Lens Design II. Lecture 3: Aspheres Herbert Gross. Winter term

Size: px
Start display at page:

Download "Lens Design II. Lecture 3: Aspheres Herbert Gross. Winter term"

Transcription

1 Lens Design II Lectue 3: Asphees Hebet Goss Winte tem 18

2 Pelimina Schedule Lens Design II Abeations and optimiation Repetition 4.1. Stuctual modifications Zeo opeands, lens splitting, lens addition, lens emoval, mateial selection Asphees Coection with asphees, Fobes appoach, optimal location of asphees, seveal asphees Feefoms Feefom sufaces, geneal aspects, suface desciption, qualit assessment, initial sstems Field flattening Astigmatism and field cuvatue, thick meniscus, plus-minus pais, field lenses Chomatical coection I Achomatiation, axial vesus tansvesal, glass selection ules, buied sufaces Chomatical coection II Seconda spectum, apochomatic coection, aplanatic achomates, spheochomatism Special coection topics I Smmet, wide field sstems, stop position, vignetting Special coection topics II Telecenticit, monocentic sstems, anamophotic lenses, Scheimpflug sstems Highe ode abeations High NA sstems, boken achomates, induced abeations Futhe topics Sensitivit, scan sstems, eepieces Mio sstems special aspects, double passes, catadioptic sstems Zoom sstems Mechanical compensation, optical compensation Diffactive elements Colo coection, a equivalent model, stalight, thid ode abeations, manufactuing

3 3 Contents 1. Asphees. Conic sections 3. Fobes asphees 4. Sstem impovement b asphees 5. Asphees in Zemax

4 4 Aspheical Coection Coection of spheical abeation b an asphee a) spheical lens efaction too stong b) aspheical lens asphee educes powe Ref: A. Hekomme

5 5 Conic Sections Explicite suface equation, esolved to Paametes: cuvatue c = 1 / R conic paamete Influence of on the suface shape c c Paamete Suface shape = - 1 paaboloid < - 1 hpeboloid = sphee > oblate ellipsoid (disc) > > - 1 polate ellipsoid (ciga ) Relations with axis lengths a,b of conic sections a b 1 c b a b 1 c 1 a c 1 1

6 6 Aspheical Shape of Conic Sections Conic aspheical suface Vaiation of the conical paamete c c

7 x x c x c x R R R R x x Conic section Special case spheical Cone Tooidal suface with adii R x and R in the two section planes Genealied onic section without cicula smmet Roof suface c x c c x c x x x tan 7 Aspheical Suface Tpes

8 Polnomial Aspheical Suface Standad otational-smmetic desciption 8 Basic fom of a conic section supeimposed b a Talo expansion of c () c M m a... adial distance to optical axis x m m4 () c a m cuvatue conic constant aapheical coefficients Ref: K. Uhlendof

9 Polnomial Aspheical Suface Othe desciptions x s s c s c s C s b s b B k A C B A M m N n n m ij M m m m h a h a h k h ) ( ) ( t g t f h Supeconic (Genolds ) Implicit -polnomial asphee (Lene/Sasian ) Tuncated paametic Talo (Lene/Sasian ) 9 Ref: K. Uhlendof 9

10 1 Simple Asphee Paabolic Mio Equation Radius of cuvatue in vetex: R s Pefect imaging on axis fo object at infinit Stong coma abeation fo finite field angles Applications: 1. Astonomical telescopes. Collecto in illumination sstems R s axis w = field w = field w = 4

11 11 Paabolic Mio Equation c : cuvatue 1/R s : eccenticit ( = -1 ) c 1 1 (1 ) c C F a R sag vetex cicle sagittal cicle of cuvatue tangential cicle of cuvatue R tan vetex cicle R s paabolic mio F x R adii of cuvatue : tan Rs 1 R s paabolic mio R tan Rs 1 R s R s f 3

12 1 Ellipsoid Mio Equation c: cuvatue 1/R : Eccenticit e c 1 1 (1 ) c b oblate vetex adius Rso F polate vetex adius R sp a F' ellipsoid

13 13 Simple Asphee Elliptical Mio Equation Radius of cuvatue in vetex, cuvatue c eccenticit Two diffeent shapes: oblate / polate Pefect imaging on axis fo finite object and image loaction Diffeent magnifications depending on used pat of the mio Applications: Illumination sstems s c 1 1 (1 ) c s' F F'

14 14 Asphee: Pefect Imaging on Axis Pefect stigmatic imaging on axis: elliptical font suface elliptical concentic

15 15 Asphee: Pefect Imaging on Axis Pefect stigmatic imaging on axis: Hpeoloid ea suface s n 1 s n 1 s n 1 n 1 1 n s F Stong decease of pefomance fo finite field sie : dominant coma Altenative: ellipsoidal suface on font suface and concentic ea suface 1 5 D spot m] 1 w in

16 Gacing Incidence-Xa Telescope Xa telescopewolte tpe I Nested shells with gacing incidence Incease of numeical apetue b seveal shells paaboloids hpeboloids Wolte tpe I towads paaboloid focus point as detecto nested clindical shells

17 Gacing Incidence-Xa Telescope Woltetp 1. Paaboloid. Hpeboloid

18 18 Asphees - Geomet Refeence: deviation fom sphee Deviation along axis Bette conditions: nomal deviation s () deviation height tangente () deviation along axis height sphee pependicula deviation s aspheical shape spheical suface aspheical contou

19 19 Aspheical Expansion Ode Impovement b highe odes Geneation of high gadients () 1 6. ode 5 D ms [m] ode 8. ode 1. ode 1. ode ode k max

20 Asphees: Coection of Highe Ode Coection at discete sampling Lage deviations between sampling points Lage oscillations fo highe odes Bette desciption: slope, defines a bending esidual spheical tansvese abeations pefect coecting suface Coected points with ' = coected points esidual angle deviation points with maximal angle eo paaxial ange ' = c d A /d eal asphee with oscillations A

21 Polnomial Aspheical Suface Fobes Asphees - Q con 1 New othogonaliation and nomaliation using Jacobi-polnomials Q m c () / max amqm / c m M 4 max equies nomaliation adius max (1:1 convesion to standad asphees possible) Mean squae slope M m a m / m 5 () 4 Q () 4 Q 1 () 4 Q () 4 Q 3 () 4 Q 4 () 4 Q 5 () Ref: K. Uhlendof

