Quantum Repeaters and Memories

Size: px
Start display at page:

Download "Quantum Repeaters and Memories"

Transcription

1 Quantum Repeaters and Memories Nicolas Gisin and Mikael Afzelius Group of Applied Physics Geneva University, Switzerland Quantum Repeaters Quantum memories 1 click Quantum Entanglement 1

2 QKD over 307 km with real time secret key distillation and finite InGaAs key APDs analysis Integration into ATCA blades Standard telecom format B. Korzh, C. W. Lim et al., Nature Photonics 9, (2015)

3 QKD over 307 km with real time secret key distillation and finite InGaAs key APDs analysis Integration into ATCA blades A vision of a QKD engine producing 1 Gb/s of provably secret bits is on the horizon. Standard telecom format B. Korzh, C. W. Lim et al., Nature Photonics 9, (2015)

4 How far can one send a photon? Secret Key Rate Rate 10MHz P2P + WDM +4 Years 1MHz 100kHz Today Lab Today Commercial 10kHz 1kHz 1Hz Distance [km] There is a hard wall around 400 km! With the best optical fibers, perfect noise-free detectors and ideal 10 GHz single-photon sources, it would take centuries to send 1 qubit over 1000 km! 4

5 Quantum teleportation Entanglement = quantum teleportation channel 5

6 Beating the hard wall: Teleportation of entanglement Q teleportation Entanglement Entanglement Entanglement over twice the distance Entanglement between photons that never interacted Q Teleportation over long distances: Nature 421, 509 (2003) Teleportation of Entanglement at telecom wavelength: PRA 71, (2005) 6

7 Teleportation of Entanglement This sounds like magic. I don t want to base my security on magic. The fact is that it is physics and you can use it without understanding entanglement and teleporation. 7

8 Quantum Repeater - Requirements A Z Distribution of entanglement over long distances Quantum memories Teleportation of telecom 8

9 Distribution of entanglement over long distances N W E S Satigny 18.0 km Jussy δ Geneva Nature 454, 861,

10 N-photon quantum communication: quantum networks, quantum internet Q repeaters We need the capability to store entanglement: Developing quantum memories is a grand challenge! 10

11 Time to distribute an entangled pair (s) How far can one send a photon? Q repeaters with atomic ensembles and linear optics Direct transmission DLCZ, Nature (2001) Too slow Sangouard et al, PRA (2008) 11

12 Time to distribute an entangled pair (s) How far can one send a photon? Storing N modes in ONE memory using time, spatial or frequency multiplexing will reduce this time with a factor N Q repeaters with atomic ensembles and linear optics ms / Direct transmission DLCZ, Nature (2001) Sangouard et al, PRA (2008) 12

13 Quantum Repeater - Requirements A Z Distribution of entanglement over long distances Multi-mode quantum memories Teleportation of telecom C. Simon, H. de Riedmatten, M. Afzelius, N. Sangouard, H. Zbinden and N. Gisin, Phys. Rev. Lett. 98, (2007) 13

14 Quantum memory Goal: controlled and reversible mapping of a photonic quantum state onto a long lived atomic ensemble. photon in crystal doped with billions of ions photon out at desired time in same Q state The quantum state of the photon is now coded Today s in a huge efficiencies entangled states of billions of «atoms» 20 % Nature 456, 773,

15 Absorption Absorption N j 1 e ikr i t 1... e j... Δ continuous Dephasing Controlling the Dephasing! j e j g Im( P j ) g N P j e i t j Re( P j ) Frequency Δ periodic Rephasing Im( P j ) Re( P j ) Frequency m k, 0, 1, 2,... k m k Rephasing after T 1 15

16 Entanglement-preserving quantum memory H HH H VV V V (a) 100 Normalized intensity (arb. units) input Optical depth transmitted d d Optical detuning [MHz] echo 20% Bandwidth: 680 MHz Time ( s) 0

17 Teleportation from a telecom photon to a memory over 25 km 12.5 km 883 nm Analysis of teleported qubit D km Qubit to teleport D 2 D 1 D 2 C. Clausen, F. Bussières, A. Tiranov, M. Afzelius et. al., Nature Photonics 8, 775 (2014)

18 normalized counts GAP Optique Geneva University normalized counts Multi-mode storage in Nd 3+ :Y 2 SiO 5 n < 1 per mode Input modes Mapping 64 input modes onto one crystal Normalized counts1.0output modes x time modes can be used to code 32 time-bin qubits! Input mode Time ( s) Output mode x time [ s] Input mode Output mode x time [ s] I. Usmani et al., Nature Communications 1,12 (2010) 18

19 Quantum memory - dream and reality Property Desired performance Efficiency State-of-the-art (quantum & classical state storage) Fidelity* Multi-mode storage capacity high Pulse duration ns ~100 ps Storage time > sec >40 sec Universal entanglementpreserving Complexity simple 64 (1000) modes atomic vapor & RE-crystal Different storage media and protocols (for qubits) * post selected Hedges et al, Nature (2010); Hosseini et al, Nature Phys. (2011), Usmani et al, Nature Comm (2010), Saglamyurek, WT et al, Nature (2011), Heinze et al, Phys Rev Lett. (2013), Jin et al, quant-ph (2010), Clausen et al, Nature (2011), Rempe et al., Nature (2011), Lvovsky, Sanders, WT, Nature Phot. (2010) 19

20 Conclusions Direct Quantum Key Distribution over telecom optical fibers is ultimately limited to about km. Quantum Repeaters require - long distance distribution of entanglement, - multi-mode quantum memories - Entanglement swapping at telecom. Towards a multimode quantum memory Ensembles of atoms or ions provide a promising light-matter quantum interface at the single photon level with excellent (conditional) fidelity and multimode capability. Second-long quantum memories are on the horizon (a few years)! Then it will only be a matter of (non-trivial) engineering. 20

