1 Lecture: pp

Size: px
Start display at page:

Download "1 Lecture: pp"

Transcription

1 EE334 - Wavs and Phasos Lcu: pp This cous aks vyhing ha you hav bn augh in physics, mah and cicuis and uss i. Easy, only nd o know 4 quaions: 4 wks on fou quaions D ρ Gauss's Law B No Monopols B E Faaday's Law D H J mp's Law W will div all h cicui pssions: Ohm s Law (laion), KCL, KL, L, R, C fom Mawll s quaions and oh fundamnal laionships. W will simplify hm by assuming no im dpndnc saic cass W will combin hm ino a scond od diffnial quaion wav quaion Bu fis nd o dvlop h mahmaics quid o alk abou EM Wha is a scala? Quaniy wih magniud: nso of o ank E: im, mass, disanc, mpau, spd I was only going 75 mph Scala quaion? IR Wha is a vco? Quaniy wih magniud and dicion: nso of fis ank E: foc, displacmn, lcic fild innsiy, vlociy H was going 95 mph (magniud) as on I-9 (dicion) co quaion: J y E J σ σ σ σ E J y σ y σ yy σ y E y J σ E σ y E y σ E J σ σ y σ E J σ E assums a summaion of pad indics (Einsin s noaion) i i -

2 Th cun dnsiy is qual o h conduciviy ims h lcic fild Th conduciviy is a maial popy ha can b a funcion of dicion (as in cysals) no h sam in all dicions anisoopic I is a nso of scond ank: h numb of subscips is h ank of h nso. Wha is a fild? of posiion. Funcion ha spcifis a quaniy vywh in a gion: funcion E: cclom in my ca as I dov fom Boman o Billings on I-9. dv d a Inga onc givs m h vlociy of my vhicl, d d wha is h dicion? (dicion ca is hading nd 6 snsos o complly dfin inial spac) Inga wic givs m h displacmn, Wha is? Th pah ha my ca aks, lin ingal. Saw MHP Bllgs BZ Lngh of aow psns magniud Passd cal uck Wha is flu? No h suff you us whn you sold Masu a vco hough a sufac look a h ciy limis of Boman o b h donu. Can b modld as a paial diffnial quaion -

3 Th donu o Boman Ciy limis N flu of poplabou if > fillup wih popl if< vy on lf Don g los in h mah, us a psnaion of h physical wold (symbols) 5 w all know wha i mans, how abou if I add anoh symbol $5 How abou his on? pac, vicoy, l, caa ins, oman numal 5? Pong gam, CI, I O I, bas (5) EM wav adia fom souc, if you a fa nough away h cuvd wav fons look plana. Plan wav in a losslss mdium: h wav dos no anua h ampliud as h wav avls has h fom: y (, ) T λ : ampliud T: piod λ: spaial wavlngh : fnc phas Can also wi as: -3

4 y (, ) [ (, ) ] T λ (, ) Th angl is calld h phas of h wav and is a funcion of posiion and im Boh im and posiion ca sinusoidal ampliud whn h oh is fid. Th paks and oughs mov wih a popagaion vlociy, fo a givn ampliud h phas is a consan: C T λ d d Taking h divaiv of h quaion givs h phas vlociy T λ d λ u p d T -4

5 Th fquncy of h sinusoidal wav is h cipocal of h piod: f T nd h phas vlociy is lad o h fquncy and wavlngh: u p fλ Th quaion fo h ampliud as a funcion of posiion and im can b win in h fom: y λ λ Phas consan o wav numb (, ) f ( ) f ngula Fq. u p Can ins h ab. Phas shif: y (, ) ( ) -5

6 Posiiv phas shif lads fnc wav, ngaiv phas shif lags fnc wav. In a lossy mdium h ampliud is anuad nuaion faco: nuaion cof: α α Gnal fom of a sinusoidal ampliud wih anuaion: α y, Compl Numbs Rviw Can wi a compl numb as a al pa and an imaginay pa: y. R {} Im y Imaginay is y (,y)!! θ Ral is -6

7 This can b plod in h Casian plan and convd o a pola fom of a magniud and a phas angl: θ θ sho hand noaion usful in calculaions Can us Eul s Indniy: θ θ sinθ θ θ θ y sinθ y y sinθ θ an y Rflcion as h al ais givs h compl conuga ( plac wih ) y θ Th magniud of a compl numb can b calculad fom h compl conugas: Compl Mah: ddiion: add al pas and add imaginay pas: ( ) ( y ) y Muliplicaion: ( y y ) ( y y ) ( θ ) θ Division: y y θ θ y y ( y y ) ( y y ) y n θ n n nθ n Pows: ( ) ( nθ sin nθ ) Phasos Rviw: sin R { } ( ) -7

8 -8 Wi in phaso noaion: sin Us sin() (/-): () Us vn funcion (-) (): () Us Phaso noaion () { } R () R { } R R conains h phas and ampliud infomaion bu no h fquncy () sin sin sin α α d d d d d d

DSP-First, 2/e. This Lecture: LECTURE #3 Complex Exponentials & Complex Numbers. Introduce more tools for manipulating complex numbers

DSP-First, 2/e. This Lecture: LECTURE #3 Complex Exponentials & Complex Numbers. Introduce more tools for manipulating complex numbers DSP-Fis, / LECTURE #3 Compl Eponnials & Compl umbs READIG ASSIGMETS This Lcu: Chap, Scs. -3 o -5 Appndi A: Compl umbs Appndi B: MATLAB Lcu: Compl Eponnials Aug 016 003-016, JH McClllan & RW Schaf 3 LECTURE

More information

Wave Equation (2 Week)

Wave Equation (2 Week) Rfrnc Wav quaion ( Wk 6.5 Tim-armonic filds 7. Ovrviw 7. Plan Wavs in Losslss Mdia 7.3 Plan Wavs in Loss Mdia 7.5 Flow of lcromagnic Powr and h Poning Vcor 7.6 Normal Incidnc of Plan Wavs a Plan Boundaris

More information

4. AC Circuit Analysis

4. AC Circuit Analysis 4. A icui Analysis J B A Signals sofquncy Quaniis Sinusoidal quaniy A " # a() A cos (# + " ) ampliud : maximal valu of a() and is a al posiiv numb; adian [/s]: al posiiv numb; phas []: fquncy al numb;

More information

Partial Fraction Expansion

Partial Fraction Expansion Paial Facion Expanion Whn ying o find h inv Laplac anfom o inv z anfom i i hlpfl o b abl o bak a complicad aio of wo polynomial ino fom ha a on h Laplac Tanfom o z anfom abl. W will illa h ing Laplac anfom.