22 Polnomial Aspheical Suface Fobes Asphees - Q bfs Limit gadients b special choice of the scala poduct () 1 max max M c a mb m 1 1 c 1 c m max (1:1 convesion to standad asphees () not possible) Mean squae slope 1/ h max M m a m Ref: K. Uhlendof u(u-1)b (u) u(u-1)b 1 (u) u(u-1)b (u) u(u-1)b 3 (u) u(u-1)b 4 (u) u(u-1)b 5 (u) u = (/ max )

23 3 Fobes Asphees Stong asphee Q con sag along -axis slope othogonal tue polnom tpe Q 1 in Zemax Mild asphee Q bfs diffeence to best fit sphee sag along local suface nomal not slope othogonal not a polnomial due to pojection tpe Q in Zemax c () / max amqm / c m M 4 max () 1 max max M c a mb m 1 1 c 1 c m max diect toleancing of coefficients () no diect elation of coefficients to slope () 4 Q () 4 Q 1() 4 Q () 4 Q 3() 4 Q 4() 4 Q 5() u(u-1)b (u) u(u-1)b 1(u) u(u-1)b (u) u(u-1)b 3(u) u(u-1)b 4(u) u(u-1)b 5(u) u = (/ max)

24 4 Selection of Asphee Tpes Coection of Reto focus tpe camea lens F# =.8, d=1, w = 94 Consideabl bette esukt and faste optimiation b the use of Q asphees a) standad asphee b) Qbfs asphee Ref: C. Menke

25 5 Impact of Asphee Asphee fa fom pupil: - a bundels of field points sepaated - field dependend coection - also impact on distotion suface Asphee nea pupil: - all a bundels equall affected - poblem field angles: coma suface 15

26 6 Aspheical Single Lens Coection on axis and field point Field coection: two asphees spheical axis field, tangential field, sagittal 5 m 5 m 5 m a one aspheical 5 m 5 m 5 m a a double aspheical 5 m 5 m 5 m

27 7 Reducing the Numbe of Lenses with Asphees Example photogaphic oom lens Equivalent pefomance 9 lenses educed to 6 lenses Oveall length educed a) all spheical 9 lenses Vaio Sonna / f = 8-56 b) with 3 asphees 6 lenses length educed aspheical sufaces Ref: H. Zügge

28 8 Reducing the Numbe of Lenses with Asphees Example photogaphic oom lens Equivalent pefomance 9 lenses educed to 6 lenses Oveall length educed Photogaphic lens f = 53 mm, F# = 6.5 a) all spheical, 9 lenses axis field x x 436 nm 588 nm 656 nm p x p p x p b) 3 asphees, 6 lenses, shote, bette pefomance axis field x x A 1 A 3 A p x p p x p Ref: H. Zügge

29 9 Reducing the Numbe of Lenses with Asphees Binocula Lenses 1.5x Neal equivalent pefomance Distotion, Field cuvatue and pupil abeation slightl impoved 1 lens emoved Bette ee elief distance a) Binocula 1.5x, all spheical field cuvatue in dpt distotion in % tan sag b) Binocula 1.5x, 1 aspheical suface tan sag

30 3 Lithogaphic Pojection: Impovement b Asphees Consideable eduction of length and diamete b aspheical sufaces Pefomance equivalent a) NA =.8 spheical 31 lenses lenses emovable b) NA =.8, 8 aspheical sufaces -9% -13% 9 lenses Ref: W. Ulich

31 31 Best Position of Asphees Location depending on coection taget: spheical : pupil plane coma and astigmatism: field plane No effect on Petval cuvatue aspheical effect.4.3. spheical coma astigmatism distotion d/p'

32 3 Aspheical Sensitivit 3 spheical abeation Example: Lithogaphic lens Sensitivities fo aspheical coection coma suface index astigmatism suface index distotion suface index.1.5 S1 S4 S5 S1 S16 stop S3 S suface index

33 33 Aspheiation of a Camea Lens Selection of one aspheical suface in a photogaphic lens S S 5 S 9 S 11 S spheical abeation coma suface index spheical sstem: 197 nm suface : 196 nm suface 5: 185 nm suface 9: 187 nm suface 11: 78 nm suface 14: 178 nm astigmatism suface index distotion suface index suface index

34 Hand Phone Objective lenses Examples US L = 4. mm, F'=.8, f = 3.67 mm, w=x34 US L = 6. mm, F'=.8, f = 4. mm, w=x31 EP L = 5.37 mm, F'=.88, f = 3.3 mm, w=x33.9 Olmpus L = 7.5 mm, F'=.8, f = 4.57 mm, w=x33 Ref: T. Steinich

35 35 Realiation Aspects fo Asphees Stong asphee : Tuning points ''= Deviation fom sphee asphee pofile () deivative '() 3 pofile deviation () deivative '(). deivative ''()

36 36 Suface popeties and settings Setting of suface popeties

37 Impotant Suface Tpes Standad Even asphee Paaxial Paaxial XY Coodinate beak Diffaction gating Gadient 1 Tooidal Zenike Finge sag Extended polnomial Black Box Lens ABCD spheical and conic sections classical asphee ideal lens ideal toic lens change of coodinate sstem line gating gadient medium clindical lens suface as supeposition of Zenike functions genealied asphee hidden sstem, fom vendos paaxial segment

Outline. Basics of interference Types of interferometers. Finite impulse response Infinite impulse response Conservation of energy in beam splitters

Outline. Basics of interference Types of interferometers. Finite impulse response Infinite impulse response Conservation of energy in beam splitters ntefeometes lectue C 566 Adv. Optics Lab Outline Basics of intefeence Tpes of intefeometes Amplitude division Finite impulse esponse nfinite impulse esponse Consevation of eneg in beam splittes Wavefont

More information

Chapter 3 Optical Systems with Annular Pupils

Chapter 3 Optical Systems with Annular Pupils Chapte 3 Optical Systems with Annula Pupils 3 INTRODUCTION In this chapte, we discuss the imaging popeties of a system with an annula pupil in a manne simila to those fo a system with a cicula pupil The

More information

EFFECTS OF FRINGING FIELDS ON SINGLE PARTICLE DYNAMICS. M. Bassetti and C. Biscari INFN-LNF, CP 13, Frascati (RM), Italy

