All Optical Quantum Gates

Size: px
Start display at page:

Download "All Optical Quantum Gates"

Transcription

1 All Optical Quantum Gates T.C.Ralph Centre for Quantum Computer Technology Department of Physics University of Queensland

2 LOQC People Staff T.C.Ralph A.G.White G.J.Milburn Postdocs J.L.O Brien G.J.Pryde A.Gilchrist H.Jeong K.Pregnell Collaborators D.F.V.James ~ Los Alamos S.Bartlett ~ University of Queensland C.Myers ~ University of Waterloo M.Nielsen ~ University of Queensland D.Branning ~ University of Illinois Students N.K.Langford T.Weinhold A.Hayes A.Lund P.Rohde R.Dalton

3 LOQC People Staff T.C.Ralph A.G.White G.J.Milburn Postdocs J.L.O Brien G.J.Pryde A.Gilchrist H.Jeong K.Pregnell Collaborators D.F.V.James ~ Los Alamos S.Bartlett ~ University of Queensland C.Myers ~ University of Waterloo M.Nielsen ~ University of Queensland Students N.K.Langford T.Weinhold A.Hayes A.Lund P.Rohde R.Dalton

4 Overview Introduction Optical CNOT gate How it works in theory How it works in practice

5 Overview Introduction Optical CNOT gate How it works in theory How it works in practice Process Tomography Error correction Future - scale-up

6 Single Photon States spatial distribution temporal distribution single spatio-temporal mode transform limited

7 Single Photon States spatial distribution temporal distribution single spatio-temporal mode transform limited If there is exactly 1 quanta of energy in the mode it is a single photon state

8 Single Photon States spatial distribution temporal distribution single spatio-temporal mode transform limited If there is exactly 1 quanta of energy in the mode it is a single photon state 1>

9 Single Photon States spatial distribution temporal distribution single spatio-temporal mode transform limited If there is exactly 1 quanta of energy in the mode it is a single photon state 11>

10 Experimental Reality Check Presently there are no sources of single photon states as just described Best that can be done: ρ = P P P 1 60% A.I.Lvovsky, H.Hansen, T.Aichele, O.Benson, J.Mlynek, and S.Schiller Phys. Rev. Lett. 87, (2001)

11 Experimental Reality Check Presently there are no sources of single photon states as just described Best that can be done: ρ = P P P 1 60% Also need detectors that can count photons with high efficiency - currently ~ 90% efficiency

12 Post-selection α> = 0> + α 1> α 2 2> +.

13 Post-selection α << 1 α> = 0> + α 1> α 2 2> +.

14 Post-selection α << 1 α> = 0> + α 1> α 2 2> +. G.I.Taylor, Proc.Cambridge Phil.Soc.15, 114 (1909).

15 Post-selection χ << 1 Down-conversion splits 2ω ω φ > = 00> + χ 11> + Ghosh and Mandel, PRL, 59, 1903 (1987)

16 Post-selection χ << 1 φ > = 00> + χ 11> + Down-conversion splits 2ω ω Measure in coincidence Ghosh and Mandel, PRL, 59, 1903 (1987)

17 Post-selection χ << 1 Down-conversion splits 2ω ω φ > = 00> + χ 11> + 2 photon experiment Measure in coincidence Ghosh and Mandel, PRL, 59, 1903 (1987)

18 Post-selection χ << 1 Down-conversion splits 2ω ω φ > = 00> + χ 11> + 2 photon experiment Measure in coincidence Ghosh and Mandel, PRL, 59, 1903 (1987) See also: Santori, Fattal, Vuckovic, Solomon and Yamamoto, Nature, 419, 594 (2002)

19 Photon source: bright beam-like source tune crystal to obtain good modes S. Takeuchi, Optics Letters 26, 843 (2001); C. Kurstsiefer et al., J. Mod. Opt. 48, 1997 (2001)

20 Photon source: bright beam-like source QuickTime and a TIFF (Uncompressed) decompressor are needed to see this picture. tune crystal to obtain good modes S. Takeuchi, Optics Letters 26, 843 (2001); C. Kurstsiefer et al., J. Mod. Opt. 48, 1997 (2001)

21 Photon source: bright beam-like source QuickTime and a TIFF (Uncompressed) decompressor are needed to see this picture. tune crystal to obtain good modes spatially filter with fibres frequency filter (~0.4 nm) S. Takeuchi, Optics Letters 26, 843 (2001); C. Kurstsiefer et al., J. Mod. Opt. 48, 1997 (2001)

22 Different CNOT Experiments Pittman, Fitch, Jacobs, and Franson, PRA 68, (2003). 3 photon gate, operates in coincidence. O Brien, Pryde, White, Ralph and Branning, Nature 426, 264 (2003). 2 photon gate, operates in coincidence Gasparoni, Pan, Walther, Rudolph, and Zeilinger, Phys. Rev. Lett. 93, (2004) 4 photon gate, operates in coincidence (though in principle could be heralded)

23 Photons as qubits We can encode qubits as the polarization states of single photons 0 = H> 1 = V> α H> + β V> Arbitrary one qubit operations can be realized with half and quarter wave-plates PBS α 01> + β 10> Dual-rail encoding

24 CNOT Gate

25 Optical CNOT Gate Control In PBS 1/3 PBS Control Out 1/3 Target In HWP 22.5 PBS 1/3 PBS HWP 22.5 Target Out T.C.Ralph, N.K.Langford, T.B.Bell and A.G.White, PRA 65, (2002)

26 single photons of arbitrary polarization simultaneously injected Optical CNOT Gate Control In PBS 1/3 PBS Control Out 1/3 Target In HWP 22.5 PBS 1/3 PBS HWP 22.5 Target Out T.C.Ralph, N.K.Langford, T.B.Bell and A.G.White, PRA 65, (2002)

27 single photons of arbitrary polarization simultaneously injected Optical CNOT Gate Control In PBS 1/3 PBS Control Out non-classical interference 1/3 Target In HWP 22.5 PBS 1/3 PBS HWP 22.5 Target Out T.C.Ralph, N.K.Langford, T.B.Bell and A.G.White, PRA 65, (2002)

28 single photons of arbitrary polarization simultaneously injected Optical CNOT Gate successful events post-selected as simultaneous clicks on photon counters Control In PBS 1/3 PBS Control Out non-classical interference 1/3 Target In HWP 22.5 PBS 1/3 PBS HWP 22.5 Target Out T.C.Ralph, N.K.Langford, T.B.Bell and A.G.White, PRA 65, (2002)