More information

Chapter 2 : Fundamental parameters of antennas

Chapter 2 : Fundamental parameters of antennas Chap : Fundamnal paams of annnas Fom adiaion an adiaion innsiy Bamwidh Diciviy nnna fficincy Gain olaizaion Fom Cicui viwpoin Inpu Impdanc 1 Chap : opics nnna ffciv lngh and ffciv aa Fiis ansmission quaion

More information

What is an Antenna? Not an antenna + - Now this is an antenna. Time varying charges cause radiation but NOT everything that radiates is an antenna!

What is an Antenna? Not an antenna + - Now this is an antenna. Time varying charges cause radiation but NOT everything that radiates is an antenna! Wha is an Annna? Tim vaying chags caus adiaion bu NOT vyhing ha adias is an annna! No an annna + - Now his is an annna Wha is an Annna? An annna is a dvic ha fficinly ansiions bwn ansmission lin o guidd

More information

H is equal to the surface current J S

H is equal to the surface current J S Chapr 6 Rflcion and Transmission of Wavs 6.1 Boundary Condiions A h boundary of wo diffrn mdium, lcromagnic fild hav o saisfy physical condiion, which is drmind by Maxwll s quaion. This is h boundary condiion

More information

Dynamics of Bloch Electrons 1

Dynamics of Bloch Electrons 1 Dynamics of Bloch Elcons 7h Spmb 003 c 003, Michal Mad Dfiniions Dud modl Smiclassical dynamics Bloch oscillaions K P mhod Effciv mass Houson sas Zn unnling Wav pacs Anomalous vlociy Wanni Sa ladds d Haas

More information

5. An object moving along an x-coordinate axis with its scale measured in meters has a velocity of 6t

5. An object moving along an x-coordinate axis with its scale measured in meters has a velocity of 6t AP CALCULUS FINAL UNIT WORKSHEETS ACCELERATION, VELOCTIY AND POSITION In problms -, drmin h posiion funcion, (), from h givn informaion.. v (), () = 5. v ()5, () = b g. a (), v() =, () = -. a (), v() =

More information

Voltage v(z) ~ E(z)D. We can actually get to this wave behavior by using circuit theory, w/o going into details of the EM fields!

Voltage v(z) ~ E(z)D. We can actually get to this wave behavior by using circuit theory, w/o going into details of the EM fields! Considr a pair of wirs idal wirs ngh >, say, infinily long olag along a cabl can vary! D olag v( E(D W can acually g o his wav bhavior by using circui hory, w/o going ino dails of h EM filds! Thr

More information

GUIDE FOR SUPERVISORS 1. This event runs most efficiently with two to four extra volunteers to help proctor students and grade the student

GUIDE FOR SUPERVISORS 1. This event runs most efficiently with two to four extra volunteers to help proctor students and grade the student GUIDE FOR SUPERVISORS 1. This vn uns mos fficinly wih wo o fou xa voluns o hlp poco sudns and gad h sudn scoshs. 2. EVENT PARAMETERS: Th vn supviso will povid scoshs. You will nd o bing a im, pns and pncils

More information

4. AC Circuit Analysis

4. AC Circuit Analysis 4. A icui Analysis J B Dpamn of Elcical, Elconic, and nfomaion Engining (DE) - Univsiy of Bologna A Signals sofquncy Quaniis Sinusoidal quaniy A q w a() A cos ( w + q ) ampliud : maximal valu of a() and

More information

Lecture 2: Bayesian inference - Discrete probability models

Lecture 2: Bayesian inference - Discrete probability models cu : Baysian infnc - Disc obabiliy modls Many hings abou Baysian infnc fo disc obabiliy modls a simila o fqunis infnc Disc obabiliy modls: Binomial samling Samling a fix numb of ials fom a Bnoulli ocss

More information

Lecture 14. Time Harmonic Fields

Lecture 14. Time Harmonic Fields Lcu 4 Tim amic Filds I his lcu u will la: Cmpl mahmaics f im-hamic filds Mawll s quais f im-hamic filds Cmpl Pig vc C 303 Fall 007 Faha aa Cll Uivsi Tim-amic Filds ad -filds f a pla wav a (fm las lcu:

More information

( r) E (r) Phasor. Function of space only. Fourier series Synthesis equations. Sinusoidal EM Waves. For complex periodic signals

( r) E (r) Phasor. Function of space only. Fourier series Synthesis equations. Sinusoidal EM Waves. For complex periodic signals Inoducon Snusodal M Was.MB D Yan Pllo Snusodal M.3MB 3. Snusodal M.3MB 3. Inoducon Inoducon o o dsgn h communcaons sd of a sall? Fqunc? Oms oagaon? Oms daa a? Annnas? Dc? Gan? Wa quaons Sgnal analss Wa

More information

Derivative Securities: Lecture 4 Introduction to option pricing

Derivative Securities: Lecture 4 Introduction to option pricing Divaiv cuiis: Lcu 4 Inoducion o oion icing oucs: J. Hull 7 h diion Avllanda and Launc () Yahoo!Financ & assod wbsis Oion Picing In vious lcus w covd owad icing and h imoanc o cos-o cay W also covd Pu-all

