equations.

Large deviations and averaging for systems of slow fast stochastic reaction diffusion equations. Large deviations and averaging for systems of slow fast stochastic reaction diffusion equations. Wenqing Hu. 1 (Joint work with Michael Salins 2, Konstantinos Spiliopoulos 3.) 1. Department of Mathematics

More information

Mathematical Methods for Neurosciences. ENS - Master MVA Paris 6 - Master Maths-Bio ( )

Mathematical Methods for Neurosciences. ENS - Master MVA Paris 6 - Master Maths-Bio ( ) Mathematical Methods for Neurosciences. ENS - Master MVA Paris 6 - Master Maths-Bio (2014-2015) Etienne Tanré - Olivier Faugeras INRIA - Team Tosca November 26th, 2014 E. Tanré (INRIA - Team Tosca) Mathematical

More information

Spectral functions of subordinated Brownian motion

Spectral functions of subordinated Brownian motion Spectral functions of subordinated Brownian motion M.A. Fahrenwaldt 12 1 Institut für Mathematische Stochastik Leibniz Universität Hannover, Germany 2 EBZ Business School, Bochum, Germany Berlin, 23 October

More information

4 Expectation & the Lebesgue Theorems

4 Expectation & the Lebesgue Theorems STA 205: Probability & Measure Theory Robert L. Wolpert 4 Expectation & the Lebesgue Theorems Let X and {X n : n N} be random variables on a probability space (Ω,F,P). If X n (ω) X(ω) for each ω Ω, does

More information

Homogenization for chaotic dynamical systems

Homogenization for chaotic dynamical systems Homogenization for chaotic dynamical systems David Kelly Ian Melbourne Department of Mathematics / Renci UNC Chapel Hill Mathematics Institute University of Warwick November 3, 2013 Duke/UNC Probability

More information

Scaling Limits of Waves in Convex Scalar Conservation Laws Under Random Initial Perturbations

Scaling Limits of Waves in Convex Scalar Conservation Laws Under Random Initial Perturbations Journal of Statistical Physics, Vol. 122, No. 2, January 2006 ( C 2006 ) DOI: 10.1007/s10955-005-8006-x Scaling Limits of Waves in Convex Scalar Conservation Laws Under Random Initial Perturbations Jan

More information

Asymptotic stability of an evolutionary nonlinear Boltzmann-type equation

Asymptotic stability of an evolutionary nonlinear Boltzmann-type equation Acta Polytechnica Hungarica Vol. 14, No. 5, 217 Asymptotic stability of an evolutionary nonlinear Boltzmann-type equation Roksana Brodnicka, Henryk Gacki Institute of Mathematics, University of Silesia

More information

Resolving the White Noise Paradox in the Regularisation of Inverse Problems

Resolving the White Noise Paradox in the Regularisation of Inverse Problems 1 / 32 Resolving the White Noise Paradox in the Regularisation of Inverse Problems Hanne Kekkonen joint work with Matti Lassas and Samuli Siltanen Department of Mathematics and Statistics University of

More information

FIXED POINT ITERATIONS

FIXED POINT ITERATIONS FIXED POINT ITERATIONS MARKUS GRASMAIR 1. Fixed Point Iteration for Non-linear Equations Our goal is the solution of an equation (1) F (x) = 0, where F : R n R n is a continuous vector valued mapping in

More information

1. Stochastic Processes and filtrations

1. Stochastic Processes and filtrations 1. Stochastic Processes and 1. Stoch. pr., A stochastic process (X t ) t T is a collection of random variables on (Ω, F) with values in a measurable space (S, S), i.e., for all t, In our case X t : Ω S

More information

Preliminary Exam: Probability 9:00am 2:00pm, Friday, January 6, 2012

Preliminary Exam: Probability 9:00am 2:00pm, Friday, January 6, 2012 Preliminary Exam: Probability 9:00am 2:00pm, Friday, January 6, 202 The exam lasts from 9:00am until 2:00pm, with a walking break every hour. Your goal on this exam should be to demonstrate mastery of

More information

Sobolev Spaces. Chapter 10

Sobolev Spaces. Chapter 10 Chapter 1 Sobolev Spaces We now define spaces H 1,p (R n ), known as Sobolev spaces. For u to belong to H 1,p (R n ), we require that u L p (R n ) and that u have weak derivatives of first order in L p