EFFECTS OF FRINGING FIELDS ON SINGLE PARTICLE DYNAMICS. M. Bassetti and C. Biscari INFN-LNF, CP 13, Frascati (RM), Italy Fascati Physics Seies Vol. X (998), pp. 47-54 4 th Advanced ICFA Beam Dynamics Wokshop, Fascati, Oct. -5, 997 EFFECTS OF FRININ FIELDS ON SINLE PARTICLE DYNAMICS M. Bassetti and C. Biscai INFN-LNF, CP

More information

Tutorial on Strehl ratio, wavefront power series expansion, Zernike polynomials expansion in small aberrated optical systems By Sheng Yuan

Tutorial on Strehl ratio, wavefront power series expansion, Zernike polynomials expansion in small aberrated optical systems By Sheng Yuan Tutoial on Stel atio, wavefont powe seies expansion, Zenike polynomials expansion in small abeated optical systems By Seng Yuan. Stel Ratio Te wave abeation function, (x,y, is defined as te distance, in

More information

Lecture 8 - Gauss s Law

Lecture 8 - Gauss s Law Lectue 8 - Gauss s Law A Puzzle... Example Calculate the potential enegy, pe ion, fo an infinite 1D ionic cystal with sepaation a; that is, a ow of equally spaced chages of magnitude e and altenating sign.

More information

transformation Earth V-curve (meridian) λ Conical projection. u,v curves on the datum surface projected as U,V curves on the projection surface

transformation Earth V-curve (meridian) λ Conical projection. u,v curves on the datum surface projected as U,V curves on the projection surface . CONICAL PROJECTIONS In elementay texts on map pojections, the pojection sufaces ae often descibed as developable sufaces, such as the cylinde (cylindical pojections) and the cone (conical pojections),

More information

MCV4U Final Exam Review. 1. Consider the function f (x) Find: f) lim. a) lim. c) lim. d) lim. 3. Consider the function: 4. Evaluate. lim. 5. Evaluate.

MCV4U Final Exam Review. 1. Consider the function f (x) Find: f) lim. a) lim. c) lim. d) lim. 3. Consider the function: 4. Evaluate. lim. 5. Evaluate. MCVU Final Eam Review Answe (o Solution) Pactice Questions Conside the function f () defined b the following gaph Find a) f ( ) c) f ( ) f ( ) d) f ( ) Evaluate the following its a) ( ) c) sin d) π / π

More information

Correction of Distortion Aberration in Electron Magnetic Lenses

Correction of Distortion Aberration in Electron Magnetic Lenses SSRG Intenational Jounal of Applied Physics ( SSRG IJAP ) Volume 3 Issue May to Aug 016 Coection of Distotion Abeation in Electon Magnetic Lenses TalibMohsen Abbas Depatment of Physics, College of Education

More information

Lecture 04: HFK Propagation Physical Optics II (Optical Sciences 330) (Updated: Friday, April 29, 2005, 8:05 PM) W.J. Dallas

Lecture 04: HFK Propagation Physical Optics II (Optical Sciences 330) (Updated: Friday, April 29, 2005, 8:05 PM) W.J. Dallas C:\Dallas\0_Couses\0_OpSci_330\0 Lectue Notes\04 HfkPopagation.doc: Page of 9 Lectue 04: HFK Popagation Physical Optics II (Optical Sciences 330) (Updated: Fiday, Apil 9, 005, 8:05 PM) W.J. Dallas The

More information

ME 210 Applied Mathematics for Mechanical Engineers

ME 210 Applied Mathematics for Mechanical Engineers Tangent and Ac Length of a Cuve The tangent to a cuve C at a point A on it is defined as the limiting position of the staight line L though A and B, as B appoaches A along the cuve as illustated in the

More information

Lens Design II. Lecture 1: Aberrations and optimization Herbert Gross. Winter term

Lens Design II. Lecture 1: Aberrations and optimization Herbert Gross. Winter term Lens Design II Lecture 1: Aberrations and optimization 18-1-17 Herbert Gross Winter term 18 www.iap.uni-jena.de Preliminary Schedule Lens Design II 18 1 17.1. Aberrations and optimization Repetition 4.1.

More information

Sensor and Simulation Notes. Note 525. Oct Lens Design for a Prolate-Spheroidal Impulse radiating Antenna (IRA)

Sensor and Simulation Notes. Note 525. Oct Lens Design for a Prolate-Spheroidal Impulse radiating Antenna (IRA) Senso and Simulation Notes Note 55 Oct 7 Lens Design fo a Polate-Spheoidal Impulse adiating Antenna (IRA) Sehat Altunc, Cal E. Baum, Chistos G. Chistodoulou and Edl Schamiloglu Univesity of New Mexico

More information

17.1 Electric Potential Energy. Equipotential Lines. PE = energy associated with an arrangement of objects that exert forces on each other

17.1 Electric Potential Energy. Equipotential Lines. PE = energy associated with an arrangement of objects that exert forces on each other Electic Potential Enegy, PE Units: Joules Electic Potential, Units: olts 17.1 Electic Potential Enegy Electic foce is a consevative foce and so we can assign an electic potential enegy (PE) to the system

More information

Black Body Radiation and Radiometric Parameters:

Black Body Radiation and Radiometric Parameters: Black Body Radiation and Radiometic Paametes: All mateials absob and emit adiation to some extent. A blackbody is an idealization of how mateials emit and absob adiation. It can be used as a efeence fo

More information

Contact impedance of grounded and capacitive electrodes

Contact impedance of grounded and capacitive electrodes Abstact Contact impedance of gounded and capacitive electodes Andeas Hödt Institut fü Geophysik und extateestische Physik, TU Baunschweig The contact impedance of electodes detemines how much cuent can

More information

Chapter 1. Introduction. 1.1 The scanning optical microscope

Chapter 1. Introduction. 1.1 The scanning optical microscope Chapte 1 This thesis descibes the fomulation of a mathematical model descibing the signal geneation pocess in both the eflectance and magneto-optic, Type 1 and Type 2, scanning optical micoscopes. The

More information

MAGNETIC FIELD AROUND TWO SEPARATED MAGNETIZING COILS

MAGNETIC FIELD AROUND TWO SEPARATED MAGNETIZING COILS The 8 th Intenational Confeence of the Slovenian Society fo Non-Destuctive Testing»pplication of Contempoay Non-Destuctive Testing in Engineeing«Septembe 1-3, 5, Potoož, Slovenia, pp. 17-1 MGNETIC FIELD