More information

Phys463.nb Conductivity. Another equivalent definition of the Fermi velocity is

Phys463.nb Conductivity. Another equivalent definition of the Fermi velocity is 39 Anohr quival dfiniion of h Fri vlociy is pf vf (6.4) If h rgy is a quadraic funcion of k H k L, hs wo dfiniions ar idical. If is NOT a quadraic funcion of k (which could happ as will b discussd in h

More information

Lecture 20. Transmission Lines: The Basics

Lecture 20. Transmission Lines: The Basics Lcu 0 Tansmissin Lins: Th Basics n his lcu u will lan: Tansmissin lins Diffn ps f ansmissin lin sucus Tansmissin lin quains Pw flw in ansmissin lins Appndi C 303 Fall 006 Fahan Rana Cnll Univsi Guidd Wavs

More information

Physics 160 Lecture 3. R. Johnson April 6, 2015

Physics 160 Lecture 3. R. Johnson April 6, 2015 Physics 6 Lcur 3 R. Johnson April 6, 5 RC Circui (Low-Pass Filr This is h sam RC circui w lookd a arlir h im doma, bu hr w ar rsd h frquncy rspons. So w pu a s wav sad of a sp funcion. whr R C RC Complx

More information

Review Lecture 5. The source-free R-C/R-L circuit Step response of an RC/RL circuit. The time constant = RC The final capacitor voltage v( )

Review Lecture 5. The source-free R-C/R-L circuit Step response of an RC/RL circuit. The time constant = RC The final capacitor voltage v( ) Rviw Lcur 5 Firs-ordr circui Th sourc-fr R-C/R-L circui Sp rspons of an RC/RL circui v( ) v( ) [ v( 0) v( )] 0 Th i consan = RC Th final capacior volag v() Th iniial capacior volag v( 0 ) Volag/currn-division

More information

Wave Motion Sections 1,2,4,5, I. Outlook II. What is wave? III.Kinematics & Examples IV. Equation of motion Wave equations V.

Wave Motion Sections 1,2,4,5, I. Outlook II. What is wave? III.Kinematics & Examples IV. Equation of motion Wave equations V. Secions 1,,4,5, I. Oulook II. Wha is wave? III.Kinemaics & Eamples IV. Equaion of moion Wave equaions V. Eamples Oulook Translaional and Roaional Moions wih Several phsics quaniies Energ (E) Momenum (p)

More information

Circuits and Systems I

Circuits and Systems I Circuis and Sysms I LECTURE #3 Th Spcrum, Priodic Signals, and h Tim-Varying Spcrum lions@pfl Prof. Dr. Volan Cvhr LIONS/Laboraory for Informaion and Infrnc Sysms Licns Info for SPFirs Slids This wor rlasd

More information

Sections 3.1 and 3.4 Exponential Functions (Growth and Decay)

Sections 3.1 and 3.4 Exponential Functions (Growth and Decay) Secions 3.1 and 3.4 Eponenial Funcions (Gowh and Decay) Chape 3. Secions 1 and 4 Page 1 of 5 Wha Would You Rahe Have... $1million, o double you money evey day fo 31 days saing wih 1cen? Day Cens Day Cens

More information

UNIT #5 EXPONENTIAL AND LOGARITHMIC FUNCTIONS

UNIT #5 EXPONENTIAL AND LOGARITHMIC FUNCTIONS Answr Ky Nam: Da: UNIT # EXPONENTIAL AND LOGARITHMIC FUNCTIONS Par I Qusions. Th prssion is quivaln o () () 6 6 6. Th ponnial funcion y 6 could rwrin as y () y y 6 () y y (). Th prssion a is quivaln o

More information

SINUSOIDAL WAVEFORMS

SINUSOIDAL WAVEFORMS SINUSOIDAL WAVEFORMS The sinusoidal waveform is he only waveform whose shape is no affeced by he response characerisics of R, L, and C elemens. Enzo Paerno CIRCUIT ELEMENTS R [ Ω ] Resisance: Ω: Ohms Georg

More information

EE 529 Remote Sensing Techniques. Review

EE 529 Remote Sensing Techniques. Review 59 Rmo Snsing Tchniqus Rviw Oulin Annna array Annna paramrs RCS Polariaion Signals CFT DFT Array Annna Shor Dipol l λ r, R[ r ω ] r H φ ηk Ilsin 4πr η µ - Prmiiviy ε - Prmabiliy

More information

UNIFORM PLANE WAVES (PROPAGATION IN FREE SPACE)

UNIFORM PLANE WAVES (PROPAGATION IN FREE SPACE) D. Na Abu-Zaid; Lcu n in lcmagnic h ; Rfncd ngining lcmagnic b a, 8 h diin 0; D. Na Abu-Zaid Pag 7//0 UNIFORM PLAN WAVS (PROPAGATION IN FR SPAC) Saing wih pin fm f Mawll quain f im vaing fild in f pac:

More information

Course II. Lesson 7 Applications to Physics. 7A Velocity and Acceleration of a Particle

Course II. Lesson 7 Applications to Physics. 7A Velocity and Acceleration of a Particle Course II Lesson 7 Applicaions o Physics 7A Velociy and Acceleraion of a Paricle Moion in a Sraigh Line : Velociy O Aerage elociy Moion in he -ais + Δ + Δ 0 0 Δ Δ Insananeous elociy d d Δ Δ Δ 0 lim [ m/s

More information

DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS. Assoc. Prof. Dr. Burak Kelleci. Spring 2018

DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS. Assoc. Prof. Dr. Burak Kelleci. Spring 2018 DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS Aoc. Prof. Dr. Burak Kllci Spring 08 OUTLINE Th Laplac Tranform Rgion of convrgnc for Laplac ranform Invr Laplac ranform Gomric valuaion