29 Optical CNOT Gate Photon pairs from downconverter Polarization beam displacers Photon counting

30 Optical CNOT Gate J.L.O Brien, G.J.Pryde, A.G.White, T.C.Ralph, D.Branning, Nature 426, 264 (2003).

31 Classical CNOT Operation Truth Table 0,0 0,0 0,1 0,1 1,0 1,1 Ideal operation 1,1 1,0 Experiment

32 Quantum CNOT Operation Entanglement Production ( 0 1 ) 1 C T 0 C 1 T 1 C 0 T

33 CNOT Truth Table (average Fidelity = 92%) Singlet state from CNOT H> V>- V> H> (Fidelity = 94%) Ideal experimental: real imaginary

34 Process Tomography

35 Process Tomography environment ρ ε(ρ)

36 Process Tomography environment ρ? ε(ρ)

37 Process Tomography environment ρ? ε(ρ) ε(ρ) = Σ χ Α ρ Α

38 Process Tomography environment ρ? ε(ρ) ε(ρ) = Σ χ Α ρ Α Process matrix

39 Process Tomography environment ρ? ε(ρ) Quantum Computation and Quantum Information, Nielsen and Chuang ε(ρ) = Σ χ Α ρ Α Process matrix - determined by 256 measurement combinations

40 Find physical matrix closest fit Constraint 1: Positive map Process Tomography environment Constraint 2: Trace preserving ρ? ε(ρ) O Brien et al, to appear Phys.Rev.Lett. (04) quant-ph/ ε(ρ) = Σ χ Α ρ Α Process matrix - determined by 256 measurement combinations

41 Process Tomography ρ CNOT ε(ρ) ε(ρ) =U cnot ρ cnot U cnot = 0.5(II + IX + ZI - ZX)

42 Process Tomography II IX IY IZ XI XX XYXZ YI YX YY YZ ZI ZX ZY ZZ II IX IY IZ XI XX XY XZ YI YX YY Ideal Measured (Re) YZ ZI ZX ZY ZZ ε(ρ) =U cnot ρ cnot U cnot = 0.5(II + IX + ZI - ZX)

43 Process Tomography II IX IY IZ XI XX XYXZ YI YX YY YZ ZI ZX ZY ZZ II IX IY IZ XI XX XY XZ YI YX YY Ideal Measured (Re) YZ ZI ZX ZY ZZ ε(ρ) =U cnot ρ cnot U cnot = 0.5(II + IX + ZI - ZX)

44 Process Tomography = 87% Measured (Re) Measured (Im) average fidelity = (d F p +1)/(d+1) = 90% purity = 0.83 maximum increase in tangle = 0.73 O Brien, Pryde, Gilchrist, James, Langford, Ralph, White, PRL, 93, (2004)

45 Process Tomography II Control In PBS τ 1 1/3 PBS Control Out 1/3 τ 3 τ 4 Target In τ 2 HWP 22.5 PBS 1/3 τ 5 PBS HWP 22.5 Target Out *Model gate including spatio-temporal structure *Perform tomography on the model - equivalent result for process with less data P.P.Rohde, J.L.O Brien, G.J.Pryde,T.C.Ralph, quant-ph/

46 Error Correction

47 Z-measurement Error Correction 0 1 α ( HH> + VV>) + β ( VH> + HV>) Knill, LaFlamme and Milburn, Nature 409, 46 (2001)

48 Z-measurement Error Correction α ( HH> + VV>) + β ( VH> + HV>) H α H> + β V> Knill, LaFlamme and Milburn, Nature 409, 46 (2001)

49 Z-measurement Error Correction α ( HH> + VV>) + β ( VH> + HV>) V α V> + β H> Knill, LaFlamme and Milburn, Nature 409, 46 (2001)

50 Z-measurement Error Correction α ( HH> + VV>) + β ( VH> + HV>) V α V> + β H> Teleported gates fail by making a Z-measurement Knill, LaFlamme and Milburn, Nature 409, 46 (2001) Pittman, Jacobs and Franson, PRA, 64, (2001)

51 Z-measurement Error Correction α ( HH> + VV>) + β ( VH> + HV>) V α V> + β H> Teleported gates fail by making a Z-measurement Knill, LaFlamme and Milburn, Nature 409, 46 (2001) Pittman, Jacobs and Franson, PRA, 64, (2001) LOQC cluster states Nielsen, PRL, 93, (04)

52 Z-measurement Error Correction α ( HH> + VV>) + β ( VH> + HV>)? α H> + β V> or α V> + β H> Photon Loss error correction Knill, LaFlamme and Milburn, Nature 409, 46 (2001) Φ> LL = α 0> L 0> L 0> L + β 1> L 1> L 1> L

53 Experimental Z-measurement Error Correction (i) Encoding α H> + β V> H> + V> α ( HH> + VV>) + β ( VH> + HV>) Non-deterministic CNOT

54 Experimental Z-measurement Error Correction (i) Encoding Input: 0> 0> + 1> 0> + i 1> Average Fidelity 88 ± 3%

55 Experimental Z-measurement Error Correction (ii) Decoding H or V? H> H> + V> real superpositions imaginary superpositions V> H> - V>

56 Experimental Z-measurement Error Correction (ii) Decoding? H or V H> H> + V> real superpositions imaginary superpositions V> H> - V>

57 Experimental Z-measurement Error Correction (ii) Decoding Syndrome measured but not corrected Average Fidelity 96 ± 3 % O Brien, Pryde White and Ralph, quant-ph/

58 Linear Optics QC~3 main ideas of KLM Q1> Q2> 1> 1 LINEAR OPTICAL NETWORK *Non-deterministic gates. *Don t always work, but heralded when they do. 1> 1 Knill, LaFlamme and Milburn, Nature 409, 46 (2001)

59 Linear Optics QC~3 main ideas of KLM Q1> Q2> 1> 1 LINEAR OPTICAL NETWORK *Non-deterministic gates. *Don t always work, but heralded when they do. 1> 1 *Non-deterministic teleported gates. When they don t work they measure the qubit. Q> a> E> F> { B X Z a> Knill, LaFlamme and Milburn, Nature 409, 46 (2001)