More information

Math 2263 Solutions for Spring 2003 Final Exam

Math 2263 Solutions for Spring 2003 Final Exam Math 6 Solutions fo Sping Final Exam ) A staightfowad appoach to finding the tangent plane to a suface at a point ( x, y, z ) would be to expess the cuve as an explicit function z = f ( x, y ), calculate

More information

rt () is constant. We know how to find the length of the radius vector by r( t) r( t) r( t)

rt () is constant. We know how to find the length of the radius vector by r( t) r( t) r( t) Cicula Motion Fom ancient times cicula tajectoies hae occupied a special place in ou model of the Uniese. Although these obits hae been eplaced by the moe geneal elliptical geomety, cicula motion is still

More information

Physics 1502: Lecture 4 Today s Agenda

Physics 1502: Lecture 4 Today s Agenda 1 Physics 1502: Today s genda nnouncements: Lectues posted on: www.phys.uconn.edu/~cote/ HW assignments, solutions etc. Homewok #1: On Mastephysics today: due next Fiday Go to masteingphysics.com and egiste

More information

Related Rates - the Basics

Related Rates - the Basics Related Rates - the Basics In this section we exploe the way we can use deivatives to find the velocity at which things ae changing ove time. Up to now we have been finding the deivative to compae the

More information

you of a spring. The potential energy for a spring is given by the parabola U( x)

you of a spring. The potential energy for a spring is given by the parabola U( x) Small oscillations The theoy of small oscillations is an extemely impotant topic in mechanics. Conside a system that has a potential enegy diagam as below: U B C A x Thee ae thee points of stable equilibium,

More information

! E da = 4πkQ enc, has E under the integral sign, so it is not ordinarily an

! E da = 4πkQ enc, has E under the integral sign, so it is not ordinarily an Physics 142 Electostatics 2 Page 1 Electostatics 2 Electicity is just oganized lightning. Geoge Calin A tick that sometimes woks: calculating E fom Gauss s law Gauss s law,! E da = 4πkQ enc, has E unde

More information

From Gravitational Collapse to Black Holes

From Gravitational Collapse to Black Holes Fom Gavitational Collapse to Black Holes T. Nguyen PHY 391 Independent Study Tem Pape Pof. S.G. Rajeev Univesity of Rocheste Decembe 0, 018 1 Intoduction The pupose of this independent study is to familiaize

More information

ESCI 342 Atmospheric Dynamics I Lesson 3 Fundamental Forces II

ESCI 342 Atmospheric Dynamics I Lesson 3 Fundamental Forces II Reading: Matin, Section. ROTATING REFERENCE FRAMES ESCI 34 Atmospheic Dnamics I Lesson 3 Fundamental Foces II A efeence fame in which an object with zeo net foce on it does not acceleate is known as an

More information

r cos, and y r sin with the origin of coordinate system located at

r cos, and y r sin with the origin of coordinate system located at Lectue 3-3 Kinematics of Rotation Duing ou peious lectues we hae consideed diffeent examples of motion in one and seeal dimensions. But in each case the moing object was consideed as a paticle-like object,

More information

Electrostatics (Electric Charges and Field) #2 2010

Electrostatics (Electric Charges and Field) #2 2010 Electic Field: The concept of electic field explains the action at a distance foce between two chaged paticles. Evey chage poduces a field aound it so that any othe chaged paticle expeiences a foce when

More information

DOING PHYSICS WITH MATLAB COMPUTATIONAL OPTICS

DOING PHYSICS WITH MATLAB COMPUTATIONAL OPTICS DOING PHYIC WITH MTLB COMPUTTIONL OPTIC FOUNDTION OF CLR DIFFRCTION THEORY Ian Coope chool of Physics, Univesity of ydney ian.coope@sydney.edu.au DOWNLOD DIRECTORY FOR MTLB CRIPT View document: Numeical

More information

, the tangent line is an approximation of the curve (and easier to deal with than the curve).

, the tangent line is an approximation of the curve (and easier to deal with than the curve). 114 Tangent Planes and Linea Appoimations Back in-dimensions, what was the equation of the tangent line of f ( ) at point (, ) f ( )? (, ) ( )( ) = f Linea Appoimation (Tangent Line Appoimation) of f at

More information

Metrology and Sensing

Metrology and Sensing Metology and Sensing Lectue 9: Speckle methods 017-1-14 Hebet Goss Winte tem 017 www.iap.uni-jena.de Peliminay Schedule No Date Subject Detailed Content 1 19.10. Intoduction Intoduction, optical measuements,

More information

8 Separation of Variables in Other Coordinate Systems

8 Separation of Variables in Other Coordinate Systems 8 Sepaation of Vaiables in Othe Coodinate Systems Fo the method of sepaation of vaiables to succeed you need to be able to expess the poblem at hand in a coodinate system in which the physical boundaies

More information

working pages for Paul Richards class notes; do not copy or circulate without permission from PGR 2004/11/3 10:50

working pages for Paul Richards class notes; do not copy or circulate without permission from PGR 2004/11/3 10:50 woking pages fo Paul Richads class notes; do not copy o ciculate without pemission fom PGR 2004/11/3 10:50 CHAPTER7 Solid angle, 3D integals, Gauss s Theoem, and a Delta Function We define the solid angle,

More information

Right-handed screw dislocation in an isotropic solid

Right-handed screw dislocation in an isotropic solid Dislocation Mechanics Elastic Popeties of Isolated Dislocations Ou study of dislocations to this point has focused on thei geomety and thei ole in accommodating plastic defomation though thei motion. We

More information

Extra notes for circular motion: Circular motion : v keeps changing, maybe both speed and

Extra notes for circular motion: Circular motion : v keeps changing, maybe both speed and Exta notes fo cicula motion: Cicula motion : v keeps changing, maybe both speed and diection ae changing. At least v diection is changing. Hence a 0. Acceleation NEEDED to stay on cicula obit: a cp v /,

More information

Math 259 Winter Handout 6: In-class Review for the Cumulative Final Exam

Math 259 Winter Handout 6: In-class Review for the Cumulative Final Exam Math 259 Winte 2009 Handout 6: In-class Review fo the Cumulative Final Exam The topics coveed by the cumulative final exam include the following: Paametic cuves. Finding fomulas fo paametic cuves. Dawing

More information

Mechanics Physics 151

Mechanics Physics 151 Mechanics Physics 151 Lectue 5 Cental Foce Poblem (Chapte 3) What We Did Last Time Intoduced Hamilton s Pinciple Action integal is stationay fo the actual path Deived Lagange s Equations Used calculus

