Quantum Optical Computing, Imaging, and Metrology

Size: px
Start display at page:

Download "Quantum Optical Computing, Imaging, and Metrology"

Transcription

1 Quantum Optical Computing, Imaging, and Metrology Ionatán Jönåthán Pádraig Påtrîck O Dúnlaing Døwlîng Hearne Institute for Theoretical Physics Quantum Science and Technologies Group Louisiana State University Baton Rouge, Louisiana USA quantum.phys.lsu.edu PQE 05 JAN 2011, Snowbird, UT Dowling JP, Quantum Optical Metrology The Lowdown On High-N00N States, Contemporary Physics 49 (2): (2008).

2 Quantum (Optical) Sensors Ballroom I: WED 12:00N & 8:50PM 12:00 Christoph Wildfeuer & A. Migdall NIST & Louisiana State University Techniques for enhancing the precision of measurements with photon number resolving detectors 12:20 Petr M. Anisimov Louisiana State University Squeezing the Vacuum and beating Heisenberg: Limits? Where we re going we do not need any limits! 12:40 E. E. Mikhailov & I. Novikova College of William and Mary Generation of squeezed vacuum with hot and ultra-cold Rb atoms 20:50 Geoff Pryde Griffith University, AUS Optimal multiphoton phase sensing and measurement 21:10 J. C. F. Matthews & J. L. O Brien University of Bristol, UK Entangled Multi-Photon States in Waveguide for Quantum Metrology 21:30 Kevin McCusker & Paul Kwiat University of Illinois Efficient Quantum Optical State Engineering 21:50 Xi Wang Texas A&M University Self-Implemented Heterodyne CARS by Using Its Intrinsic Background

3 Hearne Institute for Theoretical Physics Quantum Science & Technologies Group Photo: H.Cable, C.Wildfeuer, H.Lee, S.D.Huver, W.N.Plick, G.Deng, R.Glasser, S.Vinjanampathy, K.Jacobs, D.Uskov, J.P.Dowling, P.Lougovski, N.M.VanMeter, M.Wilde, G.Selvaraj, A.DaSilva Top Inset: P.M.Anisimov, B.R.Bardhan, A.Chiruvelli, L.Florescu, M.Florescu, Y.Gao, K.Jiang, K.T.Kapale, T.W.Lee, S.B.McCracken, C.J.Min, S.J.Olsen, R.Singh, K.P.Seshadreesan, S.Thanvanthri, G.Veronis. Bottom Inset C. Brignac, R.Cross, B.Gard, D.J.Lum, Keith Motes, G.M.Raterman, C.Sabottke,

4 Quantum Metrology Quantum Imaging Quantum Sensing Quantum Computing You Are Here!

5 Outline 1. Nonlinear Optics vs.. Projective Measurements 2. Quantum Imaging vs.. Precision Measurements 3. Showdown at High N00N! 4. Mitigating Photon Loss 6. Super Resolution with Classical Light 7. Super-Duper Sensitivity Beats Heisenberg! 8. A Parody on Parity

6 Optical Quantum Computing: Two-Photon CNOT with Kerr Nonlinearity The Controlled-NOT can be implemented using a Kerr medium: 0 = H Polarization 1 = V Qubits χ (3) R is a π/2 polarization rotation, followed by a polarization dependent phase shift π. R pol σ z PBS Unfortunately, the interaction χ (3) is extremely weak*: at the single photon level This is not practical! *R.W. Boyd, J. Mod. Opt. 46, 367 (1999).

7 Two Roads to Optical Quantum Computing I. Enhance Nonlinear Interaction with a Cavity or EIT Kimble, Walther, Lukin, et al. Cavity QED II. Exploit Nonlinearity of Measurement Knill, LaFlamme, Milburn, Nemoto, et al.

8 Linear Optical Quantum Computing Linear Optics can be Used to Construct 2 X CSIGN = CNOT Gate and a Quantum Computer: # 0 + " 1 +! 2 # 0 + " 1 $! 2 Milburn Knill E, Laflamme R, Milburn GJ NATURE 409 (6816): JAN Franson JD, Donegan MM, Fitch MJ, et al. PRL 89 (13): Art. No SEP

9 WHY IS A KERR NONLINEARITY LIKE A PROJECTIVE MEASUREMENT? LOQC KLM Photon-Photon XOR Gate Photon-Photon Nonlinearity Cavity QED EIT Projective Measurement Kerr Material

10 Projective Measurement Yields Effective Nonlinearity! G. G. Lapaire, P. Kok, JPD, J. E. Sipe, PRA 68 (2003) A Revolution in Nonlinear Optics at the Few Photon Level: No Longer Limited by the Nonlinearities We Find in Nature! NON-Unitary Gates Effective Nonlinear Gates KLM CSIGN: Self Kerr Franson CNOT: Cross Kerr

11 Quantum Metrology H.Lee, P.Kok, JPD, J Mod Opt 49, (2002) 2325 Shot noise Heisenberg

12 Sub-Shot-Noise Interferometric Measurements With Two-Photon N00N States A Kuzmich and L Mandel; Quantum Semiclass. Opt. 10 (1998) SNL Low!N00N e i2! 0 2 HL

13 AN Boto, DS Abrams, CP Williams, JPD, PRL 85 (2000) 2733 Super-Resolution a N a N Sub-Rayleigh

14 Quantum Lithography Experiment Low!N00N e i2! >+ 02> 10>+ 01>

15 Quantum Imaging: Super-Resolution λ/ν N=1 (classical) N=5 (N00N) λ

16 Quantum Metrology: Super-Sensitivity!!" = ˆP dp /dϕ d ˆP / d" N N=1 (classical) N=5 (N00N) Shotnoise Limit: Δϕ 1 = 1/ N dp 1 /dϕ Heisenberg Limit: Δϕ N = 1/N

17 Showdown at High-N00N! How do we make High-N00N!? N,0 + 0,N With a large cross-kerr nonlinearity!* H = κ a a b b 1 0 N 0 N,0 + 0,N This is not practical! need κ = π but κ = 10 22! *C Gerry, and RA Campos, Phys. Rev. A 64, (2001).