60 Linear Optics QC~3 main ideas of KLM Q1> Q2> 1> 1 LINEAR OPTICAL NETWORK *Non-deterministic gates. *Don t always work, but heralded when they do. 1> 1 *Non-deterministic teleported gates. When they don t work they measure the qubit. Q> a> E> F> { B X Z a> Knill, LaFlamme and Milburn, Nature 409, 46 (2001)

61 Linear Optics QC~3 main ideas of KLM Q1> Q2> 1> 1 LINEAR OPTICAL NETWORK *Non-deterministic gates. *Don t always work, but heralded when they do. 1> 1 *Non-deterministic teleported gates. When they don t work they measure the qubit. Q> a> E> F> { B X Z a> u ( 00>+ 11>) + v ( 01>+ 10>) Knill, LaFlamme and Milburn, Nature 409, 46 (2001) } Q> *Error encoding against qubit measurment

62 Linear Optics QC~3 main ideas of KLM Q1> Q2> 1> 1 LINEAR OPTICAL NETWORK *Non-deterministic gates. *Don t always work, but heralded when they do. 1> 1 *Non-deterministic teleported gates. When they don t work they measure the qubit. Q> a> E> F> { B X Z a> u ( 00>+ 11>) + v ( 01>+ 10>) Knill, LaFlamme and Milburn, Nature 409, 46 (2001) } Q> *Error encoding against qubit measurment

63 thanks

1. Statement of Problem.

1. Statement of Problem. 1. Statement of Problem. Experimental Implementation of Efficient Linear Optics Quantum Computation Final Report G. J. Milburn, T. C. Ralph, and A. G. White University of Queensland, Australia One of the

More information

High-fidelity Z-measurement error encoding of optical qubits

High-fidelity Z-measurement error encoding of optical qubits Griffith Research Online https://research-repository.griffith.edu.au High-fidelity Z-measurement error encoding of optical qubits Author O'Brien, J., Pryde, G., White, A., Ralph, T. Published 2005 Journal

More information

Demonstration of an all-optical quantum controlled-not gate

Demonstration of an all-optical quantum controlled-not gate Demonstration of an all-optical quantum controlled-not gate Author O'Brien, J., Pryde, G., White, A., Ralph, T., Branning, D. Published 2003 Journal Title Nature DOI https://doi.org/10.1038/nature02054

More information

Quantum process tomography of a controlled-not gate

Quantum process tomography of a controlled-not gate Quantum process tomography of a controlled-not gate J. L. O Brien,,, G. J. Pryde,,, A. Gilchrist, D. F. V. James, 3 N. K. Langford,, T. C. Ralph, and A. G. White, These authors contributed equally to this

More information

arxiv:quant-ph/ v2 5 Apr 2005

arxiv:quant-ph/ v2 5 Apr 2005 Experimental Demonstration of a Quantum Circuit using Linear Optics Gates T.B. Pittman, B.C Jacobs, and J.D. Franson Johns Hopkins University, Applied Physics Laboratory, Laurel, MD 2723 (Dated: April

More information

Towards Scalable Linear-Optical Quantum Computers

Towards Scalable Linear-Optical Quantum Computers Quantum Information Processing, Vol. 3, Nos. 1 5, October 2004 ( 2004) Towards Scalable Linear-Optical Quantum Computers J. P. Dowling, 1,5 J. D. Franson, 2 H. Lee, 1,4 and G. J. Milburn 3 Received February

More information

The information content of a quantum

The information content of a quantum The information content of a quantum A few words about quantum computing Bell-state measurement Quantum dense coding Teleportation (polarisation states) Quantum error correction Teleportation (continuous

More information

Simple scheme for efficient linear optics quantum gates

Simple scheme for efficient linear optics quantum gates PHYSICAL REVIEW A, VOLUME 65, 012314 Simple scheme for efficient linear optics quantum gates T. C. Ralph,* A. G. White, W. J. Munro, and G. J. Milburn Centre for Quantum Computer Technology, University

More information

Zeno logic gates using micro-cavities

Zeno logic gates using micro-cavities Zeno logic gates using micro-cavities J.D. Franson, B.C. Jacobs, and T.B. Pittman Johns Hopkins University, Applied Physics Laboratory, Laurel, MD 20723 The linear optics approach to quantum computing

More information

Quantum non-demolition measurements: a new resource for making linear logic scalable

Quantum non-demolition measurements: a new resource for making linear logic scalable Quantum non-demolition measurements: a new resource for making linear logic scalable Kae Nemoto 1, William J. Munro, Timothy P. Spiller, R.G. Beausoleil Trusted Systems Laboratory HP Laboratories Bristol

More information

Linear optical implementation of a single mode quantum filter and generation of multi-photon polarization entangled state

Linear optical implementation of a single mode quantum filter and generation of multi-photon polarization entangled state Linear optical implementation of a single mode quantum filter and generation of multi-photon polarization entangled state XuBo Zou, K. Pahlke and W. Mathis Electromagnetic Theory Group at THT Department

More information

arxiv:quant-ph/ v3 18 Jan 2004

arxiv:quant-ph/ v3 18 Jan 2004 A feasible gate for scalable linear optics quantum computation using polarization optics Kaoru Sanaka and Kevin Resch Institut für Experimentalphysik, Universität Wien, Boltzmanngasse arxiv:quant-ph/0316

More information

Quantum information processing. Two become one

Quantum information processing. Two become one Quantum information processing Two become one Scientists experimentally demonstrate a scheme for quantum joining, which allow the number of qubits encoded per photon to be varied while keeping the overall

More information

Quantum information processing using linear optics

Quantum information processing using linear optics Quantum information processing using linear optics Karel Lemr Joint Laboratory of Optics of Palacký University and Institute of Physics of Academy of Sciences of the Czech Republic web: http://jointlab.upol.cz/lemr

More information

arxiv: v1 [quant-ph] 11 Mar 2008

arxiv: v1 [quant-ph] 11 Mar 2008 Optical Quantum Computing Jeremy L. O Brien Centre for Quantum Photonics, H. H. Wills Physics Laboratory & Department of Electrical and Electronic Engineering, University of Bristol, Merchant Venturers