More information

whereby we can express the phase by any one of the formulas cos ( 3 whereby we can express the phase by any one of the formulas

whereby we can express the phase by any one of the formulas cos ( 3 whereby we can express the phase by any one of the formulas Third In-Class Exam Soluions Mah 6, Profssor David Lvrmor Tusday, 5 April 07 [0] Th vrical displacmn of an unforcd mass on a spring is givn by h 5 3 cos 3 sin a [] Is his sysm undampd, undr dampd, criically

More information

GRAVITATION. (d) If a spring balance having frequency f is taken on moon (having g = g / 6) it will have a frequency of (a) 6f (b) f / 6

GRAVITATION. (d) If a spring balance having frequency f is taken on moon (having g = g / 6) it will have a frequency of (a) 6f (b) f / 6 GVITTION 1. Two satllits and o ound a plant P in cicula obits havin adii 4 and spctivly. If th spd of th satllit is V, th spd of th satllit will b 1 V 6 V 4V V. Th scap vlocity on th sufac of th ath is

More information

Math 333 Problem Set #2 Solution 14 February 2003

Math 333 Problem Set #2 Solution 14 February 2003 Mah 333 Problem Se #2 Soluion 14 February 2003 A1. Solve he iniial value problem dy dx = x2 + e 3x ; 2y 4 y(0) = 1. Soluion: This is separable; we wrie 2y 4 dy = x 2 + e x dx and inegrae o ge The iniial

More information

Lecture 2-1 Kinematics in One Dimension Displacement, Velocity and Acceleration Everything in the world is moving. Nothing stays still.

Lecture 2-1 Kinematics in One Dimension Displacement, Velocity and Acceleration Everything in the world is moving. Nothing stays still. Lecure - Kinemaics in One Dimension Displacemen, Velociy and Acceleraion Everyhing in he world is moving. Nohing says sill. Moion occurs a all scales of he universe, saring from he moion of elecrons in

More information

ECE 145A / 218 C, notes set 1: Transmission Line Properties and Analysis

ECE 145A / 218 C, notes set 1: Transmission Line Properties and Analysis class nos, M. Rodwll, copyrighd 9 ECE 145A 18 C, nos s 1: Transmission in Propris and Analysis Mark Rodwll Univrsiy of California, Sana Barbara rodwll@c.ucsb.du 85-893-344, 85-893-36 fax Transmission in

More information

Microscopic Flow Characteristics Time Headway - Distribution

Microscopic Flow Characteristics Time Headway - Distribution CE57: Traffic Flow Thory Spring 20 Wk 2 Modling Hadway Disribuion Microscopic Flow Characrisics Tim Hadway - Disribuion Tim Hadway Dfiniion Tim Hadway vrsus Gap Ahmd Abdl-Rahim Civil Enginring Dparmn,

More information

Acoustics and electroacoustics

Acoustics and electroacoustics coustics and lctoacoustics Chapt : Sound soucs and adiation ELEN78 - Chapt - 3 Quantitis units and smbols: f Hz : fqunc of an acoustical wav pu ton T s : piod = /f m : wavlngth= c/f Sound pssu a : pzt

More information

EXERCISE - 01 CHECK YOUR GRASP

EXERCISE - 01 CHECK YOUR GRASP DIFFERENTIAL EQUATION EXERCISE - CHECK YOUR GRASP 7. m hn D() m m, D () m m. hn givn D () m m D D D + m m m m m m + m m m m + ( m ) (m ) (m ) (m + ) m,, Hnc numbr of valus of mn will b. n ( ) + c sinc

More information

Aakash. For Class XII Studying / Passed Students. Physics, Chemistry & Mathematics

Aakash. For Class XII Studying / Passed Students. Physics, Chemistry & Mathematics Aakash A UNIQUE PPRTUNITY T HELP YU FULFIL YUR DREAMS Fo Class XII Studying / Passd Studnts Physics, Chmisty & Mathmatics Rgistd ffic: Aakash Tow, 8, Pusa Road, Nw Dlhi-0005. Ph.: (0) 4763456 Fax: (0)

More information

Fourier transforms (Chapter 15) Fourier integrals are generalizations of Fourier series. The series representation

Fourier transforms (Chapter 15) Fourier integrals are generalizations of Fourier series. The series representation Pof. D. I. Nass Phys57 (T-3) Sptmb 8, 03 Foui_Tansf_phys57_T3 Foui tansfoms (Chapt 5) Foui intgals a gnalizations of Foui sis. Th sis psntation a0 nπx nπx f ( x) = + [ an cos + bn sin ] n = of a function

More information

CDS 101/110: Lecture 7.1 Loop Analysis of Feedback Systems

CDS 101/110: Lecture 7.1 Loop Analysis of Feedback Systems CDS 11/11: Lctu 7.1 Loop Analysis of Fdback Systms Novmb 7 216 Goals: Intoduc concpt of loop analysis Show how to comput closd loop stability fom opn loop poptis Dscib th Nyquist stability cition fo stability

More information

Study of Tyre Damping Ratio and In-Plane Time Domain Simulation with Modal Parameter Tyre Model (MPTM)

Study of Tyre Damping Ratio and In-Plane Time Domain Simulation with Modal Parameter Tyre Model (MPTM) Sudy o Ty Damping aio and In-Plan Tim Domain Simulaion wih Modal Paam Ty Modl (MPTM D. Jin Shang, D. Baojang Li, and Po. Dihua Guan Sa Ky Laboaoy o Auomoiv Say and Engy, Tsinghua Univsiy, Bijing, China

More information

European and American options with a single payment of dividends. (About formula Roll, Geske & Whaley) Mark Ioffe. Abstract