18 FIRST LINEAR-OPTICS BASED HIGH-N00N GENERATOR PROPOSAL Success probability approximately 5% for 4-photon output. mode a Scheme conditions on the detection of one photon at each detector e.g. component of light from an optical parametric oscillator mode b H. Lee, P. Kok, N. J. Cerf and J. P. Dowling, PRA 65, (2002). J.C.F.Matthews, A.Politi, Damien Bonneau, J.L.O'Brien, arxiv:

19 N00N State Experiments 1990 s 2-photon Rarity, (1990) Ou, et al. (1990) Shih (1990) Kuzmich (1998) Shih (2001) 6-photon Super-resolution Only! Resch,,White PRL (2007) Queensland , 4-photon Superresolution only photon Super-sensitivity & Super-resolution Nagata,,Takeuchi, Science (04 MAY) Hokkaido & Bristol; J.C.F.Matthews, A.Politi, Damien Bonneau, J.L.O'Brien, arxiv: Mitchell,,Steinberg Nature (13 MAY) Toronto Walther,,Zeilinger Nature (13 MAY) Vienna

20 Quantum LIDAR Winning LSU Proposal Noise DARPA Eyes Quantum Mechanics for Sensor Applications Jane s Defence Weekly Target Nonclassical Light Source Detection Delay Line INPUT find min( )!" N: photon number loss A loss B! in = N # i= 0 c i N " i, i inverse problem solver forward problem solver!" = f ( # in, " ; loss A, loss B)!" FEEDBACK LOOP: Genetic Algorithm OUTPUT min(!") ; # in (OPT ) N % = c i (OPT ) N $ i, i, " OPT i= 0

21 Loss in Quantum Sensors SD Huver, CF Wildfeuer, JP Dowling, Phys. Rev. A 78 # DEC 2008 N00N! Generator Visibility:! = (10,0 + 0,10 ) 2! L a L b Detector Lost photons Lost photons Sensitivity:! = (10,0 + 0,10 ) 2 N00N 3dB Loss --- N00N No Loss SNL--- 3/28/11 21 HL

22 Super-Lossitivity Gilbert, G; Hamrick, M; Weinstein, YS; JOSA B 25 (8): AUG 2008!" =! ˆP d ˆP / d" dp N /d! N=1 (classical) N=5 (N00N) e i! " e in! e #$ L " e # N$ L dp 1 /d! 3dB Loss, Visibility & Slope Super Beer s Law!

23 Loss in Quantum Sensors S. Huver, C. F. Wildfeuer, J.P. Dowling, Phys. Rev. A 78 # DEC 2008 N00N! Generator A B! L a Detector Lost photons L b Lost photons Gremlin Q: Why do N00N States Suck in the Presence of Loss? A: Single Photon Loss = Complete Which Path Information! N A 0 B + e in! 0 A N B " 0 A N #1 B

24 Towards A Realistic Quantum Sensor S. Huver, C. F. Wildfeuer, J.P. Dowling, Phys. Rev. A 78 # DEC 2008 Try other detection scheme and states! M&M state: M&M! Generator M&M Visibility N00N Visibility! = ( 20, ,20 ) 2! = (10,0 + 0,10 ) 2!! = ( m,m' + m',m ) 2 L a L b Detector Lost photons Lost photons M&M Adds Decoy Photons

25 Towards A Realistic Quantum Sensor S. Huver, C. F. Wildfeuer, J.P. Dowling, Phys. Rev. A 78 # DEC 2008 Lost photons M&M!! L a Detector M&M state: Generator! = ( m,m' + m',m ) 2 L b Lost photons N00N State --- M&M State N00N SNL --- M&M SNL --- M&M HL N00N HL A Few Photons Lost Does Not Give Complete Which Path

26 Super-Resolution at the Shot-Noise Limit with Coherent States and Photon-Number-Resolving Detectors J. Opt. Soc. Am. B/Vol. 27, No. 6/June 2010 Y. Gao, C.F. Wildfeuer, P.M. Anisimov, H. Lee, J.P. Dowling We show that coherent light coupled with photon number resolving detectors implementing parity detection produces super-resolution much below the Rayleigh diffraction limit, with sensitivity at the shot-noise limit. Parity Detector! Quantum Classical

27 Quantum Metrology with Two-Mode Squeezed Vacuum: Parity Detection Beats the Heisenberg Limit PRL 104, (2010) PM Anisimov, GM Raterman, A Chiruvelli, WN Plick, SD Huver, H Lee, JP Dowling We show that super-resolution and sub-heisenberg sensitivity is obtained with parity detection. In particular, in our setup, dependence of the signal on the phase evolves <n> times faster than in traditional schemes, and uncertainty in the phase estimation is better than 1/<n>. SNL! 1/ ˆn HL! 1 / ˆn TMSV! 1 / ˆn ˆn + 2 HofL! 1/ ˆn 2 SNL HL TMSV & QCRB HofL

28 New Journal of Physics 12 (2010) , /10/ $30.00 Parity detection in quantum optical metrology without number-resolving detectors William N Plick, Petr M Anisimov, Jönåthán P Døwlîng, Hwang Lee, and Girish S Agarwal Abstract. We present a method for directly obtaining the parity of a Gaussian state of light without recourse to photon-number counting. The scheme uses only a simple balanced homodyne technique and intensity correlation. Thus interferometric schemes utilizing coherent or squeezed light and parity detection may be practically implemented for an arbitrary photon flux.