More information

arxiv:quant-ph/ v1 16 Dec 2001

arxiv:quant-ph/ v1 16 Dec 2001 (6th December 00) Linear Optical CNOT Gate in the Coincidence Basis T. C. Ralph, N. K. Langford, T. B. Bell and A. G. White arxiv:quant-ph/0088 v 6 Dec 00 Centre for Quantum Computer Technology, Department

More information

Simulation of quantum gates by postselection of interference experiments in multiport beam-splitter (BS) configurations

Simulation of quantum gates by postselection of interference experiments in multiport beam-splitter (BS) configurations Simulation of quantum gates by postselection of interference experiments in multiport beam-splitter (BS) configurations Y.Ben-ryeh Department of Physics, Technion-Israel Institute of Technology, Haifa,

More information

arxiv:quant-ph/ v1 15 Jun 2005

arxiv:quant-ph/ v1 15 Jun 2005 Efficient optical quantum information processing arxiv:quant-ph/0506116v1 15 Jun 2005 W.J. Munro, Kae Nemoto, T.P. Spiller, S.D. Barrett, Pieter Kok, and R.G. Beausoleil Quantum Information Processing

More information

Matchgate quantum computing and non-local process analysis

Matchgate quantum computing and non-local process analysis New Journal of Physics The open access journal for physics Matchgate quantum computing and non-local process analysis S Ramelow 1,2,4,5, A Fedrizzi 1,4,5, A M Steinberg 1,3 and A G White 1 1 Centre for

More information

Playing Games with Quantum Information: Experiments with Photons and Laser-Cooled Atoms

Playing Games with Quantum Information: Experiments with Photons and Laser-Cooled Atoms Playing Games with Quantum Information: Experiments with Photons and Laser-Cooled Atoms Interns: Grad Students: Postdocs: Supervisor: Jeff Lundeen Univ. of Toronto Dept. of Physics CAP 2003 Rockson Chang,

More information

arxiv: v1 [quant-ph] 1 Feb 2008

arxiv: v1 [quant-ph] 1 Feb 2008 Silica-on-Silicon Waveguide Quantum Circuits Alberto oliti, Martin J. Cryan, John G. Rarity, Siyuan Yu, and Jeremy L. O Brien Centre for Quantum hotonics, H. H. Wills hysics Laboratory & Department of

More information

Quantum non-demolition measurements:

Quantum non-demolition measurements: Quantum non-demolition measurements: One path to truly scalable quantum computation Kae Nemoto Tim Spiller Sean Barrett Ray Beausoleil Pieter Kok Bill Munro HP Labs (Bristol) Why should optical quantum

More information

Quantum Logic Operations Using Single Photons and the Zeno Effect. J.D. Franson, B.C. Jacobs, and T.B. Pittman. Johns Hopkins University

Quantum Logic Operations Using Single Photons and the Zeno Effect. J.D. Franson, B.C. Jacobs, and T.B. Pittman. Johns Hopkins University 1 Quantum Logic Operations Using Single Photons and the Zeno Effect J.D. Franson, B.C. Jacobs, and T.B. Pittman Johns Hopkins University Applied Physics Laboratory Laurel, MD 20723 Abstract: We show that

More information

AP/P387 Note2 Single- and entangled-photon sources

AP/P387 Note2 Single- and entangled-photon sources AP/P387 Note Single- and entangled-photon sources Single-photon sources Statistic property Experimental method for realization Quantum interference Optical quantum logic gate Entangled-photon sources Bell

More information

Experimental Quantum Teleportation of a Two-Qubit

Experimental Quantum Teleportation of a Two-Qubit Experimental Quantum Teleportation of a Two-Qubit Composite System Qiang Zhang,1, Alexander Goebel 1, Claudia Wagenknecht 1, Yu-Ao Chen 1, Bo Zhao 1, Tao Yang, Alois Mair 1, Jörg Schmiedmayer 1,3 & Jian-Wei

More information

Jian-Wei Pan

Jian-Wei Pan Lecture Note 6 11.06.2008 open system dynamics 0 E 0 U ( t) ( t) 0 E ( t) E U 1 E ( t) 1 1 System Environment U() t ( ) 0 + 1 E 0 E ( t) + 1 E ( t) 0 1 0 0 1 1 2 * 0 01 E1 E0 q() t = TrEq+ E = * 2 1 0

More information

ON THE ROLE OF THE BASIS OF MEASUREMENT IN QUANTUM GATE TELEPORTATION. F. V. Mendes, R. V. Ramos

ON THE ROLE OF THE BASIS OF MEASUREMENT IN QUANTUM GATE TELEPORTATION. F. V. Mendes, R. V. Ramos ON THE ROLE OF THE BASIS OF MEASREMENT IN QANTM GATE TELEPORTATION F V Mendes, R V Ramos fernandovm@detiufcbr rubens@detiufcbr Lab of Quantum Information Technology, Department of Teleinformatic Engineering

More information

Differential Phase Shift Quantum Key Distribution and Beyond

Differential Phase Shift Quantum Key Distribution and Beyond Differential Phase Shift Quantum Key Distribution and Beyond Yoshihisa Yamamoto E. L. Ginzton Laboratory, Stanford University National Institute of Informatics (Tokyo, Japan) DPS-QKD system Protocol System

More information

arxiv: v1 [quant-ph] 10 Dec 2012

arxiv: v1 [quant-ph] 10 Dec 2012 Experimental Boson Sampling Max Tillmann,, Borivoje Dakić, René Heilmann, Stefan Nolte, Alexander Szameit, and Philip Walther, Faculty of Physics, University of Vienna, Boltzmanngasse, A-090 Vienna, Austria

More information

Optical Quantum Imaging, Computing, and Metrology: WHAT S NEW WITH N00N STATES? Jonathan P. Dowling

Optical Quantum Imaging, Computing, and Metrology: WHAT S NEW WITH N00N STATES? Jonathan P. Dowling Optical Quantum Imaging, Computing, and Metrology: WHAT S NEW WITH N00N STATES? Jonathan P. Dowling Hearne Institute for Theoretical Physics Louisiana State University Baton Rouge, Louisiana quantum.phys.lsu.edu

More information

QUANTUM INFORMATION with light and atoms. Lecture 2. Alex Lvovsky

QUANTUM INFORMATION with light and atoms. Lecture 2. Alex Lvovsky QUANTUM INFORMATION with light and atoms Lecture 2 Alex Lvovsky MAKING QUANTUM STATES OF LIGHT 1. Photons 2. Biphotons 3. Squeezed states 4. Beam splitter 5. Conditional measurements Beam splitter transformation