European and American options with a single payment of dividends. (About formula Roll, Geske & Whaley) Mark Ioffe. Abstract 866 Uni Naions Plaza i 566 Nw Yo NY 7 Phon: + 3 355 Fa: + 4 668 info@gach.com www.gach.com Eoan an Amican oions wih a singl amn of ivins Abo fomla Roll Gs & Whal Ma Ioff Absac Th aicl ovis a ivaion of

More information

Representing Knowledge. CS 188: Artificial Intelligence Fall Properties of BNs. Independence? Reachability (the Bayes Ball) Example

Representing Knowledge. CS 188: Artificial Intelligence Fall Properties of BNs. Independence? Reachability (the Bayes Ball) Example C 188: Aificial Inelligence Fall 2007 epesening Knowledge ecue 17: ayes Nes III 10/25/2007 an Klein UC ekeley Popeies of Ns Independence? ayes nes: pecify complex join disibuions using simple local condiional

More information

Spring 2006 Process Dynamics, Operations, and Control Lesson 2: Mathematics Review

Spring 2006 Process Dynamics, Operations, and Control Lesson 2: Mathematics Review Spring 6 Procss Dynamics, Opraions, and Conrol.45 Lsson : Mahmaics Rviw. conx and dircion Imagin a sysm ha varis in im; w migh plo is oupu vs. im. A plo migh imply an quaion, and h quaion is usually an

More information

Lecture 23. Multilayer Structures

Lecture 23. Multilayer Structures Lcu Mullay Sucus In hs lcu yu wll lan: Mullay sucus Dlcc an-flcn (AR) cangs Dlcc hgh-flcn (HR) cangs Phnc Band-Gap Sucus C Fall 5 Fahan Rana Cnll Unvsy Tansmssn Ln Juncns and Dscnnus - I Tansmssn ln dscnnus

More information

Lecture 5. Chapter 3. Electromagnetic Theory, Photons, and Light

Lecture 5. Chapter 3. Electromagnetic Theory, Photons, and Light Lecue 5 Chape 3 lecomagneic Theo, Phoons, and Ligh Gauss s Gauss s Faada s Ampèe- Mawell s + Loen foce: S C ds ds S C F dl dl q Mawell equaions d d qv A q A J ds ds In mae fields ae defined hough ineacion

More information

Voltage v(z) ~ E(z)D. We can actually get to this wave behavior by using circuit theory, w/o going into details of the EM fields!

Voltage v(z) ~ E(z)D. We can actually get to this wave behavior by using circuit theory, w/o going into details of the EM fields! Considr a pair of wirs idal wirs ngh >, say, infinily long olag along a cabl can vary! D olag v( E(D W can acually g o his wav bhavior by using circui hory, w/o going ino dails of h EM filds! Thr

More information

Double Slits in Space and Time

Double Slits in Space and Time Doubl Slis in Sac an Tim Gorg Jons As has bn ror rcnly in h mia, a am l by Grhar Paulus has monsra an inrsing chniqu for ionizing argon aoms by using ulra-shor lasr ulss. Each lasr uls is ffcivly on an

More information

Control System Engineering (EE301T) Assignment: 2

Control System Engineering (EE301T) Assignment: 2 Conrol Sysm Enginring (EE0T) Assignmn: PART-A (Tim Domain Analysis: Transin Rspons Analysis). Oain h rspons of a uniy fdack sysm whos opn-loop ransfr funcion is (s) s ( s 4) for a uni sp inpu and also

More information

Lecture 1: Numerical Integration The Trapezoidal and Simpson s Rule

Lecture 1: Numerical Integration The Trapezoidal and Simpson s Rule Lcur : Numrical ngraion Th Trapzoidal and Simpson s Rul A problm Th probabiliy of a normally disribud (man µ and sandard dviaion σ ) vn occurring bwn h valus a and b is B A P( a x b) d () π whr a µ b -

More information

8.022 (E&M) Lecture 16

8.022 (E&M) Lecture 16 8. (E&M) ecure 16 Topics: Inducors in circuis circuis circuis circuis as ime Our second lecure on elecromagneic inducance 3 ways of creaing emf using Faraday s law: hange area of circui S() hange angle

More information

Copyright 2012 Pearson Education, Inc. Publishing as Prentice Hall.

Copyright 2012 Pearson Education, Inc. Publishing as Prentice Hall. Chapr Rviw 0 6. ( a a ln a. This will qual a if an onl if ln a, or a. + k an (ln + c. Thrfor, a an valu of, whr h wo curvs inrsc, h wo angn lins will b prpnicular. 6. (a Sinc h lin passs hrough h origin

More information

4.5 Constant Acceleration

4.5 Constant Acceleration 4.5 Consan Acceleraion v() v() = v 0 + a a() a a() = a v 0 Area = a (a) (b) Figure 4.8 Consan acceleraion: (a) velociy, (b) acceleraion When he x -componen of he velociy is a linear funcion (Figure 4.8(a)),

More information

Math 221: Mathematical Notation

Math 221: Mathematical Notation Mah 221: Mahemaical Noaion Purpose: One goal in any course is o properly use he language o ha subjec. These noaions summarize some o he major conceps and more diicul opics o he uni. Typing hem helps you

More information

a. Show that these lines intersect by finding the point of intersection. b. Find an equation for the plane containing these lines.

a. Show that these lines intersect by finding the point of intersection. b. Find an equation for the plane containing these lines. Mah A Final Eam Problems for onsideraion. Show all work for credi. Be sure o show wha you know. Given poins A(,,, B(,,, (,, 4 and (,,, find he volume of he parallelepiped wih adjacen edges AB, A, and A.