29 Outline 1. Nonlinear Optics vs.. Projective Measurements 2. Quantum Imaging vs.. Precision Measurements 3. Showdown at High N00N! 4. Mitigating Photon Loss 6. Super Resolution with Classical Light 7. Super-Duper Sensitivity Beats Heisenberg! 8. A Parody on Parity

Quantum Optical Computing, Imaging, and Metrology

Quantum Optical Computing, Imaging, and Metrology Quantum Optical Computing, Imaging, and Metrology Jonathan P. Dowling Hearne Institute for Theoretical Physics Quantum Science and Technologies Group Louisiana State University Baton Rouge, Louisiana USA

More information

Schrödinger s Rainbow: The Renaissance in Quantum Optical Interferometry

Schrödinger s Rainbow: The Renaissance in Quantum Optical Interferometry Schrödinger s Rainbow: The Renaissance in Quantum Optical Interferometry Jonathan P. Dowling Quantum Science & Technologies (QST) Group Hearne Institute for Theoretical Physics Louisiana State University

More information

Optical Quantum Imaging, Computing, and Metrology: WHAT S NEW WITH N00N STATES? Jonathan P. Dowling

Optical Quantum Imaging, Computing, and Metrology: WHAT S NEW WITH N00N STATES? Jonathan P. Dowling Optical Quantum Imaging, Computing, and Metrology: WHAT S NEW WITH N00N STATES? Jonathan P. Dowling Hearne Institute for Theoretical Physics Louisiana State University Baton Rouge, Louisiana quantum.phys.lsu.edu

More information

QUANTUM SENSORS: WHAT S NEW WITH N00N STATES? Jonathan P. Dowling

QUANTUM SENSORS: WHAT S NEW WITH N00N STATES? Jonathan P. Dowling QUANTUM SENSORS: WHAT S NEW WITH N00N STATES? Jonathan P. Dowling Hearne Institute for Theoretical Physics Louisiana State University Baton Rouge, Louisiana quantum.phys.lsu.edu SPIE F&N 23 May 2007 Statue

More information

Quantum Imaging Theory

Quantum Imaging Theory Quantum Imaging Theory Jonathan P. Dowling Quantum Science & Technologies Group Hearne Institute for Theoretical Physics Department of Physics & Astronomy Louisiana State University, Baton Rouge http://quantum.phys.lsu.edu/

More information

Correcting noise in optical fibers via dynamic decoupling

Correcting noise in optical fibers via dynamic decoupling Introduction CPMG Our results Conclusions Correcting noise in optical fibers via dynamic decoupling Bhaskar Bardhan 1, Petr Anisimov 1, Manish Gupta 1, Katherine Brown 1, N. Cody Jones 2, Hwang Lee 1,

More information

Quantum Imaging Theory

Quantum Imaging Theory Quantum Imaging Theory Jonathan P. Dowling Hearne Institute for Theoretical Physics Department of Physics & Astronomy Louisiana State University Baton Rouge, Louisiana USA quantum.phys.lsu.edu Quantum

More information

Universality of the Heisenberg limit for phase estimation

Universality of the Heisenberg limit for phase estimation Universality of the Heisenberg limit for phase estimation Marcin Zwierz, with Michael Hall, Dominic Berry and Howard Wiseman Centre for Quantum Dynamics Griffith University Australia CEQIP 2013 Workshop

More information

QUANTUM ENTANGLEMENT FOR OPTICAL LITHOGRAPHY AND MICROSCOPY BEYOND THE RAYLEIGH LIMIT

QUANTUM ENTANGLEMENT FOR OPTICAL LITHOGRAPHY AND MICROSCOPY BEYOND THE RAYLEIGH LIMIT QUANTUM ENTANGLEMENT FOR OPTICAL LITHOGRAPHY AND MICROSCOPY BEYOND THE RAYLEIGH LIMIT SEAN J. BENTLEY, ROBERT W. BOYD, ELNA M. NAGASAKO, & GIRISH S. AGARWAL May 8, 2001 NONLINEAR OPTICS LABORATORY INSTITUTE

More information

Towards Scalable Linear-Optical Quantum Computers

Towards Scalable Linear-Optical Quantum Computers Quantum Information Processing, Vol. 3, Nos. 1 5, October 2004 ( 2004) Towards Scalable Linear-Optical Quantum Computers J. P. Dowling, 1,5 J. D. Franson, 2 H. Lee, 1,4 and G. J. Milburn 3 Received February

More information

Optical Quantum Information Processing

Optical Quantum Information Processing Optical Quantum Information Processing P. Kwiat An inaccurate history An incomplete progress report An unbiased vision not Anti-Outline Continuous-variable systems Atom-photon systems (cf. Kimble) Hybrid

More information

Zeno logic gates using micro-cavities

Zeno logic gates using micro-cavities Zeno logic gates using micro-cavities J.D. Franson, B.C. Jacobs, and T.B. Pittman Johns Hopkins University, Applied Physics Laboratory, Laurel, MD 20723 The linear optics approach to quantum computing

More information

Quantum non-demolition measurements:

Quantum non-demolition measurements: Quantum non-demolition measurements: One path to truly scalable quantum computation Kae Nemoto Tim Spiller Sean Barrett Ray Beausoleil Pieter Kok Bill Munro HP Labs (Bristol) Why should optical quantum

More information

arxiv:quant-ph/ v2 5 Apr 2005

arxiv:quant-ph/ v2 5 Apr 2005 Experimental Demonstration of a Quantum Circuit using Linear Optics Gates T.B. Pittman, B.C Jacobs, and J.D. Franson Johns Hopkins University, Applied Physics Laboratory, Laurel, MD 2723 (Dated: April

More information

Enhancing image contrast using coherent states and photon number resolving detectors

Enhancing image contrast using coherent states and photon number resolving detectors Enhancing image contrast using coherent states and photon number resolving detectors A. J. Pearlman, 1,2 A. Ling, 1,2 E. A. Goldschmidt, 1,2 C. F. Wildfeuer, 3 J. Fan, 1,2 and A. Migdall, 1,2 1 Joint Quantum

More information

Coherent-light-boosted, sub-shot noise, quantum interferometry

Coherent-light-boosted, sub-shot noise, quantum interferometry Coherent-light-boosted, sub-shot noise, quantum interferometry To cite this article: William N Plick et al 2010 New J. Phys. 12 083014 View the article online for updates and enhancements. Related content

More information

Do we need quantum light to test quantum memory? M. Lobino, C. Kupchak, E. Figueroa, J. Appel, B. C. Sanders, Alex Lvovsky

Do we need quantum light to test quantum memory? M. Lobino, C. Kupchak, E. Figueroa, J. Appel, B. C. Sanders, Alex Lvovsky Do we need quantum light to test quantum memory? M. Lobino, C. Kupchak, E. Figueroa, J. Appel, B. C. Sanders, Alex Lvovsky Outline EIT and quantum memory for light Quantum processes: an introduction Process