More information

Single Photon Generation & Application

Single Photon Generation & Application Single Photon Generation & Application Photon Pair Generation: Parametric down conversion is a non-linear process, where a wave impinging on a nonlinear crystal creates two new light beams obeying energy

More information

arxiv:quant-ph/ Oct 2002

arxiv:quant-ph/ Oct 2002 Measurement of the overlap between quantum states with the use of coherently addressed teleportation Andrzej Grudka* and Antoni Wójcik** arxiv:quant-ph/00085 Oct 00 Faculty of Physics, Adam Mickiewicz

More information

Single-photon quantum error rejection and correction with linear optics

Single-photon quantum error rejection and correction with linear optics Single-photon quantum error rejection and correction with linear optics Demetrios Kalamidas Institute for ltrafast Spectroscopy and Lasers, City College of the City niversity of New York, 138 Street &

More information

arxiv: v1 [quant-ph] 25 Apr 2017

arxiv: v1 [quant-ph] 25 Apr 2017 Deterministic creation of a four-qubit W state using one- and two-qubit gates Firat Diker 1 and Can Yesilyurt 2 1 Faculty of Engineering and Natural Sciences, arxiv:170.0820v1 [quant-ph] 25 Apr 2017 Sabanci

More information

Experimental Demonstration of Five-photon Entanglement and Open-destination Teleportation

Experimental Demonstration of Five-photon Entanglement and Open-destination Teleportation Experimental Demonstration of Five-photon Entanglement and Open-destination Teleportation Zhi Zhao, Yu-Ao Chen, An-Ning Zhang, Tao Yang, ans Briegel & Jian-Wei Pan, Department of Modern Physics, University

More information

More measurement & computing (Clusters, N00N states, Zeno gates,...) 13 Mar 2012

More measurement & computing (Clusters, N00N states, Zeno gates,...) 13 Mar 2012 More measurement & computing (Clusters, N00N states, Zeno gates,...) 13 Mar 2012 The cost of postselection Of course, if each gate only succeeds some fraction p of the time... the odds of an N-gate computer

More information

arxiv: v2 [quant-ph] 24 Jul 2013

arxiv: v2 [quant-ph] 24 Jul 2013 Entangled state generation with an intrinsically pure single-photon source and a weak coherent source Rui-Bo Jin, 1 Ryosuke Shimizu, Fumihiro Kaneda, 1 Yasuyoshi Mitsumori, 1 Hideo Kosaka, 1 and Keiichi

More information

quantum error-rejection

quantum error-rejection Lecture Note 7 Decoherence-free sub-space space and quantum error-rejection rejection.06.006 open system dynamics ψ = α 0 + α 0 Decoherence System Environment 0 E 0 U ( t) ( t) 0 E ( t) E U E ( t) U()

More information

Quantum nondemolition measurements for quantum information

Quantum nondemolition measurements for quantum information Quantum nondemolition measurements for quantum information Author Ralph, T., Bartlett, S., O'Brien, J., Pryde, Geoff, Wiseman, Howard Published 2006 Journal Title Physical Review A DOI https://doi.org/10.1103/physreva.73.012113

More information

Quantum Optical Coherence Tomography

Quantum Optical Coherence Tomography Quantum Optical Coherence Tomography Bahaa Saleh Alexander Sergienko Malvin Teich Quantum Imaging Lab Department of Electrical & Computer Engineering & Photonics Center QuickTime and a TIFF (Uncompressed)

More information

Multi-Particle Entanglement & It s Application in Quantum Networks

Multi-Particle Entanglement & It s Application in Quantum Networks Lecture Note 5 Multi-Particle Entanglement & It s Application in Quantum Networks 07.06.006 Polarization Entangled Photons ( ) ( ) ± = Ψ ± = Φ ± ± H V V H V V H H [P. G. Kwiat et al., Phys. Rev. Lett.

More information

arxiv:quant-ph/ v1 27 Feb 2006

arxiv:quant-ph/ v1 27 Feb 2006 Linear optics uantum Toffoli and Fredkin gates Jaromír Fiurášek Department of Optics, Palacký University, 7. listopadu 5, 77 Olomouc, Czech Republic (Dated: February 8, 6) arxiv:uant-ph/6 v 7 Feb 6 We

More information

arxiv:quant-ph/ v2 22 Jul 2001

arxiv:quant-ph/ v2 22 Jul 2001 Probabilistic Quantum Logic Operations Using Polarizing Beam Splitters arxiv:quant-ph/00709v Jul 00 T.B. Pittman, B.C. Jacobs, and J.D. Franson Applied Physics Laboratory, The Johns Hopkins University,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION doi: 0.08/nPHYS777 Optical one-way quantum computing with a simulated valence-bond solid SUPPLEMENTARY INFORMATION Rainer Kaltenbaek,, Jonathan Lavoie,, Bei Zeng, Stephen D. Bartlett,

More information

arxiv: v2 [quant-ph] 4 Jun 2013

arxiv: v2 [quant-ph] 4 Jun 2013 Entanglement-assisted scheme for nondemolition detection of the presence of a single photon Marek Bula 1 Karol Bartkiewicz 1 Antonín Černoch and Karel Lemr 1 1 RCPTM Joint Laboratory of Optics of Palacký

More information

Photons and Quantum Information Processing

Photons and Quantum Information Processing Photons and Quantum Information Processing Aephraim M. Steinberg Centre for Quantum Info & Quantum Control Institute for Optical Sciences Dept. of Physics, University of Toronto Talk 1: Quantum States

More information

Preparing multi-partite entanglement of photons and matter qubits

Preparing multi-partite entanglement of photons and matter qubits Preparing multi-partite entanglement of photons and matter qubits Pieter Kok, Sean D. Barrett, Timothy P. Spiller Trusted Systems Laboratory HP Laboratories Bristol HPL-2005-199 November 23, 2005* state

More information

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists 4,100 116,000 120M Open access books available International authors and editors Downloads Our

More information

Universal quantum computation on the power of quantum non-demolition measurements

Universal quantum computation on the power of quantum non-demolition measurements Universal quantum computation on the power of quantum non-demolition measurements Kae Nemoto 1, William J. Munro Trusted Systems Laboratory P Laboratories Bristol PL-2005-202 November 23, 2005* universal