21 REPEATER RELAY Longer distances Q relays, repeater & memory * Bell measurement.. * entanglement entanglement * Bell measurement entanglement * *?? memory Bell measurement. QND measurement + Q memory J. D. Franson et al, PRA 66,052307(2002); D. Collins et al., J.Mod.Opt. 52,735,2005 H. Briegel, W. Dür, J. I. Cirac and P. Zoller, Phys. Rev. Lett. 81, 5932 (1998) Teleportation QND measurement 21

22 Bit rate of the 1 st transatlantic telegram How long did it take to transmit this congratulation in 1858? "The Queen desires to congratulate the President upon the successful completion of this great international work, in which the Queen has taken the deepest interest. The Queen is convinced that the President will join with her in fervently hoping that the electric cable, which now connects Great Britain with the United States, will prove an additional link between the two places whose friendship is founded upon their common interests and reciprocal esteem. The Queen has much pleasure in thus directly communicating with the President, and in renewing to him her best wishes for the prosperity of the United States." 17 hours! (1 letter took 2 minutes)

23 Entanglement-preserving quantum memory CHSH = 2.52±0.13 nonlocal quantum correlations

24 Coherent spin control for long-lived quantum memories Counts/min 50 Input / +T S // x5 Output 5% Time ( s) Memory efficiency (%) 10 Mean photon number in input Optical-to-spin conversion : 50% 4 2 Mean spin excitation 1 stored among Eu ions Spin-wave storage time T S (ms) High SNR=10 2 in output!

25 Cavity-enhanced AFC quantum memories Experiment by the group of Stefan Kröll (Lund, Sweden) Mirror coatings on crystal surfaces Theory: M. Afzelius and C. Simon, PRA 82, (2010) 56% efficiency (<1% efficiency without cavity) M. Sabooni et al., PRL 110, (2013)

Quantum Communication

Quantum Communication Quantum Communication Nicolas Gisin, Hugo Zbinden, Mikael Afzelius Group of Applied Physics Geneva University, Switzerland Nonlocal Secret Randomness Quantum Key Distribution Quantum Memories and Repeaters

More information

QuReP. Quantum Repeaters for Long Distance Fibre-Based Quantum Communication. Rob Thew. Coordinator: Nicolas Gisin

QuReP. Quantum Repeaters for Long Distance Fibre-Based Quantum Communication. Rob Thew. Coordinator: Nicolas Gisin QuReP Quantum Repeaters for Long Distance Fibre-Based Quantum Communication Rob Thew Coordinator: Nicolas Gisin 1. Direct transmission Photon source Alice 2. Entanglement distribution: α Goal is to distribute

More information

Quantum Repeaters. Hugues de Riedmatten

Quantum Repeaters. Hugues de Riedmatten Quantum Repeaters Hugues de Riedmatten ICFO-The Institute of Photonic Sciences ICREA- Catalan Institute for Research and Advanced studies Tutorial, QCRYPT 2015, Tokyo ICFO-The Institute of Photonic Sciences

More information

arxiv: v3 [quant-ph] 10 Nov 2010

arxiv: v3 [quant-ph] 10 Nov 2010 Quantum Storage of Photonic Entanglement in a Crystal Christoph Clausen, Imam Usmani, Félix Bussières, Nicolas Sangouard, Mikael Afzelius, Hugues de Riedmatten, and Nicolas Gisin Group of Applied Physics,

More information

Cristaux dopés terres rares pour les mémoires quantiques

Cristaux dopés terres rares pour les mémoires quantiques Cristaux dopés terres rares pour les mémoires quantiques A. Ferrier, M. Lovric, Ph. Goldner D. Suter M.F. Pascual-Winter, R. Cristopher Tongning, Th. Chanelière et J.-L. Le Gouët Quantum Memory? Storage

More information

Quantum applications and spin off discoveries in rare earth crystals

Quantum applications and spin off discoveries in rare earth crystals Quantum applications and spin off discoveries in rare earth crystals Stefan Kröll Dept. of Physics, Lund University Knut och Alice Wallenbergs Stiftelse Funded by the European Union Rare earth doped crystals

More information

arxiv: v1 [quant-ph] 3 Oct 2008

arxiv: v1 [quant-ph] 3 Oct 2008 A solid state light-matter interface at the single photon level Hugues de Riedmatten, Mikael Afzelius, Matthias U. Staudt, Christoph Simon, and Nicolas Gisin Group of Applied Physics, University of Geneva,

More information

Quantum Communication with Atomic Ensembles

Quantum Communication with Atomic Ensembles Quantum Communication with Atomic Ensembles Julien Laurat jlaurat@caltech.edu C.W. Chou, H. Deng, K.S. Choi, H. de Riedmatten, D. Felinto, H.J. Kimble Caltech Quantum Optics FRISNO 2007, February 12, 2007

More information

Entanglement distillation between solid-state quantum network nodes

Entanglement distillation between solid-state quantum network nodes Entanglement distillation between solid-state quantum network nodes Norbert Kalb, A. A. Reiserer, P. C. Humphreys, J. J. W. Bakermans, S. J. Kamerling, N. H. Nickerson, S. C. Benjamin, D. J. Twitchen,

More information

Quantum Memory with Atomic Ensembles

Quantum Memory with Atomic Ensembles Lecture Note 5 Quantum Memory with Atomic Ensembles 04.06.2008 Difficulties in Long-distance Quantum Communication Problems leads Solutions Absorption (exponentially) Decoherence Photon loss Degrading