More information

Path Entanglement. Liat Dovrat. Quantum Optics Seminar

Path Entanglement. Liat Dovrat. Quantum Optics Seminar Path Entanglement Liat Dovrat Quantum Optics Seminar March 2008 Lecture Outline Path entangled states. Generation of path entangled states. Characteristics of the entangled state: Super Resolution Beating

More information

Optimal multi-photon phase sensing with a single interference fringe

Optimal multi-photon phase sensing with a single interference fringe Optimal multi-photon phase sensing with a single interference fringe Author Xiang, Guo-Yong, Hofmann, H., Pryde, Geoff Published 2013 Journal Title Scientific Reports DOI https://doi.org/10.1038/srep02684

More information

arxiv: v2 [quant-ph] 16 Sep 2014

arxiv: v2 [quant-ph] 16 Sep 2014 Optimal Quantum-Enhanced Interferometry Matthias D. Lang 1 and Carlton M. Caves 1, 1 Center for Quantum Information and Control, University of New Mexico, Albuquerque, New Mexico, 87131-0001, USA Centre

More information

Quantum optics and squeezed states of light

Quantum optics and squeezed states of light Quantum optics and squeezed states of light Eugeniy E. Mikhailov The College of William & Mary June 15, 2012 Eugeniy E. Mikhailov (W&M) Quantum optics June 15, 2012 1 / 44 From ray optics to semiclassical

More information

Quantum non-demolition measurements: a new resource for making linear logic scalable

Quantum non-demolition measurements: a new resource for making linear logic scalable Quantum non-demolition measurements: a new resource for making linear logic scalable Kae Nemoto 1, William J. Munro, Timothy P. Spiller, R.G. Beausoleil Trusted Systems Laboratory HP Laboratories Bristol

More information

All Optical Quantum Gates

All Optical Quantum Gates All Optical Quantum Gates T.C.Ralph Centre for Quantum Computer Technology Department of Physics University of Queensland ralph@physics.uq.edu.au LOQC People Staff T.C.Ralph A.G.White G.J.Milburn Postdocs

More information

Quantum enhanced magnetometer and squeezed state of light tunable filter

Quantum enhanced magnetometer and squeezed state of light tunable filter Quantum enhanced magnetometer and squeezed state of light tunable filter Eugeniy E. Mikhailov The College of William & Mary October 5, 22 Eugeniy E. Mikhailov (W&M) Squeezed light October 5, 22 / 42 Transition

More information

arxiv:quant-ph/ v1 15 Jun 2005

arxiv:quant-ph/ v1 15 Jun 2005 Efficient optical quantum information processing arxiv:quant-ph/0506116v1 15 Jun 2005 W.J. Munro, Kae Nemoto, T.P. Spiller, S.D. Barrett, Pieter Kok, and R.G. Beausoleil Quantum Information Processing

More information

Nonclassical two-photon interferometry and lithography with high-gain parametric amplifiers

Nonclassical two-photon interferometry and lithography with high-gain parametric amplifiers PHYSICAL REVIEW A, VOLUME 64, 043802 Nonclassical two-photon interferometry and lithography with high-gain parametric amplifiers Elna M. Nagasako, Sean J. Bentley, and Robert W. Boyd The Institute of Optics,

More information

Loss-Induced Limits to Phase Measurement Precision with Maximally Entangled States arxiv:quant-ph/ v3 26 Jan 2007

Loss-Induced Limits to Phase Measurement Precision with Maximally Entangled States arxiv:quant-ph/ v3 26 Jan 2007 Loss-Induced Limits to Phase Measurement Precision with Maximally Entangled States arxiv:quant-ph/0612080v3 26 Jan 2007 Mark A. Rubin and Sumanth Kaushik Lincoln Laboratory Massachusetts Institute of Technology

More information

arxiv:quant-ph/ v1 12 Feb 2004

arxiv:quant-ph/ v1 12 Feb 2004 Quantum lithography, entanglement and Heisenberg-limited parameter estimation arxiv:quant-ph/040083 v1 1 Feb 004 Pieter Kok, Samuel L. Braunstein, and Jonathan P. Dowling Hewlett Packard Labs, Filton Road,

More information

A Quantum Rosetta Stone for Interferometry

A Quantum Rosetta Stone for Interferometry A Quantum Rosetta Stone for Interferometry Hwang Lee, Pieter Kok, and Jonathan P. Dowling Quantum Computing Technologies Group, Exploration Systems Autonomy, Section 367 Jet Propulsion Laboratory, California

More information

Resolution and sensitivity of a Fabry-Perot interferometer with a photon-number-resolving detector

Resolution and sensitivity of a Fabry-Perot interferometer with a photon-number-resolving detector PHYSICAL REVIEW A 80, 0438 009 Resolution and sensitivity of a Fabry-Perot interferometer with a photon-number-resolving detector Christoph F. Wildfeuer, 1, * Aaron J. Pearlman, Jun Chen,,3 Jingyun Fan,,3

More information

Coherent superposition states as quantum rulers

Coherent superposition states as quantum rulers PHYSICAL REVIEW A, VOLUME 65, 042313 Coherent superposition states as quantum rulers T. C. Ralph* Centre for Quantum Computer Technology, Department of Physics, The University of Queensland, St. Lucia,

More information

Generation of squeezed vacuum with hot and ultra-cold Rb atoms

Generation of squeezed vacuum with hot and ultra-cold Rb atoms Generation of squeezed vacuum with hot and ultra-cold Rb atoms Eugeniy E. Mikhailov, Travis Horrom, Irina Novikova Salim Balik 2, Arturo Lezama 3, Mark Havey 2 The College of William & Mary, USA 2 Old

More information

MEMORY FOR LIGHT as a quantum black box. M. Lobino, C. Kupchak, E. Figueroa, J. Appel, B. C. Sanders, Alex Lvovsky

MEMORY FOR LIGHT as a quantum black box. M. Lobino, C. Kupchak, E. Figueroa, J. Appel, B. C. Sanders, Alex Lvovsky MEMORY FOR LIGHT as a quantum black box M. Lobino, C. Kupchak, E. Figueroa, J. Appel, B. C. Sanders, Alex Lvovsky Outline EIT and quantum memory for light Quantum processes: an introduction Process tomography

More information

COHERENT CONTROL VIA QUANTUM FEEDBACK NETWORKS

COHERENT CONTROL VIA QUANTUM FEEDBACK NETWORKS COHERENT CONTROL VIA QUANTUM FEEDBACK NETWORKS Kavli Institute for Theoretical Physics, Santa Barbara, 2013 John Gough Quantum Structures, Information and Control, Aberystwyth Papers J.G. M.R. James, Commun.