More information

HOPF S DECOMPOSITION AND RECURRENT SEMIGROUPS. Josef Teichmann

HOPF S DECOMPOSITION AND RECURRENT SEMIGROUPS. Josef Teichmann HOPF S DECOMPOSITION AND RECURRENT SEMIGROUPS Josef Teichmann Abstract. Some results of ergodic theory are generalized in the setting of Banach lattices, namely Hopf s maximal ergodic inequality and the

More information

Skorokhod Embeddings In Bounded Time

Skorokhod Embeddings In Bounded Time Skorokhod Embeddings In Bounded Time Stefan Ankirchner Institute for Applied Mathematics University of Bonn Endenicher Allee 6 D-535 Bonn ankirchner@hcm.uni-bonn.de Philipp Strack Bonn Graduate School

More information

Asymptotic Distributions for the Nelson-Aalen and Kaplan-Meier estimators and for test statistics.

Asymptotic Distributions for the Nelson-Aalen and Kaplan-Meier estimators and for test statistics. Asymptotic Distributions for the Nelson-Aalen and Kaplan-Meier estimators and for test statistics. Dragi Anevski Mathematical Sciences und University November 25, 21 1 Asymptotic distributions for statistical

More information

S chauder Theory. x 2. = log( x 1 + x 2 ) + 1 ( x 1 + x 2 ) 2. ( 5) x 1 + x 2 x 1 + x 2. 2 = 2 x 1. x 1 x 2. 1 x 1.

S chauder Theory. x 2. = log( x 1 + x 2 ) + 1 ( x 1 + x 2 ) 2. ( 5) x 1 + x 2 x 1 + x 2. 2 = 2 x 1. x 1 x 2. 1 x 1. Sep. 1 9 Intuitively, the solution u to the Poisson equation S chauder Theory u = f 1 should have better regularity than the right hand side f. In particular one expects u to be twice more differentiable

More information

Diophantine Equations

Diophantine Equations Diophantine Equations Michael E. Pohst Institut für Mathematik Technische Universität Berlin May 24, 2013 Mordell s equation y 2 = x 3 + κ is one of the classical diophantine equations. In his famous book

More information

PROBABILITIES OF RANDOMLY CENTERED SMALL BALLS AND QUANTIZATION IN BANACH SPACES

PROBABILITIES OF RANDOMLY CENTERED SMALL BALLS AND QUANTIZATION IN BANACH SPACES The Annals of Probability 2005, Vol. 33, No. 4, 1397 1421 DOI 10.1214/009117905000000161 Institute of Mathematical Statistics, 2005 PROBABILITIES OF RANDOMLY CENTERED SMALL BALLS AND QUANTIZATION IN BANACH

More information

Law of the iterated logarithm for pure jump Lévy processes

Law of the iterated logarithm for pure jump Lévy processes Law of the iterated logarithm for pure jump Lévy processes Elena Shmileva, St.Petersburg Electrotechnical University July 12, 2010 limsup LIL, liminf LIL Let X (t), t (0, ) be a Lévy process. There are

More information

Infinitely iterated Brownian motion

Infinitely iterated Brownian motion Mathematics department Uppsala University (Joint work with Nicolas Curien) This talk was given in June 2013, at the Mittag-Leffler Institute in Stockholm, as part of the Symposium in honour of Olav Kallenberg

More information

A Law of the Iterated Logarithm. for Grenander s Estimator

A Law of the Iterated Logarithm. for Grenander s Estimator A Law of the Iterated Logarithm for Grenander s Estimator Jon A. Wellner University of Washington, Seattle Probability Seminar October 24, 2016 Based on joint work with: Lutz Dümbgen and Malcolm Wolff

More information

Introduction to Empirical Processes and Semiparametric Inference Lecture 08: Stochastic Convergence

Introduction to Empirical Processes and Semiparametric Inference Lecture 08: Stochastic Convergence Introduction to Empirical Processes and Semiparametric Inference Lecture 08: Stochastic Convergence Michael R. Kosorok, Ph.D. Professor and Chair of Biostatistics Professor of Statistics and Operations