More information

Differential Phase Shift Quantum Key Distribution and Beyond

Differential Phase Shift Quantum Key Distribution and Beyond Differential Phase Shift Quantum Key Distribution and Beyond Yoshihisa Yamamoto E. L. Ginzton Laboratory, Stanford University National Institute of Informatics (Tokyo, Japan) DPS-QKD system Protocol System

More information

arxiv:quant-ph/ v1 21 Apr 2004

arxiv:quant-ph/ v1 21 Apr 2004 Distribution of time-bin entangled qubits over 5 km of optical fiber I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, M. Legré and N. Gisin Group of Applied Physics-Optique, University of Geneva,

More information

Quantum Networks with Atomic Ensembles

Quantum Networks with Atomic Ensembles Quantum Networks with Atomic Ensembles Daniel Felinto* dfelinto@df.ufpe.br C.W. Chou, H. Deng, K.S. Choi, H. de Riedmatten, J. Laurat, S. van Enk, H.J. Kimble Caltech Quantum Optics *Presently at Departamento

More information

Quantum communications

Quantum communications 06.0.05 Quantum communications Quantum teleportation Trapping of single atoms Atom-photon entanglement Entanglement of remote single atoms Elementary quantum network Telecommunication today Secure communication

More information

Quantum Teleportation Pt. 1

Quantum Teleportation Pt. 1 Quantum Teleportation Pt. 1 PHYS 500 - Southern Illinois University April 17, 2018 PHYS 500 - Southern Illinois University Quantum Teleportation Pt. 1 April 17, 2018 1 / 13 Types of Communication In the

More information

S.A.Moiseev 1,2 *, and V.A.Skrebnev 2 **

S.A.Moiseev 1,2 *, and V.A.Skrebnev 2 ** Short cycle pulse sequence for dynamical decoupling of local fields and dipole-dipole interactions S.A.Moiseev 1,2 *, and V.A.Skrebnev 2 ** 1 Quantum Center, Kazan National Research Technical University,

More information

How far can one send a photon?

How far can one send a photon? Front. Phys. 10(6), 100307 (2015) DOI 10.1007/s11467-015-0485-x REVIEW ARTICLE How far can one send a photon? Nicolas Gisin Group of Applied Physics, University of Geneva, 1211 Geneva 4, Switzerland E-mail:

More information

arxiv: v2 [quant-ph] 26 Apr 2018

arxiv: v2 [quant-ph] 26 Apr 2018 Coherence time of over a second in a telecom-compatible quantum memory storage material Miloš Rančić, 1, Morgan P. Hedges, Rose L. Ahlefeldt, 1 and Matthew J. Sellars 1 1 Centre for Quantum Computation

More information

Problem Set: TT Quantum Information

Problem Set: TT Quantum Information Problem Set: TT Quantum Information Basics of Information Theory 1. Alice can send four messages A, B, C, and D over a classical channel. She chooses A with probability 1/, B with probability 1/4 and C

More information

Do we need quantum light to test quantum memory? M. Lobino, C. Kupchak, E. Figueroa, J. Appel, B. C. Sanders, Alex Lvovsky

Do we need quantum light to test quantum memory? M. Lobino, C. Kupchak, E. Figueroa, J. Appel, B. C. Sanders, Alex Lvovsky Do we need quantum light to test quantum memory? M. Lobino, C. Kupchak, E. Figueroa, J. Appel, B. C. Sanders, Alex Lvovsky Outline EIT and quantum memory for light Quantum processes: an introduction Process

More information

Multimode quantum memory based on atomic frequency combs

Multimode quantum memory based on atomic frequency combs PHYSICAL REVIEW A 79, 052329 2009 Multimode quantum memory based on atomic frequency combs Mikael Afzelius,* Christoph Simon, Hugues de Riedmatten, and Nicolas Gisin Group of Applied Physics, University

More information

EXPERIMENTAL DEMONSTRATION OF QUANTUM KEY

EXPERIMENTAL DEMONSTRATION OF QUANTUM KEY EXPERIMENTAL DEMONSTRATION OF QUANTUM KEY DISTRIBUTION WITH ENTANGLED PHOTONS FOLLOWING THE PING- PONG CODING PROTOCOL Martin Ostermeyer, Nino Walenta University of Potsdam, Institute of Physics, Nonlinear

More information

Content of the lectures

Content of the lectures Content of the lectures Lecture 1 Introduction to quantum noise, squeezed light and entanglement generation Quantization of light, Continuous-variable, Homodyne detection, Gaussian states, Optical parametric

More information

Quantum Information Transfer and Processing Miloslav Dušek

Quantum Information Transfer and Processing Miloslav Dušek Quantum Information Transfer and Processing Miloslav Dušek Department of Optics, Faculty of Science Palacký University, Olomouc Quantum theory Quantum theory At the beginning of 20 th century about the

More information

Quantum non-demolition measurements:

Quantum non-demolition measurements: Quantum non-demolition measurements: One path to truly scalable quantum computation Kae Nemoto Tim Spiller Sean Barrett Ray Beausoleil Pieter Kok Bill Munro HP Labs (Bristol) Why should optical quantum

More information

Quantum Communication. Serge Massar Université Libre de Bruxelles

Quantum Communication. Serge Massar Université Libre de Bruxelles Quantum Communication Serge Massar Université Libre de Bruxelles Plan Why Quantum Communication? Prepare and Measure schemes QKD Using Entanglement Teleportation Communication Complexity And now what?