More information

Quantum computation and quantum information

Quantum computation and quantum information Quantum computation and quantum information Chapter 7 - Physical Realizations - Part 2 First: sign up for the lab! do hand-ins and project! Ch. 7 Physical Realizations Deviate from the book 2 lectures,

More information

Reducing multi-photon rates in pulsed down-conversion by temporal multiplexing

Reducing multi-photon rates in pulsed down-conversion by temporal multiplexing Reducing multi-photon rates in pulsed down-conversion by temporal multiplexing M. A. Broome, M. P. Almeida, A. Fedrizzi and A. G. White ARC Centre for Engineered Quantum Systems, ARC Centre for Quantum

More information

A DARK GREY P O N T, with a Switch Tail, and a small Star on the Forehead. Any

A DARK GREY P O N T, with a Switch Tail, and a small Star on the Forehead. Any Y Y Y X X «/ YY Y Y ««Y x ) & \ & & } # Y \#$& / Y Y X» \\ / X X X x & Y Y X «q «z \x» = q Y # % \ & [ & Z \ & { + % ) / / «q zy» / & / / / & x x X / % % ) Y x X Y $ Z % Y Y x x } / % «] «] # z» & Y X»

More information

QUANTUM SENSORS: WHAT S NEW WITH N00N STATES? Jonathan P. Dowling

QUANTUM SENSORS: WHAT S NEW WITH N00N STATES? Jonathan P. Dowling QUANTUM SENSORS: WHAT S NEW WITH N00N STATES? Jonathan P. Dowling Hearne Institute for Theoretical Physics Louisiana State University Baton Rouge, Louisiana quantum.phys.lsu.edu SPIE F&N 23 May 2007 Statue

More information

Preparation and tomographic reconstruction of arbitrary single-photon path qubits

Preparation and tomographic reconstruction of arbitrary single-photon path qubits Preparation and tomographic reconstruction of arbitrary single-photon path qubits So-Young Baek,2, and Yoon-Ho Kim, Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang,

More information

Heterogeneous teleportation with laser and quantum light sources

Heterogeneous teleportation with laser and quantum light sources Heterogeneous teleportation with laser and quantum light sources R. M. Stevenson 1 *, J. Nilsson 1, A. J. Bennett 1, J. Skiba-Szymanska 1, I. Farrer 2, D. A. Ritchie 2, A. J. Shields 1 * 1 Toshiba Research

More information

The Conversion Revolution: Down, Up and Sideways

The Conversion Revolution: Down, Up and Sideways The Conversion Revolution: Down, Up and Sideways P. G. Kwiat, J. B. Altepeter, J. T. Barreiro, M. E. Goggin, E. Jeffrey, N. A. Peters and A. VanDevender Department of Physics, University of Illinois at

More information

Comparing quantum and classical correlations in a quantum eraser

Comparing quantum and classical correlations in a quantum eraser Comparing quantum and classical correlations in a quantum eraser A. Gogo, W. D. Snyder, and M. Beck* Department of Physics, Whitman College, Walla Walla, Washington 99362, USA Received 14 February 2005;

More information

Remote entanglement of transmon qubits

Remote entanglement of transmon qubits Remote entanglement of transmon qubits 3 Michael Hatridge Department of Applied Physics, Yale University Katrina Sliwa Anirudh Narla Shyam Shankar Zaki Leghtas Mazyar Mirrahimi Evan Zalys-Geller Chen Wang

More information

Quantum Information & Quantum Computing. (Experimental Part) Oliver Benson SoSe, 2016

Quantum Information & Quantum Computing. (Experimental Part) Oliver Benson SoSe, 2016 Quantum Information & Quantum Computing (Experimental Part) Oliver Benson SoSe, 2016 Contents 1 Introduction 5 2 Optical and Cavity QED Implementations 7 2.1 Properties of an optical quantum computer............

More information

An entangled LED driven quantum relay over 1km

An entangled LED driven quantum relay over 1km An entangled LED driven quantum relay over 1km Christiana Varnava 1,2 R. Mark Stevenson 1, J. Nilsson 1, J. Skiba Szymanska 1, B. Dzurnak 1, M. Lucamarini 1, A. J. Bennett 1,M. B. Ward 1, R. V. Penty 2,I.

More information

Experimental One-Way Quantum Computing

Experimental One-Way Quantum Computing Experimental One-Way Quantum Computing P.Walther, K.J.Resch, T.Rudolph, E.Schenck,*, H.Weinfurter 3,4, V.Vedral,5,6, M.Aspelmeyer & A.Zeilinger,7 ¹ Institute of Experimental Physics, University of Vienna,

More information

Quantum process calculus for linear optical quantum computing.

Quantum process calculus for linear optical quantum computing. Quantum process calculus for linear optical quantum computing. Sonja Franke-Arnold 1, Simon J. Gay 2, and Ittoop V. Puthoor 1,2 1 School of Physics and Astronomy and 2 School of Computing Science, University

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION DOI: 1.138/NPHOTON.213.17 Joining the quantum state of two photons into one Supplementary Information Chiara Vitelli, 1, 2 Nicolò Spagnolo, 1 Lorenzo Aparo, 1 Fabio Sciarrino, 1, Enrico Santamato, 3 3,

More information

arxiv: v1 [quant-ph] 24 Jun 2014

arxiv: v1 [quant-ph] 24 Jun 2014 1 Entangling Time-Bin Qubits with a Switch Hiroki Takesue NTT Basic Research Laboratories, NTT Corporation, arxiv:1406.6165v1 [quant-ph] 24 Jun 2014 3-1 Morinosato Wakamiya, Atsugi, Kanagawa, 243-0198,

More information

Polarization preserving ultra fast optical shutter for quantum information processing

Polarization preserving ultra fast optical shutter for quantum information processing Polarization preserving ultra fast optical shutter for quantum information processing Nicoló Spagnolo 1, Chiara itelli 1, Sandro Giacomini 1, Fabio Sciarrino 2,1, and Francesco De Martini 1,3 1 Dipartimento

More information

Title. Author(s)Okamoto, Ryo; Hofmann, Holger F.; Takeuchi, Shigeki; CitationPhysical Review Letters, 95: Issue Date