More information

On the Bennett-Hoeffding inequality

On the Bennett-Hoeffding inequality On the Bennett-Hoeffding inequality of Iosif 1,2,3 1 Department of Mathematical Sciences Michigan Technological University 2 Supported by NSF grant DMS-0805946 3 Paper available at http://arxiv.org/abs/0902.4058

More information

The Dirichlet s P rinciple. In this lecture we discuss an alternative formulation of the Dirichlet problem for the Laplace equation:

The Dirichlet s P rinciple. In this lecture we discuss an alternative formulation of the Dirichlet problem for the Laplace equation: Oct. 1 The Dirichlet s P rinciple In this lecture we discuss an alternative formulation of the Dirichlet problem for the Laplace equation: 1. Dirichlet s Principle. u = in, u = g on. ( 1 ) If we multiply

More information

The Codimension of the Zeros of a Stable Process in Random Scenery

The Codimension of the Zeros of a Stable Process in Random Scenery The Codimension of the Zeros of a Stable Process in Random Scenery Davar Khoshnevisan The University of Utah, Department of Mathematics Salt Lake City, UT 84105 0090, U.S.A. davar@math.utah.edu http://www.math.utah.edu/~davar

More information

in Bounded Domains Ariane Trescases CMLA, ENS Cachan

in Bounded Domains Ariane Trescases CMLA, ENS Cachan CMLA, ENS Cachan Joint work with Yan GUO, Chanwoo KIM and Daniela TONON International Conference on Nonlinear Analysis: Boundary Phenomena for Evolutionnary PDE Academia Sinica December 21, 214 Outline

More information

21 Gaussian spaces and processes

21 Gaussian spaces and processes Tel Aviv University, 2010 Gaussian measures : infinite dimension 1 21 Gaussian spaces and processes 21a Gaussian spaces: finite dimension......... 1 21b Toward Gaussian random processes....... 2 21c Random

More information

Gaussian Random Fields: Excursion Probabilities

Gaussian Random Fields: Excursion Probabilities Gaussian Random Fields: Excursion Probabilities Yimin Xiao Michigan State University Lecture 5 Excursion Probabilities 1 Some classical results on excursion probabilities A large deviation result Upper

More information

2012 NCTS Workshop on Dynamical Systems

2012 NCTS Workshop on Dynamical Systems Barbara Gentz gentz@math.uni-bielefeld.de http://www.math.uni-bielefeld.de/ gentz 2012 NCTS Workshop on Dynamical Systems National Center for Theoretical Sciences, National Tsing-Hua University Hsinchu,

More information

Introduction to Bandit Algorithms. Introduction to Bandit Algorithms

Introduction to Bandit Algorithms. Introduction to Bandit Algorithms Stochastic K-Arm Bandit Problem Formulation Consider K arms (actions) each correspond to an unknown distribution {ν k } K k=1 with values bounded in [0, 1]. At each time t, the agent pulls an arm I t {1,...,

More information

Hausdorff Dimension of the Record Set of a Fractional Brownian Motion

Hausdorff Dimension of the Record Set of a Fractional Brownian Motion Hausdorff Dimension of the Record Set of a Fractional Brownian Motion Lucas Benigni 1, Clément Cosco 1, Assaf Shapira 1, and Kay Jörg Wiese 2 arxiv:1706.09726v3 math.pr 10 Jul 2017 1 Laboratoire de Probabilités

More information

Lévy Processes and Infinitely Divisible Measures in the Dual of afebruary Nuclear2017 Space 1 / 32

Lévy Processes and Infinitely Divisible Measures in the Dual of afebruary Nuclear2017 Space 1 / 32 Lévy Processes and Infinitely Divisible Measures in the Dual of a Nuclear Space David Applebaum School of Mathematics and Statistics, University of Sheffield, UK Talk at "Workshop on Infinite Dimensional

More information

A New Wavelet-based Expansion of a Random Process

A New Wavelet-based Expansion of a Random Process Columbia International Publishing Journal of Applied Mathematics and Statistics doi:10.7726/jams.2016.1011 esearch Article A New Wavelet-based Expansion of a andom Process Ievgen Turchyn 1* eceived: 28