More information

arxiv: v1 [quant-ph] 14 Jun 2015

arxiv: v1 [quant-ph] 14 Jun 2015 A telecom-wavelength atomic quantum memory in optical fiber for heralded polarization qubits arxiv:1506.04431v1 [quant-ph] 14 Jun 2015 Jeongwan Jin, 1, Erhan Saglamyurek, 1 Marcel.lí Grimau Puigibert,

More information

Solid-state quantum communications and quantum computation based on single quantum-dot spin in optical microcavities

Solid-state quantum communications and quantum computation based on single quantum-dot spin in optical microcavities CQIQC-V -6 August, 03 Toronto Solid-state quantum communications and quantum computation based on single quantum-dot spin in optical microcavities Chengyong Hu and John G. Rarity Electrical & Electronic

More information

Labs 3-4: Single-photon Source

Labs 3-4: Single-photon Source Labs 3-4: Single-photon Source Lab. 3. Confocal fluorescence microscopy of single-emitter Lab. 4. Hanbury Brown and Twiss setup. Fluorescence antibunching 1 Labs 3-4: Single-photon Source Efficiently produces

More information

Entanglement and Quantum Teleportation

Entanglement and Quantum Teleportation Entanglement and Quantum Teleportation Stephen Bartlett Centre for Advanced Computing Algorithms and Cryptography Australian Centre of Excellence in Quantum Computer Technology Macquarie University, Sydney,

More information

Quantum Memory in Atomic Ensembles BY GEORG BRAUNBECK

Quantum Memory in Atomic Ensembles BY GEORG BRAUNBECK Quantum Memory in Atomic Ensembles BY GEORG BRAUNBECK Table of contents 1. Motivation 2. Quantum memory 3. Implementations in general 4. Implementation based on EIT in detail QUBIT STORAGE IN ATOMIC ENSEMBLES

More information

Quantum secure direct communication with quantum. memory

Quantum secure direct communication with quantum. memory Quantum secure direct communication with quantum memory Wei Zhang 1,3, Dong-Sheng Ding 1,3*, Yu-Bo Sheng 2, Lan Zhou 2, Bao-Sen Shi 1,3 and Guang-Can Guo 1,3 1 Key Laboratory of Quantum Information, Chinese

More information

Towards Scalable Linear-Optical Quantum Computers

Towards Scalable Linear-Optical Quantum Computers Quantum Information Processing, Vol. 3, Nos. 1 5, October 2004 ( 2004) Towards Scalable Linear-Optical Quantum Computers J. P. Dowling, 1,5 J. D. Franson, 2 H. Lee, 1,4 and G. J. Milburn 3 Received February

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Quantum teleportation across a metropolitan fibre network Raju Valivarthi 1, Marcel.li Grimau Puigibert 1, Qiang Zhou 1, Gabriel H. Aguilar 1, Varun B. Verma 3, Francesco Marsili

More information

arxiv: v1 [quant-ph] 7 May 2012

arxiv: v1 [quant-ph] 7 May 2012 Temporally multiplexed storage of images in a Gradient Echo Memory arxiv:1205.1495v1 [quant-ph] 7 May 2012 Quentin Glorieux*, Jeremy B. Clark, Alberto M. Marino, Zhifan Zhou, and Paul D. Lett Quantum Measurement

More information

Storage of hyperentanglement in a solid-state quantum memory

Storage of hyperentanglement in a solid-state quantum memory Research Article Vol., No. 4 / April 015 / Optica 79 Storage of hyperentanglement in a solid-state quantum memory ALEXEY TIRANOV, 1, *JONATHAN LAVOIE, 1 ALBAN FERRIER,,3 PHILIPPE GOLDNER, 3 VARUN B. VERMA,

More information

PROJECT FINAL REPORT

PROJECT FINAL REPORT PROJECT FINAL REPORT Grant Agreement number: 247743 Project acronym: QUREP Project title: Quantum Repeaters for Long Distance Fibre-Based Quantum Communication Funding Scheme: ICT-2009.3.8 Organic Photonics

More information

Entanglement. arnoldzwicky.org. Presented by: Joseph Chapman. Created by: Gina Lorenz with adapted PHYS403 content from Paul Kwiat, Brad Christensen

Entanglement. arnoldzwicky.org. Presented by: Joseph Chapman. Created by: Gina Lorenz with adapted PHYS403 content from Paul Kwiat, Brad Christensen Entanglement arnoldzwicky.org Presented by: Joseph Chapman. Created by: Gina Lorenz with adapted PHYS403 content from Paul Kwiat, Brad Christensen PHYS403, July 26, 2017 Entanglement A quantum object can

More information

Practical Quantum Key Distribution

Practical Quantum Key Distribution Leopold-Franzens-Universität Innsbruck Institut für Experimentalphysik Technikerstrasse 25 http://www.uibk.ac.at Practical Quantum Key Distribution Gregor Weihs Contents QKD Protocols Implementations of

More information

Experimental Demonstration of Spinor Slow Light

Experimental Demonstration of Spinor Slow Light Experimental Demonstration of Spinor Slow Light Ite A. Yu Department of Physics Frontier Research Center on Fundamental & Applied Sciences of Matters National Tsing Hua University Taiwan Motivation Quantum

More information

QUANTUM INFORMATION with light and atoms. Lecture 2. Alex Lvovsky

QUANTUM INFORMATION with light and atoms. Lecture 2. Alex Lvovsky QUANTUM INFORMATION with light and atoms Lecture 2 Alex Lvovsky MAKING QUANTUM STATES OF LIGHT 1. Photons 2. Biphotons 3. Squeezed states 4. Beam splitter 5. Conditional measurements Beam splitter transformation