More information

10. If p and q are the lengths of the perpendiculars from the origin on the tangent and the normal to the curve

10. If p and q are the lengths of the perpendiculars from the origin on the tangent and the normal to the curve 0. If p and q ar h lnghs of h prpndiculars from h origin on h angn and h normal o h curv + Mahmaics y = a, hn 4p + q = a a (C) a (D) 5a 6. Wha is h diffrnial quaion of h family of circls having hir cnrs

More information

Boyce/DiPrima 9 th ed, Ch 2.1: Linear Equations; Method of Integrating Factors

Boyce/DiPrima 9 th ed, Ch 2.1: Linear Equations; Method of Integrating Factors Boc/DiPrima 9 h d, Ch.: Linar Equaions; Mhod of Ingraing Facors Elmnar Diffrnial Equaions and Boundar Valu Problms, 9 h diion, b William E. Boc and Richard C. DiPrima, 009 b John Wil & Sons, Inc. A linar

More information

( ) ( ) ( ) 0. dt dt dt ME203 PROBLEM SET #6. 1. Text Section 4.5

( ) ( ) ( ) 0. dt dt dt ME203 PROBLEM SET #6. 1. Text Section 4.5 ME PROBLEM SET #6 T Sion 45 d w 6 dw 4 5 w d d Solion: Fis mlil his qaion b (whih w an do sin > o ansfom i ino h Cah- El qaion givn b w ( 6w ( 4 Thn b making h sbsiion (and sing qaion (7 on ag 88 of h,

More information

Week 1 Lecture 2 Problems 2, 5. What if something oscillates with no obvious spring? What is ω? (problem set problem)

Week 1 Lecture 2 Problems 2, 5. What if something oscillates with no obvious spring? What is ω? (problem set problem) Week 1 Lecure Problems, 5 Wha if somehing oscillaes wih no obvious spring? Wha is ω? (problem se problem) Sar wih Try and ge o SHM form E. Full beer can in lake, oscillaing F = m & = ge rearrange: F =

More information

Kinematics Vocabulary. Kinematics and One Dimensional Motion. Position. Coordinate System in One Dimension. Kinema means movement 8.

Kinematics Vocabulary. Kinematics and One Dimensional Motion. Position. Coordinate System in One Dimension. Kinema means movement 8. Kinemaics Vocabulary Kinemaics and One Dimensional Moion 8.1 WD1 Kinema means movemen Mahemaical descripion of moion Posiion Time Inerval Displacemen Velociy; absolue value: speed Acceleraion Averages

More information

(π 3)k. f(t) = 1 π 3 sin(t)

(π 3)k. f(t) = 1 π 3 sin(t) Mah 6 Fall 6 Dr. Lil Yen Tes Show all our work Name: Score: /6 No Calculaor permied in his par. Read he quesions carefull. Show all our work and clearl indicae our final answer. Use proper noaion. Problem

More information

Ground Rules. PC1221 Fundamentals of Physics I. Kinematics. Position. Lectures 3 and 4 Motion in One Dimension. A/Prof Tay Seng Chuan

Ground Rules. PC1221 Fundamentals of Physics I. Kinematics. Position. Lectures 3 and 4 Motion in One Dimension. A/Prof Tay Seng Chuan Ground Rules PC11 Fundamenals of Physics I Lecures 3 and 4 Moion in One Dimension A/Prof Tay Seng Chuan 1 Swich off your handphone and pager Swich off your lapop compuer and keep i No alking while lecure

More information

S.Y. B.Sc. (IT) : Sem. III. Applied Mathematics. Q.1 Attempt the following (any THREE) [15]

S.Y. B.Sc. (IT) : Sem. III. Applied Mathematics. Q.1 Attempt the following (any THREE) [15] S.Y. B.Sc. (IT) : Sm. III Applid Mahmaics Tim : ½ Hrs.] Prlim Qusion Papr Soluion [Marks : 75 Q. Amp h following (an THREE) 3 6 Q.(a) Rduc h mari o normal form and find is rank whr A 3 3 5 3 3 3 6 Ans.:

More information

Suggested Practice Problems (set #2) for the Physics Placement Test

Suggested Practice Problems (set #2) for the Physics Placement Test Deparmen of Physics College of Ars and Sciences American Universiy of Sharjah (AUS) Fall 014 Suggesed Pracice Problems (se #) for he Physics Placemen Tes This documen conains 5 suggesed problems ha are

More information

Chapter 4 Circular and Curvilinear Motions

Chapter 4 Circular and Curvilinear Motions Chp 4 Cicul n Cuilin Moions H w consi picls moing no long sigh lin h cuilin moion. W fis su h cicul moion, spcil cs of cuilin moion. Anoh mpl w h l sui li is h pojcil..1 Cicul Moion Unifom Cicul Moion

More information

Notes 04 largely plagiarized by %khc

Notes 04 largely plagiarized by %khc Noes 04 largely plagiarized by %khc Convoluion Recap Some ricks: x() () =x() x() (, 0 )=x(, 0 ) R ț x() u() = x( )d x() () =ẋ() This hen ells us ha an inegraor has impulse response h() =u(), and ha a differeniaor

More information

dv dt = s and t = s a = 28.7 m/s

dv dt = s and t = s a = 28.7 m/s COSMOS: Complee Online Soluions Manual Organizaion Sysem Chaper, Soluion. Posiion: Velociy: 0 3 5 x = 0 + 0 m 3 dx v = = 0 5 0 m/s d dv Acceleraion: a = = 0 5 d When v = 0, 0 5 0 = 0 Solving he quadraic

More information

Applied Statistics and Probability for Engineers, 6 th edition October 17, 2016

Applied Statistics and Probability for Engineers, 6 th edition October 17, 2016 Applid Saisics and robabiliy for Enginrs, 6 h diion Ocobr 7, 6 CHATER Scion - -. a d. 679.. b. d. 88 c d d d. 987 d. 98 f d.. Thn, = ln. =. g d.. Thn, = ln.9 =.. -7. a., by symmry. b.. d...6. 7.. c...