More information

Towards quantum metrology with N00N states enabled by ensemble-cavity interaction. Massachusetts Institute of Technology

Towards quantum metrology with N00N states enabled by ensemble-cavity interaction. Massachusetts Institute of Technology Towards quantum metrology with N00N states enabled by ensemble-cavity interaction Hao Zhang Monika Schleier-Smith Robert McConnell Jiazhong Hu Vladan Vuletic Massachusetts Institute of Technology MIT-Harvard

More information

Demonstration of an all-optical quantum controlled-not gate

Demonstration of an all-optical quantum controlled-not gate Demonstration of an all-optical quantum controlled-not gate Author O'Brien, J., Pryde, G., White, A., Ralph, T., Branning, D. Published 2003 Journal Title Nature DOI https://doi.org/10.1038/nature02054

More information

Quantum information processing using linear optics

Quantum information processing using linear optics Quantum information processing using linear optics Karel Lemr Joint Laboratory of Optics of Palacký University and Institute of Physics of Academy of Sciences of the Czech Republic web: http://jointlab.upol.cz/lemr

More information

Preparing multi-partite entanglement of photons and matter qubits

Preparing multi-partite entanglement of photons and matter qubits Preparing multi-partite entanglement of photons and matter qubits Pieter Kok, Sean D. Barrett, Timothy P. Spiller Trusted Systems Laboratory HP Laboratories Bristol HPL-2005-199 November 23, 2005* state

More information

High-fidelity Z-measurement error encoding of optical qubits

High-fidelity Z-measurement error encoding of optical qubits Griffith Research Online https://research-repository.griffith.edu.au High-fidelity Z-measurement error encoding of optical qubits Author O'Brien, J., Pryde, G., White, A., Ralph, T. Published 2005 Journal

More information

arxiv: v3 [quant-ph] 22 Oct 2017

arxiv: v3 [quant-ph] 22 Oct 2017 Room-Temperature Photon-Number-Resolved Detection Using A Two-Mode Squeezer arxiv:1707.02666v3 [quant-ph] 22 Oct 2017 Elisha S. Matekole, 1, Deepti Vaidyanathan, 2 Kenji W. Arai, 3 Ryan T. Glasser, 4 Hwang

More information

General Optimality of the Heisenberg Limit for Quantum Metrology

General Optimality of the Heisenberg Limit for Quantum Metrology General Optimality of the Heisenberg Limit for Quantum Metrology Author Zwierz, Marcin, A. Pe rez-delgado, Carlos, Kok, Pieter Published 200 Journal Title Physical Review Letters DOI https://doi.org/0.03/physrevlett.05.80402

More information

More measurement & computing (Clusters, N00N states, Zeno gates,...) 13 Mar 2012

More measurement & computing (Clusters, N00N states, Zeno gates,...) 13 Mar 2012 More measurement & computing (Clusters, N00N states, Zeno gates,...) 13 Mar 2012 The cost of postselection Of course, if each gate only succeeds some fraction p of the time... the odds of an N-gate computer

More information

QUANTUM TECHNOLOGIES: THE SECOND QUANTUM REVOLUTION* Jonathan P. Dowling

QUANTUM TECHNOLOGIES: THE SECOND QUANTUM REVOLUTION* Jonathan P. Dowling QUANTUM TECHNOLOGIES: THE SECOND QUANTUM REVOLUTION* Jonathan P. Dowling Quantum Science & Technologies Group Hearne Institute for Theoretical Physics Louisiana State University http://quantum.phys.lsu.edu

More information

Increasing atomic clock precision with and without entanglement

Increasing atomic clock precision with and without entanglement Lehman College Increasing atomic clock precision with and without entanglement Christopher C. Gerry Department of Physics and Astronomy Lehman College, The City University of New York Bronx, New York 0468-589

More information

Linear optical implementation of a single mode quantum filter and generation of multi-photon polarization entangled state

Linear optical implementation of a single mode quantum filter and generation of multi-photon polarization entangled state Linear optical implementation of a single mode quantum filter and generation of multi-photon polarization entangled state XuBo Zou, K. Pahlke and W. Mathis Electromagnetic Theory Group at THT Department

More information

Progress in Quantum Lithography and Ghost Imaging

Progress in Quantum Lithography and Ghost Imaging Progress in Quantum Lithography and Ghost Imaging Robert W. Boyd, Ryan S. Bennink, Sean J. Bentley, Malcolm N. O Sullivan-Hale, Irfan Ali Khan and John C. Howell Institute of Optics and Department of Physics

More information

Quantum process tomography of a controlled-not gate

Quantum process tomography of a controlled-not gate Quantum process tomography of a controlled-not gate J. L. O Brien,,, G. J. Pryde,,, A. Gilchrist, D. F. V. James, 3 N. K. Langford,, T. C. Ralph, and A. G. White, These authors contributed equally to this

More information

Realization of High-NOON States by Mixing Quantum and Classical Light

Realization of High-NOON States by Mixing Quantum and Classical Light Realization of High-NOON States by Mixing Quantum and Classical Light Itai Afek, Oron Ambar, Yaron Silberberg Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 761, Israel

More information

A symmetry analyzer for non-destructive Bell state detection using EIT

A symmetry analyzer for non-destructive Bell state detection using EIT A symmetry for non-destructive Bell state detection using EIT Sean D. Barrett, Pieter Kok, Kae Nemoto 1, Raymond G. Beausoleil, William J. Munro, Timothy P. Spiller Trusted Systems Laboratory HP Laboratories

More information

From linear optical quantum computing to Heisenberg-limited interferometry

From linear optical quantum computing to Heisenberg-limited interferometry INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF OPTICS B: QUANTUM AND SEMICLASSICAL OPTICS J. Opt. B: Quantum Semiclass. Opt. 6 (004) S796 S800 PII: S464-466(04)7679-8 From linear optical quantum computing