More information

Title Experimental long-distance quantum secure direct communication

Title Experimental long-distance quantum secure direct communication Title Experimental long-distance quantum secure direct communication The authors Feng Zhu, Tsinghua National Laboratory for Information Science and Technology, Department of Electronic Engineering, Tsinghua

More information

Quantum computation and quantum information

Quantum computation and quantum information Quantum computation and quantum information Chapter 7 - Physical Realizations - Part 2 First: sign up for the lab! do hand-ins and project! Ch. 7 Physical Realizations Deviate from the book 2 lectures,

More information

Physics is becoming too difficult for physicists. David Hilbert (mathematician)

Physics is becoming too difficult for physicists. David Hilbert (mathematician) Physics is becoming too difficult for physicists. David Hilbert (mathematician) Simple Harmonic Oscillator Credit: R. Nave (HyperPhysics) Particle 2 X 2-Particle wave functions 2 Particles, each moving

More information

Quantum computing and quantum communication with atoms. 1 Introduction. 2 Universal Quantum Simulator with Cold Atoms in Optical Lattices

Quantum computing and quantum communication with atoms. 1 Introduction. 2 Universal Quantum Simulator with Cold Atoms in Optical Lattices Quantum computing and quantum communication with atoms L.-M. Duan 1,2, W. Dür 1,3, J.I. Cirac 1,3 D. Jaksch 1, G. Vidal 1,2, P. Zoller 1 1 Institute for Theoretical Physics, University of Innsbruck, A-6020

More information

A Hybrid Quantum Memory Enabled Network at Room Temperature

A Hybrid Quantum Memory Enabled Network at Room Temperature A Hybrid Quantum Memory Enabled Network at Room Temperature Xiao-Ling Pang, 1,2 Ai-Lin Yang, 1,2 Jian-Peng Dou, 1,2 Hang Li, 1,2 Chao-Ni Zhang, 1,2 Eilon Poem, 3 Dylan J. Saunders, 3 Hao Tang, 1,2 Joshua

More information

Are there Quantum Effects Coming from Outside Space-Time? Nonlocality, Free Will & no-many-worlds

Are there Quantum Effects Coming from Outside Space-Time? Nonlocality, Free Will & no-many-worlds Are there Quantum Effects Coming from Outside Space-Time? Nonlocality, Free Will & no-many-worlds x Nicolas Gisin GAP, University of Geneva, Switzerland y Alice a b 1 x Inputs: free choices y Alice Bob

More information

Toward the Generation of Bell Certified Randomness Using Photons

Toward the Generation of Bell Certified Randomness Using Photons Toward the Generation of Bell Certified Randomness Using Photons Alessandro Cerè, Siddarth Koduru Josh, Chen Ming Chia, Jean-Daniel Bancal, Lana Sheridan, Valerio Scarani, Christian Kurtsiefer Quantum

More information

arxiv:quant-ph/ v3 5 Feb 2004

arxiv:quant-ph/ v3 5 Feb 2004 EXPERIMENTAL REALIZATION OF ENTANGLED QUTRITS FOR QUANTUM COMMUNICATION arxiv:quant-ph/0307122 v3 5 Feb 2004 R. Thew 1 A. Acín 1,2, H. Zbinden 1 and N. Gisin 1 1 Group of Applied Physics, University of

More information

New Results on Single-Photon Up-Conversion

New Results on Single-Photon Up-Conversion New Results on Single-Photon Up-Conversion Aaron P. VanDevender and Paul G. Kwiat University of Illinois, 1110 W Green St., Urbana, IL, USA ABSTRACT The process of up-conversion is shown to enable superior

More information

Quantum Memory with Atomic Ensembles. Yong-Fan Chen Physics Department, Cheng Kung University

Quantum Memory with Atomic Ensembles. Yong-Fan Chen Physics Department, Cheng Kung University Quantum Memory with Atomic Ensembles Yong-Fan Chen Physics Department, Cheng Kung University Outline Laser cooling & trapping Electromagnetically Induced Transparency (EIT) Slow light & Stopped light Manipulating

More information

A Multiplexed Quantum Memory

A Multiplexed Quantum Memory A Multiplexed Quantum Memory S.-Y. Lan 1, A. G. Radnaev 1, O. A. Collins 1, D. N. Matsukevich 2,T.A. B. Kennedy 1 and A. Kuzmich 1 1 School of Phycs, Georgia Institute of Technology, Atlanta, Georgia 30332-0430

More information

Amplification, entanglement and storage of microwave radiation using superconducting circuits

Amplification, entanglement and storage of microwave radiation using superconducting circuits Amplification, entanglement and storage of microwave radiation using superconducting circuits Jean-Damien Pillet Philip Kim s group at Columbia University, New York, USA Work done in Quantum Electronics

More information

The Conversion Revolution: Down, Up and Sideways

The Conversion Revolution: Down, Up and Sideways The Conversion Revolution: Down, Up and Sideways P. G. Kwiat, J. B. Altepeter, J. T. Barreiro, M. E. Goggin, E. Jeffrey, N. A. Peters and A. VanDevender Department of Physics, University of Illinois at

More information

Quantum teleportation

Quantum teleportation Quantum teleportation Nicolas Gisin H. Deriedmatten, I. Marcikic, R. Thew, W. Tittel, H. Zbinden Groupe de Physique Appliquée-unité d Optique Université de Genène The science and the science-fiction of

More information

Efficient storage at telecom wavelength for optical quantum memory

Efficient storage at telecom wavelength for optical quantum memory Efficient storage at telecom wavelength for optical quantum memory Julian Dajczgewand Jean-Louis Le Gouët Anne Louchet-Chauvet Thierry Chanelière Collaboration with: Philippe Goldner's group Laboratoire