Title. Author(s)Okamoto, Ryo; Hofmann, Holger F.; Takeuchi, Shigeki; CitationPhysical Review Letters, 95: Issue Date Title Demonstration of an Otical Quantum Controlled-NOT G Author(s)Okamoto, Ryo; Hofmann, Holger F.; Takeuchi, Shigeki; CitationPhysical Review Letters, 95: 210506 Issue Date 2005-11-18 Doc URL htt://hdl.handle.net/2115/5550

More information

One-Way Quantum Computing Andrew Lopez. A commonly used model in the field of quantum computing is the Quantum

One-Way Quantum Computing Andrew Lopez. A commonly used model in the field of quantum computing is the Quantum One-Way Quantum Computing Andrew Lopez A commonly used model in the field of quantum computing is the Quantum Circuit Model. The Circuit Model can be thought of as a quantum version of classical computing,

More information

Teleportation of Quantum States (1993; Bennett, Brassard, Crepeau, Jozsa, Peres, Wootters)

Teleportation of Quantum States (1993; Bennett, Brassard, Crepeau, Jozsa, Peres, Wootters) Teleportation of Quantum States (1993; Bennett, Brassard, Crepeau, Jozsa, Peres, Wootters) Rahul Jain U. Waterloo and Institute for Quantum Computing, rjain@cs.uwaterloo.ca entry editor: Andris Ambainis

More information

arxiv:quant-ph/ v2 14 Mar 2006

arxiv:quant-ph/ v2 14 Mar 2006 Linear optical quantum computing Pieter Kok, 1,, W.J. Munro, Kae Nemoto, 3 T.C. Ralph, 4 Jonathan P. Dowling, 5,6 and G.J. Milburn 4 1 Department of Materials, Oxford University, Oxford OX1 3PH, UK Hewlett-Packard

More information

Problem Set: TT Quantum Information

Problem Set: TT Quantum Information Problem Set: TT Quantum Information Basics of Information Theory 1. Alice can send four messages A, B, C, and D over a classical channel. She chooses A with probability 1/, B with probability 1/4 and C

More information

Controlling the Interaction of Light and Matter...

Controlling the Interaction of Light and Matter... Control and Measurement of Multiple Qubits in Circuit Quantum Electrodynamics Andreas Wallraff (ETH Zurich) www.qudev.ethz.ch M. Baur, D. Bozyigit, R. Bianchetti, C. Eichler, S. Filipp, J. Fink, T. Frey,

More information

Experimental characterization of universal one-way quantum computing arxiv: v1 [quant-ph] 1 May 2013

Experimental characterization of universal one-way quantum computing arxiv: v1 [quant-ph] 1 May 2013 Experimental characterization of universal one-way quantum computing arxiv:1305.0212v1 [quant-ph] 1 May 2013 B. A. Bell, 1 M. S. Tame, 2 A. S. Clark, 3 R. W. Nock, 1 W. J. Wadsworth, 4 and J. G. Rarity

More information

example: e.g. electron spin in a field: on the Bloch sphere: this is a rotation around the equator with Larmor precession frequency ω

example: e.g. electron spin in a field: on the Bloch sphere: this is a rotation around the equator with Larmor precession frequency ω Dynamics of a Quantum System: QM postulate: The time evolution of a state ψ> of a closed quantum system is described by the Schrödinger equation where H is the hermitian operator known as the Hamiltonian

More information

Optical Quantum Information Processing

Optical Quantum Information Processing Optical Quantum Information Processing P. Kwiat An inaccurate history An incomplete progress report An unbiased vision not Anti-Outline Continuous-variable systems Atom-photon systems (cf. Kimble) Hybrid

More information

Quantum Networks with Atomic Ensembles

Quantum Networks with Atomic Ensembles Quantum Networks with Atomic Ensembles Daniel Felinto* dfelinto@df.ufpe.br C.W. Chou, H. Deng, K.S. Choi, H. de Riedmatten, J. Laurat, S. van Enk, H.J. Kimble Caltech Quantum Optics *Presently at Departamento

More information

arxiv: v2 [quant-ph] 25 Nov 2009

arxiv: v2 [quant-ph] 25 Nov 2009 Time gating of heralded single photons for atomic memories B. Melholt Nielsen, 1 J. S. Neergaard-Nielsen, 1 and E. S. Polzik 1, arxiv:0909.0646v2 [quant-ph] 25 Nov 2009 1 Niels Bohr Institute, Danish National

More information

Entangling efficiency of linear-optical quantum gates

Entangling efficiency of linear-optical quantum gates Entangling efficiency of linear-optical quantum gates Karel Lemr, 1 Antonín Černoch, 1 Jan Soubusta, 1 and Miloslav Dušek 1 Institute of Physics of Academy of Sciences of the Czech Republic, Joint Laboratory

More information

LOWELL JOURNAL. MUST APOLOGIZE. such communication with the shore as Is m i Boimhle, noewwary and proper for the comfort

LOWELL JOURNAL. MUST APOLOGIZE. such communication with the shore as Is m i Boimhle, noewwary and proper for the comfort - 7 7 Z 8 q ) V x - X > q - < Y Y X V - z - - - - V - V - q \ - q q < -- V - - - x - - V q > x - x q - x q - x - - - 7 -» - - - - 6 q x - > - - x - - - x- - - q q - V - x - - ( Y q Y7 - >»> - x Y - ] [

More information

Conditional linear-optical measurement schemes generate effective photon nonlinearities

Conditional linear-optical measurement schemes generate effective photon nonlinearities PHYSICAL REVIEW A 68, 042314 2003 Conditional linear-optical measurement schemes generate effective photon nonlinearities G. G. Lapaire, 1 Pieter Kok, 2 Jonathan P. Dowling, 2 and J. E. Sipe 1 1 Department

More information

(12) United States Patent (10) Patent No.: US 7,173,272 B2

(12) United States Patent (10) Patent No.: US 7,173,272 B2 US007 73272B2 (2) United States Patent (0) Patent No.: US 7,73,272 B2 Ralph (45) Date of Patent: Feb. 6, 2007 (54) QUANTUM OPTICAL CNOT GATE (56) References Cited (75) Inventor: Tuptly Cameron Ralph, Queensland

More information

Francesco Vedovato Admission to III year 22 September 2017

Francesco Vedovato Admission to III year 22 September 2017 QUANTUM OPTICS EXPERIMENTS IN SPACE Francesco Vedovato Admission to III year 22 September 217 Research project goal Study the feasibility, from the theoretical and experimental point of view, of different