More information

Light Time Delay and Apparent Position

Light Time Delay and Apparent Position Light Time Delay and ppaent Position nalytical Gaphics, Inc. www.agi.com info@agi.com 610.981.8000 800.220.4785 Contents Intoduction... 3 Computing Light Time Delay... 3 Tansmission fom to... 4 Reception

More information

Chapter 4. Newton s Laws of Motion

Chapter 4. Newton s Laws of Motion Chapte 4 Newton s Laws of Motion 4.1 Foces and Inteactions A foce is a push o a pull. It is that which causes an object to acceleate. The unit of foce in the metic system is the Newton. Foce is a vecto

More information

Fresnel Diffraction. monchromatic light source

Fresnel Diffraction. monchromatic light source Fesnel Diffaction Equipment Helium-Neon lase (632.8 nm) on 2 axis tanslation stage, Concave lens (focal length 3.80 cm) mounted on slide holde, iis mounted on slide holde, m optical bench, micoscope slide

More information

Physics 122, Fall October 2012

Physics 122, Fall October 2012 hsics 1, Fall 1 3 Octobe 1 Toda in hsics 1: finding Foce between paallel cuents Eample calculations of fom the iot- Savat field law Ampèe s Law Eample calculations of fom Ampèe s law Unifom cuents in conductos?

More information

Chapter 13 Gravitation

Chapter 13 Gravitation Chapte 13 Gavitation In this chapte we will exploe the following topics: -Newton s law of gavitation, which descibes the attactive foce between two point masses and its application to extended objects

More information

THE DETERMINATION OF THE EFFICIENCY OF OPTICAL FIBRE SENSORS

THE DETERMINATION OF THE EFFICIENCY OF OPTICAL FIBRE SENSORS Jounal of Optoelectonics and Advanced Mateials Vol. 3, No. 1, Mach 001, p. 65-74 THE DETERMINATION OF THE EFFICIENCY OF OPTICAL FIBRE SENSORS M. A. Chita, S. Anghel a, I. Ioga-Siman a, I. Vlad b Electonics

More information

TELE4652 Mobile and Satellite Communications

TELE4652 Mobile and Satellite Communications Mobile and Satellite Communications Lectue 3 Radio Channel Modelling Channel Models If one was to walk away fom a base station, and measue the powe level eceived, a plot would like this: Channel Models

More information

2. Electrostatics. Dr. Rakhesh Singh Kshetrimayum 8/11/ Electromagnetic Field Theory by R. S. Kshetrimayum

2. Electrostatics. Dr. Rakhesh Singh Kshetrimayum 8/11/ Electromagnetic Field Theory by R. S. Kshetrimayum 2. Electostatics D. Rakhesh Singh Kshetimayum 1 2.1 Intoduction In this chapte, we will study how to find the electostatic fields fo vaious cases? fo symmetic known chage distibution fo un-symmetic known

More information

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS LSN 10-: MOTION IN A GRAVITATIONAL FIELD Questions Fom Reading Activity? Gavity Waves? Essential Idea: Simila appoaches can be taken in analyzing electical

More information

GM r. v = For Newton s third law, the forces in the action/reaction pair always act on different objects

GM r. v = For Newton s third law, the forces in the action/reaction pair always act on different objects SAT Physics Mechanics The dot poduct of two vectos: A B = AB cos θ The coss poduct of vectos: A B = AB sin θˆn. The magnitude of the coss poduct is equal to the aea of the paallelogam. We use the ight

More information

Gauss Law. Physics 231 Lecture 2-1

Gauss Law. Physics 231 Lecture 2-1 Gauss Law Physics 31 Lectue -1 lectic Field Lines The numbe of field lines, also known as lines of foce, ae elated to stength of the electic field Moe appopiately it is the numbe of field lines cossing

More information

Physics 2B Chapter 22 Notes - Magnetic Field Spring 2018

Physics 2B Chapter 22 Notes - Magnetic Field Spring 2018 Physics B Chapte Notes - Magnetic Field Sping 018 Magnetic Field fom a Long Staight Cuent-Caying Wie In Chapte 11 we looked at Isaac Newton s Law of Gavitation, which established that a gavitational field

More information

EM-2. 1 Coulomb s law, electric field, potential field, superposition q. Electric field of a point charge (1)

EM-2. 1 Coulomb s law, electric field, potential field, superposition q. Electric field of a point charge (1) EM- Coulomb s law, electic field, potential field, supeposition q ' Electic field of a point chage ( ') E( ) kq, whee k / 4 () ' Foce of q on a test chage e at position is ee( ) Electic potential O kq

More information

B. Spherical Wave Propagation

B. Spherical Wave Propagation 11/8/007 Spheical Wave Popagation notes 1/1 B. Spheical Wave Popagation Evey antenna launches a spheical wave, thus its powe density educes as a function of 1, whee is the distance fom the antenna. We

More information

Physics 2212 GH Quiz #2 Solutions Spring 2016

Physics 2212 GH Quiz #2 Solutions Spring 2016 Physics 2212 GH Quiz #2 Solutions Sping 216 I. 17 points) Thee point chages, each caying a chage Q = +6. nc, ae placed on an equilateal tiangle of side length = 3. mm. An additional point chage, caying

More information

, and the curve BC is symmetrical. Find also the horizontal force in x-direction on one side of the body. h C

, and the curve BC is symmetrical. Find also the horizontal force in x-direction on one side of the body. h C Umeå Univesitet, Fysik 1 Vitaly Bychkov Pov i teknisk fysik, Fluid Dynamics (Stömningsläa), 2013-05-31, kl 9.00-15.00 jälpmedel: Students may use any book including the textbook Lectues on Fluid Dynamics.