More information

Entangled State Teleportation

Entangled State Teleportation DELIVERABLE D19 (REPORT) ABSTRACT Entangled State Teleportation Prepared by Thomas Jennewein, and Anton Zeilinger EXPUNIVIE Hugues de Riedmatten, Hugo Zbinden and Nicolas Gisin GAP Optique Quantum teleportation

More information

Distributing Quantum Information with Microwave Resonators in Circuit QED

Distributing Quantum Information with Microwave Resonators in Circuit QED Distributing Quantum Information with Microwave Resonators in Circuit QED M. Baur, A. Fedorov, L. Steffen (Quantum Computation) J. Fink, A. F. van Loo (Collective Interactions) T. Thiele, S. Hogan (Hybrid

More information

arxiv: v2 [quant-ph] 13 Jan 2015

arxiv: v2 [quant-ph] 13 Jan 2015 Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre Erhan Saglamyurek, 1 Jeongwan Jin, 1 Varun B. Verma, 2 Matthew D. Shaw, 3 Francesco Marsili, 3 Sae Woo Nam, 2 Daniel

More information

Quantum information processing with individual neutral atoms in optical tweezers. Philippe Grangier. Institut d Optique, Palaiseau, France

Quantum information processing with individual neutral atoms in optical tweezers. Philippe Grangier. Institut d Optique, Palaiseau, France Quantum information processing with individual neutral atoms in optical tweezers Philippe Grangier Institut d Optique, Palaiseau, France Outline Yesterday s lectures : 1. Trapping and exciting single atoms

More information

Quantum teleportation and nonlocality: the puzzling predictions of entanglement are coming of age

Quantum teleportation and nonlocality: the puzzling predictions of entanglement are coming of age Quantum teleportation and nonlocality: the puzzling predictions of entanglement are coming of age Nicolas Gisin, Sébastien Tanzilli, Wolfgang Tittel To cite this version: Nicolas Gisin, Sébastien Tanzilli,

More information

Practical aspects of QKD security

Practical aspects of QKD security Practical aspects of QKD security Alexei Trifonov Audrius Berzanskis MagiQ Technologies, Inc. Secure quantum communication Protected environment Alice apparatus Optical channel (insecure) Protected environment

More information

MEMORY FOR LIGHT as a quantum black box. M. Lobino, C. Kupchak, E. Figueroa, J. Appel, B. C. Sanders, Alex Lvovsky

MEMORY FOR LIGHT as a quantum black box. M. Lobino, C. Kupchak, E. Figueroa, J. Appel, B. C. Sanders, Alex Lvovsky MEMORY FOR LIGHT as a quantum black box M. Lobino, C. Kupchak, E. Figueroa, J. Appel, B. C. Sanders, Alex Lvovsky Outline EIT and quantum memory for light Quantum processes: an introduction Process tomography

More information

What are single photons good for?

What are single photons good for? This article was downloaded by: [Université de Genève] On: 25 January 2013, t: 01:07 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office:

More information

arxiv: v2 [quant-ph] 15 May 2018

arxiv: v2 [quant-ph] 15 May 2018 arxiv:705.00043v2 [quant-ph] 5 May 208 Parameter regimes for a single sequential quantum repeater F. Rozpędek,, K. Goodenough,, J. Ribeiro, N. Kalb,, 2 V. Caprara Vivoli, A. Reiserer,, 2, 3 R. Hanson,,

More information

arxiv: v2 [quant-ph] 16 Sep 2013

arxiv: v2 [quant-ph] 16 Sep 2013 High-bandwidth quantum memory protocol for storing single photons in rare-earth doped crystals arxiv:1305.1863v2 [quant-ph] 16 Sep 2013 Submitted to: New J. Phys. Valentina Caprara Vivoli, Nicolas Sangouard,

More information

Ping Pong Protocol & Auto-compensation

Ping Pong Protocol & Auto-compensation Ping Pong Protocol & Auto-compensation Adam de la Zerda For QIP seminar Spring 2004 02.06.04 Outline Introduction to QKD protocols + motivation Ping-Pong protocol Security Analysis for Ping-Pong Protocol

More information

Exact analysis and numerical evaluation of QKD over a practical repeater chain

Exact analysis and numerical evaluation of QKD over a practical repeater chain Exact analysis and numerical evaluation of QKD over a practical repeater chain Saikat Guha, Hari Krovi, Christopher A. Fuchs, Zachary Dutton Quantum Information Processing group, Raytheon BBN Technologies,

More information

ROBUST PROBABILISTIC QUANTUM INFORMATION PROCESSING WITH ATOMS, PHOTONS, AND ATOMIC ENSEMBLES

ROBUST PROBABILISTIC QUANTUM INFORMATION PROCESSING WITH ATOMS, PHOTONS, AND ATOMIC ENSEMBLES ADVANCES IN ATOMIC, MOLECULAR AND OPTICAL PHYSICS, VOL. 55 ROBUST PROBABILISTIC QUANTUM INFORMATION PROCESSING WITH ATOMS, PHOTONS, AND ATOMIC ENSEMBLES 11 L.-M. DUAN and C. MONROE 14 FOCUS, MCTP, and

More information

Nonlocality (CH. I & II)

Nonlocality (CH. I & II) Nonlocality (CH. I & II) Nicolas Gisin GAP, University of Geneva, Switzerland 1 x P Ψ (a,b x,y) P Ψ (a x) P Ψ (b y) y Alice Ψ a The events at Alice and Bob s sides are not independent! It seems that somehow