More information

23.2. Representing Periodic Functions by Fourier Series. Introduction. Prerequisites. Learning Outcomes

23.2. Representing Periodic Functions by Fourier Series. Introduction. Prerequisites. Learning Outcomes Represening Periodic Funcions by Fourier Series 3. Inroducion In his Secion we show how a periodic funcion can be expressed as a series of sines and cosines. We begin by obaining some sandard inegrals

More information

School of Electrical Engineering. Lecture 2: Wire Antennas

School of Electrical Engineering. Lecture 2: Wire Antennas School of lctical ngining Lctu : Wi Antnnas Wi antnna It is an antnna which mak us of mtallic wis to poduc a adiation. KT School of lctical ngining www..kth.s Dipol λ/ Th most common adiato: λ Dipol 3λ/

More information

Lecture 16 (Momentum and Impulse, Collisions and Conservation of Momentum) Physics Spring 2017 Douglas Fields

Lecture 16 (Momentum and Impulse, Collisions and Conservation of Momentum) Physics Spring 2017 Douglas Fields Lecure 16 (Momenum and Impulse, Collisions and Conservaion o Momenum) Physics 160-02 Spring 2017 Douglas Fields Newon s Laws & Energy The work-energy heorem is relaed o Newon s 2 nd Law W KE 1 2 1 2 F

More information

Traveling Waves. Chapter Introduction

Traveling Waves. Chapter Introduction Chaper 4 Traveling Waves 4.1 Inroducion To dae, we have considered oscillaions, i.e., periodic, ofen harmonic, variaions of a physical characerisic of a sysem. The sysem a one ime is indisinguishable from

More information

KINEMATICS IN ONE DIMENSION

KINEMATICS IN ONE DIMENSION KINEMATICS IN ONE DIMENSION PREVIEW Kinemaics is he sudy of how hings move how far (disance and displacemen), how fas (speed and velociy), and how fas ha how fas changes (acceleraion). We say ha an objec

More information

( ) ( ) + = ( ) + ( )

( ) ( ) + = ( ) + ( ) Mah 0 Homwork S 6 Soluions 0 oins. ( ps I ll lav i o you vrify ha h omplimnary soluion is : y ( os( sin ( Th guss for h pariular soluion and is drivaivs ar, +. ( os( sin ( ( os( ( sin ( Y ( D 6B os( +

More information

dt = C exp (3 ln t 4 ). t 4 W = C exp ( ln(4 t) 3) = C(4 t) 3.

dt = C exp (3 ln t 4 ). t 4 W = C exp ( ln(4 t) 3) = C(4 t) 3. Mah Rahman Exam Review Soluions () Consider he IVP: ( 4)y 3y + 4y = ; y(3) = 0, y (3) =. (a) Please deermine he longes inerval for which he IVP is guaraneed o have a unique soluion. Soluion: The disconinuiies

More information

Sections 2.2 & 2.3 Limit of a Function and Limit Laws

Sections 2.2 & 2.3 Limit of a Function and Limit Laws Mah 80 www.imeodare.com Secions. &. Limi of a Funcion and Limi Laws In secion. we saw how is arise when we wan o find he angen o a curve or he velociy of an objec. Now we urn our aenion o is in general

More information

Some Basic Information about M-S-D Systems

Some Basic Information about M-S-D Systems Some Basic Informaion abou M-S-D Sysems 1 Inroducion We wan o give some summary of he facs concerning unforced (homogeneous) and forced (non-homogeneous) models for linear oscillaors governed by second-order,

More information

Math 111 Midterm I, Lecture A, version 1 -- Solutions January 30 th, 2007

Math 111 Midterm I, Lecture A, version 1 -- Solutions January 30 th, 2007 NAME: Suden ID #: QUIZ SECTION: Mah 111 Miderm I, Lecure A, version 1 -- Soluions January 30 h, 2007 Problem 1 4 Problem 2 6 Problem 3 20 Problem 4 20 Toal: 50 You are allowed o use a calculaor, a ruler,

More information

WORK POWER AND ENERGY Consevaive foce a) A foce is said o be consevaive if he wok done by i is independen of pah followed by he body b) Wok done by a consevaive foce fo a closed pah is zeo c) Wok done

More information

2.1: What is physics? Ch02: Motion along a straight line. 2.2: Motion. 2.3: Position, Displacement, Distance

2.1: What is physics? Ch02: Motion along a straight line. 2.2: Motion. 2.3: Position, Displacement, Distance Ch: Moion along a sraigh line Moion Posiion and Displacemen Average Velociy and Average Speed Insananeous Velociy and Speed Acceleraion Consan Acceleraion: A Special Case Anoher Look a Consan Acceleraion

More information

XV Exponential and Logarithmic Functions

XV Exponential and Logarithmic Functions MATHEMATICS 0-0-RE Dirnial Calculus Marin Huard Winr 08 XV Eponnial and Logarihmic Funcions. Skch h graph o h givn uncions and sa h domain and rang. d) ) ) log. Whn Sarah was born, hr parns placd $000

More information

Parametrics and Vectors (BC Only)

Parametrics and Vectors (BC Only) Paramerics and Vecors (BC Only) The following relaionships should be learned and memorized. The paricle s posiion vecor is r() x(), y(). The velociy vecor is v(),. The speed is he magniude of he velociy

More information

Elementary Differential Equations and Boundary Value Problems

Elementary Differential Equations and Boundary Value Problems Elmnar Diffrnial Equaions and Boundar Valu Problms Boc. & DiPrima 9 h Ediion Chapr : Firs Ordr Diffrnial Equaions 00600 คณ ตศาสตร ว ศวกรรม สาขาว ชาว ศวกรรมคอมพ วเตอร ป การศ กษา /55 ผศ.ดร.อร ญญา ผศ.ดร.สมศ

More information

Midterm exam 2, April 7, 2009 (solutions)