More information

Notes on uniform convergence

Notes on uniform convergence Notes on uniform convergence Erik Wahlén erik.wahlen@math.lu.se January 17, 2012 1 Numerical sequences We begin by recalling some properties of numerical sequences. By a numerical sequence we simply mean

More information

Asymptotic Properties of an Approximate Maximum Likelihood Estimator for Stochastic PDEs

Asymptotic Properties of an Approximate Maximum Likelihood Estimator for Stochastic PDEs Asymptotic Properties of an Approximate Maximum Likelihood Estimator for Stochastic PDEs M. Huebner S. Lototsky B.L. Rozovskii In: Yu. M. Kabanov, B. L. Rozovskii, and A. N. Shiryaev editors, Statistics

More information

High Order Numerical Methods for the Riesz Derivatives and the Space Riesz Fractional Differential Equation

High Order Numerical Methods for the Riesz Derivatives and the Space Riesz Fractional Differential Equation International Symposium on Fractional PDEs: Theory, Numerics and Applications June 3-5, 013, Salve Regina University High Order Numerical Methods for the Riesz Derivatives and the Space Riesz Fractional

More information

THEOREMS, ETC., FOR MATH 515

THEOREMS, ETC., FOR MATH 515 THEOREMS, ETC., FOR MATH 515 Proposition 1 (=comment on page 17). If A is an algebra, then any finite union or finite intersection of sets in A is also in A. Proposition 2 (=Proposition 1.1). For every

More information

Multi-operator scaling random fields

Multi-operator scaling random fields Available online at www.sciencedirect.com Stochastic Processes and their Applications 121 (2011) 2642 2677 www.elsevier.com/locate/spa Multi-operator scaling random fields Hermine Biermé a, Céline Lacaux

More information

arxiv: v3 [math.na] 18 Sep 2016

arxiv: v3 [math.na] 18 Sep 2016 Infinite-dimensional integration and the multivariate decomposition method F. Y. Kuo, D. Nuyens, L. Plaskota, I. H. Sloan, and G. W. Wasilkowski 9 September 2016 arxiv:1501.05445v3 [math.na] 18 Sep 2016

More information

Minimax Rate of Convergence for an Estimator of the Functional Component in a Semiparametric Multivariate Partially Linear Model.

Minimax Rate of Convergence for an Estimator of the Functional Component in a Semiparametric Multivariate Partially Linear Model. Minimax Rate of Convergence for an Estimator of the Functional Component in a Semiparametric Multivariate Partially Linear Model By Michael Levine Purdue University Technical Report #14-03 Department of

More information

Almost sure invariance principle for sequential and non-stationary dynamical systems (see arxiv )

Almost sure invariance principle for sequential and non-stationary dynamical systems (see arxiv ) Almost sure invariance principle for sequential and non-stationary dynamical systems (see paper @ arxiv ) Nicolai Haydn, University of Southern California Matthew Nicol, University of Houston Andrew Török,

More information

Asymptotically Efficient Nonparametric Estimation of Nonlinear Spectral Functionals

Asymptotically Efficient Nonparametric Estimation of Nonlinear Spectral Functionals Acta Applicandae Mathematicae 78: 145 154, 2003. 2003 Kluwer Academic Publishers. Printed in the Netherlands. 145 Asymptotically Efficient Nonparametric Estimation of Nonlinear Spectral Functionals M.

More information

Fast-slow systems with chaotic noise

Fast-slow systems with chaotic noise Fast-slow systems with chaotic noise David Kelly Ian Melbourne Courant Institute New York University New York NY www.dtbkelly.com May 1, 216 Statistical properties of dynamical systems, ESI Vienna. David

More information

Lecture No 1 Introduction to Diffusion equations The heat equat

Lecture No 1 Introduction to Diffusion equations The heat equat Lecture No 1 Introduction to Diffusion equations The heat equation Columbia University IAS summer program June, 2009 Outline of the lectures We will discuss some basic models of diffusion equations and

More information

Jae Gil Choi and Young Seo Park

Jae Gil Choi and Young Seo Park Kangweon-Kyungki Math. Jour. 11 (23), No. 1, pp. 17 3 TRANSLATION THEOREM ON FUNCTION SPACE Jae Gil Choi and Young Seo Park Abstract. In this paper, we use a generalized Brownian motion process to define