More information

Content of the lectures

Content of the lectures Content of the lectures Lecture 1 Introduction to quantum noise, squeezed light and entanglement generation Quantization of light, Continuous-variable, Homodyne detection, Gaussian states, Optical parametric

More information

Squeezed Light and Quantum Imaging with Four-Wave Mixing in Hot Atoms

Squeezed Light and Quantum Imaging with Four-Wave Mixing in Hot Atoms Squeezed Light and Quantum Imaging with Four-Wave Mixing in Hot Atoms Squeezed Light and Quantum Imaging with Four-Wave Mixing in Hot Atoms Alberto Marino Ulrich Vogl Jeremy Clark (U Maryland) Quentin

More information

Hong-Ou-Mandel effect with matter waves

Hong-Ou-Mandel effect with matter waves Hong-Ou-Mandel effect with matter waves R. Lopes, A. Imanaliev, A. Aspect, M. Cheneau, DB, C. I. Westbrook Laboratoire Charles Fabry, Institut d Optique, CNRS, Univ Paris-Sud Progresses in quantum information

More information

Cooperative atom-light interaction in a blockaded Rydberg ensemble

Cooperative atom-light interaction in a blockaded Rydberg ensemble Cooperative atom-light interaction in a blockaded Rydberg ensemble α 1 Jonathan Pritchard University of Durham, UK Overview 1. Cooperative optical non-linearity due to dipole-dipole interactions 2. Observation

More information

Conditional linear-optical measurement schemes generate effective photon nonlinearities

Conditional linear-optical measurement schemes generate effective photon nonlinearities PHYSICAL REVIEW A 68, 042314 2003 Conditional linear-optical measurement schemes generate effective photon nonlinearities G. G. Lapaire, 1 Pieter Kok, 2 Jonathan P. Dowling, 2 and J. E. Sipe 1 1 Department

More information

Single-Mode Displacement Sensor

Single-Mode Displacement Sensor Single-Mode Displacement Sensor Barbara Terhal JARA Institute for Quantum Information RWTH Aachen University B.M. Terhal and D. Weigand Encoding a Qubit into a Cavity Mode in Circuit-QED using Phase Estimation,

More information

Two-photon double-slit interference experiment

Two-photon double-slit interference experiment 1192 J. Opt. Soc. Am. B/Vol. 15, No. 3/March 1998 C. K. Hong and T. G. Noh Two-photon double-slit interference experiment C. K. Hong and T. G. Noh Department of Physics, Pohang University of Science and

More information

Universal quantum computation on the power of quantum non-demolition measurements

Universal quantum computation on the power of quantum non-demolition measurements Universal quantum computation on the power of quantum non-demolition measurements Kae Nemoto 1, William J. Munro Trusted Systems Laboratory P Laboratories Bristol PL-2005-202 November 23, 2005* universal

More information

Quantum Optical Metrology The Lowdown on High-N00N States

Quantum Optical Metrology The Lowdown on High-N00N States Quantum Optical Metrology The Lowdown on High-N00N States Jonathan P. Dowling Hearne Institute for Theoretical Physics and Department of Physics and Astronomy Louisiana State University, 202 Nicholson

More information

QUANTUM INFORMATION with light and atoms. Lecture 2. Alex Lvovsky

QUANTUM INFORMATION with light and atoms. Lecture 2. Alex Lvovsky QUANTUM INFORMATION with light and atoms Lecture 2 Alex Lvovsky MAKING QUANTUM STATES OF LIGHT 1. Photons 2. Biphotons 3. Squeezed states 4. Beam splitter 5. Conditional measurements Beam splitter transformation

More information

Quantum measurement a paradigm for multiscale science

Quantum measurement a paradigm for multiscale science Quantum measurement a paradigm for multiscale science Hideo Mabuchi, John Doyle Physics, CDS Andrew Doherty Jon Williams Mike Armen John Au Andy Berglund Benjamin Lev Timothy McGarvey Benjamin Rahn John

More information

quant-ph/ Dec 1999

quant-ph/ Dec 1999 QUANTUM INTERFEROMETRIC OPTICAL LITHOGRAPHY: EXPLOITING ENTANGLEMENT TO BEAT THE DIFFRACTION LIMIT Agedi N. Boto, Daniel S. Abrams, Colin P. Williams, and Jonathan P. Dowling* Quantum Computing Technologies

More information

Ion trap quantum processor

Ion trap quantum processor Ion trap quantum processor Laser pulses manipulate individual ions row of qubits in a linear Paul trap forms a quantum register Effective ion-ion interaction induced by laser pulses that excite the ion`s

More information

arxiv:quant-ph/ v3 18 Jan 2004

arxiv:quant-ph/ v3 18 Jan 2004 A feasible gate for scalable linear optics quantum computation using polarization optics Kaoru Sanaka and Kevin Resch Institut für Experimentalphysik, Universität Wien, Boltzmanngasse arxiv:quant-ph/0316

More information

The information content of a quantum

The information content of a quantum The information content of a quantum A few words about quantum computing Bell-state measurement Quantum dense coding Teleportation (polarisation states) Quantum error correction Teleportation (continuous

More information

Quantum information processing. Two become one

Quantum information processing. Two become one Quantum information processing Two become one Scientists experimentally demonstrate a scheme for quantum joining, which allow the number of qubits encoded per photon to be varied while keeping the overall

More information

Einstein-Podolsky-Rosen entanglement t of massive mirrors

Einstein-Podolsky-Rosen entanglement t of massive mirrors Einstein-Podolsky-Rosen entanglement t of massive mirrors Roman Schnabel Albert-Einstein-Institut t i tit t (AEI) Institut für Gravitationsphysik Leibniz Universität Hannover Outline Squeezed and two-mode

More information

Lecture 11, May 11, 2017

Lecture 11, May 11, 2017 Lecture 11, May 11, 2017 This week: Atomic Ions for QIP Ion Traps Vibrational modes Preparation of initial states Read-Out Single-Ion Gates Two-Ion Gates Introductory Review Articles: D. Leibfried, R.