More information

arxiv: v1 [quant-ph] 24 Aug 2007

arxiv: v1 [quant-ph] 24 Aug 2007 1 arxiv:0708.395v1 [quant-ph] 4 Aug 007 Recent progress on the manipulation of single atoms in optical tweezers for quantum computing A. Browaeys, J. Beugnon, C. Tuchendler, H. Marion, A. Gaëtan, Y. Miroshnychenko,

More information

Quantum information processing. Two become one

Quantum information processing. Two become one Quantum information processing Two become one Scientists experimentally demonstrate a scheme for quantum joining, which allow the number of qubits encoded per photon to be varied while keeping the overall

More information

Quantum computer: basics, gates, algorithms

Quantum computer: basics, gates, algorithms Quantum computer: basics, gates, algorithms single qubit gate various two qubit gates baby-steps shown so far with ion quantum processors and how to reach a scalable device in future Ulm, Germany: 40 Ca

More information

MHz rate and efficient synchronous heralding of single photons at telecom wavelengths

MHz rate and efficient synchronous heralding of single photons at telecom wavelengths MHz rate and efficient synchronous heralding of single photons at telecom wavelengths Enrico Pomarico, Bruno Sanguinetti, Thiago Guerreiro, Rob Thew, and Hugo Zbinden Group of Applied Physics, University

More information

Full polarization control for fiber optical quantum communication systems using polarization encoding

Full polarization control for fiber optical quantum communication systems using polarization encoding Full polarization control for fiber optical quantum communication systems using polarization encoding G. B. Xavier, G. Vilela de Faria, G. P. Temporão and J. P. von der Weid* Pontifical Catholic University

More information

Schemes to generate entangled photon pairs via spontaneous parametric down conversion

Schemes to generate entangled photon pairs via spontaneous parametric down conversion Schemes to generate entangled photon pairs via spontaneous parametric down conversion Atsushi Yabushita Department of Electrophysics National Chiao-Tung University? Outline Introduction Optical parametric

More information

Quantum Dense Coding and Quantum Teleportation

Quantum Dense Coding and Quantum Teleportation Lecture Note 3 Quantum Dense Coding and Quantum Teleportation Jian-Wei Pan Bell states maximally entangled states: ˆ Φ Ψ Φ x σ Dense Coding Theory: [C.. Bennett & S. J. Wiesner, Phys. Rev. Lett. 69, 88

More information

Quantum Key Distribution. The Starting Point

Quantum Key Distribution. The Starting Point Quantum Key Distribution Norbert Lütkenhaus The Starting Point Quantum Mechanics allows Quantum Key Distribution, which can create an unlimited amount of secret key using -a quantum channel -an authenticated

More information

ISSN Review. Quantum Entanglement Concentration Based on Nonlinear Optics for Quantum Communications

ISSN Review. Quantum Entanglement Concentration Based on Nonlinear Optics for Quantum Communications Entropy 0, 5, 776-80; doi:0.90/e505776 OPEN ACCESS entropy ISSN 099-400 www.mdpi.com/journal/entropy Review Quantum Entanglement Concentration Based on Nonlinear Optics for Quantum Communications Yu-Bo

More information

Generation of squeezed vacuum with hot and ultra-cold Rb atoms

Generation of squeezed vacuum with hot and ultra-cold Rb atoms Generation of squeezed vacuum with hot and ultra-cold Rb atoms Eugeniy E. Mikhailov, Travis Horrom, Irina Novikova Salim Balik 2, Arturo Lezama 3, Mark Havey 2 The College of William & Mary, USA 2 Old

More information

Lectures on Quantum Optics and Quantum Information

Lectures on Quantum Optics and Quantum Information Lectures on Quantum Optics and Quantum Information Julien Laurat Laboratoire Kastler Brossel, Paris Université P. et M. Curie Ecole Normale Supérieure and CNRS julien.laurat@upmc.fr Taiwan-France joint

More information

Highly Retrievable Spinwave-Photon Entanglement Source

Highly Retrievable Spinwave-Photon Entanglement Source Highly Retrievable Spinwave-Photon Entanglement Source where sin η = 3/5 is the relevant Clebsch-Gorden coeffiarxiv:1505.00405v1 [quant-ph] 3 May 2015 Sheng-Jun Yang, 1, 2 Xu-Jie Wang, 1, 2 Jun Li, 1,

More information

arxiv:quant-ph/ v2 23 Jan 2007

arxiv:quant-ph/ v2 23 Jan 2007 Multiplexed Memory-Insensitive Quantum Repeaters O. A. Collins, S. D. Jenkins, A. Kuzmich, and T. A. B. Kennedy School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332-0430 (Dated: August

More information

This is a repository copy of Unite to build a quantum internet. White Rose Research Online URL for this paper:

This is a repository copy of Unite to build a quantum internet. White Rose Research Online URL for this paper: This is a repository copy of Unite to build a quantum internet. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/98773/ Version: Accepted Version Article: Pirandola, Stefano

More information

Performance Limits of Delay Lines Based on "Slow" Light. Robert W. Boyd

Performance Limits of Delay Lines Based on Slow Light. Robert W. Boyd Performance Limits of Delay Lines Based on "Slow" Light Robert W. Boyd Institute of Optics and Department of Physics and Astronomy University of Rochester Representing the DARPA Slow-Light-in-Fibers Team:

More information

A Genetic Algorithm to Analyze the Security of Quantum Cryptographic Protocols

A Genetic Algorithm to Analyze the Security of Quantum Cryptographic Protocols A Genetic Algorithm to Analyze the Security of Quantum Cryptographic Protocols Walter O. Krawec walter.krawec@gmail.com Iona College Computer Science Department New Rochelle, NY USA IEEE WCCI July, 2016