More information

Teoría del Funcional de la Densidad (Density Functional Theory)

Teoría del Funcional de la Densidad (Density Functional Theory) Teoía del Funcional de la Densidad (Density Functional Theoy) Motivation: limitations of the standad appoach based on the wave function. The electonic density n() as the key vaiable: Functionals & Thomas-Femi

More information

ASTR415: Problem Set #6

ASTR415: Problem Set #6 ASTR45: Poblem Set #6 Cuan D. Muhlbege Univesity of Mayland (Dated: May 7, 27) Using existing implementations of the leapfog and Runge-Kutta methods fo solving coupled odinay diffeential equations, seveal

More information

Physics 111 Lecture 5 Circular Motion

Physics 111 Lecture 5 Circular Motion Physics 111 Lectue 5 Cicula Motion D. Ali ÖVGÜN EMU Physics Depatment www.aovgun.com Multiple Objects q A block of mass m1 on a ough, hoizontal suface is connected to a ball of mass m by a lightweight

More information

Physics 11 Chapter 20: Electric Fields and Forces

Physics 11 Chapter 20: Electric Fields and Forces Physics Chapte 0: Electic Fields and Foces Yesteday is not ous to ecove, but tomoow is ous to win o lose. Lyndon B. Johnson When I am anxious it is because I am living in the futue. When I am depessed

More information

The geometric construction of Ewald sphere and Bragg condition:

The geometric construction of Ewald sphere and Bragg condition: The geometic constuction of Ewald sphee and Bagg condition: The constuction of Ewald sphee must be done such that the Bagg condition is satisfied. This can be done as follows: i) Daw a wave vecto k in

More information

Is there a magnification paradox in gravitational lensing?

Is there a magnification paradox in gravitational lensing? Is thee a magnification paadox in gavitational ing? Olaf Wucknitz wucknitz@asto.uni-bonn.de Astophysics semina/colloquium, Potsdam, 6 Novembe 7 Is thee a magnification paadox in gavitational ing? gavitational

More information

1) Consider an object of a parabolic shape with rotational symmetry z

1) Consider an object of a parabolic shape with rotational symmetry z Umeå Univesitet, Fysik 1 Vitaly Bychkov Pov i teknisk fysik, Fluid Mechanics (Stömningsläa), 01-06-01, kl 9.00-15.00 jälpmedel: Students may use any book including the tetbook Lectues on Fluid Dynamics.

More information

Question Bank. Section A. is skew-hermitian matrix. is diagonalizable. (, ) , Evaluate (, ) 12 about = 1 and = Find, if

Question Bank. Section A. is skew-hermitian matrix. is diagonalizable. (, ) , Evaluate (, ) 12 about = 1 and = Find, if Subject: Mathematics-I Question Bank Section A T T. Find the value of fo which the matix A = T T has ank one. T T i. Is the matix A = i is skew-hemitian matix. i. alculate the invese of the matix = 5 7

More information

The condition for maximum intensity by the transmitted light in a plane parallel air film is. For an air film, μ = 1. (2-1)

The condition for maximum intensity by the transmitted light in a plane parallel air film is. For an air film, μ = 1. (2-1) hapte Two Faby--Peot ntefeomete A Faby-Peot intefeomete consists of two plane paallel glass plates A and B, sepaated by a distance d. The inne sufaces of these plates ae optically plane and thinly silveed

More information

Predicting Cone-in-Cone Blender Efficiencies from Key Material Properties

Predicting Cone-in-Cone Blender Efficiencies from Key Material Properties Pedicting Cone-in-Cone Blende Efficiencies fom Key Mateial Popeties By: D. Key Johanson Mateial Flow Solutions, Inc. NOTICE: This is the autho s vesion of a wok accepted fo publication by Elsevie. Changes

More information

Target Boards, JEE Main & Advanced (IIT), NEET Physics Gauss Law. H. O. D. Physics, Concept Bokaro Centre P. K. Bharti

Target Boards, JEE Main & Advanced (IIT), NEET Physics Gauss Law. H. O. D. Physics, Concept Bokaro Centre P. K. Bharti Page 1 CONCPT: JB-, Nea Jitenda Cinema, City Cente, Bokao www.vidyadishti.og Gauss Law Autho: Panjal K. Bhati (IIT Khaagpu) Mb: 74884484 Taget Boads, J Main & Advanced (IIT), NT 15 Physics Gauss Law Autho:

More information

Topic 4a Introduction to Root Finding & Bracketing Methods

Topic 4a Introduction to Root Finding & Bracketing Methods /8/18 Couse Instucto D. Raymond C. Rumpf Office: A 337 Phone: (915) 747 6958 E Mail: cumpf@utep.edu Topic 4a Intoduction to Root Finding & Backeting Methods EE 4386/531 Computational Methods in EE Outline

More information

V G. In this class, we will look at a possible hypothesis for way the time dependence is t

V G. In this class, we will look at a possible hypothesis for way the time dependence is t ECE65R : Reliability Physics of anoelectonic Devices Lectue : CI Time Exponents Date : Dec. 4, 6 Classnote : Saakshi Gangwal Review : Lutfe A Siddiqui. Review We have spent seveal weeks discussing discussing

More information

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS TSOKOS LESSON 10-1 DESCRIBING FIELDS Essential Idea: Electic chages and masses each influence the space aound them and that influence can be epesented

More information

THERMODYNAMICS OF SURFACES AND INTERFACES

THERMODYNAMICS OF SURFACES AND INTERFACES THERMODYNAMIC OF URFACE AND INTERFACE 1. Intoduction Eveything has to end somewhee. Fo solids, o liquids that "somewhee" is a suface, o an inteface between phases. Fo liquids, the inteface is between the

More information

Supplementary Figure 1. Circular parallel lamellae grain size as a function of annealing time at 250 C. Error bars represent the 2σ uncertainty in

Supplementary Figure 1. Circular parallel lamellae grain size as a function of annealing time at 250 C. Error bars represent the 2σ uncertainty in Supplementay Figue 1. Cicula paallel lamellae gain size as a function of annealing time at 50 C. Eo bas epesent the σ uncetainty in the measued adii based on image pixilation and analysis uncetainty contibutions

More information

Physics 235 Chapter 5. Chapter 5 Gravitation

Physics 235 Chapter 5. Chapter 5 Gravitation Chapte 5 Gavitation In this Chapte we will eview the popeties of the gavitational foce. The gavitational foce has been discussed in geat detail in you intoductoy physics couses, and we will pimaily focus

More information

rect_patch_cavity.doc Page 1 of 12 Microstrip Antennas- Rectangular Patch Chapter 14 in Antenna Theory, Analysis and Design (4th Edition) by Balanis

rect_patch_cavity.doc Page 1 of 12 Microstrip Antennas- Rectangular Patch Chapter 14 in Antenna Theory, Analysis and Design (4th Edition) by Balanis ect_patch_cavit.doc Page 1 of 1 Micostip Antennas- Rectangula Patch Chapte 14 in Antenna Theo, Analsis and Design (4th dition) b Balanis Cavit model Micostip antennas esemble dielectic-loaded cavities

More information

Chapter 2: Basic Physics and Math Supplements

Chapter 2: Basic Physics and Math Supplements Chapte 2: Basic Physics and Math Supplements Decembe 1, 215 1 Supplement 2.1: Centipetal Acceleation This supplement expands on a topic addessed on page 19 of the textbook. Ou task hee is to calculate

More information

Optics for Soft X-ray Seeding of LCLS-II - Grating and Mirrors

Optics for Soft X-ray Seeding of LCLS-II - Grating and Mirrors FLS ICFA Beam Dynamic Wokshop SLAC National Acceleato Laboatoy Menlo Pak, CA Optics fo Soft X-ay Seeding of LCLS-II - Gating and Mios Y. Feng, J. Wu, M. owen, P. Heimann, J. Kywinski, J. Hastings, et al.