More information

Dynamical systems with Gaussian and Levy noise: analytical and stochastic approaches

Dynamical systems with Gaussian and Levy noise: analytical and stochastic approaches Dynamical systems with Gaussian and Levy noise: analytical and stochastic approaches Noise is often considered as some disturbing component of the system. In particular physical situations, noise becomes

More information

Hypercontractivity of spherical averages in Hamming space

Hypercontractivity of spherical averages in Hamming space Hypercontractivity of spherical averages in Hamming space Yury Polyanskiy Department of EECS MIT yp@mit.edu Allerton Conference, Oct 2, 2014 Yury Polyanskiy Hypercontractivity in Hamming space 1 Hypercontractivity:

More information

Volterra Integral Equations of the First Kind with Jump Discontinuous Kernels

Volterra Integral Equations of the First Kind with Jump Discontinuous Kernels Volterra Integral Equations of the First Kind with Jump Discontinuous Kernels Denis Sidorov Energy Systems Institute, Russian Academy of Sciences e-mail: contact.dns@gmail.com INV Follow-up Meeting Isaac

More information

THE DVORETZKY KIEFER WOLFOWITZ INEQUALITY WITH SHARP CONSTANT: MASSART S 1990 PROOF SEMINAR, SEPT. 28, R. M. Dudley

THE DVORETZKY KIEFER WOLFOWITZ INEQUALITY WITH SHARP CONSTANT: MASSART S 1990 PROOF SEMINAR, SEPT. 28, R. M. Dudley THE DVORETZKY KIEFER WOLFOWITZ INEQUALITY WITH SHARP CONSTANT: MASSART S 1990 PROOF SEMINAR, SEPT. 28, 2011 R. M. Dudley 1 A. Dvoretzky, J. Kiefer, and J. Wolfowitz 1956 proved the Dvoretzky Kiefer Wolfowitz

More information

A Lévy-Fokker-Planck equation: entropies and convergence to equilibrium

A Lévy-Fokker-Planck equation: entropies and convergence to equilibrium 1/ 22 A Lévy-Fokker-Planck equation: entropies and convergence to equilibrium I. Gentil CEREMADE, Université Paris-Dauphine International Conference on stochastic Analysis and Applications Hammamet, Tunisia,

More information

State Space Representation of Gaussian Processes

State Space Representation of Gaussian Processes State Space Representation of Gaussian Processes Simo Särkkä Department of Biomedical Engineering and Computational Science (BECS) Aalto University, Espoo, Finland June 12th, 2013 Simo Särkkä (Aalto University)

More information

Small-time asymptotics of stopped Lévy bridges and simulation schemes with controlled bias

Small-time asymptotics of stopped Lévy bridges and simulation schemes with controlled bias Small-time asymptotics of stopped Lévy bridges and simulation schemes with controlled bias José E. Figueroa-López 1 1 Department of Statistics Purdue University Seoul National University & Ajou University

More information

The parabolic Anderson model on Z d with time-dependent potential: Frank s works

The parabolic Anderson model on Z d with time-dependent potential: Frank s works Weierstrass Institute for Applied Analysis and Stochastics The parabolic Anderson model on Z d with time-dependent potential: Frank s works Based on Frank s works 2006 2016 jointly with Dirk Erhard (Warwick),

More information

8. Statistical Equilibrium and Classification of States: Discrete Time Markov Chains

8. Statistical Equilibrium and Classification of States: Discrete Time Markov Chains 8. Statistical Equilibrium and Classification of States: Discrete Time Markov Chains 8.1 Review 8.2 Statistical Equilibrium 8.3 Two-State Markov Chain 8.4 Existence of P ( ) 8.5 Classification of States

More information

LARGE DEVIATION PROBABILITIES FOR SUMS OF HEAVY-TAILED DEPENDENT RANDOM VECTORS*

LARGE DEVIATION PROBABILITIES FOR SUMS OF HEAVY-TAILED DEPENDENT RANDOM VECTORS* LARGE EVIATION PROBABILITIES FOR SUMS OF HEAVY-TAILE EPENENT RANOM VECTORS* Adam Jakubowski Alexander V. Nagaev Alexander Zaigraev Nicholas Copernicus University Faculty of Mathematics and Computer Science

More information