More information

Zeeman-level lifetimes in Er 3+ :Y 2 SiO 5

Zeeman-level lifetimes in Er 3+ :Y 2 SiO 5 Zeeman-level lifetimes in Er 3+ :Y 2 SiO 5 S. R. Hastings-Simon, B. Lauritzen, M. U. Stau, J. L. M. van Mechelen, 2 C. Simon, H. de Riedmatten, M. Afzelius, and N. Gisin Group of Applied Physics, University

More information

Preparing multi-partite entanglement of photons and matter qubits

Preparing multi-partite entanglement of photons and matter qubits Preparing multi-partite entanglement of photons and matter qubits Pieter Kok, Sean D. Barrett, Timothy P. Spiller Trusted Systems Laboratory HP Laboratories Bristol HPL-2005-199 November 23, 2005* state

More information

Chapter 4. Photodetectors

Chapter 4. Photodetectors Chapter 4 Photodetectors Types of photodetectors: Photoconductos Photovoltaic Photodiodes Avalanche photodiodes (APDs) Resonant-cavity photodiodes MSM detectors In telecom we mainly use PINs and APDs.

More information

Supported by NSF and ARL

Supported by NSF and ARL Ultrafast Coherent Electron Spin Flip in a 2D Electron Gas Carey Phelps 1, Timothy Sweeney 1, Ronald T. Cox 2, Hailin Wang 1 1 Department of Physics, University of Oregon, Eugene, OR 97403 2 Nanophysics

More information

Hong-Ou-Mandel dip using photon pairs from a PPLN waveguide

Hong-Ou-Mandel dip using photon pairs from a PPLN waveguide Hong-Ou-Mandel dip using photon pairs from a PPLN waveguide Qiang Zhang 1, Hiroki Takesue, Carsten Langrock 1, Xiuping Xie 1, M. M. Fejer 1, Yoshihisa Yamamoto 1,3 1. Edward L. Ginzton Laboratory, Stanford

More information

Device-independent Quantum Key Distribution and Randomness Generation. Stefano Pironio Université Libre de Bruxelles

Device-independent Quantum Key Distribution and Randomness Generation. Stefano Pironio Université Libre de Bruxelles Device-independent Quantum Key Distribution and Randomness Generation Stefano Pironio Université Libre de Bruxelles Tropical QKD, Waterloo, June 14-17, 2010 Device-independent security proofs establish

More information

Functional quantum nodes for entanglement distribution

Functional quantum nodes for entanglement distribution 61 Chapter 4 Functional quantum nodes for entanglement distribution This chapter is largely based on ref. 36. Reference 36 refers to the then current literature in 2007 at the time of publication. 4.1

More information

arxiv: v1 [quant-ph] 26 Mar 2014

arxiv: v1 [quant-ph] 26 Mar 2014 Cavity enhanced rephased amplified spontaneous emission arxiv:1403.6872v1 [quant-ph] 26 Mar 2014 Lewis A Williamson and Jevon J Longdell Jack Dodd Centre for Photonics and Ultra-Cold Atoms, Department

More information

BB84 Quantum Key Distribution System based on Silica-Based Planar Lightwave Circuits

BB84 Quantum Key Distribution System based on Silica-Based Planar Lightwave Circuits BB84 Quantum Key Distribution System based on Silica-Based Planar Lightwave Circuits (*) Yoshihiro NAMBU*, Takaaki HATANAKA, and Kazuo NAKAMURA (*) Corresponding author: E-mail address: y-nambu@ah.jp.nec.com

More information

Security of Quantum Key Distribution with Imperfect Devices

Security of Quantum Key Distribution with Imperfect Devices Security of Quantum Key Distribution with Imperfect Devices Hoi-Kwong Lo Dept. of Electrical & Comp. Engineering (ECE); & Dept. of Physics University of Toronto Email:hklo@comm.utoronto.ca URL: http://www.comm.utoronto.ca/~hklo

More information

Overcoming lossy channel bounds using a single quantum repeater node

Overcoming lossy channel bounds using a single quantum repeater node Appl. Phys. B (2016) 122:96 DOI 10.1007/s00340-016-6373-4 Overcoming lossy channel bounds using a single quantum repeater node D. Luong 1 L. Jiang 2 J. Kim 3 N. Lütkenhaus 1 Received: 31 July 2015 / Accepted:

More information

Testing nonlocality over 12.4 km of underground fiber with universal time-bin qubit analyzers

Testing nonlocality over 12.4 km of underground fiber with universal time-bin qubit analyzers Testing nonlocality over 1.4 km of underground fiber with universal time-bin qubit analyzers The importance of a UTBA is twofold. First, it constitutes a versatile tool to implement quantum commuarxiv:1003.043v

More information

Laboratory 3: Confocal Microscopy Imaging of Single Emitter Fluorescence and Hanbury Brown, and Twiss Setup for Photon Antibunching

Laboratory 3: Confocal Microscopy Imaging of Single Emitter Fluorescence and Hanbury Brown, and Twiss Setup for Photon Antibunching Laboratory 3: Confocal Microscopy Imaging of Single Emitter Fluorescence and Hanbury Brown, and Twiss Setup for Photon Antibunching Jonathan Papa 1, * 1 Institute of Optics University of Rochester, Rochester,

More information

Francesco Vedovato Admission to III year 22 September 2017

Francesco Vedovato Admission to III year 22 September 2017 QUANTUM OPTICS EXPERIMENTS IN SPACE Francesco Vedovato Admission to III year 22 September 217 Research project goal Study the feasibility, from the theoretical and experimental point of view, of different

More information