Midterm exam 2, April 7, 2009 (solutions) Univrsiy of Pnnsylvania Dparmn of Mahmaics Mah 26 Honors Calculus II Spring Smsr 29 Prof Grassi, TA Ashr Aul Midrm xam 2, April 7, 29 (soluions) 1 Wri a basis for h spac of pairs (u, v) of smooh funcions

More information

The Production of Polarization

The Production of Polarization Physics 36: Waves Lecue 13 3/31/211 The Poducion of Polaizaion Today we will alk abou he poducion of polaized ligh. We aleady inoduced he concep of he polaizaion of ligh, a ansvese EM wave. To biefly eview

More information

Chapter 4 The Fourier Series and Fourier Transform

Chapter 4 The Fourier Series and Fourier Transform Represenaion of Signals in Terms of Frequency Componens Chaper 4 The Fourier Series and Fourier Transform Consider he CT signal defined by x () = Acos( ω + θ ), = The frequencies `presen in he signal are

More information

Derivation of the differential equation of motion

Derivation of the differential equation of motion Divion of h iffnil quion of oion Fis h noions fin h will us fo h ivion of h iffnil quion of oion. Rollo is hough o -insionl isk. xnl ius of h ll isnc cn of ll (O) - IDU s cn of gviy (M) θ ngl of inclinion

More information

Displacement ( x) x x x

Displacement ( x) x x x Kinemaics Kinemaics is he branch of mechanics ha describes he moion of objecs wihou necessarily discussing wha causes he moion. 1-Dimensional Kinemaics (or 1- Dimensional moion) refers o moion in a sraigh

More information

Today: Falling. v, a

Today: Falling. v, a Today: Falling. v, a Did you ge my es email? If no, make sure i s no in your junk box, and add sbs0016@mix.wvu.edu o your address book! Also please email me o le me know. I will be emailing ou pracice

More information

Maxwell s Equations and Electromagnetic Waves

Maxwell s Equations and Electromagnetic Waves Phsics 36: Waves Lecure 3 /9/8 Maxwell s quaions and lecromagneic Waves Four Laws of lecromagneism. Gauss Law qenc all da ρdv Inegral From From he vecor ideni da dv Therefore, we ma wrie Gauss Law as ρ

More information

Homework 2: Kinematics and Dynamics of Particles Due Friday Feb 8, 2019

Homework 2: Kinematics and Dynamics of Particles Due Friday Feb 8, 2019 EN4: Dynamics and Vibraions Homework : Kinemaics and Dynamics of Paricles Due Friday Feb 8, 19 School of Engineering Brown Universiy 1. Sraigh Line Moion wih consan acceleraion. Virgin Hyperloop One is

More information

AR(1) Process. The first-order autoregressive process, AR(1) is. where e t is WN(0, σ 2 )

AR(1) Process. The first-order autoregressive process, AR(1) is. where e t is WN(0, σ 2 ) AR() Procss Th firs-ordr auorgrssiv procss, AR() is whr is WN(0, σ ) Condiional Man and Varianc of AR() Condiional man: Condiional varianc: ) ( ) ( Ω Ω E E ) var( ) ) ( var( ) var( σ Ω Ω Ω Ω E Auocovarianc

More information

4.1 The Uniform Distribution Def n: A c.r.v. X has a continuous uniform distribution on [a, b] when its pdf is = 1 a x b

4.1 The Uniform Distribution Def n: A c.r.v. X has a continuous uniform distribution on [a, b] when its pdf is = 1 a x b 4. Th Uniform Disribuion Df n: A c.r.v. has a coninuous uniform disribuion on [a, b] whn is pdf is f x a x b b a Also, b + a b a µ E and V Ex4. Suppos, h lvl of unblivabiliy a any poin in a Transformrs

More information

SOLUTIONS TO ECE 3084

SOLUTIONS TO ECE 3084 SOLUTIONS TO ECE 384 PROBLEM 2.. For each sysem below, specify wheher or no i is: (i) memoryless; (ii) causal; (iii) inverible; (iv) linear; (v) ime invarian; Explain your reasoning. If he propery is no

More information

Instructor: Barry McQuarrie Page 1 of 5

Instructor: Barry McQuarrie Page 1 of 5 Procedure for Solving radical equaions 1. Algebraically isolae one radical by iself on one side of equal sign. 2. Raise each side of he equaion o an appropriae power o remove he radical. 3. Simplify. 4.

More information

Linear Motion I Physics

Linear Motion I Physics Linear Moion I Physics Objecives Describe he ifference beween isplacemen an isance Unersan he relaionship beween isance, velociy, an ime Describe he ifference beween velociy an spee Be able o inerpre a

More information

Chapter 5 The Laplace Transform. x(t) input y(t) output Dynamic System

Chapter 5 The Laplace Transform. x(t) input y(t) output Dynamic System EE 422G No: Chapr 5 Inrucor: Chung Chapr 5 Th Laplac Tranform 5- Inroducion () Sym analyi inpu oupu Dynamic Sym Linar Dynamic ym: A procor which proc h inpu ignal o produc h oupu dy ( n) ( n dy ( n) +

More information

Non-uniform circular motion *

Non-uniform circular motion * OpenSax-CNX module: m14020 1 Non-uniform circular moion * Sunil Kumar Singh This work is produced by OpenSax-CNX and licensed under he Creaive Commons Aribuion License 2.0 Wha do we mean by non-uniform

More information

x(m) t(sec ) Homework #2. Ph 231 Introductory Physics, Sp-03 Page 1 of 4

x(m) t(sec ) Homework #2. Ph 231 Introductory Physics, Sp-03 Page 1 of 4 Homework #2. Ph 231 Inroducory Physics, Sp-03 Page 1 of 4 2-1A. A person walks 2 miles Eas (E) in 40 minues and hen back 1 mile Wes (W) in 20 minues. Wha are her average speed and average velociy (in ha

More information