More information

Newton s Laws, Kepler s Laws, and Planetary Orbits

Newton s Laws, Kepler s Laws, and Planetary Orbits Newton s Laws, Keple s Laws, and Planetay Obits PROBLEM SET 4 DUE TUESDAY AT START OF LECTURE 28 Septembe 2017 ASTRONOMY 111 FALL 2017 1 Newton s & Keple s laws and planetay obits Unifom cicula motion

More information

A Study on atmospheric turbulence with Shearing Interferometer wavefront sensor

A Study on atmospheric turbulence with Shearing Interferometer wavefront sensor A Study on atmospheic tubulence with Sheaing Intefeomete wavefont senso M.Mohamed Ismail 1, M.Mohamed Sathik 2. Reseach Schola, Depatment of Compute Science, Sadakathullah Appa College, Tiunelveli, Tamilnadu,

More information

Cylindrical and Spherical Coordinate Systems

Cylindrical and Spherical Coordinate Systems Clindical and Spheical Coodinate Sstems APPENDIX A In Section 1.2, we leaned that the Catesian coodinate sstem is deined b a set o thee mtall othogonal saces, all o which ae planes. The clindical and spheical

More information

06 - ROTATIONAL MOTION Page 1 ( Answers at the end of all questions )

06 - ROTATIONAL MOTION Page 1 ( Answers at the end of all questions ) 06 - ROTATIONAL MOTION Page ) A body A of mass M while falling vetically downwads unde gavity beaks into two pats, a body B of mass ( / ) M and a body C of mass ( / ) M. The cente of mass of bodies B and

More information

PROBLEM SET #1 SOLUTIONS by Robert A. DiStasio Jr.

PROBLEM SET #1 SOLUTIONS by Robert A. DiStasio Jr. POBLM S # SOLUIONS by obet A. DiStasio J. Q. he Bon-Oppenheime appoximation is the standad way of appoximating the gound state of a molecula system. Wite down the conditions that detemine the tonic and

More information

6 Vector Operators. 6.1 The Gradient Operator

6 Vector Operators. 6.1 The Gradient Operator 6 Vecto Opeatos 6. The Gadient Opeato In the B2 couse ou wee intoduced to the gadient opeato in Catesian coodinates. Fo an diffeentiable scala function f(x,, z), we can define a vecto function though (

More information

Liquid gas interface under hydrostatic pressure

Liquid gas interface under hydrostatic pressure Advances in Fluid Mechanics IX 5 Liquid gas inteface unde hydostatic pessue A. Gajewski Bialystok Univesity of Technology, Faculty of Civil Engineeing and Envionmental Engineeing, Depatment of Heat Engineeing,

More information

THERMODYNAMIC OPTIMIZATION OF TUBULAR HEAT EXCHANGERS BASED ON MINIMUM IRREVERSIBILITY CRITERIA

THERMODYNAMIC OPTIMIZATION OF TUBULAR HEAT EXCHANGERS BASED ON MINIMUM IRREVERSIBILITY CRITERIA THERMODYNAMIC OPTIMIZATION OF TUBULAR HEAT EXCHANGER BAED ON MINIMUM IRREVERIBILITY CRITERIA As. dd. ing. Adina GHEORGHIAN, Pof. d. ing. Alexandu DOBROVICECU, As. dd. ing. Andeea MARIN,.l. d. ing. Claudia

More information

AH Mechanics Checklist (Unit 2) AH Mechanics Checklist (Unit 2) Circular Motion

AH Mechanics Checklist (Unit 2) AH Mechanics Checklist (Unit 2) Circular Motion AH Mechanics Checklist (Unit ) AH Mechanics Checklist (Unit ) Cicula Motion No. kill Done 1 Know that cicula motion efes to motion in a cicle of constant adius Know that cicula motion is conveniently descibed

More information

(n 1)n(n + 1)(n + 2) + 1 = (n 1)(n + 2)n(n + 1) + 1 = ( (n 2 + n 1) 1 )( (n 2 + n 1) + 1 ) + 1 = (n 2 + n 1) 2.

(n 1)n(n + 1)(n + 2) + 1 = (n 1)(n + 2)n(n + 1) + 1 = ( (n 2 + n 1) 1 )( (n 2 + n 1) + 1 ) + 1 = (n 2 + n 1) 2. Paabola Volume 5, Issue (017) Solutions 151 1540 Q151 Take any fou consecutive whole numbes, multiply them togethe and add 1. Make a conjectue and pove it! The esulting numbe can, fo instance, be expessed

More information

EM Boundary Value Problems

EM Boundary Value Problems EM Bounday Value Poblems 10/ 9 11/ By Ilekta chistidi & Lee, Seung-Hyun A. Geneal Desciption : Maxwell Equations & Loentz Foce We want to find the equations of motion of chaged paticles. The way to do

More information

Fast DCT-based image convolution algorithms and application to image resampling and hologram reconstruction

Fast DCT-based image convolution algorithms and application to image resampling and hologram reconstruction Fast DCT-based image convolution algoithms and application to image esampling and hologam econstuction Leonid Bilevich* a and Leonid Yaoslavsy** a a Depatment of Physical Electonics, Faculty of Engineeing,

More information

Math Notes on Kepler s first law 1. r(t) kp(t)

Math Notes on Kepler s first law 1. r(t) kp(t) Math 7 - Notes on Keple s fist law Planetay motion and Keple s Laws We conside the motion of a single planet about the sun; fo simplicity, we assign coodinates in R 3 so that the position of the sun is

More information

OSCILLATIONS AND GRAVITATION

OSCILLATIONS AND GRAVITATION 1. SIMPLE HARMONIC MOTION Simple hamonic motion is any motion that is equivalent to a single component of unifom cicula motion. In this situation the velocity is always geatest in the middle of the motion,

More information

Physics 506 Winter 2006 Homework Assignment #9 Solutions

Physics 506 Winter 2006 Homework Assignment #9 Solutions Physics 506 Winte 2006 Homewok Assignment #9 Solutions Textbook poblems: Ch. 12: 12.2, 12.9, 12.13, 12.14 12.2 a) Show fom Hamilton s pinciple that Lagangians that diffe only by a total time deivative

More information

In many engineering and other applications, the. variable) will often depend on several other quantities (independent variables).