More information

Simple scheme for efficient linear optics quantum gates

Simple scheme for efficient linear optics quantum gates PHYSICAL REVIEW A, VOLUME 65, 012314 Simple scheme for efficient linear optics quantum gates T. C. Ralph,* A. G. White, W. J. Munro, and G. J. Milburn Centre for Quantum Computer Technology, University

More information

High rate quantum cryptography with untrusted relay: Theory and experiment

High rate quantum cryptography with untrusted relay: Theory and experiment High rate quantum cryptography with untrusted relay: Theory and experiment CARLO OTTAVIANI Department of Computer Science, The University of York (UK) 1st TWQI Conference Ann Arbor 27-3 July 2015 1 In

More information

A Guide to Experiments in Quantum Optics

A Guide to Experiments in Quantum Optics Hans-A. Bachor and Timothy C. Ralph A Guide to Experiments in Quantum Optics Second, Revised and Enlarged Edition WILEY- VCH WILEY-VCH Verlag CmbH Co. KGaA Contents Preface 1 Introduction 1.1 Historical

More information

The Quantum Limit and Beyond in Gravitational Wave Detectors

The Quantum Limit and Beyond in Gravitational Wave Detectors The Quantum Limit and Beyond in Gravitational Wave Detectors Gravitational wave detectors Quantum nature of light Quantum states of mirrors Nergis Mavalvala GW2010, UMinn, October 2010 Outline Quantum

More information

arxiv: v3 [quant-ph] 27 Feb 2015

arxiv: v3 [quant-ph] 27 Feb 2015 Boson sampling with displaced single-photon Fock states versus single-photon-added coherent states The quantum-classical divide and computational-complexity transitions in linear optics arxiv:402.053v3

More information

FIG. 16: A Mach Zehnder interferometer consists of two symmetric beam splitters BS1 and BS2

FIG. 16: A Mach Zehnder interferometer consists of two symmetric beam splitters BS1 and BS2 Lecture 11: Application: The Mach Zehnder interferometer Coherent-state input Squeezed-state input Mach-Zehnder interferometer with coherent-state input: Now we apply our knowledge about quantum-state

More information

arxiv: v1 [quant-ph] 25 Apr 2017

arxiv: v1 [quant-ph] 25 Apr 2017 Deterministic creation of a four-qubit W state using one- and two-qubit gates Firat Diker 1 and Can Yesilyurt 2 1 Faculty of Engineering and Natural Sciences, arxiv:170.0820v1 [quant-ph] 25 Apr 2017 Sabanci

More information

The Gouy phase shift in nonlinear interactions of waves

The Gouy phase shift in nonlinear interactions of waves The Gouy phase shift in nonlinear interactions of waves Nico Lastzka 1 and Roman Schnabel 1 1 Institut für Gravitationsphysik, Leibniz Universität Hannover and Max-Planck-Institut für Gravitationsphysik

More information

Solid-state quantum communications and quantum computation based on single quantum-dot spin in optical microcavities

Solid-state quantum communications and quantum computation based on single quantum-dot spin in optical microcavities CQIQC-V -6 August, 03 Toronto Solid-state quantum communications and quantum computation based on single quantum-dot spin in optical microcavities Chengyong Hu and John G. Rarity Electrical & Electronic

More information

Controlling the Interaction of Light and Matter...

Controlling the Interaction of Light and Matter... Control and Measurement of Multiple Qubits in Circuit Quantum Electrodynamics Andreas Wallraff (ETH Zurich) www.qudev.ethz.ch M. Baur, D. Bozyigit, R. Bianchetti, C. Eichler, S. Filipp, J. Fink, T. Frey,

More information

Atomic vapor quantum memory for a photonic polarization qubit

Atomic vapor quantum memory for a photonic polarization qubit Atomic vapor quantum memory for a photonic polarization qubit Young-Wook Cho 1,2 and Yoon-Ho Kim 1,3 1 Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, 790-784, Korea

More information

Carlton M. Caves University of New Mexico

Carlton M. Caves University of New Mexico Quantum metrology: dynamics vs. entanglement I. Introduction II. Ramsey interferometry and cat states III. Quantum and classical resources IV. Quantum information perspective V. Beyond the Heisenberg limit

More information

Quantum Networks with Atomic Ensembles

Quantum Networks with Atomic Ensembles Quantum Networks with Atomic Ensembles Daniel Felinto* dfelinto@df.ufpe.br C.W. Chou, H. Deng, K.S. Choi, H. de Riedmatten, J. Laurat, S. van Enk, H.J. Kimble Caltech Quantum Optics *Presently at Departamento

More information

Experimental sub-rayleigh resolution by an unseeded high-gain optical parametric amplifier for quantum lithography

Experimental sub-rayleigh resolution by an unseeded high-gain optical parametric amplifier for quantum lithography PHYSICL REVIEW 77, 012324 2008 Experimental sub-rayleigh resolution by an unseeded high-gain optical parametric amplifier for quantum lithography Fabio Sciarrino, 1,2 Chiara Vitelli, 1 Francesco De Martini,

More information

Differential Phase Shift Quantum Key Distribution and Beyond

Differential Phase Shift Quantum Key Distribution and Beyond Differential Phase Shift Quantum Key Distribution and Beyond Yoshihisa Yamamoto E. L. Ginzton Laboratory, Stanford University National Institute of Informatics (Tokyo, Japan) DPS-QKD system Protocol System

More information

Quantum Logic Operations Using Single Photons and the Zeno Effect. J.D. Franson, B.C. Jacobs, and T.B. Pittman. Johns Hopkins University

Quantum Logic Operations Using Single Photons and the Zeno Effect. J.D. Franson, B.C. Jacobs, and T.B. Pittman. Johns Hopkins University 1 Quantum Logic Operations Using Single Photons and the Zeno Effect J.D. Franson, B.C. Jacobs, and T.B. Pittman Johns Hopkins University Applied Physics Laboratory Laurel, MD 20723 Abstract: We show that

More information

Quantum optical metrology the lowdown on high-n00n states

Quantum optical metrology the lowdown on high-n00n states Contemporary Physics Vol. 49, No. 2, March April 2008, 125 143 Quantum optical metrology the lowdown on high-n00n states Jonathan P. Dowling* Hearne Institute for Theoretical Physics, Department of Physics