More information

New schemes for manipulating quantum states using a Kerr cell. Istituto Elettrotecnico Nazionale Galileo Ferraris, Str. delle Cacce 91, I Torino

New schemes for manipulating quantum states using a Kerr cell. Istituto Elettrotecnico Nazionale Galileo Ferraris, Str. delle Cacce 91, I Torino New schemes for manipulating quantum states using a Kerr cell Marco Genovese and C.Novero Istituto Elettrotecnico Nazionale Galileo Ferraris, Str. delle Cacce 91, I-10135 Torino Recently, Quantum Non Demolition

More information

Multipath and polarization entanglement of photons

Multipath and polarization entanglement of photons Multipath and polarization entanglement of photons. Chiuri, G. Vallone*, P. Mataloni Quantum Optics Group, Dipartimento di Fisica Sapienza Università di Roma, 0085, Italy INO CNR, 5025 Firenze, Italy *

More information

How to use the simulator

How to use the simulator How to use the simulator Overview The application allows for the exploration of four quantum circuits in all. Each simulator grants the user a large amount of freedom in experments they wish to conduct.

More information

Heralded Generation of Ultrafast Single Photons in Pure Quantum States

Heralded Generation of Ultrafast Single Photons in Pure Quantum States Heralded Generation of Ultrafast Single Photons in Pure Quantum States Peter J. Mosley, 1, Jeff S. Lundeen, 1 Brian J. Smith, 1 Piotr Wasylczyk, 1, 2 Alfred B. U Ren, 3 Christine Silberhorn, 4 and Ian

More information

Motion and motional qubit

Motion and motional qubit Quantized motion Motion and motional qubit... > > n=> > > motional qubit N ions 3 N oscillators Motional sidebands Excitation spectrum of the S / transition -level-atom harmonic trap coupled system & transitions

More information

arxiv: v3 [quant-ph] 14 Apr 2009

arxiv: v3 [quant-ph] 14 Apr 2009 Tailored photon-pair generation in optical fibers Offir Cohen, Jeff S. Lundeen, Brian J. Smith, Graciana Puentes, Peter J. Mosley, and Ian A. Walmsley Clarendon Laboratory, University of Oxford, Parks

More information

Optimal cloning of photonic quantum states

Optimal cloning of photonic quantum states Optimal cloning of photonic quantum states Fabio Sciarrino Dipartimento di Fisica, Sapienza Università di Roma Istituto Nazionale di Ottica, CNR http:\\quantumoptics.phys.uniroma1.it Motivations... Quantum

More information

Memory-built-in quantum teleportation with photonic and

Memory-built-in quantum teleportation with photonic and Memory-built-in quantum teleportation with photonic and atomic qubits Yu-Ao Chen,2, Shuai Chen, Zhen-Sheng Yuan,2, Bo Zhao, Chih-Sung Chuu, Jörg Schmiedmayer 3 & Jian-Wei Pan,2 Physikalisches Institut,

More information

Quantum Optical Computing, Imaging, and Metrology

Quantum Optical Computing, Imaging, and Metrology Quantum Optical Computing, Imaging, and Metrology Ionatán Jönåthán Pádraig Påtrîck O Dúnlaing Døwlîng Hearne Institute for Theoretical Physics Quantum Science and Technologies Group Louisiana State University

More information

Quantum Repeaters and Memories

Quantum Repeaters and Memories Quantum Repeaters and Memories Nicolas Gisin and Mikael Afzelius Group of Applied Physics Geneva University, Switzerland Quantum Repeaters Quantum memories 1 click Quantum Entanglement 1 QKD over 307 km

More information

Atomic vapor quantum memory for a photonic polarization qubit

Atomic vapor quantum memory for a photonic polarization qubit Atomic vapor quantum memory for a photonic polarization qubit Young-Wook Cho 1,2 and Yoon-Ho Kim 1,3 1 Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, 790-784, Korea

More information

Computation with coherent states via teleportations to and from a quantum bus

Computation with coherent states via teleportations to and from a quantum bus PHYSICAL REVIEW A 78, 06314 008 Computation with coherent states via teleportations to and from a quantum bus Marcus Silva 1, * and Casey R. Myers,1, 1 Department of Physics and Astronomy, and Institute

More information

Content of the lectures

Content of the lectures Content of the lectures Lecture 1 Introduction to quantum noise, squeezed light and entanglement generation Quantization of light, Continuous-variable, Homodyne detection, Gaussian states, Optical parametric

More information

A Superluminal communication solution based on Four-photon entanglement

A Superluminal communication solution based on Four-photon entanglement A Superluminal communication solution based on Four-photon entanglement Jia-Run Deng cmos001@163.com Abstract : Based on the improved design of Four-photon entanglement device and the definition of Encoding

More information

Quantum Photonics Renaissance: from Quantum Clouds to Boson Sampling

Quantum Photonics Renaissance: from Quantum Clouds to Boson Sampling Quantum Photonics Renaissance: from Quantum Clouds to Boson Sampling Philip Walther Faculty of Physics University of Vienna Austria GDR - IQFA / 2nd Workshop Grenoble, France 28-30 November 2012 Encoding

More information

Quantum Computing with Very Noisy Gates

Quantum Computing with Very Noisy Gates Quantum Computing with Very Noisy Gates Produced with pdflatex and xfig Fault-tolerance thresholds in theory and practice. Available techniques for fault tolerance. A scheme based on the [[4, 2, 2]] code.

More information

FIG. 16: A Mach Zehnder interferometer consists of two symmetric beam splitters BS1 and BS2

FIG. 16: A Mach Zehnder interferometer consists of two symmetric beam splitters BS1 and BS2 Lecture 11: Application: The Mach Zehnder interferometer Coherent-state input Squeezed-state input Mach-Zehnder interferometer with coherent-state input: Now we apply our knowledge about quantum-state

More information

High-speed linear optics quantum computing using active feed-forward

High-speed linear optics quantum computing using active feed-forward High-speed linear optics quantum computing using active feed-forward Robert Prevedel 1, Philip Walther 1,2, Felix Tiefenbacher 1,3, Pascal Böhi 1, *, Rainer Kaltenbaek 1, Thomas Jennewein 3 & Anton Zeilinger

More information