In many engineering and other applications, the. variable) will often depend on several other quantities (independent variables). II PARTIAL DIFFERENTIATION FUNCTIONS OF SEVERAL VARIABLES In man engineeing and othe applications, the behaviou o a cetain quantit dependent vaiable will oten depend on seveal othe quantities independent

More information

(r) = 1. Example: Electric Potential Energy. Summary. Potential due to a Group of Point Charges 9/10/12 1 R V(r) + + V(r) kq. Chapter 23.

(r) = 1. Example: Electric Potential Energy. Summary. Potential due to a Group of Point Charges 9/10/12 1 R V(r) + + V(r) kq. Chapter 23. Eample: Electic Potential Enegy What is the change in electical potential enegy of a eleased electon in the atmosphee when the electostatic foce fom the nea Eath s electic field (diected downwad) causes

More information

Vector d is a linear vector function of vector d when the following relationships hold:

Vector d is a linear vector function of vector d when the following relationships hold: Appendix 4 Dyadic Analysis DEFINITION ecto d is a linea vecto function of vecto d when the following elationships hold: d x = a xxd x + a xy d y + a xz d z d y = a yxd x + a yy d y + a yz d z d z = a zxd

More information

1) Emits radiation at the maximum intensity possible for every wavelength. 2) Completely absorbs all incident radiation (hence the term black ).

1) Emits radiation at the maximum intensity possible for every wavelength. 2) Completely absorbs all incident radiation (hence the term black ). Radiation laws Blackbody adiation Planck s Law Any substance (solid, liquid o gas) emits adiation accoding to its absolute tempeatue, measued in units of Kelvin (K = o C + 73.5). The efficiency at which

More information

The nature of electromagnetic radiation.

The nature of electromagnetic radiation. Lectue 3 The natue of electomagnetic adiation. Objectives: 1. Basic intoduction to the electomagnetic field: Definitions Dual natue of electomagnetic adiation lectomagnetic spectum. Main adiometic quantities:

More information

ELASTIC ANALYSIS OF CIRCULAR SANDWICH PLATES WITH FGM FACE-SHEETS

ELASTIC ANALYSIS OF CIRCULAR SANDWICH PLATES WITH FGM FACE-SHEETS THE 9 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS ELASTIC ANALYSIS OF CIRCULAR SANDWICH PLATES WITH FGM FACE-SHEETS R. Sbulati *, S. R. Atashipou Depatment of Civil, Chemical and Envionmental Engineeing,

More information

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH CERN NUFACT Note 117 June ISOCHRONOUS MACHINES WITH SECTOR MAGNET FIELDS AND CONDITIONS FOR SIMILARITY OF THE ORITS CERN-OPEN--4 /6/ J. A. Riche Cicula machines

More information

PHY2061 Enriched Physics 2 Lecture Notes. Gauss Law

PHY2061 Enriched Physics 2 Lecture Notes. Gauss Law PHY61 Eniched Physics Lectue Notes Law Disclaime: These lectue notes ae not meant to eplace the couse textbook. The content may be incomplete. ome topics may be unclea. These notes ae only meant to be

More information

Prerna Tower, Road No 2, Contractors Area, Bistupur, Jamshedpur , Tel (0657) , PART I PHYSICS

Prerna Tower, Road No 2, Contractors Area, Bistupur, Jamshedpur , Tel (0657) ,   PART I PHYSICS ena Towe, oad No, Contactos Aea, Bistupu, Jamshedpu 8311, Tel (657)189, www.penaclasses.com IIT JEE 1 hsics ape II AT I HYSICS SECTION I : Single Coect Answe Tpe This Section contains 8 multiple choice

More information

$ i. !((( dv vol. Physics 8.02 Quiz One Equations Fall q 1 q 2 r 2 C = 2 C! V 2 = Q 2 2C F = 4!" or. r ˆ = points from source q to observer

$ i. !((( dv vol. Physics 8.02 Quiz One Equations Fall q 1 q 2 r 2 C = 2 C! V 2 = Q 2 2C F = 4! or. r ˆ = points from source q to observer Physics 8.0 Quiz One Equations Fall 006 F = 1 4" o q 1 q = q q ˆ 3 4" o = E 4" o ˆ = points fom souce q to obseve 1 dq E = # ˆ 4" 0 V "## E "d A = Q inside closed suface o d A points fom inside to V =

More information

22.615, MHD Theory of Fusion Systems Prof. Freidberg Lecture 4: Toroidal Equilibrium and Radial Pressure Balance

22.615, MHD Theory of Fusion Systems Prof. Freidberg Lecture 4: Toroidal Equilibrium and Radial Pressure Balance .615, MHD Theoy of Fusion Systems Pof. Feidbeg Lectue 4: Tooidal Equilibium and Radial Pessue Balance Basic Poblem of Tooidal Equilibium 1. Radial pessue balance. Tooidal foce balance Radial Pessue Balance

More information

12th WSEAS Int. Conf. on APPLIED MATHEMATICS, Cairo, Egypt, December 29-31,

12th WSEAS Int. Conf. on APPLIED MATHEMATICS, Cairo, Egypt, December 29-31, th WSEAS Int. Conf. on APPLIED MATHEMATICS, Caio, Egypt, Decembe 9-3, 7 5 Magnetostatic Field calculations associated with thick Solenoids in the Pesence of Ion using a Powe Seies expansion and the Complete

More information

Computational Methods of Solid Mechanics. Project report

Computational Methods of Solid Mechanics. Project report Computational Methods of Solid Mechanics Poject epot Due on Dec. 6, 25 Pof. Allan F. Bowe Weilin Deng Simulation of adhesive contact with molecula potential Poject desciption In the poject, we will investigate

More information