More information

MEASUREMENT THEORY QUANTUM AND ITS APPLICATIONS KURT JACOBS. University of Massachusetts at Boston. fg Cambridge WW UNIVERSITY PRESS

MEASUREMENT THEORY QUANTUM AND ITS APPLICATIONS KURT JACOBS. University of Massachusetts at Boston. fg Cambridge WW UNIVERSITY PRESS QUANTUM MEASUREMENT THEORY AND ITS APPLICATIONS KURT JACOBS University of Massachusetts at Boston fg Cambridge WW UNIVERSITY PRESS Contents Preface page xi 1 Quantum measurement theory 1 1.1 Introduction

More information

Squeezed states of light - generation and applications

Squeezed states of light - generation and applications Squeezed states of light - generation and applications Eugeniy E. Mikhailov The College of William & Mary Fudan, December 24, 2013 Eugeniy E. Mikhailov (W&M) Squeezed light Fudan, December 24, 2013 1 /

More information

arxiv:quant-ph/ v1 27 Feb 2006

arxiv:quant-ph/ v1 27 Feb 2006 Linear optics uantum Toffoli and Fredkin gates Jaromír Fiurášek Department of Optics, Palacký University, 7. listopadu 5, 77 Olomouc, Czech Republic (Dated: February 8, 6) arxiv:uant-ph/6 v 7 Feb 6 We

More information

arxiv: v1 [quant-ph] 1 Feb 2008

arxiv: v1 [quant-ph] 1 Feb 2008 Silica-on-Silicon Waveguide Quantum Circuits Alberto oliti, Martin J. Cryan, John G. Rarity, Siyuan Yu, and Jeremy L. O Brien Centre for Quantum hotonics, H. H. Wills hysics Laboratory & Department of

More information

QUANTUM TECHNOLOGIES: THE SECOND QUANTUM REVOLUTION* Jonathan P. Dowling

QUANTUM TECHNOLOGIES: THE SECOND QUANTUM REVOLUTION* Jonathan P. Dowling QUANTUM TECHNOLOGIES: THE SECOND QUANTUM REVOLUTION* Jonathan P. Dowling Quantum Science & Technologies Group Hearne Institute for Theoretical Physics Louisiana State University Tulane University, 25 April

More information

Einstein-Podolsky-Rosen-like correlation on a coherent-state basis and Continuous-Variable entanglement

Einstein-Podolsky-Rosen-like correlation on a coherent-state basis and Continuous-Variable entanglement 12/02/13 Einstein-Podolsky-Rosen-like correlation on a coherent-state basis and Continuous-Variable entanglement Ryo Namiki Quantum optics group, Kyoto University 京大理 並木亮 求職中 arxiv:1109.0349 Quantum Entanglement

More information

Schemes to generate entangled photon pairs via spontaneous parametric down conversion

Schemes to generate entangled photon pairs via spontaneous parametric down conversion Schemes to generate entangled photon pairs via spontaneous parametric down conversion Atsushi Yabushita Department of Electrophysics National Chiao-Tung University? Outline Introduction Optical parametric

More information

0.5 atoms improve the clock signal of 10,000 atoms

0.5 atoms improve the clock signal of 10,000 atoms 0.5 atoms improve the clock signal of 10,000 atoms I. Kruse 1, J. Peise 1, K. Lange 1, B. Lücke 1, L. Pezzè 2, W. Ertmer 1, L. Santos 3, A. Smerzi 2, C. Klempt 1 1 Institut für Quantenoptik, Leibniz Universität

More information

Jian-Wei Pan

Jian-Wei Pan Lecture Note 6 11.06.2008 open system dynamics 0 E 0 U ( t) ( t) 0 E ( t) E U 1 E ( t) 1 1 System Environment U() t ( ) 0 + 1 E 0 E ( t) + 1 E ( t) 0 1 0 0 1 1 2 * 0 01 E1 E0 q() t = TrEq+ E = * 2 1 0

More information

Enhancing sensitivity of gravitational wave antennas, such as LIGO, via light-atom interaction

Enhancing sensitivity of gravitational wave antennas, such as LIGO, via light-atom interaction Enhancing sensitivity of gravitational wave antennas, such as LIGO, via light-atom interaction Eugeniy E. Mikhailov The College of William & Mary, USA New Laser Scientists, 4 October 04 Eugeniy E. Mikhailov

More information

Squeezing manipulation with atoms

Squeezing manipulation with atoms Squeezing manipulation with atoms Eugeniy E. Mikhailov The College of William & Mary March 21, 2012 Eugeniy E. Mikhailov (W&M) Squeezing manipulation LSC-Virgo (March 21, 2012) 1 / 17 About the college

More information

Quantum Memory with Atomic Ensembles. Yong-Fan Chen Physics Department, Cheng Kung University

Quantum Memory with Atomic Ensembles. Yong-Fan Chen Physics Department, Cheng Kung University Quantum Memory with Atomic Ensembles Yong-Fan Chen Physics Department, Cheng Kung University Outline Laser cooling & trapping Electromagnetically Induced Transparency (EIT) Slow light & Stopped light Manipulating

More information

Integrated optical circuits for classical and quantum light. Part 2: Integrated quantum optics. Alexander Szameit

Integrated optical circuits for classical and quantum light. Part 2: Integrated quantum optics. Alexander Szameit Integrated optical circuits for classical and quantum light Part 2: Integrated quantum optics Alexander Szameit Alexander Szameit alexander.szameit@uni-jena.de +49(0)3641 947985 +49(0)3641 947991 Outline

More information

arxiv:quant-ph/ v2 14 Mar 2006

arxiv:quant-ph/ v2 14 Mar 2006 Linear optical quantum computing Pieter Kok, 1,, W.J. Munro, Kae Nemoto, 3 T.C. Ralph, 4 Jonathan P. Dowling, 5,6 and G.J. Milburn 4 1 Department of Materials, Oxford University, Oxford OX1 3PH, UK Hewlett-Packard

More information

Single Photon Generation & Application

Single Photon Generation & Application Single Photon Generation & Application Photon Pair Generation: Parametric down conversion is a non-linear process, where a wave impinging on a nonlinear crystal creates two new light beams obeying energy

More information